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1 Introduction

Parallel-in-timemethods for solving optimal control problems under time-dependent
PDE constraints have gained much interest in the past decade (see, e.g., ParaOpt [5]).
Among all the possible approaches, it is natural to consider Schwarz time domain
decomposition techniqueswhen one dealswith transport equations, since the original
control problem is equivalent to an elliptic problem in which the initial and target
conditions play the role of boundary conditions (see e.g. [1]).
In this paper, we consider the following one-dimensional transport control prob-

lem. Let 𝑇 > 0, and let 𝑦ini and 𝑦tar be two periodic functions in ∈ 𝐿2loc (R) with
period one. We want to find a control 𝑣 ∈ 𝐿2loc (R × (0, 𝑇)), periodic in space of
period one, such that the function 𝑦 defined by{

𝜕𝑡 𝑦 + 𝜕𝑥𝑦 = 𝑣 in R × (0, 𝑇),
𝑦(., 0) = 𝑦ini,

(1)

verifies the exact constraint

𝑦(., 𝑇) = 𝑦tar. (2)

Over all the possible controls 𝑣, we shall seek the onewithminimal 𝐿2-norm, namely,
we minimize the functional

𝐽 (𝑣) = 1
2

∫ 𝑇

0
‖𝑣‖2

𝐿2 (0,1) . (3)
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The optimization problem (1)-(2)-(3) admits a unique solution 𝑣∗ that can be deduced
from the following optimality system: find (𝑦, _), 1-periodic in space, such that

𝜕𝑡 𝑦 + 𝜕𝑥𝑦 = _ in R × (0, 𝑇),
𝜕𝑡_ + 𝜕𝑥_ = 0 in R × (0, 𝑇),
𝑦(., 0) = 𝑦ini,
𝑦(., 𝑇) = 𝑦tar,

𝑣∗ = _. (4)

2 Domain decomposition in time for the continuous problem

We apply Schwarz-in-time domain decomposition methods to (4). To do so, we
decompose the time interval (0, 𝑇) into two subdomains (0, 𝑇1) and (𝑇1, 𝑇) with
𝑇1 = Δ𝑇 =

𝑇

2
. To start with, we solve the system (4) using the optimized Schwarz

method with Robin transmission conditions on the interface 𝑡 = Δ𝑇 , with a single
parameter 𝔭. More specifically, at iteration 𝑘 , the functions 𝑦𝑘1 and _

𝑘
1 (resp. 𝑦

𝑘
2 and

_𝑘
2 ) are solutions to (4) on (0, 𝑇1) (resp (𝑇1, 𝑇)) together with the following boundary
condition:

𝔭𝑦𝑘1 + _𝑘
1 = 𝔭𝑦𝑘−12 + _𝑘−1

2 , −𝔭𝑦𝑘2 + _𝑘
2 = −𝔭𝑦𝑘−11 + _𝑘−1

1 . (5)

Theorem 1 Let 𝔭 =
1
Δ𝑇

. Then the Schwarz iterative algorithm based on (5) and
applied to the system (4) converges after 1 iteration.

The theorem is proven by calculating explicitly the solutions of the sub-domain
problems. We point out that in [6], a convergence proof using energy estimates has
been given for all 𝔭 > 0. On the other hand, to our knowledge, there has not been
a detailed analysis of the convergence factor on the corresponding discrete systems
(see [4, 7] for a convergence proof for semi-discrete schemes in the parabolic case).
Understanding the behaviour of the discrete systems is the subject of the next sections.

3 Time-domain decomposition for a discrete problem

3.1 Discrete control problem

To discretize our problem, we consider a spatial discretization based on the up-
wind scheme with 𝑁 uniform nodes and a mesh size of Δ𝑥 = 1/𝑁 . We denote by
AΔ𝑥 ∈ M𝑁 (R) the corresponding matrix: its diagonal terms are Δ𝑥−1, its lower
sub-diagonal ones are equal to −Δ𝑥−1, and [AΔ𝑥]1,𝑁 = −Δ𝑥−1 (to take into account
the periodicity), and zero coefficients elsewhere. The time discretization is made
using the semi-implicit Euler scheme (explicit in 𝑦 and implicit in 𝑣), using 𝑀 + 1
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uniform nodes on [0, 𝑇] and a mesh size of Δ𝑡 = 𝑇
𝑀
. We denote by yini, ytar (vectors

of R𝑁 ), the discretization of 𝑦ini and 𝑦tar. We mimic the continuous minimization
problem (1)-(2)-(3) by considering the following discrete one:

min
v=(v𝑛

𝑖
) ∈R𝑁×𝑀

𝐽 (v) = 1
2
Δ𝑡 Δ𝑥 ‖v‖2, (6)

where the control v = (v1, . . . , v𝑀 ) is such that y = (y0, . . . , y𝑀 ) ∈ (R𝑁 )𝑀+1

satisfies 
y𝑚 − y𝑚−1

Δ𝑡
+ AΔ𝑥y𝑚−1 = v𝑚 𝑚 = 1, . . . , 𝑀,

y0 = yini,
(7)

as well as the target constraint
y𝑀 = ytar. (8)

