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1 Introduction

Consider the state 𝑦(x) governed by the elliptic partial differential equation (PDE)

−div (^(x)∇𝑦(x)) = 𝑢(x), x ∈ Ω, 𝑦(x) = 0, x ∈ 𝜕Ω, (1)

where Ω ⊂ R𝑛, 𝑛 = 1, 2, 3 is a bounded domain and 𝜕Ω its boundary. Here 𝑢 is
a control variable from an admissible set 𝑈ad, which drives the state 𝑦 to a target
state �̂�. Problem (1) originates from the stationary heat conduction equation. In
this setting, ^(x) denotes the thermal conductivity of Ω, 𝑦(x) is the temperature at
a particular position x and 𝑢(x) represents a controlled heat source. The goal is to
find the optimal control variable 𝑢∗ which minimizes the cost functional for a ∈ R+,

𝐽 (𝑦, 𝑢) = 1
2

∫
Ω

|𝑦(x) − �̂�(x) |2 dx + a

2
‖𝑢‖2𝑈ad , (2)

subject to the constraint (1). The term a
2 ‖𝑢‖

2
𝑈ad
can be considered as the cost of

applying such a control 𝑢. It is said that the control is expensive if a is large. From
a mathematical viewpoint, the presence of this term with a ∈ R+ has a regularizing
effect on the optimal control.
The analysis of Domain Decomposition methods (DDMs) for the elliptic PDE (1)

is well established, see for instance [12]. Much less is known for DDmethods applied
to PDE-constrained optimal control problems, see for instance [5, 6]. Although the
admissible set 𝑈ad is often considered as 𝐿2 (Ω) for such elliptic control problems,
a recent study shows that the energy space 𝐻−1 (Ω) can also be used for the reg-
ularization [10]. Moreover, this space can be expanded with 𝐿2 (0, 𝑇 ;𝐻−1 (Ω)) to
treat parabolic control problems [7]. From an analytical point of view, the first-order
optimality system can be simplified to a Poisson type equation by using the energy
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space 𝐻−1 (Ω), whereas a biharmonic type problem still needs to be treated for the
usual 𝐿2 (Ω) regularization. Moreover, applications of the energy norm can also be
found in electrical engineering, fluid mechanics [9], etc.
Inspired by this approach, we study in this paper DDMs applied to the optimal

control problem (1)-(2) using the energy norm. More precisely, we introduce in
Section 2 the use of the energy norm 𝐻−1 for the elliptic control problem, and
compare the optimality system with that of the 𝐿2 norm. Although we consider for
simplicity an unconstrained control, this can be extended to problems with state
or control constraints, see also [13]. We then provide in Section 3 a convergence
analysis of the Dirichlet-Neumann (DN) [1] and the Neumann-Neumann (NN) [2]
methods applied to the optimality system. Some numerical experiments are given in
Section 4, where we conclude with some comments.

2 Regularization: 𝑳2 vs 𝑯−1

We assume that both the control 𝑢 and the target state �̂� are in 𝐿2 (Ω), and consider
first 𝑈ad = 𝐿2 (Ω) as the set of all feasible controls. Using the Lagrange multiplier
approach [13], we get for the first-order optimality system for problem (1)–(2)

−div (^(x)∇𝑦(x)) = 𝑢(x), x ∈ Ω, 𝑦(x) = 0, x ∈ 𝜕Ω,

−div (^(x)∇𝑝(x)) = 𝑦(x) − �̂�(x), x ∈ Ω, 𝑝(x) = 0, x ∈ 𝜕Ω,

𝑝(x) + a𝑢(x) = 0, x ∈ Ω,

(3)

where 𝑝 is the Lagrange multiplier (or adjoint state). Inserting the third equation
of (3) into the first equation, and the result into the second equation, we can rewrite
the optimality system (3) with one single variable, for instance, with respect to the
state variable 𝑦 as

adiv
(
^(x)∇

(
div (^(x)∇𝑦(x))

) )
+ 𝑦(x) = �̂�(x), x ∈ Ω,

div (^(x)∇𝑦(x)) = 𝑦(x) = 0, x ∈ 𝜕Ω.
(4)

