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1 Introduction

Wave field simulations have many applications, from seismology over radiation to
acoustics. The Helmholtz equation is used to model many of these phenomena, and
several numerical schemes were developed for this, see e.g. [5, 8, 7] and references
therein. However, to capture the accurate wave behavior, in general these schemes
need very fine meshes, because of the so called pollution effect, see [1]. The fine
mesh requirement results in large system matrices with bad condition number, and
thus requires a huge computational effort, since Helmholtz problems are notoriously
difficult to solve using iterative methods [4]. Also, due to the high condition number,
often these schemes have numerical problems for large wave numbers.
We present in this short note a new Nodal Integration Method (NIM) based on

domain decomposition techniques for the Helmholtz equation

∇2𝑢(x) + 𝑘2𝑢(x) = 𝑓 (x), (1)

where x is the spatial position, 𝑘 is the wave number, 𝑢 represents the wave field,
typically a pressure perturbation, and 𝑓 is the source term. NIM is a coarse mesh
numerical scheme based on the transverse integration process (TIP) and analytical
solutions of the ODEs resulting from TIP [10]. NIM has an edge over other schemes
due to the inbuilt semi-analytical approach in the scheme development process,
which closely relates the scheme to the physical problem compared to predefined
basis-function based methods such as finite-element methods. NIM schemes are
related to Trefftz methods [12] going back to Erich Trefftz in 1926 as a counterpart
of the classical Ritz method [11] from 1909. Trefftz methods use basis functions
that satisfy the homogeneous equations exactly within elements, see also [8] and
references therein, whereas NIMs satisfy only one dimensional averaged equations.
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Fig. 1 Arrangement of elements in 2D called nodes in NIM.

The first NIM scheme was developed for simulations in nuclear industry [6], and
NIM found its acceptance in other engineering domains as well, due to high accuracy
with coarser meshes, see e.g. [9] and references therein. The discretization of PDEs
is also often plagued with numerical dispersion, and NIM schemes show minimal
dispersion compared to other schemes, see [10], and [2] and references therein for
more information about dispersion correction. We propose here a new NIM scheme
for the Helmholtz equation to improve the conditioning of the resulting system
matrix, and further reduce dispersion. Our new approach uses impedance (or Robin)
conditions in its construction, in contrast to the classical Dirichlet and Neumann
conditions in earlier NIMs for Helmholtz problems.

2 Classical NIM for the Helmholtz problem

In order to derive the classical NIM scheme for the Helmholtz equation (1) in 2D, the
domain is divided into 𝑛 rectangular elements of size ℎ called nodes, see Figure 1.
For each node, a local coordinate system is defined with its origin at the node center.
The Helmholtz Equation (1) can be written with reference to node ( 𝑗 , 𝑙) as

∇2𝑢 𝑗 ,𝑙 (𝑥, 𝑦) + 𝑘2𝑢 𝑗 ,𝑙 (𝑥, 𝑦) = 𝑓 𝑗 ,𝑙 (𝑥, 𝑦), (𝑥, 𝑦) ∈
(
− ℎ

2
,
ℎ

2
)
)
×

(
− ℎ

2
,
ℎ

2

)
. (2)

In NIM, the PDE is first averaged within a node to remove the dependency in one
spatial directions, which results in an approximate ODE. This is called the transverse
integration process (TIP). To perform the TIP, Equation (2) is averaged using the
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operator 1
ℎ

∫ +ℎ/2
−ℎ/2 d𝑥 in x-direction and the operator

1
ℎ

∫ +ℎ/2
−ℎ/2 d𝑦 in y-direction. On

performing the TIP (averaging) for example in the 𝑥-direction,

1
ℎ

∫ +ℎ/2

−ℎ/2

(
d2𝑢 𝑗 ,𝑙 (𝑥, 𝑦)
d𝑥2

+
d2𝑢 𝑗 ,𝑙 (𝑥, 𝑦)
d𝑦2

+ 𝑘2𝑢 𝑗 ,𝑙 (𝑥, 𝑦) = 𝑓 𝑗 ,𝑙 (𝑥, 𝑦)
)
d𝑥, (3)