In the problem (6), ‖ · ‖ denotes the usual Euclidean norm on R𝑁×𝑀 . As in the
continuous case, Problem (6)-(7)-(8) admits a unique solution v𝑚∗ = ___𝑚, where
(y𝑚, ___𝑚) is the solution of the following optimality system (see [3]):

y𝑚 − (I − Δ𝑡 AΔ𝑥)y𝑚−1 = Δ𝑡___𝑚 𝑚 = 1, . . . , 𝑀,

___𝑚−1 − (I − Δ𝑡 A𝑡
Δ𝑥
)___𝑚 = 0 𝑚 = 1, . . . , 𝑀,

y0 = yini,
y𝑀 = ytar.

(9)

In the sequel, in order to guarantee the convergence of the scheme, we shall consider
the standard relation between Δ𝑡 and Δ𝑥 given by

Δ𝑡

Δ𝑥
= 𝑟, (10)

where 𝑟 is a given real parameter in (0, 1).

3.2 Schwarz domain decomposition

Weapply the Schwarzmethod strategy (5) to the system (9). For the sake of simplicity,
let us consider 𝑀 = 2𝐿, so that the interface 𝑇/2 corresponds exactly to the node 𝐿.
The algorithm then reads: starting from an initial guess (bbb01, bbb

0
2) ∈ R2𝑁 , at each

iteration 𝑘 ≥ 1, we construct (y𝑘,𝑚

1 , ___
𝑘,𝑚

1 ) (respectively (y𝑘,𝑚

2 , ___
𝑘,𝑚

2 )) solution to (9)
for 𝑚 = 1, . . . , 𝐿 (resp. 𝑚 = 𝐿 +1, . . . , 𝑀) together with the transmission conditions

𝔭y𝑘,𝐿

1 + ___𝑘,𝐿

1 = bbb𝑘−11 , −𝔭y𝑘,𝐿

2 + ___𝑘,𝐿

2 = bbb𝑘−12 . (11)

Then, we update bbb𝑘1 by taking

bbb𝑘1 = 𝔭y𝑘,𝐿

2 + ___𝑘,𝐿

2 , bbb𝑘2 = −𝔭y𝑘,𝐿

1 + ___𝑘,𝐿

1 . (12)
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Remark 1 The local subdomain problems are indeed optimality systems associated
with local control problems (see [6]).

The convergence analysis of the algorithm (9)-(11)-(12) relies on the Discrete
Fourier transform in space R𝑁 → R𝑁 , (𝑢1, . . . , 𝑢𝑁−1) ↦→ (�̂�0, . . . �̂�𝑁−1) defined by

�̂�ℓ =
𝑁−1∑
𝑛=0

𝑢𝑛 exp(−2𝜋iℓ𝑛Δ𝑥). Indeed, (9)-(11)-(12) can be transformed as follows:
at iteration 𝑘 , in subdomain Ω𝑖 , for any ℓ between 0 and 𝑁 − 1 (spatial frequency),
�̂�
𝑘,𝑚

𝑖,ℓ
(with 𝑚 denoting the time step) solves{

�̂�
𝑘,𝑚

𝑖,ℓ
− (1 − 𝜎(ℓ) Δ𝑡) �̂�𝑘,𝑚−1

𝑖,ℓ
= Δ𝑡_̂

𝑘,𝑚

𝑖,ℓ
,

(1 − 𝜎(ℓ)Δ𝑡)_̂𝑘,𝑚

𝑖,ℓ
− _̂

𝑘,𝑚−1
𝑖,ℓ

= 0,
where 𝜎(ℓ) = 1 − exp(−2𝜋iℓΔ𝑥)

Δ𝑥
,

(13)

together with boundary conditions{
�̂�
𝑘,0
1,ℓ = �̂�ini,ℓ ,

𝔭�̂�
𝑘,𝐿

1,ℓ + _̂
𝑘,𝐿

1,ℓ = b̂𝑘−11,ℓ ,

{
−𝔭�̂�𝑘,𝐿2,ℓ + _̂

𝑘,𝐿

2,ℓ = b̂𝑘−12,ℓ ,

�̂�
𝑘,𝑀

2,ℓ = �̂�tar,ℓ .
(14)