In particular, we identify in (4) a biharmonic operator by taking the conductivity
^(x) = 1 everywhere over the domain.
We consider now 𝑈ad = 𝐻−1 (Ω) in (2) as the set of all feasible controls. As

proposed in [10], we can define the norm in 𝐻−1 (Ω) by

‖𝑢‖2
𝐻−1 (Ω) := ‖

√
^∇𝑦‖2

𝐿2 (Ω) , (5)

which is the energy norm. Note that the conductivity ^ is positive. On the other hand,
following the same reasoning as in the 𝐿2 (Ω) case to derive the optimality system,
we obtain

−adiv (^(x)∇𝑦(x)) + 𝑦(x) = �̂�(x), x ∈ Ω, 𝑦(x) = 0, x ∈ 𝜕Ω. (6)
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Comparing (6) with the reduced optimality system under 𝐿2 regularization (4), we
observe that indeed only a Laplace type operator needs to be solved in (6).

Remark 1 We need to be careful when comparing solutions of the two reduced
optimality systems (4) and (6), since we penalize the control in different norms and
solve different equations. In the 𝐿2 case, the control can be determined by 𝑢 = − 1

a
𝑝

which is proportional to the adjoint state variable, while it is proportional to the
state variable in the 𝐻−1 case, since 𝑢 = 1

a
( �̂� − 𝑦). Furthermore, the solution is less

regular in the 𝐻−1 case as shown in [10].

Remark 2 Depending on the value of a, (6) is a singularly perturbed PDE. Standard
numericalmethods can performpoorly, we refer to themonograph [11] for a review of
robust numerical methods for such problems. In the recent work [8], the authors use
an algebraic multigrid method and a balancing domain decomposition by constraints
preconditioner for a finite element discretization to treat the problem (6). They
observed that optimal convergence is ensured with a = ℎ2, ℎ being the mesh size.

3 Convergence analysis of DD methods

We now provide a convergence analysis for the DN and the NN methods applied to
solve the reduced optimality system (6), and then compare with DN and NNmethods
applied to (4) from [5].
Without loss of generality, the analysis is given under the assumption that the

target state �̂� = 0, meaning that we focus on the error equation related to (6).
Moreover, we assume that the conductivity coefficient ^(𝑥) = 1 everywhere over the
domain for the following analysis, although the DN and NN methods are defined
for a general ^(𝑥). Let us first consider the one-dimensional case with the domain
Ω = (0, 1). We decompose it into two non-overlapping subdomains Ω1 = (0, 𝛼) and
Ω2 = (𝛼, 1) with 𝛼 the interface. We denote by 𝑒𝑖 the error in domainΩ𝑖 for 𝑖 = 1, 2.
For the DNmethod, the error equations for (6) are for iteration index 𝑛 = 1, 2, . . .,

𝜕𝑥𝑥𝑒
𝑛
1 − a−1𝑒𝑛1 = 0, 𝑒𝑛1 (0) = 0, 𝑒𝑛1 (𝛼) = 𝑒𝑛−1𝛼 ,

𝜕𝑥𝑥𝑒
𝑛
2 − a−1𝑒𝑛2 = 0, 𝑒𝑛2 (1) = 0, 𝜕𝑥𝑒

𝑛
2 (𝛼) = 𝜕𝑥𝑒

𝑛
1 (𝛼),

(7)

with 𝑒𝑛𝛼 := (1 − \)𝑒𝑛−1𝛼 + \𝑒𝑛2 (𝛼) and \ ∈ (0, 1) a relaxation parameter. We notice
that the error equations (7) are similar to the ones in [4, Equation (2.4)] for applying
the Dirichlet-Neumann waveform relaxation (DNWR) method to the heat equation.
Indeed, after a Laplace transform, the error equations for the DNWR method in the
one dimensional case are like (7), where a−1 is replaced by 𝑠. For this reason, we
follow the same calculations as in [4] and find the convergence factor

𝜌DN :=
���1 − \

[
1 + tanh

(√︁
a−1 (1 − 𝛼)

)
coth

(√︁
a−1𝛼

)] ��� . (8)

This leads us to the following convergence results.
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Theorem 1 The DN method with \ = 1 applied to Problem (6) converges if and only
if the interface is closer to the right boundary (i.e., 𝛼 > 1

2 ).

