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1 Classical coarse spaces

In 1987, Roy Nicolaides introduced what we would now call a coarse space cor-
rection for the conjugate gradient method [30]:

“In this paper, another way of improving the convergence of conjugate gradients is used.
It can be used alone or in conjunction with preconditioners. Used alone, it is at least as
efficient as the standard preconditioners on model problems. Used with preconditioning it
appears from numerical experiments to give a method considerably better than either used
separately–it seems that the approaches are in some sense complementary.”

The idea of Nicolaides for an example Poisson problem is to deflate piece-wise
constant functions on subdomains from the residual at each CG iteration (“we shall
systematically interpret E’s columns as being a basis for a subspace of certain slowly
varying residual components”). From the quote above we see that he advocates to use
this technique together with another preconditioner, realizing the two-level character
this provides:

“The method has something in common with a two-level multigrid scheme, although neither
smoothing nor subgrids is explicitly used.”

There was however no theoretical understanding yet at this point:

“No theoretical predictions are available at present on the rate of convergence to be expected
with preconditioned versions.”

Deflation was also introduced independently by Zdeněk Dostál in [7] under the
name of ’preconditioning by projector’, and the special case of deflating eigenvectors
was studied; see also [8] for a relation to Schur complement preconditioning.
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Fig. 1 One-dimensional overlapping domain decomposition.

In order to illustrate the performance of this piece-wise constant coarse space in
the context of domain decomposition, we show a numerical experiment for the 1D
Laplace problem in Ω = (0, 1),

𝜕𝑥𝑥𝑢 = 0, 𝑢(0) = 0 and 𝑢(1) = 1,

using the parallel Schwarz method introduced by Pierre-Louis Lions [26] at the
first international conference on domain decomposition methods (DD1),

𝜕𝑥𝑥𝑢
𝑛
𝑖
= 0 in Ω𝑖 , 𝑖 = 1, .., 𝐼,

𝑢𝑛
𝑖
(𝛼𝑖) = 𝑢𝑛−1

𝑖−1 (𝛼𝑖), 𝑢𝑛
𝑖
(𝛽𝑖) = 𝑢𝑛−1

𝑖+1 (𝛽𝑖),
(1)

for the decomposition shown in Figure 1 for 𝐼 = 4. When this method is discretized,
it is equivalent to Restricted Additive Schwarz (RAS) by Xiao-Chuan Cai and
Markus Sarkis [4] for the linear system 𝐴u = f,

u𝑛 := u𝑛−1 +
𝐼∑︁
𝑖=1

�̃�𝑇 𝐴−1
𝑖 𝑅(f − 𝐴u𝑛−1), (2)

where 𝑅𝑖 are restrictionmatrices ofu𝑛 to the subdomainΩ𝑖 , 𝐴𝑖 := 𝑅𝑖𝐴𝑅
𝑇
𝑖
, and �̃�𝑖 are

restriction matrices for a non-overlapping partition; see [15] for more details and
the proof of equivalence. In order to combine this with a piece-wise constant coarse
correction, we use the u𝑛 fromRAS in (2) and then coarse correct them by computing
u𝑛 := u𝑛 + 𝑅𝑇 𝐴−1

𝑐 𝑅(f − 𝐴u𝑛), where 𝑅 is a restriction to the piece-wise constant
coarse space functions and 𝐴𝑐 := 𝑅𝐴𝑅𝑇 is the coarse correctionmatrix on that space.
We show in Figure 2 the iterates without Krylov acceleration for RAS without

and with piece-wise constant coarse correction in the top two rows. We see that the
coarse correction indeed changes the iterates, but not by much. To see the true benefit
from the coarse correction, we need to use more subdomains. We show the decay of
the error for more and more subdomains in Figure 3 (left). We see that indeed with
the piece-wise constant coarse space we obtain a scalable method1, which would be
termed “optimal” because of this, but are there better coarse spaces?
Max Dryja and Olof Widlund introduced in the same year as Nicolaides their

seminal additive Schwarz method [34] which includes a different coarse space:

“The first subspace 𝑉 ℎ
0 , which we also call 𝑉

𝐻 , is special. It is the space of continuous,
piece-wise linear functions on the coarse mesh defined by the substructures Ω𝑖 .”