Then,

b̂𝑘1,ℓ = 𝔭�̂�
𝑘,𝐿

2,ℓ + _̂
𝑘,𝐿

2,ℓ , b̂𝑘2 = −𝔭�̂�𝑘,𝐿1,ℓ + _̂
𝑘,𝐿

1,ℓ . (15)

As the problem is linear, the convergence analysis of the algorithm reduces to
investigating the case �̂�ini,ℓ = �̂�tar,ℓ = 0, starting from given data b̂01,ℓ and b̂02,ℓ .
Eliminating �̂�𝑘,0

𝑖,ℓ
and _̂𝑘,0

𝑖,ℓ
by solving explicitly the recurrence equations (13)–(15),

we see that b̂𝑘+2
𝑖,ℓ
follows the geometric progression

b̂𝑘+2𝑖,ℓ = 𝜌Δ𝑡 (𝔭, ℓ) b̂𝑘𝑖,ℓ with 𝜌Δ𝑡 (𝔭, ℓ) =
(
1 − 𝔭𝛾Δ𝑡 (ℓ)
1 + 𝔭𝛾Δ𝑡 (ℓ)

) (
|𝛽Δ𝑡 (ℓ) |2 − 𝔭𝛾Δ𝑡 (ℓ)
|𝛽Δ𝑡 (ℓ) |2 + 𝔭𝛾Δ𝑡 (ℓ)

)
,

where 𝛽Δ𝑡 (ℓ) = (1 − 𝜎(ℓ)Δ𝑡)𝐿 , and 𝛾Δ𝑡 (ℓ) = Δ𝑡
∑𝐿−1

𝑚=0 |1 − 𝜎(ℓ)Δ𝑡 |2𝑚. As in [2],
our objective is to minimize |𝜌Δ𝑡 | uniformly in ℓ, namely, to solve the problem

min
𝔭>0

(
max

ℓ=0,...,𝑁−1
|𝜌Δ𝑡 (𝔭, ℓ) |

)
. (16)

To analyse (16), and in view of Theorem 1, we first make the change of variables
𝑝 = 𝔭Δ𝑇 . Then, under the assumption (10), we see that

|1 − 𝜎(ℓ)Δ𝑡 |2 = 1 − 4 · Δ𝑡
Δ𝑥

(
1 − Δ𝑡

Δ𝑥

)
sin2 (𝜋ℓΔ𝑥) = 1 − 4𝑟 (1 − 𝑟) sin2

(
𝜋ℓ

Δ𝑡

𝑟

)
.
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It motivates us to introduce the new variable

𝑧 = 4𝑟 (1 − 𝑟) sin2
(
𝜋ℓ

Δ𝑡

𝑟

)
,

which varies between 0 and 𝑧max = 4𝑟 (1 − 𝑟) (take ℓ = 𝑁/2) as ℓ varies from 0 to
𝑁 − 1. For the sake of simplicity, we choose to optimize 𝜌Δ𝑡 over the whole interval
[0, 𝑧max] and to study

min
𝑝>0

(
max

0≤𝑧≤𝑧max
|𝜌Δ𝑡 (𝑝, 𝑧) |

)
𝜌Δ𝑡 (𝑝, 𝑧) =

𝜑Δ𝑡 (𝑧) − 𝑝

𝜑Δ𝑡 (𝑧) + 𝑝
· 𝜓Δ𝑡 (𝑧) − 𝑝

𝜓Δ𝑡 (𝑧) + 𝑝
(17)

with
𝜑Δ𝑡 (𝑧) =

Δ𝑇

𝛾Δ𝑡 (𝑧)
, 𝜓Δ𝑡 (𝑧) =

|𝛽Δ𝑡 (𝑧) |2Δ𝑇
𝛾Δ𝑡 (𝑧)

,

and |𝛽Δ𝑡 (𝑧) |2 = (1 − 𝑧)𝐿 , 𝛾Δ𝑡 (𝑧) = Δ𝑡
∑𝐿−1

𝑚=0 (1 − 𝑧)𝑚.

4 Existence, uniqueness and asymptotic study of the optimized
parameter

The following theorem proves the well-posedness of the problem (17) and describes
the asymptotic behaviour of the optimal convergence factor as Δ𝑡 goes to 0.

