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1 Introduction

Given a bounded polygonal domain Ω ⊂ R2, we seek 𝒖 ∈ 𝐻0 (rot;Ω) such that

𝑎(𝒖, 𝒗) :=
∫
Ω

(𝛼 rot 𝒖 rot 𝒗 + 𝛽𝒖 · 𝒗) =
∫
Ω

𝒇 · 𝒗 ∀𝒗 ∈ 𝐻0 (rot;Ω), (1)

where rot 𝒖 := 𝜕𝑥1𝑢2 − 𝜕𝑥2𝑢1, 𝒇 ∈ [𝐿2 (Ω)]2, and 𝛼, 𝛽 ∈ 𝐿∞ (Ω) are positive
functions that are uniformly bounded from below. The weak form (1) arises from
implicit time integration of the eddy current model of Maxwell’s equation [5] and is
considered in several studies; see, e.g., [1, 13]. We recall that

𝐻0 (rot;Ω) :=
{
𝒗 ∈ [𝐿2 (Ω)]2 : rot 𝒗 ∈ 𝐿2 (Ω), 𝒗 · 𝒕 = 0 on 𝜕Ω

}
,

where 𝒕 denotes the unit tangential vector on 𝜕Ω. The bilinear form 𝑎(·, ·) defined
in (1) is obtained from the differential operator L𝒖 := rot (𝛼rot 𝒖) + 𝛽𝒖, where
rot 𝑞 :=

(
𝜕𝑥2𝑞,−𝜕𝑥1𝑞

)𝑇 . The well-posedness of problem (1) can be established by
a straightforward application of the Lax-Milgram lemma; for the sake of brevity we
omit further details and refer to [15].
In this paper, we present a two-level overlapping Schwarz preconditioner for

problem (1) discretized with finite or virtual element methods (FEM or VEM,
respectively) in two dimensions. To the best of our knowledge, there are no theoretical
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results for preconditioning the linear system that arises from (1) when VEM are used.
Our method allows us to handle irregular subdomains and general polygonal meshes,
and applies to a broader range of material properties and subdomain geometries than
previous studies.
First studies for problems posed in 𝐻1 (Ω) with FEM discretizations and irregular

subdomains include [14, 17, 11], where discrete harmonic extensions are required
for the construction of a coarse component of the preconditioner; for problems
posed in 𝐻 (rot;Ω) see [7, 8]. Such algorithms require us to solve a linear system
on the fine mesh for each coarse function. The ideas introduced in [9, 10] allowed
to extend standard Domain Decomposition Methods (DDM) from FEM to VEM for
problems posed in 𝐻1 (Ω) in a natural way. Hence, we replace harmonic extensions
by projectors onto polynomial spaces of degree at most 𝑘 . In this variant, we need
to solve a linear system with just O(𝑘2) unknowns in order to construct a coarse
function, reducing the complexity of the construction of coarse functions while
preserving the dimension of the coarse space defined in [7] for FEM, which is
equal to the number of interior subdomain edges. In this paper, we present such
generalization for problems posed in 𝐻 (rot;Ω).
In [7], a theoretical bound for the condition number 𝜅 of a two-level overlapping

Schwarz preconditioner for FEM, based on discrete harmonic extensions, is given by

𝜅 ≤ 𝐶

(
1 + 𝐻

𝛿

) (
1 + log 𝐻

ℎ

)
,

where 𝐶 only depends on 𝛼, 𝛽 and some parameters related to the regularity of
the subdomains. We observe similar results for our preconditioner when VEM and
harmonic extensions are considered.
We remark that there are different DDM such as FETI-DP and BDDC methods;

see [12, 8] for studies related to our problem. Nevertheless, the simplicity of imple-
menting an overlapping additive Schwarz algorithm with competitive results gives
relevance to our work.
The rest of this paper is organized as follows.We briefly describe the VEM for our

model problem (1) in Section 2. We then describe the two-level overlapping additive
Schwarz and the definition of our coarse space with detail in Section 3. Finally, some
numerical results and conclusions are included in Section 4.