1 Iteration numbers do not deteriorate when using more and more subdomains.
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Fig. 2 First three parallel Schwarz iterates without coarse correction (top row), with piece-wise
constant coarse correction (second row), with P1 coarse correction aligned with the subdomains
(third row), with P1 coarse correction centered in the subdomains (fourth row) and optimal (best
possible) coarse correction (last row).

Here theΩ𝑖 correspond to triangles forming a non-overlapping decomposition of the
domain, and in contrast to Nicolaides, the coarse functions are linear, not constant,
on the subdomains. The results for this coarse space and our model problem are
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Fig. 3 Error of the parallel Schwarz method with and without piece-wise constant coarse space for
increasing number of subdomains (left) and for various coarse spaces and four subdomains (right).

shown in Figure 2 (third row), and we see the coarse space works much better than
the Nicolaides coarse space. At the first international conference on domain decom-
position methods a year later, Olof Widlund presented an iterative substructuring
variant for the piece-wise linear coarse correction on triangles [35], andMax Dryja
an extension to three-dimensional problems [9], also in the context of substructuring.
Jan Mandel and Marian Brezina then studied the balancing domain decom-

position method in [27]:

“The Balancing Domain Decomposition (BDD)was introduced byMandel [1993] by adding
a coarse problem to an earlier method of De Roeck and Le Tallec [19912], known as the
Neumann-Neumann method . . . ”
“. . . a global coarse problem with one or few unknowns for each subdomain . . . ”
“The presence of the coarse problemnowguarantees that the possibly singular local problems
are consistent.”

They transformed the bug of the classical Neumann-Neumann method to have float-
ing subdomains with all Neumann conditions around that made the method not well
posed into a feature: they determine the constant (in the Laplace case) by a coarse
problem, which leads to a piece-wise constant coarse space aligned with the sub-
domains. The FETI method invented by Charbel Farhat and François-Xavier
Roux in [12] also contains naturally the piece-wise constant modes in the projection
step as a coarse space; for a theoretical analysis, see [11, 28]. Note that all these
coarse spaces were developed independently of the work by Nicolaides.
Max Dryja, Barry Smith and Olof Widlund emphasize in [10] the great

importance and challenge of good coarse space constructions:

“ The design, analysis, and implementation of the coarse space problem pose the most
challenging technical problems in work of this kind.”

They consider several richer coarse spaces than just a constant per substructure
and compare them for primal Schur complement substructuring methods. A first

2 Also at the first international conference on domain decomposition methods!
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variant is using piece-wise linear coarse basis functions aligned with triangular
substructures, and then additional piece-wise constant edge and face coarse functions
are considered, harmonically extended into the subdomains, keeping the vertex
functions. For all variants, detailed condition number estimates are provided, and
compared to the earlier piece-wise constant coarse space.
We see that all these early coarse spaces were aligned with subdomain bound-

aries of the domain decomposition method. A generalization of the analysis that
permits coarse spaces not aligned with the subdomains, also using ideas from non-
overlapping methods, can be found in the book by Andrea Toselli and Olof
Widlund [33]:

“ We introduce a shape-regular coarse mesh T𝐻 on the domain Ω and the finite element
space [. . . ] of continuous, piece-wise linear functions on T𝐻 [. . . ] We stress that the fine
mesh T need not be a refinement of T𝐻 .”

Such general coarse spaces were studied at the continuous level in [18] with accurate
estimates of the constants involved in the resulting condition number estimate. We
show the performance of such a P1 non-aligned coarse space in Figure 2 (fourth
row) with coarse points in the middle of the subdomains for our model problem.
A comparison of the convergence as a function of the iterations is shown in Figure 3
on the right, where we see that the general position of the coarse points in the middle
of the subdomains performs best so far. But is there an even better option?

2 Optimal coarse spaces and spectral approximations

It was first observed in [16] and then analyzed in more detail in [17, 19] that the
position of the coarse nodes has indeed an important impact on the performance of the
coarse space. For a large scale implementation of various coarse node positionings for
Schwarz methods, see [23]. We show in Figure 2 in the last row the performance of a
coarse spacewhose nodes are located to the left and right of the RAS non-overlapping
interface. We see that this P1 coarse space transforms the two-level method into
a direct solver, the solution is obtained within the subdomains after the coarse
correction. This is also visible in the convergence curves in Figure 3 (right). Such
coarse spaces are called optimal in the sense of better is not possible, not in the sense
of scalable, and the idea is related to the algebraic multigrid construction in [3, 32].
New coarse spaces in domain decomposition methods are approximations of this

