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1 Introduction

Solving Helmholtz problems using numerical methods is challenging due to the
large, indefinite, and ill-conditioned linear systems that result, which cannot be
solved using classical direct or iterative solvers [5]. While optimized Schwarz (OS)
methods have been proposed as an alternative, the number of iterations required
by Krylov methods increases with the number of subdomains, especially for layer-
type domain decompositions [9]. Preconditioners, such as sweeping preconditioners,
are necessary when using iterative methods to solve Helmholtz problems. Lately,
there has been significant interest in sweeping preconditioners, invented by [3, 4],
that achieve quasi-linear asymptotic complexity. Despite their effectiveness, sweep-
ing preconditioners face challenges with parallel scalability due to the inherently
sequential nature of their operations, as well as the need to ensure accurate and
consistent information transfer between subdomains. These challenges can restrict
the use of layer-type domain decompositions.
To address these challenges, recent research has focused on improving parallel per-

formance through new sweeping strategies on checkerboard domain decompositions
that can handle more general domain decompositions. Several sweeping algorithms
have been proposed that improve parallelism by ensuring consistent transfer among
subdomains, such as L-sweeps preconditioners [11], trace transfer-based diagonal
sweeping preconditioners [7], and multidirectional sweeping preconditioners [2],
with high-order transmission conditions and cross-point treatments [8].
Subdomains in sweeping algorithms can be assigned to Message Passing Inter-

face (MPI) ranks based on rows or columns. This enables parallel application of
sweeping algorithms for a single right-hand side. However, these approaches still
have limitations, including long preconditioning procedures, waste of computation
resources, and relatively high computation costs. To overcome these limitations, the
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authors propose a block Jacobi sweeping preconditioner that uses block Jacobi ma-
trices to decompose full sweeps into several partial sweeps, which can be thought of
as sweeps that operate on a subset of the subdomains. These partial sweeps can be
performed concurrently. This approach enhances scalability and makes full use of
resources on parallel computer architectures.

2 Notations

Let i = (𝑖1, 𝑖2) ∈ N2 be a multi-index denoting the subdomain number. We define the
discrete 𝑙1 norm by: |i|1 := |𝑖1 | + |𝑖2 |.We use the convention that two multi-indices i
and j are equal if and only if 𝑖1 = 𝑗1 and 𝑖2 = 𝑗2.
Definition 1 The lexicographic order onmulti-indices is the relation defined by i < j
if and only if |i|1 < |j|1, or |i|1 = |j|1 and 𝑖1 < 𝑗1.

Definition 2 The lexicographic order on pair multi-indices (i, j) ∈ N2 × N2 is the
relation defined by (i, j) < (k, l) if and only if i < k, or i = k and j < l.

We define a function𝑚 thatmaps a pair ofmulti-indiceswhich are in lexicographic
order to natural numbers in a monotonically increasing fashion 𝑚 : N2 × N2 → N,
such that 𝑚((1, 1), (1, 2)) = 1, 𝑚((1, 1), (2, 1)) = 2, 𝑚((1, 2), (1, 1)) = 3, etc.
We consider Ω ⊂ R2 be a square domain with boundary 𝜕Ω, which is given by

the union of the scattered boundary 𝜕Ωsca with the external artificial boundaries Γ∞
𝑖

for 𝑖 = 1, 2, 3, 4, and its a non-overlapping checkerboard partition, which consists
in a lattice of rectangular non-overlapping subdomains Ωi with 𝑁1 columns and 𝑁2
rows (𝑖1 = 1, . . . , 𝑁1, and 𝑖2 = 1, . . . , 𝑁2), that is

Ω =
⋃

Ωi, and Ωi ∩Ωj = ∅ for j ≠ i.

And we say that ∃i, such that Ωsca ⊆ Ω◦
i and 𝜕Ω

sca ∩ 𝜕Ωi = ∅. The boundary of
a subdomainΩi is split into two parts: the exterior part 𝜕Ωi∩Γ∞

𝑖
and the interior part

including decomposed interior interfaces Γi,j := 𝜕Ωi ∩ 𝜕Ωj (j ≠ i), and Γi,j = Γj,i.
There are 𝑁dom = 𝑁1 × 𝑁2 subdomains, 𝑁𝑒 = 2𝑁1𝑁2 − 𝑁1 − 𝑁2 interior interfaces.
We define the number of diagonal groups 𝑁𝑔 := 𝑁1 + 𝑁2 − 1.