2 The virtual element method

We briefly describe a virtual element scheme for problem (1). Given an integer
ℓ ≥ 0, let Pℓ (D) denote the space of polynomials defined in D of total degree at
most ℓ. Let {Tℎ}ℎ>0 be a family of decompositions of Ω into polygonal elements.
We assume that there exists a constant 𝐶T > 0 such that for each decomposition Tℎ
and for each 𝐸 ∈ Tℎ it holds that (see, e.g., [6, Section 3.2] and [4, Section 2]):
1. the ratio between the shortest edge and the diameter ℎ𝐸 is bigger than 𝐶T , and
2. 𝐸 is star-shaped with respect to a ball of radius 𝐶Tℎ𝐸 and center 𝒙𝐸 ∈ 𝐸 .
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The lowest-order conforming Nédélec first-type local space

𝑁𝐸
0 := {𝒗 ∈ [P1 (𝐸)]2 : 𝒗 = (−𝑏𝑥2 + 𝑎1, 𝑏𝑥1 + 𝑎2)𝑇 , 𝑎1, 𝑎2, 𝑏 ∈ R}

is typically used for the discretization of (1) with triangular meshes; see [12, 7, 8].
For general polygonal meshes, we replace the Nédélec space 𝑁𝐸

0 by the lowest-order
local virtual element space𝑊𝐸

0 , defined as

𝑊𝐸
0 :=

{
𝒗 ∈ [𝐿2 (𝐸)]2 : 𝒗 · 𝒕 |𝑒 ∈ P0 (𝑒)∀𝑒 ∈ 𝜕𝐸, rot 𝒗, div 𝒗 ∈ P0 (𝐸),

∫
𝐸

𝒗 · 𝒙𝐸 = 0
}

where 𝑒 ∈ 𝜕𝐸 represents an edge of 𝐸 , 𝒙𝐸 = 𝒙 − 𝒃𝐸 , and 𝒃𝐸 is the barycenter
of 𝐸 ; see [4, eq. (28)]. The degrees of freedom of a virtual function 𝒗 ∈ 𝑊𝐸

0 can
be chosen as the moments 𝜆𝑒 (𝒗) = 1

|𝑒 |
∫
𝑒
𝒗 · 𝒕 for each edge 𝑒 ∈ 𝜕𝐸 , similar as

what is done when Nédélec elements are used; see, e.g., [3, eq. (3.13)]. We remark
that rot 𝒗 = 1

|𝐸 |
∫
𝐸
rot 𝒗 = 1

|𝐸 |
∫
𝜕𝐸

𝒗 · 𝒕 = 1
|𝐸 |

∑
𝑒∈𝜕𝐸 |𝑒 |𝜆𝑒 (𝒗), and therefore we

can compute the rotor of 𝒗 ∈ 𝑊𝐸
0 from its degrees of freedom. Thus, the term∫

𝐸
𝛼rot 𝒖rot 𝒗 of the bilinear form can be computed and we only require to modify

the mass matrix. Given 𝒗 ∈ [𝐿2 (𝐸)]2, let Π𝐸
1 : [𝐿

2 (𝐸)]2 → [P1 (𝐸)]2 be the
orhogonal projector given by∫

𝐸

Π𝐸
1 𝒗 · 𝒑 =

∫
𝐸

𝒗 · 𝒑 ∀𝒑 ∈ [P1 (𝐸)]2. (2)

We remark that Π𝐸
1 is computable for functions in𝑊

𝐸
0 only knowing its degrees of

freedom; we omit details and refer to [2, Remark 3]. For the mass-term, we then
replace 𝒗 by Π𝐸

1 𝒗 in the local bilinear form. Therefore, as it is standard in VEM,
a stabilizing term is required, which is defined as

