
A Two-Level Restricted Additive Schwarz
Method for Asynchronous Computations

Faycal Chaouqui and Daniel B. Szyld

1 Introduction

In this paper, we investigate the parallel performance of both synchronous and
asynchronous domain decomposition methods (DDMs) for the solution of algebraic
systems coming from the discretization of partial differential equations (PDEs). In
particular, we extend the ideas introduced in [8] for different types of coarse space
corrections. We consider a PDEof the formL(u) = f onΩ ⊂ R2 such thatu|Ω = 0.
The operatorL after discretization yields a large sparse system of algebraic equations
of the form

Au = f, (1)

whereA ∈ Rn×n and f ∈ Rn. Here, we focus our attention on theRestrictedAdditive
Schwarz (RAS) domain decomposition solver [2, 4]. For the sake of simplicity,
we assume that L = −∆. We assume that the domain Ω is decomposed into p
overlapping subdomains Ω1, . . . , Ωp. Let R>i , i = 1, . . . , p, denotes the boolean
matrix that maps the local degrees of freedom defined in Ωi to Ω. We define the
local stiffness matrix Ai = RiAR

>
i . Let us also define the diagonal matrices Di,

i = 1, . . . p, such that we satisfy the partition of unity, i.e.,
∑p
i=1R

>
i DiRi = I,

where I denotes the identity matrix in Rn×n. The RAS iteration is then defined as

uk+1 = uk +
p∑
i=1

R>i DiA
−1
i Ri(f−Auk). (2)

We note that in our case, the matrices Di correspond to diagonal boolean matrices
that are 1 in the non-overlapping partition, and 0 otherwise. We note also that there

Faycal Chaouqui
COMSOL, INC, Burlington, Mass., USA, e-mail: chaouqui@temple.edu

Daniel Szyld
Temple University, Philadelphia, Pa., USA, e-mail: szyld@temple.edu

109

110 Faycal Chaouqui and Daniel B. Szyld

are other ways for choosing those matrices, and we refer the reader to [4, 5]. In the
next section, we will describe briefly the asynchronous RAS method.

2 Asynchronous restricted additive Schwarz

We briefly describe asynchronous iterations (see, e.g., [3]) for fixed point problems
defined on a product space U = U1 × · · · × Up, of the form u = T u with a unique
solution. In other words, we have u = (u1, . . . ,up) and T = (T1, T2, · · · , Tp),
with Ts : U → Us. We have in mind that the operation in process s, of the form
us = Ts (u1, . . . ,up) is performed without synchronization, i.e., without waiting for
other processors to send new information.

For a mathematical model of these asynchronous iterations on p processors,
we follow the model introduced by Bertsekas [1]. To that end, we define a time
stamp k, k ∈ N, and denote by {σ(k)}k∈N the sequence of non-empty subsets of
{1, . . . , p}, defining which processes update their components at the time stamp k.
Define also for s, q ∈ {1, . . . , p},

{
τsq (k)

}
k∈N a sequence of integers, representing

the update number (or time stamp) of the data coming from process q and available
on process s at the time k. Thus, a delaywould be k−τsq (k). We begin with an initial
approximation u0 =

(
u0
1, . . . ,u0

p

)
, and define, for each process s, the asynchronous

iterations as follows.

uk+1
s =

{
Ts
(

uτ
s
1 (k)

1 , . . . ,uτ
s
p (k))
p

)
if s ∈ σ(k + 1),

uks if s /∈ σ(k + 1) .
(3)

In this model, one also assumes that the three following natural conditions are
satisfied

∀s, q ∈ {1, . . . , p} ,∀k ∈ N, τsq (k) ≤k, (4)
∀s ∈ {1, . . . , p} , card {k ∈ N|s ∈ σ(k)} =+∞, (5)

∀s, q ∈ {1, . . . , p} , lim
k→+∞

τsq (k) = +∞. (6)

Condition (4) represents the fact that data used at the time kmust have been produced
before time k, i.e., time does not flow backward. Condition (5) indicates that no
process will ever stop updating its components. Condition (6) means that new data
will always be provided to the process. In other words, no process will have a piece
of data that is never updated.

