
A Preconditioner for Free-Surface
Hydrodynamics BEM

Gabriele Ciaramella, Marco Gambarini, and Edie Miglio

1 Introduction

The computation of hydrodynamic loads from sea surface waves on large arrays of
objects is of physical and engineering interest. Typical applications are the simu-
lation of arrays of wave energy converters [3] and the modeling of ice floes in the
marginal ice zone [6]. The interest is in array sizes of the order of tens (for wave
energy converter arrays) to hundreds (for ice floes) of objects. In these scenarios, the
relatively small distances between the floating objects make the correct simulation
of mutual hydrodynamic interactions essential. Under the assumptions of incom-
pressible, irrotational, inviscid flow and small displacements, one can derive a linear
potential model, which is widely used for the considered range of applications. This
model is discretized using the boundary element method [2], resulting in a linear
system characterized by a dense and complex matrix. The dimension of the discrete
problem grows proportionally to the number of simulated objects. In general, itera-
tive solvers are not scalable for the corresponding numerical solution: the number of
iterations needed to achieve a given tolerance grows with the number of objects [5].
To tackle this problem, we propose a preconditioner for the efficient simulation of
large arrays of objects and present its implementation using hierarchical matrices.
Consider an array of 𝑛 floating objects. To compute all its hydrodynamic proper-

ties, a number of problems equal to the number of its degrees of freedom needs to be
solved. Each problem corresponds to imposing a unit oscillation in one of the degrees
of freedom, while keeping all others fixed. Exploiting linearity, the solution of the
dynamic problem with loads from incident waves and possibly other external forces
can then be written as a linear combination of such unit oscillations. Considering
only vertical oscillations, system (1) needs to be solved for 𝑖 = 1, . . . , 𝑛

Gabriele Ciaramella, Marco Gambarini, Edie Miglio
MOX, Dipartimento di Matematica Politecnico di Milano, Italy, e-mail:
gabriele.ciaramella@polimi.it, marco.gambarini@polimi.it, edie.miglio@polimi.it

125

126 Gabriele Ciaramella, Marco Gambarini, and Edie Miglio

Δ𝜙 = 0 in Ω ⊂ R3,
𝜕𝜙

𝜕𝑛
= 0 on Γ𝑏 ,

𝜕𝜙

𝜕𝑧
− 𝜔2

𝑔
𝜙 = 0 on Γ𝑠 ,

𝜕𝜙

𝜕𝑛
= 𝑛𝑧 on Γ𝑜,𝑖 ,

𝜕𝜙

𝜕𝑛
= 0 on Γ𝑜, 𝑗 , 𝑗 = 1, . . . , 𝑛 ∧ 𝑗 ≠ 𝑖,

(1)

where 𝜙 is the velocity potential,Ω is the (3D) domain, bounded by the sea bottom Γ𝑏 ,
the mean free surface Γ𝑠 , and the immersed surfaces of the objects Γ𝑜,𝑖 , 𝑖 = 1, . . . , 𝑛.
Further, 𝜔 is the angular frequency of oscillations, 𝑔 is the gravitational field, and 𝑛𝑧
is the vertical component of the normal vector to the surface of objects. The numerical
solution using a source-distribution boundary element method (BEM) is based on
recasting (1) in integral form:

1
2
𝜎(𝒙) +

∫
∪𝑘Γ𝑜,𝑘

𝜎(𝒙′) 𝜕G
𝜕𝑛

(𝒙; 𝒙′) d𝒙′ =
{
𝑛𝑧 if 𝒙 ∈ Γ𝑜,𝑖 ,
0 if 𝒙 ∈ Γ𝑜, 𝑗 , 𝑗 ≠ 𝑖,

(2)

𝜙(𝒙) =
∫
∪𝑘Γ𝑜,𝑘

𝜎(𝒙′)G(𝒙; 𝒙′) d𝒙′, ∀𝒙 ∈ Ω. (3)

Here, the unknown is the source distribution 𝜎 defined on body surfaces. The kernel
is the Green function G, a complex elementary solution of the Laplace equation
satisfying the boundary conditions on the bottom and free surface [7, Sect. 16]. By
discretizing the surfaces of objects into elements, Eq. (2) can be represented as the
linear algebraic system 𝐴𝝈 = 𝒃. Once this system has been solved, Eq. (3), in the
discretized form 𝝓 = 𝐵𝝈, can be used to compute the potential in any point of the
domain.