Proof Taking \ = 1 in (8), we obtain the convergence factor

𝜌DN = tanh
(√︁

a−1 (1 − 𝛼)
)
coth

(√︁
a−1𝛼

)
,

that is smaller than 1 if and only if 𝛼 > 1
2 which can be seen by studying the function

𝑓 (𝑥) = sinh(1 − 𝑥) cosh(𝑥) − cosh(1 − 𝑥) sinh(𝑥) for 𝑥 ∈ [0, 1]. �

Theorem 2 For symmetric subdomains (i.e., 𝛼 = 1
2 ), the convergence of the DN

method for Problem (6) is linear and is independent of the value of the regularization
parameter a. It converges in two iterations if \ = 1

2 .

Proof We just have to take 𝛼 = 1
2 in (8) and finds 𝜌DN = |1 − 2\ |. �

Theorem 3 For asymmetric subdomains (i.e., 𝛼 ≠ 1
2 ), the DN method converges for

Problem (6) if and only if

0 < \ < 2\★DN, \★DN :=
1

1 + tanh
(√

a−1 (1 − 𝛼)
)
coth

(√
a−1𝛼

) . (9)

Moreover, it converges in two iterations if and only if \ = \★DN.

Proof From the convergence factor (8), the interior part of the absolute value is
smaller than 1, since \ ∈ (0, 1) and 1 + tanh

(√
a−1 (1 − 𝛼)

)
coth

(√
a−1𝛼

)
is strictly

positive. We then just need to ensure that

\

[
1 + tanh

(√︁
a−1 (1 − 𝛼)

)
coth

(√︁
a−1𝛼

)]
< 2,

which leads to the inequality in (9). On the other hand, we find directly \★DN by
equating (8) to zero. �

Remark 3 As expected, we find similar results in the symmetric case as for the 𝐿2
regularization. However, we have an optimal relaxation parameter for asymmetric
decompositions, which is strictly smaller than 1, whereas a pair of parameters is
needed for the 𝐿2 regularization which can be greater than one in some cases,
see [5]. This is due to the fact that two transmission conditions need to be considered
for a biharmonic type problem.

The error equations for the NN method, for iteration index 𝑛 = 1, 2, · · · , are

𝜕𝑥𝑥𝑒
𝑛
𝑗 − a−1𝑒𝑛𝑗 = 0, 𝑒𝑛1 (0) = 0, 𝑒𝑛2 (1) = 0, 𝑒𝑛𝑗 (𝛼) = 𝑒𝑛−1𝛼 , (10)

where the transmission condition is given by 𝑒𝑛𝛼 := 𝑒𝑛−1𝛼 − \
(
𝜓𝑛
1 (𝛼) +𝜓

𝑛
2 (𝛼)

)
and 𝜓𝑛

𝑗

satisfies the correction step
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𝜕𝑥𝑥𝜓
𝑛
𝑗 −a−1𝜓𝑛

𝑗 = 0, 𝜓𝑛
1 (0) = 0, 𝜓𝑛

2 (1) = 0, 𝜕𝑛 𝑗
𝜓𝑛

𝑗 (𝛼) = 𝜕𝑛1𝑒
𝑛
1 (𝛼)+𝜕𝑛2𝑒

𝑛
2 (𝛼).
(11)

Solving (10)-(11) on each domain Ω 𝑗 and applying the boundary conditions at
𝑥 = 0 and 𝑥 = 1, we find the solutions with 𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝐷𝑛 four coefficients to
be determined for 𝑒𝑛1 , 𝑒

𝑛
2 , 𝜓

𝑛
1 and 𝜓

𝑛
2 . Evaluating then 𝑒𝑛

𝑗
at 𝑥 = 𝛼, and using the

transmission condition 𝑒𝑛
𝑗
(𝛼) = 𝑒𝑛−1𝛼 , we can determine the two coefficients 𝐴𝑛, 𝐵𝑛

and get

𝑒𝑛1 (𝑥) = 𝑒𝑛−1𝛼

sinh(
√
a−1𝑥)

sinh(
√
a−1𝛼)

, 𝑒𝑛2 (𝑥) = 𝑒𝑛−1𝛼

sinh
(√

a−1 (1 − 𝑥)
)

sinh
(√

a−1 (1 − 𝛼)
) . (12)