optimal coarse space; see the Spectral Harmonically Enriched Multiscale (SHEM)
coarse space [21, 20] for such a construction in a multiscale context. In higher spatial
dimensions, this optimal coarse space simply needs to contain all discrete harmonic
functions (functions that solve the homogeneous equation) in each subdomain, and
is thus of the size of the number of interface variables of the subdomains. A first
approximation for a decomposition into square subdomains is to add the historically
successful Q1 functions aligned with each subdomain; see e.g. Figure 4 (left) for
one of them. One can then enrich this coarse space by adding harmonically extended
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Fig. 4 First Q1 coarse space functions and two spectral enrichments.

sine functions; see Figure 4 (middle and right) to get a spectral coarse space. This
construction is not restricted to square subdomains; see [21, 20, 5].
A seemingly different construction of a new coarse space was proposed by

Frédéric Nataf, Hua Xiang, Victorita Dolean and Nicole Spillane in [29]
for high contrast problems:

“An effective two-level preconditioner is highly dependent on the choice of the coarse-grid
subspace. We will now focus on the choice of the coarse space Z in the context of DDMs
for problems of type (1.1) with heterogeneous coefficients.”

“Moreover, a fast decay for this value corresponds to a large eigenvalue of the DtN map,
whereas a slow decay corresponds to small eigenvalues of this map because the DtN operator
is related to the normal derivative at the interface and the overlap is thin.”

From the drawing in their manuscript above, eigenmodes of the Dirichlet-to-
Neumann (DtN) map with large eigenvalues will converge fast (left), while eigen-
modes with small eigenvalues will converge slowly (right). Hence the idea is to use
eigenmodes of the DtN map with small eigenvalues on each subdomain as coarse
space. We show in Figure 5 the first four DtN modes for a square subdomain, and
also mode 5 and 9. The first four modes look like they span the same space as the
four Q1 coarse modes from before. Mode 5 contains a first sine component on the
boundary like the enrichment mode in Figure 4 (middle); modes 6-8 (not shown) are
similar. Mode 9 contains the second sine mode on the boundary, like the enrichment
mode in Figure 4 (right), and modes 10-12 (not shown) are again similar. So the DtN
coarse space seems to be related to the SHEM coarse space. This relation becomes
even more evident if one uses eigenmodes of the DtN operator computed for each
of the four boundaries of the square subdomain separately, since then they coincide
with the modes shown in Figure 4 (middle, right)!
A highly successful coarse space, also for high contrast problems, was intro-

duced byNicole Spillane, VictoritaDolean, Patrice Hauret, Frédéric Nataf,
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Fig. 5 DtN modes 1-4, 5, and 9.

Fig. 6 GenEO modes 1-4, 5, and 9.

Clemens Pechstein and Robert Scheichl in [31], namely GenEO (Generalized
Eigenvalue Problems in the Overlaps). The powerful idea of GenEO is to directly
improve the Additive Schwarz convergence estimate by adding the corresponding
slow modes from the estimate to the coarse space. The modes are also computed in
each overlapping subdomain, following [6], by solving the eigenvalue problem

𝐵𝑖u = _𝐷𝐴𝑖𝐷u, (3)

where 𝐵𝑖 is the Neumann subdomain matrix, 𝐴𝑖 is the Dirichlet subdomain matrix,
and 𝐷 is a diagonal weighting matrix representing a partition of unity. We show
the first 4 modes, and then also mode 5 and 9 in Figure 6. We see that they are
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Fig. 7 GenEO modes 1-4, 5, and 9 without the partition of unity.

very similar to the DtN eigenmodes (mode 3, 4 and 9 just need to be multiplied
by −1). If we remove the partition of unity in the eigenvalue problem (3), we get
the modes shown in Figure 7. These are now very close to the DtN modes (up to
multiplications by −1) in Figure 5, and we are working to prove that they in fact
span the same coarse space. A comparison of the numerical performance of these
coarse spaces can be found in [22]; this comparison was made before these relations
were known. In [22], there is also a comparison with the coarse spaces introduced
by Juan Galvis and Yalchin Efendiev in [13, 14], which are based on subdomain
eigenfunctions in volume and thus not harmonic in the subdomains. Note that such
volume eigenvalue coarse spaces have been already introduced for non-overlapping
domain decomposition methods by Petter Bjørstad and Piotr Krzyżanowski
almost a decade earlier [2], and this in an adaptive fashion (see also [1]):

“It appears that this paper is the first to propose an adaptive algorithm that can construct an
effective coarse space for problems of this kind”.