Theorem 2 For any Δ𝑡 > 0, Problem (17) has a unique solution 𝑝∗
Δ𝑡

, which is the
unique solution larger than 1 of the following alternation equation

max
0≤𝑧≤𝑧max

𝜌Δ𝑡 (𝑝, 𝑧) = − min
0≤𝑧≤𝑧max

𝜌Δ𝑡 (𝑝, 𝑧). (18)

Moreover, as Δ𝑡 goes to 0,

𝑝∗Δ𝑡 =
√︁
2Δ𝑇 𝑧max Δ𝑡

−1/2 + 𝑜

(
Δ𝑡−1/2

)
, (19)

max
0≤𝑧≤𝑧max

|𝜌Δ𝑡 (𝑝∗Δ𝑡 , 𝑧) | = 1 −
2
√
2

√
Δ𝑇 𝑧max

Δ𝑡1/2 + 𝑜

(
Δ𝑡1/2

)
. (20)

Remark 2 In (19)-(20), 𝑜(Δ𝑡𝑠) (with 𝑠 = ±1/2)means that the remainder is negligible
relative to Δ𝑡𝑠 . We also point out that, unless 𝑟 = 1 (in which case the scheme is
exact), we have limΔ𝑡→0 𝑝∗Δ𝑡 ≠ 1, meaning we do not recover the optimal parameter
associated with the continuous DD algorithm.

The remainder of this section is dedicated to the sketch of the proof of Theorem 2.
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Step 1: We prove that the alternation Equation (18) has a unique solution 𝑝∗
Δ𝑡

larger
than 1. Let us introduce

𝜌Δ𝑡 ,max (𝑝) = max
0≤𝑧≤𝑧max

𝜌Δ𝑡 (𝑝, 𝑧), 𝜌Δ𝑡 ,min (𝑝) = min
0≤𝑧≤𝑧max

𝜌Δ𝑡 (𝑝, 𝑧),

and the function 𝑠(𝑝) = 𝜌Δ𝑡 ,max (𝑝) + 𝜌Δ𝑡 ,min (𝑝). We prove that 𝑠 has a unique zero
larger than one (and, consequently (18) has a unique root). Indeed,

- For 𝑝 > 1, the function 𝑠 is a continuous and strictly increasing function of 𝑝.
In fact, for 𝑝 > 1, a direct computation shows that 𝜕𝑝𝜌Δ𝑡 (𝑝, 𝑧) > 0. Therefore,
𝜌Δ𝑡 ,max, 𝜌Δ𝑡 ,min, and their sum 𝑠 are strictly increasing functions of 𝑝.

- 𝑠(1) < 0 (𝜌Δ𝑡 ,max (1) ≤ 0 and 𝜌Δ𝑡 ,min (1) < 0).
- 𝑠(𝜑Δ𝑡 (𝑧max)) > 0 (𝜌Δ𝑡 ,max (𝜑Δ𝑡 (𝑧max)) > 0 and 𝜌Δ𝑡 ,min (𝜑Δ𝑡 (𝑧max)) = 0).

Thus, (18) has a unique solution 𝑝∗
Δ𝑡

> 1.

Step 2: We show that 𝑝∗
Δ𝑡

is the unique solution to Problem (17). First, based on
the properties of 𝜑Δ𝑡 and 𝜓Δ𝑡 , we can prove (by contradiction) that any solution 𝑝

of (17) must be in the interval (1, 𝜑Δ𝑡 (𝑧max)). But,

- For 𝑝 ∈ (1, 𝑝∗
Δ𝑡
), a careful investigation leads to

max
0≤𝑧≤𝑧max

|𝜌Δ𝑡 (𝑝, 𝑧) | = −𝜌Δ𝑡 ,min (𝑝) > −𝜌Δ𝑡 ,min (𝑝∗Δ𝑡 ) = max
0≤𝑧≤𝑧max

|𝜌Δ𝑡 (𝑝∗Δ𝑡 , 𝑧) |.

- Similarly, for 𝑝 ∈ (𝑝∗
Δ𝑡
, 𝜑Δ𝑡 (𝑧max)), we obtain

max
0≤𝑧≤𝑧max

|𝜌Δ𝑡 (𝑝, 𝑧) | = 𝜌Δ𝑡 ,max (𝑝) > 𝜌Δ𝑡 ,max (𝑝∗Δ𝑡 ) = max
0≤𝑧≤𝑧max

|𝜌Δ𝑡 (𝑝∗Δ𝑡 , 𝑧) |.

Therefore, 𝑝∗
Δ𝑡
is the unique global minimum of (17).