we get x-averaged ODEs whose solutions are a function of 𝑦 only as given in
equation (4) below. Similarly, performing TIP on equation (2) in the 𝑦-direction
gives us y-averaged ODEs whose solutions are a function of 𝑥 only,

d2𝑢𝑥𝑗,𝑙 (𝑦)
d𝑦2

+ 𝑘2𝑢𝑥𝑗,𝑙 (𝑦) = 𝑆
𝑥

𝑗,𝑙 (𝑦),
d2𝑢𝑦

𝑗,𝑙
(𝑥)

d𝑥2
+ 𝑘2𝑢

𝑦

𝑗,𝑙
(𝑥) = 𝑆

𝑦

𝑗,𝑙 (𝑥). (4)

Here the solution variables represent averaged quantities,

𝑢𝑥𝑗,𝑙 (𝑦) :=
1
ℎ

∫ +ℎ/2

−ℎ/2
𝑢 𝑗 ,𝑙 (𝑥, 𝑦)d𝑥, 𝑢

𝑦

𝑗,𝑙
(𝑥) := 1

ℎ

∫ +ℎ/2

−ℎ/2
𝑢 𝑗 ,𝑙 (𝑥, 𝑦)d𝑦, (5)

and also the source term 𝑓 𝑗 ,𝑙 was averaged including the remaining transverse term,

𝑆
𝑥

𝑗,𝑙 (𝑦) :=
1
ℎ

∫ +ℎ/2

−ℎ/2

(
𝑓 𝑗 ,𝑙 (𝑥, 𝑦) −

𝜕2𝑢 𝑗 ,𝑙 (𝑥, 𝑦)
𝜕𝑥2

)
d𝑥, (6)

𝑆
𝑦

𝑗,𝑙 (𝑥) :=
1
ℎ

∫ +ℎ/2

−ℎ/2

(
𝑓 𝑗 ,𝑙 (𝑥, 𝑦) −

𝜕2𝑢 𝑗 ,𝑙 (𝑥, 𝑦)
𝜕𝑦2

)
d𝑦. (7)

After the TIP, the set of approximate ODEs given in Equation (4) is solved analyti-
cally within two consecutive nodes, using an appropriate approximation of the source
term to make this analytical integration possible (for example a truncated Legendre
expansion). After the integration, the two analytical solutions are connected using
coupling conditions, classically Dirichlet continuity is imposed by imposing a com-
mon (unknown) value, which is then determined imposing Neumann continuity, like
in a substructuring domain decomposition method. This results in two three point
schemes, one in the 𝑥-direction and the other in the 𝑦-direction. From these three
point schemes, the pseudo source is finally eliminated using constraint conditions,
which results in the final set of algebraic equation for the scheme, see [6, 9, 10] for
more details, and below for a simple example.
While this NIM scheme for Helmholtz is working, the resulting matrix elements

can have a strong dependence on the wave number 𝑘 . We show in Table 1 an
example of the dependence of the system matrix norm on the wave number 𝑘 of
the 2D NIM scheme described above. This strong dependence is numerically not
desirable, especially when the mesh resolution is not changed as in our example,
there is toomuch sensitivity with respect to thewave number in this discrete problem.
In order to better understand this strong dependence on the wave number 𝑘 of

the classical NIM system matrix for the Helmholtz equation, we now study in more
detail the one dimensional case,
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Table 1 Dependence of the system matrix norm on the wave number 𝑘 for the classical NIM
scheme in 2D for the Helmholtz equation.

Wave number (𝑘) NIM matrix norm (2D-Helmholtz)
150 14800
151 32170
152 214350
153 25180
154 13500

𝑥
j+1jj-1

Fig. 2 Arrangement of elements in 1D.