3 Non-overlapping domain decomposition method

We study the 2D Helmholtz equation in Ω with an absorbing boundary condition
on Γ∞

𝑖
. For a more detailed description, see [2]. We seek the field 𝑢(x) that verifies

(−Δ − 𝜅2)𝑢 = 0, in Ω,
(𝜕𝒏𝑖

−𝒯)𝑢 = 0, on Γ∞
𝑖 ,

𝑢 = −𝑢inc, on 𝜕Ωsca,
(1)
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where 𝜅 is the wavenumber, 𝑢inc is the incident wave, 𝜕𝒏 is the exterior normal
derivative, and 𝒯 is an impedance operator to be defined. We take the convention
that the time-dependence of the fields is 𝑒−𝚤𝜔𝑡 , where 𝜔 is the angular frequency
and 𝑡 is the time.
The domain decomposition method consists in considering the 𝑁dom local sub-

problems coupled by the Robin conditions: Seek the field 𝑢i (x) that verifies
(−Δ − 𝜅2)𝑢i = 0, in Ωi,

(𝜕𝒏i,𝑖 −𝒯)𝑢i = 0, on 𝜕Ωi ∩ Γ∞
𝑖 ,

(𝜕𝒏i,j −𝒯)𝑢i = (−𝜕𝒏j,i −𝒯)𝑢j, on Γi,j,∀j ∈ 𝐷i,

𝑢i = −𝑢inc, on 𝜕Ωi ∩ 𝜕Ωsca,

(2)

where the set 𝐷i :=
{
j | j ≠ i and Γi,j ≠ ∅

}
. The paper uses high-order absorbing

boundary conditions (HABCs) as transmission conditions, which are effective for
both layered-type and checkerboard-type domain decompositions [1, 8]. However,
special treatment is required at corners in 2D cases for polygonal domains. Section 4
of the paper employs HABCs, but in the next section, the paper uses less effec-
tive boundary conditions based on the basic impedance operator to investigate the
algebraic structure of the interface problem for clarity.

4 Interface problem

To derive the interface problem, let’s introduce 𝑤i (x) a lifting of the source:
Seek 𝑤i (x) that verifies

(−Δ − 𝜅2)𝑤i = 0, in Ωi,

(𝜕𝒏i,𝑖 −𝒯)𝑤i = 0, on 𝜕Ωi ∩ Γ∞
𝑖 ,

(𝜕𝒏i,j −𝒯)𝑤i = 0, on Γi,j,∀j ∈ 𝐷i,

𝑢i = −𝑢inc, on 𝜕Ωi ∩ 𝜕Ωsca,

(3)

By the linearity of the problem, the field 𝑢i can be decomposed into 𝑣i+𝑤i, where 𝑣i is
the field (2) after lifting the sources by (3). We introduce the local scattering operator
𝒮𝑚(j,i) ,𝑚(i,k) : 𝑥𝑚(i,k) → (−𝜕𝒏i,j −𝒯)𝑣i where

(−Δ − 𝜅2)𝑣i = 0, in Ωi,

(𝜕𝒏i,𝑖 −𝒯)𝑣i = 0, on 𝜕Ωi ∩ Γ∞
𝑖 ,

(𝜕𝒏i,k −𝒯)𝑣i = 𝑥𝑚(i,k) , on Γi,k,

(𝜕𝒏i,l −𝒯)𝑣i = 0, on Γi,l,∀l ≠ k,

(4)

and j, k, l ∈ 𝐷i. Using the linearity of the problem and the above scattering operator,
we obtain the interface problem
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(𝜕𝒏j,i −𝒯)𝑣j =
∑︁
k∈𝐷i

𝒮𝑚(j,i) ,𝑚(i,k) (𝜕𝒏i,k −𝒯)𝑣i + (−𝜕𝒏i,j −𝒯)𝑤i, j ∈ 𝐷i.