2 The coarse-corrected block-Jacobi algorithm

Thematrix 𝐴 resulting from the discretization of Eq. (2) is full, because each element
interacts with all others. Moreover, even though the Green function is symmetric
with respect to an exchange of its arguments, matrix 𝐴 is non-symmetric because
interacting elements have in general different areas and orientations. The problem
has a natural block structure

𝐴 =


𝐴11 · · · 𝐴1𝑛
...

. . .
...

𝐴𝑛1 · · · 𝐴𝑛𝑛

 , 𝝈 =


𝝈1
...

𝝈𝑛

 , 𝒃 =


𝒃1
...

𝒃𝑛

 , (4)

A Preconditioner for Free-Surface Hydrodynamics BEM 127

where 𝝈𝑗 is a vector containing the unknowns corresponding to the 𝑗-th object. The
diagonal block 𝐴𝑖𝑖 represents the interaction of body 𝑖 with itself. The off-diagonal
block 𝐴𝑖 𝑗 represents the effect on body 𝑖 of waves radiated from body 𝑗 . The structure
of (4) suggests the use of a block-Jacobi algorithm, equivalent to the parallel method
of reflections [5]. This method, together with a coarse correction, has been presented
in [5] for the real Laplace equation in perforated domains. Block-Jacobi is based on
the splitting 𝐴 = 𝐷 − 𝑁 , where 𝐷 is the block-diagonal part of 𝐴. At each iteration,
starting from 𝝈𝑘 , it requires solving for 𝝈𝑘+1/2 in

𝐷𝝈𝑘+1/2 = 𝑁𝝈𝑘 + 𝒃. (5)

The solution of (5) can be performed block by block in parallel. After the block-
Jacobi step, a coarse correction is performed by solving the correction problem
𝐴𝒆 = 𝒓𝑘+1/2 in a low-dimensional (coarse) space C, where 𝒓𝑘+1/2 = 𝒃 − 𝐴𝒙𝑘+1/2

is the residual. Consider, for simplicity, a problem with 𝑛 identical bodies, each
one discretized with 𝑝 elements, so that the full system has dimension 𝑛𝑝. Define
C = span{𝒄1, 𝒄2, . . . , 𝒄𝑚}, 𝑚 � 𝑛𝑝. Then we can introduce a restriction operator
R : R𝑛𝑝 → C represented by matrix 𝑅 =

[
𝒄1 𝒄2 . . . 𝒄𝑚

]𝑇 and a prolongation
operator P : R𝑛𝑝 → C represented by matrix 𝑅𝑇 . Let 𝒆𝑐 ∈ R𝑚 be a vector such that
𝒆 = 𝑅𝑇 𝒆𝑐 is an approximation of the error 𝒆. The coarse problem is

𝑅𝐴𝑅𝑇 𝒆𝑐 = 𝑅𝒓𝑘+1/2, (6)

where 𝐴𝑐 := 𝑅𝐴𝑅𝑇 . Once the coarse problem (6) has been solved, the update

𝝈𝑘+1 = 𝝈𝑘+1/2 + 𝑅𝑇 𝒆𝑐

is performed. The efficiency of the correction step is strongly related to the choice
of the coarse space C. This has to be rich enough to well represent the main error
components that block-Jacobi cannot dealwith, but its dimension𝑚must be relatively
small, so that the cost of a single iteration is not increased significantly. A simple
choice for the coarse space is taking a constant value of the source distribution 𝜎 on
each body. This choice is suggested by the one presented in [5] and corresponds to
𝒄𝑖 := 1𝑖 , 𝑖 = 1, . . . , 𝑛, 1𝑖 being the discrete indicator function of the 𝑖-th object. In
this case, the dimension of C is equal to the number of objects 𝑛.
Our two-level block-Jacobi method is detailed in Algorithms 1 and 2. The former

is a precomputation step, that does not depend on the right-hand side vector. Thus,
if multiple systems with the same matrix and different right hand sides need to be
solved, Alg. 1 needs to be performed only once. In this algorithm, matrix 𝑅 = 𝑅𝐴

is efficiently (see Section 3) computed, so that the cost for computing the restricted
residual at each iteration is reduced. Alg. 2 corresponds to the stationary method

𝝈𝑘+1 = [𝐼 − (𝑃𝑐 + 𝐷−1 − 𝑃𝑐𝐷
−1)𝐴]𝝈𝑘 + (𝑃𝑐 + 𝐷−1 − 𝑃𝑐𝐷

−1)𝒃
= 𝝈𝑘 + (𝑃𝑐 + 𝐷−1 − 𝑃𝑐𝐷

−1)𝒓𝑘 ,

128 Gabriele Ciaramella, Marco Gambarini, and Edie Miglio

Algorithm 1 Two-level block-Jacobi algorithm: initialization
1: for 𝑖 = 1 to 𝑛 do
2: Compute the LU decomposition of 𝐴𝑖𝑖 .
3: end for
4: Compute 𝑅 = 𝑅𝐴, 𝐴𝑐 = 𝑅𝑅𝑇 .