Similarly, we evaluate 𝜕𝑛 𝑗
𝜓𝑛

𝑗
at 𝑥 = 𝛼, and using the transmission condition

𝜕𝑛 𝑗
𝜓𝑛

𝑗
(𝛼) = 𝜕𝑛1𝑒

𝑛
1 (𝛼) + 𝜕𝑛2𝑒

𝑛
2 (𝛼) with the help of (12), we can determine the

remaining two coefficients 𝐶𝑛, 𝐷𝑛 and get,

𝜓𝑛
1 (𝑥) = 𝑒𝑛−1𝛼

sinh(
√
a−1𝑥)

cosh(
√
a−1𝛼)

(
coth(

√︁
a−1𝛼) + coth(

√︁
a−1 (1 − 𝛼))

)
,

𝜓𝑛
2 (𝑥) = 𝑒𝑛−1𝛼

sinh
(√

a−1 (1 − 𝑥)
)

cosh(
√
a−1 (1 − 𝛼))

(
coth(

√︁
a−1𝛼) + coth(

√︁
a−1 (1 − 𝛼))

)
.

Using finally the definition of the transmission condition 𝑒𝑛𝛼, we find the convergence
factor

𝜌NN :=
���1 − \

(
tanh(

√︁
a−1𝛼) + tanh

(√︁
a−1 (1 − 𝛼)

) )
×

(
coth(

√︁
a−1𝛼) + coth(

√︁
a−1 (1 − 𝛼))

)���. (13)

We obtain the following convergence results.

Theorem 4 For symmetric subdomains (i.e., 𝛼 = 1
2 ), the convergence of the NN

method for Problem (6) is linear and is independent of the value of the regularization
parameter a. It converges in two iterations if \ = 1

4 .

Proof We just have to take 𝛼 = 1
2 in (13) and find 𝜌NN = |1 − 4\ |. �

Theorem 5 For asymmetric subdomains (i.e., 𝛼 ≠ 1
2 ), the NN method converges for

Problem (6) if and only if

0 < \ < 2\★NN, \★NN :=
1(

tanh(
√
a−1𝛼)+tanh

(√
a−1 (1−𝛼)

)) (
coth(

√
a−1𝛼)+coth(

√
a−1 (1−𝛼))

) .
(14)

Furthermore, it converges in two iterations if and only if \ = \★NN.

Proof Following the same steps as in the proof of Theorem 3, we obtain the inequal-
ity (14), and we find directly \★NN by equating (13) to zero. �
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Remark 4 As shown in Theorem 3 and in Theorem 5, both the DN and the NN
methods converge in two iterations to the exact solution. Moreover, we have a bound
for the relaxation parameter \ of each method for which the convergence of the
method is guaranteed.

The above analysis can also be extended to the two-dimensional case. More
precisely, we assume that the domain Ω is now given by [0, 1] × [0, 1], which
is then divided into two non-overlapping subdomains Ω1 = (0, 𝛼) × [0, 1] and
Ω2 = (𝛼, 1) × [0, 1], with the interface at 𝑥1 = 𝛼 denoted by Γ := {𝛼} × [0, 1]. In
addition, we keep the assumption that �̂� = 0 and ^(𝑥) = 1. The two-dimensional
analysis is often carried out by using a Fourier expansion in one direction, in our
case, the 𝑥2 direction 𝑒𝑛𝑖 (𝑥1, 𝑥2) =

∑∞
𝑘=0 𝑒𝑖 (𝑥1, 𝑘) sin(𝑘𝜋𝑥2). In this way, the error

function related to 𝑒𝑖 (𝑥1, 𝑥2) passes to 𝑒𝑖 (𝑥1, 𝑘), and for instance, in the DN case is
governed by

𝜕𝑥1𝑥1𝑒
𝑛
1 −

a𝑘2𝜋2 + 1
a

𝑒𝑛1 = 0, 𝑒𝑛1 (0, 𝑘) = 0, 𝑒𝑛1 (𝛼, 𝑘) = 𝑒𝑛−1𝛼 ,

𝜕𝑥1𝑥1𝑒
𝑛
2 −

a𝑘2𝜋2 + 1
a

𝑒𝑛2 = 0, 𝑒𝑛2 (1, 𝑘) = 0, 𝜕𝑥1𝑒
𝑛
2 (𝛼, 𝑘) = 𝜕𝑥1𝑒

𝑛
1 (𝛼, 𝑘),

(15)

with 𝑒𝑛𝛼 := (1 − \)𝑒𝑛−1𝛼 + \𝑒𝑛2 (𝛼, 𝑘) and \ ∈ (0, 1). We observe that (15) has the
same structure as in the one-dimensional case (7), where a−1 is replaced by a𝑘2 𝜋2+1

a
.