𝑠𝐸 (𝒘, 𝒗) := ℎ𝐸

∑︁
𝑒∈𝜕𝐸

∫
𝑒

(𝒘 · 𝒕) (𝒗 · 𝒕) ∀𝒘, 𝒗 ∈ 𝑉0 (𝐸);

see [4, Theorem A.2] and [3, eq. (4.8)] for further details. We then consider the local
bilinear form

𝑎𝐸
ℎ
(𝒘, 𝒗) :=

∫
𝐸

(
𝛼rot 𝒘 rot 𝒗 + 𝛽Π𝐸

1 𝒘 · Π𝐸
1 𝒗

)
+ 𝑠𝐸

(
𝒘 − Π𝐸

1 𝒘, 𝒗 − Π𝐸
1 𝒗

)
for 𝒘, 𝒗 ∈ 𝑊𝐸

0 . The global virtual element space 𝑉ℎ ⊂ 𝐻0 (rot;Ω) is then given by

𝑉ℎ :=
{
𝒗 ∈ 𝐻0 (rot;Ω) : 𝒗 |𝐸 ∈ 𝑊𝐸

0 ∀𝐸 ∈ Tℎ
}
, (3)

and, as usual, the global bilinear form is obtained by assembling the local bilinear
forms 𝑎𝐸

ℎ
(·, ·). We then define the virtual element scheme associated to (1): find

𝒖ℎ ∈ 𝑉ℎ such that
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𝐸 ∈Tℎ

𝑎𝐸ℎ (𝒖ℎ , 𝒗ℎ) =
∑︁
𝐸 ∈Tℎ

∫
𝐸

𝒇 · Π𝐸
1 𝒗ℎ ∀ 𝒗ℎ ∈ 𝑉ℎ .

This problem is well-posed and standard estimates for the approximated solution can
be obtained; for the sake of brevity we omit such details.

3 Overlapping Schwarz methods

In this section, we briefly describe two-level overlapping methods; see [16, Chap-
ter 3] for further details. We partition the domain Ω into 𝑁 non-overlapping subdo-
mains {Ω𝑖}𝑁𝑖=1 of diameter 𝐻𝑖 which are the union of elements of Tℎ . Subdomains
are assumed to satisfy the same assumptions as the elements on the fine mesh; this
implies that they are simply connected and the number of edges of each subdomain
is uniformly bounded. The edges on this decomposition are denoted by 𝑒𝐻 , which
correspond to edges of the polygons Ω𝑖 . We then construct overlapping subdomains
Ω′

𝑖
⊃ Ω𝑖 by adding layers of elements that are external to Ω𝑖 , and we will denote

by 𝛿𝑖 the minimum width of the region Ω′
𝑖
\Ω𝑖 .

We consider the usual local virtual spaces 𝑉𝑖 , 1 ≤ 𝑖 ≤ 𝑁 , defined by

𝑉𝑖 :=
{
𝒗 ∈ 𝐻0 (rot ;Ω′

𝑖) : 𝑣 |𝐸 ∈ 𝑊𝐸
0 ∀ 𝐸 ⊂ Ω′

𝑖

}
.

Thus, the degrees of freedom of a function 𝒗𝑖 ∈ 𝑉𝑖 are 𝜆𝑒 (𝒗𝑖) at the fine edges 𝑒 that
are in the interior of Ω′

𝑖
. We also consider the natural operators 𝑅𝑇

𝑖
: 𝑉𝑖 → 𝑉ℎ given

by the zero extension from the subdomain Ω′
𝑖
to Ω, 1 ≤ 𝑖 ≤ 𝑁 .