We introduce the global scattering matrix 𝑆 ∈ 𝑀2𝑁𝑒
(𝒮𝑚(j,i) ,𝑚(i,k) ), the global ad-

ditional variable vector 𝑔 ∈ 𝑀2𝑁𝑒×1 (𝑔𝑚(j,i) ), and the global right-hand-side vector
𝑏 ∈ 𝑀2𝑁𝑒×1 (𝑏𝑚(j,i) ), where

𝑔𝑚(j,i) = (+𝜕𝒏j,i −𝒯)𝑣j, 𝑏𝑚(j,i) = (−𝜕𝒏i,j −𝒯)𝑤i.

We obtain that 𝑔 is the solution to the global matrix

(𝐼 − 𝑆)𝑔 = 𝑏, (5)

or
𝑔𝑚(j,i) −

∑︁
k

𝒮𝑚(j,i) ,𝑚(i,k)𝑔𝑚(i,k) = 𝑏𝑚(j,i) , ∀j, for i, k ∈ 𝐷j. (6)

5 Sweeping preconditioner

Let 𝑉𝑖 be the 2𝑁𝑒 × 𝑛𝑖 matrix 𝑉𝑖 = (𝑒𝑚(i,j) ), with |i|1 = 𝑖 (𝑖 = 2, . . . , 𝑁𝑔 + 1), where
each 𝑒𝑚(i,j) is the 𝑚(i, j)-th column of the 2𝑁𝑒 × 2𝑁𝑒 identity matrix, and 𝑛𝑖 is the
number of columns. One has 𝑉>

𝑖
𝑉 𝑗 = 0, if 𝑖 ≠ 𝑗 . Let 𝑆𝑖, 𝑗 be the 𝑛𝑖 × 𝑛 𝑗 matrix

𝑆𝑖, 𝑗 = 𝑉>
𝑖
𝑆𝑉 𝑗 .

Proposition 1 The upper and lower triangular matrix of the global matrix (𝐼 − 𝑆)
can be decomposed by Gaussian elimination.

Proof We denote the lower triangular matrix of the global matrix (5) 𝑆𝐿 . Consider
the followingmatrix

∏
𝑖 (𝐼−𝑉𝑖𝑆𝑖,𝑖−1𝑉>

𝑖−1), 𝑖 = 3, . . . , 𝑁𝑔+1. Then,∀𝑖 = 3, . . . , 𝑁𝑔,
we have

(𝐼 −𝑉𝑖𝑆𝑖,𝑖−1𝑉
>
𝑖−1) (𝐼 −𝑉𝑖+1𝑆𝑖+1,𝑖𝑉

>
𝑖 )

= 𝐼 −𝑉𝑖𝑆𝑖,𝑖−1𝑉
>
𝑖−1 −𝑉𝑖+1𝑆𝑖+1,𝑖𝑉

>
𝑖 +𝑉𝑖𝑆𝑖,𝑖−1𝑉>

𝑖−1𝑉𝑖+1𝑆𝑖+1,𝐼𝑉
>
𝑖

= 𝐼 −𝑉𝑖𝑆𝑖,𝑖−1𝑉
>
𝑖−1 −𝑉𝑖+1𝑆𝑖+1,𝑖𝑉

>
𝑖

The last term at the 2nd line vanishs since 𝑉>
𝑖−1𝑉𝑖+1 is null. Hence, we have∏

𝑖

(𝐼 −𝑉𝑖𝑆𝑖,𝑖−1𝑉
>
𝑖−1) = 𝐼 −

∑︁
𝑖

𝑉𝑖𝑆𝑖,𝑖−1𝑉
>
𝑖−1 = 𝐼 − 𝑆𝐿 .

Similarily, we can proof that the upper triangular matrix of the global matrix (5) 𝑆𝑈
can be decomposed as

𝐼 − 𝑆𝑈 =
∏
𝑖

(𝐼 −𝑉𝑖−1𝑆𝑖−1,𝑖𝑉
>
𝑖 ), 𝑖 = 𝑁𝑔 + 1, . . . , 3,

which is a series of matrices. �
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Next, we present the Symmetric Gauss-Seidel (SGS) sweeping precondi-
tioner 𝑃SGS. This matrix can then be rewritten as 𝑃SGS ≈ (𝐼 − 𝑆𝐿) (𝐼 − 𝑆𝑈 ), We can
easily invert the matrix 𝑃−1