Algorithm 2 Two-level block-Jacobi algorithm: solution
Require: Initial guess 𝝈0, tolerance 𝑡𝑜𝑙, maximum number of iterations 𝑚𝑎𝑥𝑖𝑡 .
1: Set 𝑘 = 0.
2: while ‖𝒃 − 𝐴𝝈𝑘 ‖ > 𝑡𝑜𝑙 and 𝑘 < 𝑚𝑎𝑥𝑖𝑡 do
3: Compute 𝒒 = 𝒃 − 𝑁𝝈𝑘 .
4: for 𝑖 = 1 to 𝑛 do
5: Solve 𝐴𝑖𝑖𝝈

𝑘+1/2
𝑖

= 𝒒𝑖 using the LU decomposition of 𝐴𝑖𝑖 .
6: end for
7: Compute the restricted residual 𝒓𝑐 = 𝑅𝒃 − 𝑅𝝈𝑘+1/2.
8: Solve for 𝒆𝑐 in 𝐴𝑐𝒆𝑐 = 𝒓𝑐 .
9: Update 𝝈𝑘+1 = 𝝈𝑘+1/2 + 𝑅𝑇 𝒆𝑐 .
10: Update 𝑘 = 𝑘 + 1.
11: end while

with 𝑃𝑐 = 𝑅𝑇 𝐴−1
𝑐 𝑅 and where we can recognize the inverse preconditioner 𝑃−1 =

𝑃𝑐 + 𝐷−1 − 𝑃𝑐𝐷
−1. Such preconditioner can then be used to accelerate a Krylov

method. Using 𝑃−1, the system is recast as 𝑃−1𝐴𝝈 = 𝑃−1𝒃. Since the new system
matrix 𝑃−1𝐴 is not symmetric, a classical choice is GMRES. In our implementation,
the preconditioning matrix 𝑃−1 is not assembled explicitly; instead, GMRES is
provided with a function (based on Alg. 2) computing the action of 𝑃−1𝐴 on an
arbitrary vector.

3 Implementation details and H-matrices

Hierarchical matrices, denoted here asH -matrices, are an efficient tool for reducing
the storage and computational cost of BEM problems. The method is based on
defining a hierarchical cluster tree from the set of mesh elements. The system matrix
is then built with a hierarchical block structure accordingly. Each block describes
the interaction between two clusters of elements. If the centers of the two clusters
are farther than a threshold, then a low-rank approximation on the block is built;
otherwise, the block is built in dense form. If the tree is balanced and if we take
as leaves of the tree the single objects, discretized with 𝑝 elements, then both the
costs of storage and of matrix-vector multiplication are O(max(𝑟, 𝑝)𝑛𝑝 log(𝑛𝑝)) [4,
Th. 2.6, 2.8], where 𝑟 is the maximum rank of matrix blocks.
Fig. 1 shows the tree and the hierarchical structure of matrix 𝐴 for an example

with 10 objects on a row, with spacing of 5 m. The ordinate of each node in the tree
is the distance between the centers of its sons. In the matrix, blue blocks are dense,
while white blocks are low-rank. Notice that dense blocks gather mostly close to

A Preconditioner for Free-Surface Hydrodynamics BEM 129

8 9 5 6 7 0 1 2 3 4
leaf label

0

5

10

15

20

25

d
is

ta
n

ce
b

et
w

ee
n

cl
u

st
er

ce
nt

ro
id

s

Fig. 1 Clustering of positions (left) and hierarchical structure of matrix 𝐴 (right) for a test with 10
objects.

the diagonal. Information on the nodes of the tree is stored in the so-called linkage
matrix. The leaves constitute the first 𝑛 nodes of the tree. All other nodes are defined
by the rows of the linkage matrix: its 𝑖-th row contains the labels of the sons of the
(𝑛 + 𝑖)-th node.
Our implementation of Alg. 1 and 2 is done starting from the BEM code Capy-

taine [2], which includes anH -matrices engine. Matrix-vector multiplication in line
3 of Alg. 2 is performed with the built-in routine. Handling of diagonal blocks and
building the coarse space, instead, require special care. Since the structure of matrix
storage is hierarchical, extracting the diagonal blocks of 𝐴 to build matrices 𝐷 and 𝑁
is not immediate. In order to do it, first a list leaves, whose 𝑖-th element is the list of
leaves belonging to node 𝑖, is built by sweeping over the rows of the linkage matrix.
Then, a list paths is constructed. This contains 𝑛 sublists. The 𝑖-th sublist has size
equal to the level of the 𝑖-th leaf. The ℓ-th element of this sublist is equal to 0 or 1,
if at the ℓ-th level one has to turn left or right, respectively, to step down toward the
𝑖-th leaf. For example, in Fig. 1 (left) the path to leaf 5 is paths[5] = [0, 1, 0]. The
lists leaves and paths are exploited to compute 𝑅𝐴 efficiently in Alg. 2. Because
of the sparsity of the rows of 𝑅, that are vectors c𝑇