We can define the coarse space 𝑉0 as the virtual element space (3) defined on
the coarse mesh {Ω𝑖}𝑁𝑖=1. Nevertheless, its dimension can be an inconvenience for
parallel implementations in the presence of irregular subdomains with too many
edges; see Figure 1. Instead, for each subdomain edge E𝑖 𝑗 (defined as the interior of
Ω𝑖 ∩ Ω 𝑗 ), we define a coarse function 𝒄E ∈ 𝑉0 by defining its degrees of freedom
of𝑉0.We set𝜆𝑒

𝐻 (𝒄E) = 𝒅E · 𝒕𝑒𝐻 for every edge 𝑒𝐻 in E, and𝜆𝑒
𝐻 (𝒄E) = 0 otherwise.

Here, 𝒅E denotes a unit vector in the direction between the endpoints of E, and 𝒕𝑒𝐻
is the unit tangent vector of 𝑒𝐻 . The reduced coarse space 𝑉𝑅

0 is then defined as
the span of these coarse basis functions 𝒄E . We remark that the dimension of 𝑉𝑅

0 is
equal to the number of subdomain edges, similar as in [7, 8, 12].
In order to define an operator 𝑅𝑇

0 : 𝑉
𝑅
0 ⊆ 𝑉0 → 𝑉ℎ that approximates functions in

the coarse space by elements in𝑉ℎ , we can consider discrete harmonic extensions as
in [7], for which a generalization for VEM can be established. Nevertheless, we can
avoid discrete harmonic extensions by approximating virtual functions in 𝑉𝑅

0 in the
interior of subdomains by polynomials as follows. Consider the high-order virtual
spaces of order 𝑘 ∈ N, defined on the coarse mesh, as the set

𝑉 𝑘
0 = {𝒗 ∈ 𝐻0 (rot ;Ω) : 𝒗 |Ω𝑖

∈ 𝑊
Ω𝑖

𝑘
∀𝑖 ∈ {1, 2, . . . , 𝑁}},
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Fig. 1 (left)Voronoimesh and
(right) non-convex mesh with
𝑁 = 16 irregular subdomains.
Subdomains have, in average,
45 and 55 edges for the
Voronoi and non-convex
meshes, respectively.

where𝑊Ω𝑖

𝑘
is defined as the set{

𝒗 ∈ [𝐿2 (Ω𝑖)]2 : 𝒗 · 𝒕 |𝑒𝐻 ∈ P𝑘 (𝑒𝐻 )∀𝑒𝐻 ∈ 𝜕Ω𝑖 , rot 𝒗 ∈ P𝑘 (Ω𝑖), div 𝒗 ∈ P𝑘−1 (Ω𝑖)
}

Following [2, Section 3.2], the local degrees of freedom for 𝒗 ∈ 𝑊
Ω𝑖

𝑘
can be chosen as

𝑚𝑒𝐻

𝑞 (𝒗) :=
∫
𝑒𝐻

(𝒗 · 𝒕) 𝑞 ∀ 𝑞 ∈ P𝑘 (𝑒𝐻 ) ,∀ 𝑒𝐻 ∈ 𝜕Ω𝑖 ,

𝑚
Ω𝑖

𝑝,rot (𝒗) :=
∫
Ω𝑖

(rot 𝒗) 𝑝 ∀ 𝑝 ∈ P𝑘 (Ω𝑖) \ {1} ,

𝑚
Ω𝑖

𝑝,div (𝒗) :=
∫
Ω𝑖

(𝒗 · 𝒙Ω𝑖
) 𝑝 ∀ 𝑝 ∈ P𝑘−1 (Ω𝑖) ,

which are unisolvent; see [2, Proposition 3.3]. It is clear that 𝑉𝑅
0 ⊆ 𝑉0 ⊆ 𝑉 𝑘

0 . For
every coarse function 𝒄E𝑖 𝑗 ∈ 𝑉𝑅

0 , we seek the degrees of freedom of the function
�̃�E𝑖 𝑗 ∈ 𝑉 𝑘

0 , with the same degrees of freedom of 𝒄E on the interface, such that∑︁
𝐸 ∈Ω𝑙

𝑎𝐸ℎ (𝐼
ℎ (ΠΩ𝑙

𝑘
�̃�E𝑖 𝑗 ), 𝐼ℎ (ΠΩ𝑙

𝑘
�̃�E𝑖 𝑗 )) (4)

is minimum for 𝑙 ∈ {𝑖, 𝑗}, where 𝒘 = 𝐼ℎ𝒗 ∈ 𝑉ℎ is the usual interpolant given by the
condition 𝜆𝑒 (𝒗 − 𝒘) = 0 for all edge 𝑒, and ΠΩ𝑙