𝜕𝑥𝑥𝑢 𝑗 (𝑥) + 𝑘2𝑢 𝑗 (𝑥) = 𝑓 𝑗 (𝑥), 𝑥 ∈
(
− ℎ

2
,
ℎ

2

)
, (8)

see also Figure 2. In one dimension, the TIP is not necessary, except for the right
hand side function 𝑓 𝑗 (𝑥). Here we expand 𝑓 𝑗 (𝑥) in Legendre polynomials and
truncate to the first term, i.e. the constant, which we call 𝑆 𝑗 . This approximation to
a constant term leads to second order accuracy in the scheme. We can then directly
solve Equation (8) analytically with 𝑓 𝑗 (𝑥) replaced by 𝑆 𝑗 on each node, and using
Dirichlet boundary conditions, which are

𝑢𝑎𝑗 (𝑥)
���
−ℎ/2

= 𝑢 𝑗−1

𝑢𝑎𝑗 (𝑥)
���
ℎ/2

= 𝑢 𝑗

 for node 𝑗 ,
𝑢𝑎𝑗+1 (𝑥)

���
−ℎ/2

= 𝑢 𝑗

𝑢𝑎𝑗+1 (𝑥)
���
ℎ/2

= 𝑢 𝑗+1

 for node 𝑗 + 1. (9)

The analytical solution for node 𝑗 and 𝑗 + 1 is then given by

𝑢𝑎𝑗 (𝑥) =
2𝑆 𝑗+(−2𝑆 𝑗+𝑘2 (𝑢 𝑗+𝑢 𝑗−1)) cos 𝑘𝑥 sec ℎ𝑘

2 +𝑘2 (𝑢 𝑗−𝑢 𝑗−1) csc ℎ𝑘
2 sin 𝑘𝑥

2𝑘2 ,

𝑢𝑎𝑗+1 (𝑥) =
2𝑆 𝑗+1+(−2𝑆 𝑗+1+𝑘2 (𝑢 𝑗+𝑢 𝑗+1)) cos 𝑘𝑥 sec ℎ𝑘

2 +𝑘2 (𝑢 𝑗+1−𝑢 𝑗 ) csc ℎ𝑘
2 sin 𝑘𝑥

2𝑘2 .
(10)

Now in order to connect consecutive nodes, the matching of Neumann traces is
imposed, i.e. (

𝑑𝑢𝑎𝑗 (𝑥)
𝑑𝑥

) �����
ℎ/2

=

(
𝑑𝑢𝑎𝑗+1 (𝑥)

𝑑𝑥

) �����
−ℎ/2

. (11)

This leads to a finite difference like stencil for the unknown Dirichlet values 𝑢 𝑗 ,
which contains in its coefficients information about the physical problem that is
solved, namely

𝑘

sin 𝑘ℎ
𝑢 𝑗+1 −

2𝑘
tan 𝑘ℎ

𝑢 𝑗 +
𝑘

sin 𝑘ℎ
𝑢 𝑗−1 =

tan ℎ𝐾2
𝑘

(𝑆 𝑗 + 𝑆 𝑗+1). (12)
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Fig. 3 Norms of the systemmatrix of the classical Helmholtz NIM from the stencils (12), (14), (15)
for varying wave number 𝑘 and three mesh sizes: 0.1 (left), 0.05 (middle) and 0.025 (right).

To complete the linear system, we have to use on the first node, 𝑗 = 1, and the last
node, 𝑗 = 𝐽, the original boundary conditions imposed on the problem, which we
assume to be of impedance type,(

−
𝑑𝑢𝑎1 (𝑥)
𝑑𝑥

+ 𝑖𝑘𝑢𝑎1 (𝑥)
) �����

−ℎ/2
= 0,

(
𝑑𝑢𝑎𝐽 (𝑥)
𝑑𝑥

+ 𝑖𝑘𝑢𝑎𝐽 (𝑥)
) �����
ℎ/2

= 0. (13)

This leads for the first and last NIM matrix equations to the stencils(
𝑖𝑘 + 𝑘2 cot ℎ𝑘