𝑖
, for dense matrices this operation

can be made very efficient by multiplying each of the c𝑖 only by the rows of 𝐴
corresponding to its non-zero elements. Slicing a hierarchical matrix, however, is
not as trivial. For this reason, we propose the recursive procedure detailed in Alg. 3
and described graphically in Fig. 2. At the beginning, 𝐴 = 𝐴 and 𝒗 = 𝒄𝑖 are set. The
algorithm then descends from the root to the level above the 𝑖-th leaf following list
path = paths[𝑖]. In doing this, because of the structure of the tree, 2× 2 blocks are
encountered at each level. At level 𝑗 , the nonzero contributions 𝒄𝑖𝐴 come only from
the 𝑘-th block-row, with 𝑘 = path[𝑗]. The off-diagonal part of the 𝑘-th block row is
directly multiplied by the appropriate slice of 𝒗; then, the algorithm is applied again
to the diagonal block 𝐴𝑘𝑘 . At the end, only the (dense) diagonal block corresponding
to the interaction of the 𝑖-th object with itself is left, and this last multiplication is
performed. The main advantage of this strategy is that, at each level of the hierarchy
except the last, off-diagonal blocks, that are expected to be mostly low-rank, are
multiplied.

130 Gabriele Ciaramella, Marco Gambarini, and Edie Miglio

Algorithm 3 Computation of 𝑅 = 𝑅𝐴 forH -matrices
Require: 𝐴, 𝑅 = [𝒄1, · · · , 𝒄𝑛] and paths.
1: for 𝑖 = 1 to 𝑛 do
2: Select the path to the 𝑖-th leaf: path = paths[𝑖].
3: Set 𝐴 = 𝐴, 𝒗 = 𝒄𝑖 , 𝑎 = 0, 𝑏 = 𝑛𝑝, and initialize a zero array 𝒅 of size 𝑛𝑝.
4: for 𝑗 = 1 to length(path) do
5: Set 𝑘 = path[𝑗] and 𝑁𝑟𝑜𝑤 as the number of rows of 𝐴𝑘𝑘 .
6: if 𝑘 = 0 then
7: Select the first 𝑁𝑟𝑜𝑤 rows of 𝒗: 𝒗 = 𝒗 [0 : 𝑁𝑟𝑜𝑤].
8: Multiply 𝒘 = 𝒗𝐴01 and set 𝒅 [𝑏 − length(𝒘) : 𝑏] = 𝒘.
9: Update: 𝑏 = 𝑏 − length(𝒘) .
10: else
11: Select the last 𝑁𝑟𝑜𝑤 rows of 𝒗: 𝒗 = 𝒗 [end − 𝑁𝑟𝑜𝑤 : end].
12: Multiply 𝒘 = 𝒗𝐴10 and set 𝒅 [𝑎 : 𝑎 + length(𝒘)] = 𝒘.
13: Update: 𝑎 = 𝑎 + length(𝒘) .
14: end if
15: Set 𝐴 = 𝐴𝑘𝑘 .
16: end for
17: Diagonal block multiplication: 𝒅 [𝑎 : 𝑏] = 𝒗 𝐴̃.
18: Set 𝑅 [𝑖, :] = 𝒅.
19: end for

4 Numerical experiments
The method is implemented by integration with the BEM code Capytaine [2]. Hi-
erarchical clustering on the positions of the objects is performed using SciPy. We
simulate two geometries: line arrays and grid arrays. In both cases the objects are
half-spheres of radius 2 m and the minimum distance between two bodies is 5 m.
The results are reported in Table 1. Times for GMRES and preconditioned GMRES
refer to the solution of the 𝑛 systems required to build the radiation dataset; thus the
number of systems needing to be solved increases with the number of objects. The
loops described in Algorithms 2 and 3 are performed serially. We build the radiation
dataset only for vertical motion; in the general case of a rigid body, 6𝑛 systems would
need to be solved. In some cases, the number of iteration varies depending on the
right hand side (i.e., depending on the radiating object).