𝑘
: [𝐿2 (Ω𝑙)]2 → [P𝑘 (Ω𝑙)]2 is the

orthogonal projector onto Ω𝑙; see (2) for the case 𝑘 = 1. The degrees of freedom
of �̃�E given by 𝑚𝑒𝐻

𝑞 ( �̃�E) and 𝑚Ω𝑖

𝑝,rot ( �̃�E) are known and can be computed from 𝒄E .
Since

∫
Ω𝑖
(𝒗 · 𝒙Ω𝑖

) = 0, the remaining degrees of freedom can be obtained just by
solving a linear system with 𝑘 (𝑘 + 1)/2 − 1 equations for each subdomain with E
on its boundary, obtained by directly computing the critical points of (4). For the
sake of brevity we omit details and refer to [9] that includes how to obtain this linear
system. Preserving degrees of freedom on the interface guarantees continuity across
the interface when we interpolate coarse functions to the fine mesh. We then define
𝑅𝑇
0 𝒄E ∈ 𝑉ℎ by setting:

(a’) 𝜆𝑒 (𝑅𝑇
0 𝒄E) = 𝜆𝑒 (𝒄E) if 𝑒 is an edge on the interface;

(b’) 𝜆𝑒 (𝑅𝑇
0 𝒄E) = 𝜆𝑒 (ΠΩ𝑙

𝑘
�̃�E) if 𝑒 is an interior edge of Ω𝑙;

(c’) 𝜆𝑒 (𝑅𝑇
0 𝒄E) = 0 otherwise;
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Fig. 2 (left) 𝑅𝑇
0 𝒄E for an

irregular edge E, evalu-
ated in the interior of each
subdomain by interpolating
Π

Ω𝑖

6 for 𝑖 ∈ {1, 2}. (right)
A discontinuous coefficient 𝛽
varying from 𝛽 = 103 (red) to
𝛽 = 10−3 (blue).

see Figure 2where we show 𝑅𝑇
0 𝒄E for a given subdomain edge E.We finally consider

the two-level additive overlapping Schwarz preconditioner

𝑃𝑎𝑑 :=
𝑁∑︁
𝑖=0

𝑃𝑖 = 𝐴−1
𝑎𝑑𝐴, with 𝐴

−1
𝑎𝑑 =

𝑁∑︁
𝑖=0

𝑅𝑇
𝑖 (𝑅𝑖𝐴𝑅

𝑇
𝑖 )−1𝑅𝑖 , (5)

where we consider exact solvers for each subspace for simplicity; see [16, Chap. 2].

4 Numerical results and conclusions

We present numerical results for the two-level additive overlapping Schwarz pre-
conditioner (5). We solve the resulting linear systems using the preconditioned
conjugate gradient method to a relative residual tolerance of 10−6. We estimate
the condition number 𝜅(𝑃𝑎𝑑) and compute the number of iterations 𝐼𝑘 (for spaces
of degree 𝑘) and 𝐼H (for the coarse space based on discrete harmonic extensions)

Table 1 Number of iterations 𝐼 and condition number 𝜅 (in parenthesis) with Voronoi meshes and
𝑁 METIS subdomains. 𝐼3, 𝐼6 and 𝐼H correspond to 𝑘 = 3, 𝑘 = 6 and discrete harmonic extensions,
respectively. 𝑁E is the dimension of the coarse space.