SGS = (𝐼 − 𝑆𝑈 )−1 (𝐼 − 𝑆𝐿)−1, with

(𝐼 − 𝑆𝑈 )−1 =
∏
𝑖

(𝐼 +𝑉𝑖−1𝑆𝑖−1,𝑖𝑉>
𝑖 ), 𝑖 = 3, . . . , 𝑁𝑔 + 1,

(𝐼 − 𝑆𝐿)−1 =
∏
𝑖

(𝐼 +𝑉𝑖𝑆𝑖,𝑖−1𝑉>
𝑖−1), 𝑖 = 𝑁𝑔 + 1, . . . , 3.

(7)

Observing Eqn. (7), we notice that it consists of a sequential process, in which there
are 2(𝑁𝑔 − 1) sequential steps in total.

6 Block Jacobi sweeping preconditioner

Let𝑊𝐿𝑖 ,𝑊𝑈 𝑖 be the 2𝑁𝑒 × 𝑠𝑖 matrix

𝑊𝐿𝑖 = (𝑒𝑚(i,j) ), 2 + (𝑖 − 1)𝑁1 ≤ |i|1 ≤ 2 + 𝑖𝑁1,

𝑊𝑈 𝑖 = (𝑒𝑚(i,j) ), (1 + 𝑁𝑔) − 𝑖𝑁1 ≤ |i|1 ≤ (1 + 𝑁𝑔) − (𝑖 − 1)𝑁1,

where 𝑠𝑖 is the number of columns (𝑒𝑚(i,j) ). Let 𝑆𝐿𝑖 , 𝑆𝑈 𝑖 be the 𝑠𝑖 × 𝑠𝑖 matrix

𝑆𝐿𝑖 = 𝑊𝐿
>
𝑖 𝑆𝐿𝑊𝐿𝑖 , 𝑆𝑈 𝑖 = 𝑊𝑈

>
𝑖 𝑆𝑈𝑊𝑈 𝑖 .

According to the additive projection processes [10], the next iterate can be defined as

𝑔 (𝑘+1/2) = 𝑔 (𝑘) +
𝑝∑︁
𝑖=1

𝑊𝐿𝑖 (𝐼𝑖 − 𝑆𝐿𝑖)−1𝑊𝐿
>
𝑖 𝑟

(𝑘) ,

𝑔 (𝑘+1) = 𝑔 (𝑘+1/2) +
𝑝∑︁
𝑖=1

𝑊𝑈 𝑖 (𝐼𝑖 − 𝑆𝑈 𝑖)−1𝑊𝑈
>
𝑖 𝑟

(𝑘+1/2) .

𝐼 − 𝑆𝐿 and 𝐼 − 𝑆𝑈 are quasi-equivalent to 𝑝 blocks 𝐼𝑖 − 𝑆𝐿𝑖 and 𝑝 blocks 𝐼𝑖 − 𝑆𝑈 𝑖 ,
respectively, which form the forward and backward block Jacobi preconditioner. The
block Jacobi preconditioner can be decomposed into a series of matrices, as stated
in Proposition 1. The forward and backward block Jacobi preconditioner consists of
the upper and lower block diagonals of 𝐼 − 𝑆 and involves 2𝑁1 sequential steps. This
decomposition enhances the parallel performance of the sweeping preconditioner.

7 Numerical results

In this part, the block Jacobi sweeping preconditioner (BSP) is studied by consid-
ering a two-dimensional benchmark with a high-order finite element method and
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(a) 1st step (b) 2nd step (c) 3rd step (d) 4th step

(e) 5th step (f) 6th step (g) 7th step (h) 8th step

Fig. 1 Scattering model in 2D (𝑘 = 2𝜋) with a snapshot of the solution at different steps of the first
GMRES iteration using the full sweeping preconditioner. Each row of subdomains is assigned to
one MPI rank, and processors are identified by the numbers on the left side. Subdomains processed
in parallel are highlighted in blue.