A Preconditioner for Free-Surface Hydrodynamics BEM 131

(a) 𝑗 = 1 (b) 𝑗 = 2

(c) 𝑗 = 3 (d) Diagonal block

Fig. 2 Blocks selected for multiplication in Algorithm 3 for leaf 𝑖 = 5.

Table 1 Results of the numerical experiment. Top table: line geometry. Bottom table: grid geometry.
In both tables, init is the time for initializing the coarse solver (coarse space definition).

GMRES Preconditioned GMRES
𝑛 storage (%) niter 𝑡 (s) 𝑡/𝑛 (s) init (s) niter 𝑡 (s) 𝑡/𝑛 (s)
80 6.19 12 18 0.23 0.47 7 15 0.19
160 3.32 13 107 0.67 1.05 7 68 0.85
240 2.33 14 449 1.87 1.64 7 294 1.23
320 1.75 14-15 831 2.60 2.51 7 487 1.52
400 1.43 15 1182 2.95 3.46 7 698 1.74
480 1.23 15-16 1715 3.57 4.14 7 993 2.07

GMRES Preconditioned GMRES
𝑛 storage (%) niter 𝑡 (s) 𝑡/𝑛 (s) init (s) niter 𝑡 (s) 𝑡/𝑛 (s)
16 48.42 10 0.51 0.03 0.07 7 1.03 0.06
64 20.00 13 35 0.55 0.87 8 25 0.40
144 10.82 17 281 1.95 3.40 8-9 157 1.09
256 6.72 24-26 2216 8.66 15.5 9 826 3.23
400 4.82 38-43 7215 18.03 23.5 9-10 2030 5.08

5 Discussion and conclusions

The presented results indicate that the preconditioned GMRES method has a lower
cost than the standard GMRES method for large arrays of floating objects. The

132 Gabriele Ciaramella, Marco Gambarini, and Edie Miglio

advantage becomes larger as the number of bodies increases: speedups of up to
a factor of 3.5 are obtained. For the line geometry, the number of iterations of
GMRES tends to become constant with respect to the number of objects, while the
iterations of preconditioned GMRES remain exactly constant and equal to 7. On
the other hand, for the grid geometry the number of iterations of GMRES increases
as 𝑛 grows, while preconditioned GMRES scales well. The use of Alg. 3 for the
construction of the coarse space, which needs to be performed only once, keeps the
cost of such operation low. Thus, a substantial speedup can be obtained with respect
to standard GMRES even when a small subset of the entire radiation dataset needs to
be computed. In the grid test case the percentage of dense blocks is larger, resulting
in a larger time for the initialization of Alg. 3.
Possible improvements include the parallelization of the loops in Alg. 2 and the

use of a preconditioner also for the solution of the coarse problem, whose cost can
become relevant for very large arrays. In the case of a single row of bodies, the coarse
matrix 𝐴𝑐 has a Toeplitz structure, and the natural choice in this case is to use a
circulant preconditioner. This strategy has been explored at block level in [1], while
some choices of circulant preconditioners are presented in [8].

References

1. Ancellin, M. and Dias, F. Using the floating body symmetries to speed up the numerical
computation of hydrodynamics coefficients with Nemoh. Proceedings of the 37th International
Conference on Ocean, Offshore and Artic Engineering (2018).

2. Ancellin, M. and Dias, F. Capytaine: a Python-based linear potential flow solver. J. Open Source
Softw. 4(36), 1341 (2019).

3. Babarit, A. On the park effect in arrays of oscillating wave energy converters. Renewable
Energy 58, 68–78 (2013).

4. Bebendorf, M. Hierarchical Matrices. Lecture Notes in Computational Science and Engineer-
ing. Springer Berlin, Heidelberg (2008).

5. Ciaramella, G., Gander, M. J., Halpern, L., and Salomon, J. Methods of Reflections: relations
with Schwarz methods and classical stationary iterations, scalability and preconditioning. SMAI
J. Comput. Math 5, 161–193 (2019).

6. Squire, V. A. Ocean wave interactions with sea ice: A reappraisal. Annual Review of Fluid
Mechanics 52(1), 37–60 (2020).

7. Wehausen, J. V. and Laitone, E. V. Surface waves. In: Truesdell, C. (ed.), Fluid Dynamics /
Strömungsmechanik, 446–778. Springer Berlin Heidelberg (1960).

8. Zhu, Z. and Wakin, M. B. On the asymptotic equivalence of circulant and Toeplitz matrices.
IEEE Transactions on Information Theory 63(5), 2975–2992 (2017).