𝛽 = 10−3 𝛽 = 1 𝛽 = 103
𝑁E 𝐼3 (𝜅) 𝐼6 (𝜅) 𝐼H (𝜅) 𝐼3 (𝜅) 𝐼6 (𝜅) 𝐼H (𝜅) 𝐼3 (𝜅) 𝐼6 (𝜅) 𝐼H (𝜅)

𝑁 Test 1: 𝐻/ℎ = 8, 𝐻/𝛿 = 2, 𝛼 = 1
82 161 38(47.5) 31(23.9) 21(7.7) 35(38.5) 22(10.5) 20(7.2) 18(7.3) 18(7.3) 18(7.3)
122 389 58(112) 49(79.0) 24(9.4) 55(95.7) 33(20.3) 21(8.0) 20(8.3) 19(8.2) 19(8.2)
162 709 73(201) 66(181) 23(9.3) 69(163) 51(51.6) 21(8.0) 20(7.9) 20(7.9) 20(7.9)
202 1128 90(328) 84(289) 25(9.9) 84(262) 68(132) 22(8.4) 20(8.4) 20(8.0) 20(8.0)

𝐻/𝛿 Test 2: 𝐻/ℎ = 32, 𝑁 = 16, 𝛼 = 1
4 33 33(25.4) 30(24.1) 19(6.1) 31(22.8) 28(19.8) 18(6.0) 16(5.1) 15(5.1) 15(5.1)
8 33 43(58.3) 39(52.3) 21(7.5) 40(49.5) 37(35.6) 20(7.0) 15(4.8) 15(4.9) 15(5.0)
16 33 57(136) 56(124) 24(12.7) 53(100) 49(65.7) 23(13.0) 16(6.1) 16(6.1) 16(6.0)
32 33 82(300) 81(300) 35(28.6) 73(166) 62(101) 32(23.0) 20(8.6) 20(8.4) 19(7.8)

𝐻/ℎ Test 3: 𝑁 = 16, 𝐻/𝛿 = 4, 𝛼 = 1
8 33 32(32.6) 24(12.4) 19(7.2) 30(22.4) 19(6.9) 18(7.0) 14(5.4) 14(5.3) 14(5.3)
16 34 31(26.8) 29(26.1) 18(6.1) 30(22.9) 27(14.1) 18(5.8) 15(5.1) 15(5.0) 15(5.1)
32 33 33(25.4) 30(24.1) 19(6.1) 31(22.8) 28(19.8) 18(6.0) 16(5.1) 15(5.1) 15(5.1)
64 33 34(22.6) 32(22.6) 18(5.5) 32(21.6) 31(19.3) 18(5.5) 14(5.3) 16(5.1) 16(5.1)
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Table 2 Number of iterations 𝐼 and condition number 𝜅 (in parenthesis) with non-convex meshes
and 𝑁 METIS subdomains. 𝐼3, 𝐼6 and 𝐼H correspond to 𝑘 = 3, 𝑘 = 6 and discrete harmonic
extensions, respectively. 𝑁E is the dimension of the coarse space.

𝛽 = 10−3 𝛽 = 1 𝛽 = 103
𝑁E 𝐼3 (𝜅) 𝐼6 (𝜅) 𝐼H (𝜅) 𝐼3 (𝜅) 𝐼6 (𝜅) 𝐼H (𝜅) 𝐼3 (𝜅) 𝐼6 (𝜅) 𝐼H (𝜅)

𝑁 Test 1: 𝐻/ℎ = 8, 𝐻/𝛿 = 2, 𝛼 = 1
82 158 38(54.0) 28(17.3) 20(8.0) 36(36.9) 21(7.8) 19(6.7) 20(10.1) 20(10.1) 20(10.1)
122 379 57(130) 45(66.1) 21(7.4) 53(81.6) 29(13.7) 20(7.1) 23(13.5) 23(13.6) 22(13.5)
162 699 76(261) 61(136) 21(7.7) 69(139) 34(21.2) 20(7.2) 24(16.4) 24(16.1) 24(16.2)
202 1109 93(537) 82(265) 23(8.3) 83(245) 45(38.3) 21(8.5) 27(20.9) 27(20.7) 27(20.9)