Techniques from multiscale finite element methods were also used to construct
coarse spaces for Schwarz methods: the ACMS (Approximate Component Mode
Synthesis) coarse space by Alexander Heinlein, Axel Klawonn, Jascha Knep-
per andOliver Rheinbach in [25] is using Schur complement eigenvalue problems
on subdomain edges in order to construct coarse basis functions. This approach is
in the simple Laplace case related to the SHEM enrichment functions shown in
Figure 4 in the middle and on the right. The early coarse space from [10] for non-
overlapping domain decomposition methods based on piece-wise constant edge (and
face) functions became also the basis for a spectrally enriched coarse space under the
name adaptive GDSW (Generalized Dryja Smith Widlund) coarse space, see [24],
where the authors use for the enrichment Dirichlet to Neumann eigenfunctions at the
interfaces, extended harmonically into the subdomains.
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3 Conclusions

We gave a short historical and personal introduction to the fascinating research area
of coarse space construction for domain decomposition methods. This is currently
a very active field of research, and a complete understanding of best coarse spaces in
terms of performance even for Laplace problems is only emerging. Corresponding
intrinsic coarse space components for Schwarz methods can be found in [5], and
their analysis is currently our focus.

References

1. Bjørstad, P. E., Koster, J., and Krzyżanowski, P. Domain decomposition solvers for large scale
industrial finite element problems. In: Applied Parallel Computing. New Paradigms for HPC
in Industry and Academia: 5th International Workshop, PARA 2000 Bergen, Norway, June
18–20, 2000 Proceedings 5, 373–383. Springer (2001).

2. Bjørstad, P. E. and Krzyżanowski, P. A flexible 2-level Neumann-Neumann method for
structural analysis problems. In: International Conference on Parallel Processing and Applied
Mathematics, 387–394. Springer (2001).

3. Brandt, A., McCormick, S., and Ruge, J. Algebraic multigrid (AMG) for automatic algorithm
design and problem solution. Tech. rep., Report,. Comp. Studies, Colorado State University,
Ft. Collins (1982).

4. Cai, X.-C. and Sarkis, M. A restricted additive Schwarz preconditioner for general sparse
linear systems. SIAM Journal on Scientific Computing 21(2), 792–797 (1999).

5. Cuvelier, F., Gander,M. J., and Halpern, L. Fundamental coarse space components for Schwarz
methods with crosspoints. In: International Conference on Domain Decomposition Methods
XXVI, 39–50. Springer (2023).

6. Dolean, V., Jolivet, P., and Nataf, F. An introduction to domain decomposition methods:
algorithms, theory, and parallel implementation. SIAM (2015).

7. Dostál, Z. Conjugate gradient method with preconditioning by projector. International Journal
of Computer Mathematics 23(3-4), 315–323 (1988).

8. Dostál, Z. Projector preconditioning and domain decomposition methods. Applied Mathemat-
ics and Computation 37(2), 75–81 (1990).

9. Dryja, M. A method of domain decomposition for three-dimensional finite element elliptic
problems. In: First International Symposium on Domain Decomposition Methods for Partial
Differential Equations, 43–61. SIAM Philadelphia (1988).

10. Dryja, M., Smith, B. F., and Widlund, O. B. Schwarz analysis of iterative substructuring
algorithms for elliptic problems in three dimensions. SIAM journal on numerical analysis
31(6), 1662–1694 (1994).

11. Farhat, C., Mandel, J., and Roux, F.-X. Optimal convergence properties of the FETI domain
decomposition method. Computer methods in applied mechanics and engineering 115(3-4),
365–385 (1994).

12. Farhat, C. and Roux, F.-X. A method of Finite Element Tearing and Interconnecting and its
parallel solution algorithm. Int. J. Numer. Meth. Engrg. 32, 1205–1227 (1991).

13. Galvis, J. and Efendiev, Y. Domain decomposition preconditioners for multiscale flows in
high-contrast media. Multiscale Modeling & Simulation 8(4), 1461–1483 (2010).