compared to the full sweeping preconditioner (SP). The proposed approaches and
the computational results presented in this paper are implemented in parallel by MPI
on a single multi-core computer. The linear systems arising from the sub-problems
are solved by a sparse direct solver. The mesh generation, mesh decomposition, and
post-processing are credited byGmsh [6]. The parallelism of our approach is realized
by assigning subdomains to MPI ranks in a row-based fashion such that the 𝑖-th row
of the checkerboard partition is processed by rank 𝑖.
The test case is a homogeneous scattering problem in free space within a rectan-

gle geometry (Ω = [−1.25, 2.50 · 𝑁1 − 1.25] × [−1.25, 2.50 · 𝑁2 − 1.25]), which is
decomposed into 𝑁1 × 𝑁2 rectangular subdomains. An incident plane wave is gen-
erated by a sound-soft circular cylinder of radius equal to 1 which is located at the
Origin. On the circular cylinder, the Dirichlet boundary condition 𝑢(x) = − exp𝑖𝑘𝑥 is
prescribed at the boundary of the sound-soft scatterer. The Padé-type HABC is pre-
scribed on the exterior boundaries and the interior interfaces used as the absorbing
boundary conditions and the transmission boundary conditions, respectively. The
compatibility conditions are prescribed at the corners and the cross-points treatment
is prescribed at the cross-points. The parameters of the HABC operator are 𝑁pade = 8
and 𝜙 = 𝜋/3. The following numerical setting are considered: 𝑃7 finite elements
with 3 elements per wavelength (ℎ ≈ 1/21).
Figures 1 and 2 show snapshots of the solutions at different steps of forward

sweep (sweep starts from the bottom-left corner to the top-right corner) of the 1st
GMRES iteration with different sweeping preconditioners. Although the forward
sweep in Fig. 1 goes through the whole computational domain from the bottom-left
corner to the top-right corner, it takes 8 steps. If we take the backward sweep into
account, there are 16 steps of the preconditioning procedure at each iteration. In
the second situation, it only takes 5 steps in the forward partial sweeps (see Fig. 2).



A Block Jacobi Sweeping Preconditioner for the Helmholtz Equation 155

(a) 1st step (b) 2nd step (c) 3rd step (d) 4th step

(e) 5th step

Fig. 2 Scattering model in 2D (𝑘 = 2𝜋). Snapshot of the solution at different steps of forward
sweep of 1st GMRES iteration with the block Jacobi sweeping preconditioner. The numbers at left
side are processors’ identities. Each row of subdomains is assigned to one MPI rank. Subdomains
processed in parallel have same blue and red color, which represent two partial sweeps.

Fig. 3 Scattering model in 2D (𝑘 = 2𝜋). The computational domain is decomposed into 𝑁1 ×𝑁2 =
5× 10. Residual history with SP and BSP with two cuts. In this context, two cuts imply that 𝑝 = 3.

Figure 3 shows snapshots of the solutions and residual histories of GMRES with the
different preconditioners for the partition 𝑁1 × 𝑁2 = 5 × 10. All forward/backward
(partial) sweeps of these preconditioners start from the bottom-left/top-left to the
top-right/bottom-left. The violet boxes indicate the cut location which separates
partial sweeps.
The residual histories obtained with the two different preconditioners in Fig. 3,

where the relative residual suddenly drops in residual history at the first iteration
when a full sweeping preconditioner is used. With the block Jacobi sweeping pre-
conditioner used, it happens at the third iteration, which corresponds to the number
of partial sweeps, that is to say, there are two partial sweeps.
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Table 1 Scattering model in 2D (𝑘 = 20𝜋). Number of iterations and runtime in seconds with
the two different preconditioners for different domain partitions. “ni” stands for the number of
iterations, “ns” the number of steps per iteration, and “t” time. The number of MPI ranks is equal
to 𝑁2.

𝑁1 × 𝑁2 SP (ni) SP (ns) SP (t) BSP (ni) BSP (ns) BSP (t)

5 × 5 3 16 32.6 s 3 10 25.4 s
5 × 10 3 26 49.0 s 4 10 33.0 s
5 × 15 4 36 90.8 s 6 10 51.3 s
5 × 20 5 46 147.4 s 8 10 70.9 s

The number of GMRES iterations and the runtime to reach a relative residual 10−6
with the two different preconditioners are given in Table 1. The runtime corresponds
to the GMRES resolution phase.
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