𝐻/𝛿 Test 2: 𝐻/ℎ = 32, 𝑁 = 16, 𝛼 = 1
4 33 33(30.7) 30(28.7) 18(6.4) 31(24.0) 29(17.7) 17(5.5) 15(5.1) 15(5.1) 15(5.0)
8 33 43(80.4) 42(73.7) 22(8.2) 42(49.5) 35(29.8) 20(7.9) 17(8.0) 17(8.0) 16(7.9)
16 33 56(129) 57(139) 26(11.4) 52(70.3) 45(41.4) 24(12.0) 21(12.8) 21(12.8) 20(12.7)
32 33 78(297) 78(304) 34(21.9) 67(112) 55(62.7) 32(20.6) 30(28.4) 30(28.4) 29(29.4)

𝐻/ℎ Test 3: 𝑁 = 16, 𝐻/𝛿 = 4, 𝛼 = 1
8 33 31(29.6) 23(10.7) 18(6.4) 27(19.5) 18(6.4) 17(5.7) 19(11.4) 19(11.3) 19(11.7)
16 31 31(30.8) 29(27.7) 18(6.0) 29(20.2) 23(10.0) 17(5.8) 16(7.7) 16(7.7) 16(7.7)
32 33 33(30.7) 30(28.7) 18(6.4) 31(24.0) 29(17.7) 17(5.5) 15(5.0) 15(5.1) 15(5.0)
64 33 38(39.5) 33(29.8) 19(6.1) 35(25.2) 31(20.9) 18(5.7) 16(4.9) 16(5.1) 15(5.0)

Table 3 Number of iterations 𝐼 and condition number 𝜅 (in parenthesis) with non-convex meshes
and discontinuous values for 𝛽 as in Figure 2. 𝐼6 and 𝐼H correspond to 𝑘 = 6 and discrete harmonic
extensions, respectively. 𝑁E is the dimension of the coarse space.

𝑁 𝑁E 𝐼6 (𝜅) 𝐼H (𝜅)
82 158 20 (10.1) 20 (10.1)
122 379 23 (13.6) 22 (13.5)
162 699 24 (16.1) 24 (16.2)
202 1109 27 (20.7) 27 (20.9)

𝐻/ℎ 𝑁E 𝐼6 (𝜅) 𝐼H (𝜅)
8 33 19 (11.3) 19 (11.7)
16 31 16 (7.7) 16 (7.7)
32 33 15 (5.1) 15 (5.0)
64 33 16 (5.1) 15 (5.0)

for each experiment; see results in Tables 1 and 2. We include different values for
𝛽 ∈ {10−3, 1, 103} since previous bounds depend on the parameters 𝛼 and 𝛽. We
confirm the linear growth in the condition number as we increase 𝐻/𝛿 and we ob-
serve no significant dependence on the parameter 𝐻/ℎ. We observe that the coarse
space based on discrete harmonic extensions is numerically scalable, and for small
values of 𝛽 the scalability is impaired when polynomial spaces are used. We remark
that for the case of triangular meshes and square subdomains, our method recovers
the same spaces as in [7]. We also include numerical results where 𝛽 is piecewise
constant on each subdomain; see Table 3 and Figure 2.
The theoretical bound for the condition number of the preconditioned system is in

progress, where we have been able to obtain certain bounds for the coarse component
of a decomposition for 𝒖 ∈ 𝑉ℎ , without considering Helmholtz decompositions as
in [7]. There is also interest of implementing these ideas in 3D problems, in order
to compare numerical results and running times with previous preconditioners. We
also remark that similar results will hold for two-dimensional problems posed in
𝐻 (div;Ω), since two-dimensional Raviart-Thomas elements correspond to a 90◦
rotation of the elements considered in this paper.
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