14. Galvis, J. and Efendiev, Y. Domain decomposition preconditioners for multiscale flows in high
contrast media: reduced dimension coarse spaces. Multiscale Modeling & Simulation 8(5),
1621–1644 (2010).

15. Gander, M. J. Schwarz methods over the course of time. Electronic transactions on numerical
analysis 31, 228–255 (2008).



198 Martin J. Gander and Laurence Halpern

16. Gander, M. J. and Halpern, L. Méthodes de décomposition de domaine. In: Encyclopédie
électronique pour les ingénieurs. Techniques de l’ingénieur (2012).

17. Gander, M. J., Halpern, L., and Repiquet, K. S. A new coarse grid correction for RAS/AS. In:
Domain Decomposition Methods in Science and Engineering XXI, 275–283. Springer (2014).

18. Gander, M. J., Halpern, L., and Santugini-Repiquet, K. Continuous analysis of the addi-
tive Schwarz method: a stable decomposition in H1. ESAIM Mathematical Modelling and
Numerical Analysis 49(3), 365–385 (2011).

19. Gander, M. J., Halpern, L., and Santugini-Repiquet, K. On optimal coarse spaces for domain
decomposition and their approximation. In: International Conference on Domain Decomposi-
tion Methods XXIV, 271–280. Springer (2018).

20. Gander, M. J. and Loneland, A. SHEM: An optimal coarse space for RAS and its multiscale
approximation. In: Domain Decomposition Methods in Science and Engineering XXIII, 313–
321. Springer (2017).

21. Gander, M. J., Loneland, A., and Rahman, T. Analysis of a new harmonically enriched
multiscale coarse space for domain decomposition methods. arXiv preprint arXiv:1512.05285
(2015).

22. Gander, M. J. and Song, B. Complete, optimal and optimized coarse spaces for additive
Schwarz. In: International Conference on Domain Decomposition Methods XXIV, 301–309.
Springer (2018).

23. Gander,M. J. andVanCriekingen, S. New coarse corrections forOptimizedRestrictedAdditive
Schwarz using PETSc. In: International Conference on Domain Decomposition Methods XXV,
483–490. Springer (2020).

24. Heinlein, A., Klawonn, A., Knepper, J., and Rheinbach, O. An adaptive GDSW coarse space
for two-level overlapping Schwarz methods in two dimensions. In: Domain Decomposition
Methods in Science and Engineering XXIV, 373–382. Springer (2018).

25. Heinlein, A., Klawonn, A., Knepper, J., and Rheinbach, O. Multiscale coarse spaces for
overlapping Schwarz methods based on the ACMS space in 2D. ETNA 48, 156–182 (2018).

26. Lions, P.-L. On the Schwarz alternating method. I. In: First international symposium on
domain decomposition methods for partial differential equations, vol. 1, 42. Paris, France
(1988).

27. Mandel, J. and Brezina, M. Balancing domain decomposition: Theory and performance in two
and three dimensions. Tech. rep., University of Colorado at Denver (1993).

28. Mandel, J. and Tezaur, R. Convergence of a substructuring method with Lagrange multipliers.
Numerische Mathematik 73(4), 473–487 (1996).

29. Nataf, F., Xiang, H., Dolean, V., and Spillane, N. A coarse space construction based on local
Dirichlet-to-Neumannmaps. SIAM Journal on Scientific Computing 33(4), 1623–1642 (2011).

30. Nicolaides, R. A. Deflation of conjugate gradients with applications to boundary value prob-
lems. SIAM Journal on Numerical Analysis 24(2), 355–365 (1987).

31. Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., and Scheichl, R. Abstract robust
coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps. Numerische
Mathematik 126(4), 741–770 (2014).

32. Stüben, K. Algebraic multigrid (AMG): experiences and comparisons. Applied Mathematics
and Computation 13(3-4), 419–451 (1983).

33. Toselli, A. andWidlund, O. Domain Decomposition Methods - Algorithms and Theory, vol. 34.
Springer Science & Business Media (2004).

34. Widlund, O. and Dryja, M. An additive variant of the Schwarz alternating method for the case
of many subregions. Tech. rep., Department of Computer Science, Courant Institute (1987).

35. Widlund, O. B. Iterative substructuring methods: Algorithms and theory for elliptic problems
in the plane. In: First International Symposium on Domain Decomposition Methods for Partial
Differential Equations, Philadelphia, PA, 113–128. SIAM Philadelphia (1988).