Step 3: Asymptotics of the optimal parameter 𝑝∗
Δ𝑡

and its corresponding convergence
factor with respect toΔ𝑡.Wefirst remark that Equation (18) is defined implicitly in 𝑝,
so it is a priori difficult to tackle directly. However, we can approximate 𝜌Δ𝑡 ,max (𝑝)
by 𝜌Δ𝑡 (𝑝, 0): indeed, an attentive analysis shows that there exists Δ𝑡0 > 0 and
a constant 𝐶 such that for Δ𝑡 < Δ𝑡0,

|𝜌Δ𝑡 ,max (𝑝) − 𝜌Δ𝑡 (𝑝, 0) | ≤ 𝐶𝑝−1Δ𝑡. (21)

Consequently, for small Δ𝑡, it is sufficient to consider the ’approximate’ equation

𝜌Δ𝑡 (𝑝, 0) = −𝜌Δ𝑡 (𝑝, 𝑧max), (22)

which turns out to be explicitly solvable. Its solution 𝑝∗eq,Δ𝑡 is given by

𝑝∗eq,Δ𝑡 =
©«𝑆𝑚,Δ𝑡 −

𝑃𝑚,Δ𝑡

2
− 1
2
+

((
𝑆𝑚,Δ𝑡 −

𝑃𝑚,Δ𝑡

2
− 1
2

)2
− 𝑃𝑚,Δ𝑡

)1/2ª®¬
1/2

,
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where 𝑆𝑚,Δ𝑡 = 𝜓Δ𝑡 (𝑧max) + 𝜑Δ𝑡 (𝑧max) and 𝑃𝑚,Δ𝑡 = 𝜓Δ𝑡 (𝑧max)𝜑Δ𝑡 (𝑧max). From the
asymptotic behaviour of 𝜓Δ𝑡 (𝑧max) and 𝜑Δ𝑡 (𝑧max), we deduce that when Δ𝑡 → 0,

𝑝∗eq,Δ𝑡 =
√︁
2Δ𝑇 𝑧max.Δ𝑡

−1/2 + 𝑜

(
Δ𝑡−1/2

)
,

which implies

−𝜌Δ𝑡 (𝑝∗eq,Δ𝑡 , 𝑧max) = 𝜌Δ𝑡 (𝑝∗eq,Δ𝑡 , 0) = 1 −
2
√
2

√
Δ𝑇 𝑧max

· Δ𝑡1/2 + 𝑜

(
Δ𝑡1/2

)
.

Finally, the asymptotic formulas (19)–(20) result from (21).

5 Numerical illustration

We illustrate the results of Theorem 2 in the case of 𝑇 = 1. In the left panel of
Figure 1, we plot 1− |𝜌Δ𝑡 |max (𝑝∗Δ𝑡 ) with respect to Δ𝑡 (in logarithmic scale) for three
different values of 𝑟 . In each case, the optimized parameter 𝑝∗

Δ𝑡
is computed using

fminsearch in Matlab. As expected, whatever the choice of 𝑟 ∈ (0, 1), we obtain
straight lines with slope equal to that of the curve 𝑦 =

√
Δ𝑡.

Fig. 1 Left: Asymptotic behaviour of 1 − |𝜌Δ𝑡 |max (𝑝∗
Δ𝑡
) . Right: performance of 𝑝∗

Δ𝑡
for Δ𝑡 =

1/160, 𝑟 = 1/2.

Next, we test the performance of our domain decomposition-in-time algorithm. For
the simulation, we take Δ𝑡 = 1/160, 𝑟 = 1/2, 𝑦ini = 𝑦tar = 0, and we start from
a random initial guess bbb0

𝑖
(i.e. we compute the zero solution). In the right panel of

Figure 1, we display in blue the evolution of the error with respect to the number
of iterations; in the present case, it just consists of computing the maximum of
the 𝐿2 norm of bbb𝑘1 and bbb𝑘2 . The performance is as predicted by the theory. On
the other hand, the convergence rate can be drastically improved by using a two-
sided algorithm, where we allow for two different values 𝑝 and 𝑞 instead of 𝔭
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in the formulas (5). The fminsearch function provides us with two optimized
parameters (𝑝∗

Δ𝑡
, 𝑞∗

Δ𝑡
) = (1.1831, 8.5024× 10−2), leading to a convergence factor of

7.0728×10−2. The performance of the two-sided algorithm for this value is displayed
in red, and appears to be much better than the optimized one-sided one. The proof
of that result will be given in a forthcoming publication.
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