One important theoretical result states that for a fixed point problem, say
T (u) = u, on a product space, under conditions (4)–(6), if there is a norm such that
the map T is contracting, i.e., if the (synchronous) fixed point iteration converges,
then, the corresponding asynchronous iteration converges as well; see, e.g., [3] and
references therein. For the RAS iteration, the map Ts defined in (3) is equivalent to

A Two-Level Restricted Additive Schwarz Method for Asynchronous Computations 111

Algorithm 1 (Asynchronous RAS)
1: Input: u0.
2: Output: u ≈ u∗.
3: Set r0 = f−Au0, converged = false.
4: In parallel, each processor core s:
5: while converged = false do
6: Set us = Ts(u1, . . . , up) . Update subdomain s
7: Compute ‖Dsrs‖2 . Compute local residual norm
8: if s == 1 then
9: Compute ‖r‖2 =

√∑p
i=1 ‖Diri‖22

10: if ‖r‖2/‖r0‖2 ≤ ε then . Check global convergence
11: converged = true
12: end if
13: end if
14: end while (for processor s)
15: Set u =

∑p
s=1R

>
s Dsus . Assemble global solution

Ts(u1,u2, . . . ,up) = us +Rs

p∑
i=1

R>i DiA
−1
i ri, (7)

where ri = Ri(f−Au) it the local residual for the subdomain Ωi, i = 1, . . . p. The
implementation of iteration (3) is presented in Algorithm 1.

In Algorithm 1 each processor core computes and updates the components of
the local vector as well as the corresponding local residual norms. A processor core
is then in charge of accumulating all the local residuals and computing the global
residual. The algorithm then stops when the global residual is smaller than the toler-
ance. We provide results of numerical examples illustrating the performance of both
synchronous and asynchronous RAS. We consider Ω = [0, 1] × [0, 1] decomposed
into regular squares with a total of p subdomains and a minimal overlap. The source
term f is chosen such that sin(πx) sin(πy) corresponds to the exact monodomain
solution. We partition the domain into p = 4× 4 subdomains with a total of 10k dis-
cretization points. We note that each processor core was assigned to one subdomain.
All the tests were carried out on a shared memory machine which consists of 88
CPU cores / 176 threads and 1536GB of RAM. The implementation of Algorithm 1
was in C++ and the parallelization uses the OpenMP multithreading directives. We
run two different types of experiments. In the first run, we assume all processors run
at the same speed and compare both the timings required by both synchronous and
asynchronous to reach a specified tolerance. This is illustrated in Figure 1 (left). We
can see that in this case the synchronous is faster than the asynchronous. To show
the advantage of the asynchronous approach, we repeat the experiment but with one
processor core twice as slow. This can be realized by measuring the time needed
for a single update and then forcing the processor to sleep (idle) for that amount of
time. In this manner we mimic heterogeneous architectures, as well as cases where
one subdomain is larger than the others. We can observe from Figure 1 (right) that
the asynchronous is faster than the synchronous in this case.

112 Faycal Chaouqui and Daniel B. Szyld

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

R
el

. r
es

id
 2

-n
or

m

Time (s)

Sync RAS
Async RAS

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 0.5 1 1.5 2 2.5 3

R
el

. r
es

id
 2

-n
or

m

Time (s)

Sync RAS
Async RAS

Fig. 1 Left: CPU time versus relative residual 2-norm for synchronous and asynchronous RAS
with p = 16. Right: Same but one thread is twice as slow.

3 Two-level asynchronous restricted additive Schwarz

A second level is an essential component to obtain a robust domain decomposition
method. It relies generally on solving a smaller problem on a coarser mesh so that
there is global communication between the subdomains. The coarse space allows
us then to construct the coarse restriction matrix R0. The two-level RAS is then
defined as

uk+1/2 = uk +
p∑
i=1

R>i DiA
−1
i Ri(f−Auk)

uk+1 = uk+1/2 +R>0 A
−1
0 R0(f−Auk+1/2).

(8)

In order to use iteration (8) asynchronously, we need to use the coarse grid in an
additive way. This can be done by using a weighted additive version or multiplica-
tive/additive variant of (8). The corresponding two-levelmapping T̃ can be expressed
in the case of the additive variant as

T̃s(u1,u2, . . . ,up) = us+Rs

(
1

2

p∑
i=1

R>i DiA
−1
i ri +

1

2
R>0 A

−1
0 R0

p∑
i=1

R>i Diri

)
.

(9)
For work using a multiplicative additive variant, we mention [7, 9]. To avoid

over-correction from the coarse grid, we have to make sure that no subdomain is
corrected again until all the remaining subdomains have updated at least once [8].
We present in Algorithm 2, the implementation of the asynchronous two-level RAS.