𝑘

)
𝑢1 − (𝑘 csc ℎ𝑘)𝑢2 =

(
cot ℎ𝑘 − csc ℎ𝑘

𝑘

)
𝑆2, (14)(

𝑖𝑘 + 𝑘2 cot ℎ𝑘
𝑘

)
𝑢𝐽 − (𝑘 csc ℎ𝑘)𝑢𝐽−1 =

(
cot ℎ𝑘 − csc ℎ𝑘

𝑘

)
𝑆𝐽 . (15)

Collecting these stencils in the associated systemmatrix of theHelmholtzNIM in 1D,
and computing its norm, we find the results shown in Figure 3. Clearly the norm is
extremely sensitive to the wave number 𝑘 , and this does not improve when the mesh
is refined. We can now also see the reason for this looking at the stencil entries: in
the interior stencil in (12), the stencil coefficients contain a division by sin 𝑘ℎ, and
this quantity becomes zero for 𝑘 = ℓ𝜋/ℎ, ℓ = 1, 2, . . ., which explains the poles in
Figure 3 and more generally the sensitivity of the classical Helmholtz NIM matrix
norm on the wave number. We can now also explain the reason for this sensitivity: in
the construction of the classical Helmholtz NIM, we solved 1D Helmholtz problems
on each node, imposing Dirichlet boundary conditions, and if 𝑘2 corresponds to an
eigenvalue of the one dimensional Laplacian, then this problem is not well posed,
a fact that manifests itself in the division by zero in the stencil coefficients.
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3 Derivation of the new NIM scheme

To address the issue of division by zero for some values of 𝑘 , we must design a new
Helmholtz NIM that avoids in its construction the solution of Helmholtz problems
with Dirichlet conditions that can become ill-posed. This can be achieved by using
impedance conditions instead, like it was proposed in the seminal work of Després
and his non-overlapping Schwarz method for Helmholtz problems [3]. We thus
replace in the construction of our new Helmholtz NIM the conditions (9) for nodes 𝑗
and 𝑗 + 1 by the conditions(

− 𝜕𝑢𝑎𝑗 (𝑥)
𝜕𝑥

+ 𝑖𝑘𝑢𝑎𝑗 (𝑥)
)���
−ℎ/2

= 𝜎𝑗−1(
𝜕𝑢𝑎𝑗 (𝑥)
𝜕𝑥

+ 𝑖𝑘𝑢𝑎𝑗 (𝑥)
)���
ℎ/2

= 𝜆 𝑗

 for node 𝑗 , (16)

(
− 𝜕𝑢𝑎𝑗+1 (𝑥)

𝜕𝑥
+ 𝑖𝑘𝑢𝑎𝑗+1 (𝑥)

)���
−ℎ/2

= 𝜎𝑗(
𝜕𝑢𝑎𝑗+1 (𝑥)
𝜕𝑥

+ 𝑖𝑘𝑢𝑎𝑗+1 (𝑥)
)���
ℎ/2

= 𝜆 𝑗+1

 for node 𝑗 + 1. (17)

Instead of the unknown Dirichlet values 𝑢 𝑗 in the original Helmholtz NIM, now
the unknowns are the impedance traces 𝜆 𝑗 and 𝜎𝑗 , which means that we construct
directly a right preconditioned system in this new Helmholtz NIM design. The
analytical solution of the Helmholtz equation (8) with constant source term 𝑆 𝑗 and
node impedance boundary conditions (16) on node 𝑗 is

𝑢𝑎𝑗 (𝑥) =
2𝑆 𝑗 + 𝑒

−𝑖𝑘 (ℎ+2𝑥)
2 (−𝑆 𝑗 − 𝑒2𝑖𝑘𝑥 (𝑆 𝑗 + 𝑖𝑘𝜆 𝑗 ) − 𝑖𝑘𝜎𝑗

2𝑘2
, (18)

and similarly we find on node 𝑗 + 1

𝑢𝑎𝑗+1 (𝑥) =
2𝑆 𝑗+1 + 𝑒

−𝑖𝑘 (ℎ+2𝑥)
2 (−𝑆 𝑗+1 − 𝑒2𝑖𝑘𝑥 (𝑆 𝑗+1 + 𝑖𝑘𝜆 𝑗+1) − 𝑖𝑘𝜎𝑗+1

2𝑘2
. (19)