Therefore, the same type of reasoning can be applied to analyze this iteration, and
we have the following results.

Theorem 6 For symmetric subdomains (i.e., 𝛼 = 1
2 ), the convergence of the DN and

the NN methods for Problem (6) are both linear and independent of the value of a. It
converges in two iterations if \ = 1

2 for the DN method and \ = 1
4 for the NN method.

Theorem 7 For asymmetric subdomains (i.e., 𝛼 ≠ 1
2 ), the DN method converges for

Problem (6) whenever

𝜌DN2d := sup
𝑘∈N

�����1 − \

[
1 + tanh

(√︂
a𝑘2𝜋2 + 1

a
(1 − 𝛼)

)
coth

(√︂
a𝑘2𝜋2 + 1

a
𝛼

)]����� < 1.
(16)

The NN method converges for Problem (6) whenever

𝜌NN2d := sup
𝑘∈N

�����1 − \

(
tanh(

√︂
a𝑘2𝜋2 + 1

a
𝛼) + tanh

(√︂
a𝑘2𝜋2 + 1

a
(1 − 𝛼)

))
·
(
coth(

√︂
a𝑘2𝜋2 + 1

a
𝛼) + coth

(√︂
a𝑘2𝜋2 + 1

a
(1 − 𝛼)

))����� < 1.
(17)
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4 Numerical experiments

In this section, we provide numerical experiments to illustrate the convergence rate
of the DN and the NN methods for Problem (1)-(2) with a = 1 and �̂� = 0. Figure 1
(top) shows the one-dimensional convergence behaviour of these two methods for
different choices of \ with an asymmetric decomposition 𝛼 = 1

3 . The best choices of
the relaxation parameter are given by \★DN ≈ 0.355 and \★NN ≈ 0.229. In particular,
we observe some divergence behavior in the case of the NN method for \ = 0.5 and
\ = 0.7. Indeed, this corresponds to the result in Theorem 5, since these two values
are greater than 2\★NN which is the upper bound for the relaxation parameter \.
Furthermore, we observe the convergence to the exact solution in two iterations
for a non-symmetric domain decomposition, whereas a three-step convergence is
needed for the 𝐿2 regularization [5]. Figure 1 (bottom) presents the behavior of
the convergence factors (16) and (17) in the two-dimensional case. The interface
here is chosen to be asymmetric Γ = { 13 } × [0, 1]. We observe good convergence
behaviors for some tested relaxation parameters \. Furthermore, the NN method
does not converge for \ = 0.5 and \ = 0.7 as in the one-dimensional case. We obtain
that 𝜌DN2d ≈ 0.173 for \★DN2d ≈ 0.414 and 𝜌NN2d ≈ 0.046 for \

★
NN2d ≈ 0.239. These

two optimal relaxation parameters can also be found by equioscillating the value of
the convergence factor both at 𝑘 = 0 and 𝑘 → ∞. Moreover for each method, we find
that these optimal relaxation parameters stay very close between the one-dimensional
and the two-dimensional case.

Fig. 1 Error decay in 1D w.r.t. the number of iterations for the DN method (top-left) and the NN
method (top-right) with the interface at 𝛼 = 1

3 . Convergence factors (16) and (17) in 2D w.r.t. the
value of 𝑘 ∈ [0, 40] for the DN method (bottom-left) and the NN method (bottom-right) with the
interface at Γ = { 13 } × [0, 1].
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To conclude, we presented a convergence analysis of the DN and the NNmethods
for elliptic optimal control problems using the energy norm for regularization. Only
one Poisson type equation needs to be solved, whereas a biharmonic type equation
is required for 𝐿2 regularization. Under the energy norm, we found similar results
in the symmetric case as for the Poisson problem. Therefore, we can expect similar
convergence behavior formany subdomains as presented in [3]. Furthermore, explicit
formulations along with an upper bound are also given for the optimal relaxation
parameters with a non-symmetric decomposition, for which the methods converge
still in two iterations in the one-dimensional case.
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