We describe now the coarse correction we use. We would like the coarse grid
to ensure the scalability of the method as a solver. In the same spirit of [6], we use
harmonically extended coarse basis functions. Let ni denotes the number of cross
points for each subdomain Ωi, i = 1, . . . p. Let ϕji , j = 1, . . . ni define a piecewise

A Two-Level Restricted Additive Schwarz Method for Asynchronous Computations 113

Algorithm 2 (Asynchronous two-level RAS)
1: Input: u0.
2: Output: u ≈ u∗.
3: Set r0 = f−Au0, converged = false.
4: Set update[s]=false, and correction[s]=false, s = 1, . . . , p.
5: In parallel, each processor s:
6: while converged = false do
7: if s > 0 then
8: if correction[s] then . Check if coarse correction is needed
9: Set us = T̃s(u1, . . . , up) . Update subdomain s
10: Set correction[s]=false
11: else
12: Set us = Ts(u1, . . . , up) . Update subdomain s
13: Set update[s]=true
14: end if
15: Compute ‖Dsrs‖2 . Compute local residual norm
16: if s == 1 then
17: Compute ‖r‖2 =

√∑p
i=1 ‖Diri‖22

18: if ‖r‖2/‖r0‖2 ≤ ε then . Check global convergence
19: converged = true
20: end if
21: end if
22: else
23: if update[q], ∀q = 1, . . . , p then . Check if all subdomains updated
24: Compute the coarse correction.
25: Set correction[i]=true, i = 1, . . . , p
26: Set update[i]=false, i = 1, . . . , p
27: end if
28: end if
29: end while (for processor s)
30: Set u =

∑p
s=1R

>
s Dsus . Assemble global solution

linear function on ∂Ωi that is 1 at one cross point and 0 on the others. We define the
coarse basis functions φji , j = 1, . . . , ni, i = 1, . . . p, as the solution of{

L|Ωi
(φji) = 0, on Ωi
φji = ϕji , on ∂Ωi .

(10)

We define our coarse spaceZ ⊂ Rd as the span of extended coarse functions φji , i.e.,

Z = span
{
R>i φ

j
i , j = 1, . . . , ni i = 1, . . . , p

}
. (11)

The columns of the matrix R>0 forms a basis of Z . We show in Table 1 the number
of iterations needed to reach a tolerance ε = 10−8 with this specific coarse space for
(synchronous) RAS as a solver.We can see that the two-level method outperforms the
one-level method and is also scalable, i.e., the number of iterations does not increase
when we grow the number of subdomains. We also report the iterations required

114 Faycal Chaouqui and Daniel B. Szyld

Table 1 Weak scalability of additive two-level RAS
p n dimZ dimZMG #iter (RAS) #iter (RAS+Z) #iter (RAS+ZMG)
16 14400 36 49 630 93 144
25 22500 64 81 953 98 107
36 32400 100 121 1344 99 108
49 44100 144 169 1802 100 99
64 57600 196 225 2325 100 99

for two-level RAS constructed using a multigrid (MG) approach with four levels
of coarsening. We can observe that the coarse grid considered in our simulation is
asymptotically similar to MG for our model problem L. However, it has a smaller
coarse grid size.

Next, we test the performance of the two-level asynchronous Algorithm 2 by
comparing the time needed to reach a specified tolerance. In Figure 2 we plot
the timing versus the residual norm for both synchronous and asynchronous two-
level methods. We can observe that in this case the synchronous is faster than the
asynchronous. We also see that the timing required to converge is faster than for
the one-level method. The introduction of heterogeneity among processors yields
a faster asynchronous two-level method. We note that as is the case for the local
subdomains, the coarse problem was solved exactly since it is small for the coarse
space defined (11). In Table 2, we report the timings required for both synchronous
and asynchronous one and two-level RAS for processors with random time delays.
We realize this by adding a random time delay to each processor core that follows
a uniform density function of the form U(0, εTs), where Ts is the timings required
for the processor s to finish its workload, and ε = 0.01, 0.1, 1. We can observe from
Table 2 that the introduction of heterogeneities in the computation, even with a small
magnitude reveals the advantages of asynchronous computations.

In Figure 3 we test the weak scalability of both the synchronous and asynchronous
methods. To do so, we fix the tolerance to ε = 10−6 and the subdomain’s size to 1600,

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

R
el

. r
es

id
 2

-n
or

m

Time (s)

Sync two-level RAS
Async two-level RAS

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R
el

. r
es

id
 2

-n
or

m

Time (s)

Sync two-level RAS
Async two-level RAS

Fig. 2 Left: CPU time versus relative residual 2-norm for two-level synchronous and asynchronous
RAS with p = 16. Right: Same but one thread is twice as slow.