In order to obtain the new Helmholtz NIM scheme, we use impedance condition
matching at the interface,

𝜎𝑗+1 =

(
−
𝑑𝑢𝑎𝑗 (𝑥)
𝑑𝑥

+ 𝑖𝑘𝑢𝑎𝑗 (𝑥)
) �����
ℎ/2

, 𝜆 𝑗 =

(
𝑑𝑢𝑎𝑗 (𝑥)
𝑑𝑥

+ 𝑖𝑘𝑢𝑎𝑗 (𝑥)
) �����

−ℎ/2
. (20)

This leads to the new finite difference type stencil

𝜎𝑗+1−𝑒−𝑖ℎ𝑘𝜎𝑗 =

(
− 𝑖

𝑘
+ 𝑖𝑒−𝑖𝑘ℎ

𝑘

)
𝑆 𝑗 , 𝜆 𝑗 −𝑒−𝑖ℎ𝑘𝜆 𝑗+1 =

(
− 𝑖

𝑘
+ 𝑖𝑒−𝑖𝑘ℎ

𝑘

)
𝑆 𝑗+1. (21)

For the first and last equation in the system, we need to use again the original
boundary conditions in (13), which leads for 𝑗 = 1 to
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Fig. 4 Norms of the system matrix of the new Helmholtz NIM from the stencils (21), (22), (23),
for varying wave number 𝑘 and three mesh sizes: 0.1 (left), 0.05 (middle) and 0.025 (right).

(
𝑒𝑖ℎ𝑘 (𝑘 − 1)
2𝑘

)
𝜆1 +

(
𝑘 + 1
2𝑘

)
𝜎1 =

(
−𝑖(𝑘 − 1) + 𝑖𝑒𝑖ℎ𝑘 (𝑘 − 1)

2𝑘2

)
𝑆1. (22)

Similarly the equation on the right boundary, 𝑗 = 𝐽, is

−
(
𝑒−𝑖ℎ𝑘 (𝑘 − 1)

2𝑘

)
𝜎𝐽 +

(
𝑘 + 1
2𝑘

)
𝜆𝐽 =

(
−𝑖(𝑘 − 1) + 𝑖𝑒−𝑖ℎ𝑘 (𝑘 − 1)

2𝑘2

)
𝑆𝐽 . (23)

Now we can see from the stencil coefficients in Equation (21) of the new
Helmholtz NIM that there is no singularity present any more, and thus the sys-
tem matrix norms should not have this sensitive dependence on the wave num-
ber 𝑘 any longer. This is confirmed in Figure 4, where we plot the system ma-
trix norm of our new Helmholtz NIM for three different mesh sizes as a func-
tion of the wave number 𝑘 . We see that the norm stays nicely bounded below 3,
whereas for the classical NIM the matrix norms we observed were of the or-
der of 1𝑒5.

4 Conclusions

Wepresented a newnodal integrationmethod (NIM) based on domain decomposition
techniques for theHelmholtz equation. In our newHelmholtz NIM, instead ofDirich-
let and Neumann transmission conditions that are usually used in the construction of
the NIM, we used impedance (or Robin) transmission conditions. This modification
changes the coefficients as well as the resulting system matrix structure, and we
observe that the new system matrix has nicely bounded norms for all wave numbers,
while the original NIM system matrix norm presented singularities. However, the
new system matrix is now twice the size of the old system matrix, since we are solv-
ing for the Robin traces as unknowns. We gain stability at the cost of a bigger system
matrix.We are currently developing our newHelmholtz NIM in two and three spatial
dimensions, and also investigate if it is possible to use impedance conditions without
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increasing the systemmatrix size.We are also studying the dispersion relation proper-
ties of our newHelmholtzNIM, and investigate its potential for dispersion correction.
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