A Two-Level Restricted Additive Schwarz Method for Asynchronous Computations 115

Table 2 Timing required (in sec) of synchronous and asynchronous one- and two-level RAS to
reach a tolerance of 10−8 for different levels of heterogeneities.

ε Sync RAS Async RAS Sync two-level RAS Async two-level RAS
0.01 2.3173 2.1973 0.4547 0.3539
0.1 2.4788 2.4051 0.4075 0.3601
1 5.9415 5.7202 1.0837 1.0295

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0 10 20 30 40 50 60 70

T
im

e
(s

)

p

Sync RAS
Async RAS

Sync two-level RAS
Async two-level RAS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0 10 20 30 40 50 60 70

T
im

e
(s

)

p

Sync RAS
Async RAS

Sync two-level RAS
Async two-level RAS

Fig. 3 Left: The number of subdomains versus the CPU time needed for convergence for one and
two-level synchronous and asynchronous RAS. Right: Same but with a processor core twice as
slow.

then run the two-level algorithms and measure the CPU time required to converge.
We also plot the time required for the synchronous one as well. In Figure 3 (left),
all the processors run at the same speed and there is no load imbalance. We can
observe that in this case, the two-level asynchronous method is the fastest among
all the four methods. The one-level synchronous method is still slightly faster than
the one-level asynchronous (except for p = 64). In Figure 3 (right) we repeat the
same experiment, but with one processor core twice as slow. We can see now that
the asynchronous method outperforms the synchronous method. This is true for both
the one- and two-level methods. Observe also that while the two-level synchronous
method is slightly slower in the simulated heterogeneous architecture (for p = 64,
5.85 sec vs. 2.38 sec), the asynchronous method is faster (2.59 sec vs. 6.17 sec). The
introduction of heterogeneity clearly shows how asynchronous can be effective in
practice.

4 Conclusion

In this paper, we analyzed the performance of one and two-level synchronous and
asynchronous RAS. In particular, we used a specific coarse grid correction for our
asynchronous computations. Our numerical results suggest that the asynchronous
methods exhibit good performance. In particular, we observed that for heterogeneous
hardware, the asynchronous outperforms the synchronous method. This was valid
for both the one and two-level methods.

116 Faycal Chaouqui and Daniel B. Szyld

References

1. Bertsekas, D. P. Distributed asynchronous computation of fixed points. Mathematical Pro-
gramming 27(1), 107–120 (1983).

2. Cai, X.-C. and Sarkis, M. A restricted additive Schwarz preconditioner for general sparse linear
systems. SIAM Journal on Scientific Computing 21, 792–797 (1999).

3. Frommer, A. and Szyld, D. B. On Asynchronous Iterations. Journal of Computational and
Applied Mathematics 123, 201–216 (2000).

4. Frommer, A. and Szyld, D. B. An algebraic convergence theory for restricted additive Schwarz
methods using weighted max norms. SIAM Journal on Numerical Analysis 39, 463–479 (2001).

5. Gander, M. J. Does the Partition of Unity Influence the Convergence of Schwarz Methods?
In: Haynes, R., MacLachlan, S., Cai, X.-C., Halpern, L., Kim, H., Klawonn, A., and Widlund,
O. (eds.), Domain decomposition methods in science and engineering XXV, Lecture Notes in
Computational Science and Engineering, vol. 138, 3–15. Springer, Cham (2018).

6. Gander, M. J. and Loneland, A. SHEM: An optimal coarse space for RAS and its multiscale
approximation. In: Lee, C.-O., Cai, X.-C., Keyes, D., Kim, H., Klawonn, A., Park, E.-J., and
Widlund, O. (eds.), Domain decomposition methods in science and engineering XXIII, Lecture
Notes in Computational Science and Engineering, vol. 116, 313–321. Springer (2017).

7. Gbikpi-Benissan, G. and Magoulès, F. Asynchronous Multiplicative Coarse-Space Correction.
SIAM Journal on Scientific Computing 44, C237–C259 (2022).

8. Glusa, C., Boman, E. G., Chow, E., Rajamanickam, S., and Szyld, D. B. Scalable Asynchronous
DomainDecomposition Solvers. SIAM Journal on Scientific Computing 42, C384–C409 (2020).

9. Wolfson-Pou, J. and Chow, E. Asynchronous multigrid methods. In: 2019 IEEE international
parallel and distributed processing symposium (IPDPS), 101–110. IEEE (2019).

