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1 Introduction

The Q1 coarse space [7, 8] is based on coarse Q1 bilinear finite element functions on
rectangular elements which are here the subdomains. Hence the coarse grid points
are placed (in 2-D) around each cross point of the non-overlapping decomposition. It
was studied by the authors in [9] and [10], together with several of its variants, in the
context of the Restricted Additive Schwarz (RAS) method [4] with optimized Robin-
type transmission conditions [11]. Encouraging numerical results were obtained
in that the resulting method, implemented in PETSc [1, 2, 3], showed computing
times competitive with multigrid approaches on a 2-D Laplace test case, for both
symmetric and non-symmetric (i.e., with advection) problems. Among the different
options invesitigated in [10], the so-called Half_Q1 (see also [6]) appeared most
promising, in that it halves the coarse space dimension compared to Q1 by using
a selected combination of its basis functions, while causing only a moderate increase
in iteration count, resulting in our best observed computing times. We therefore
pursue here the investigation around this Half_Q1 coarse space and, more generally,
Q1-based spectral coarse spaces [5], that is, coarse spaces based on the study of
the eigenvectors of the underlying iteration operator, in our case the RAS iteration
operator. Note however that we here do not compute a spectrum specific to each
problem (as for instance in [5]): we define our coarse spaces based on the observation
of the eigenmodes of the non-overlapping symmetric Laplace test case and hope that
the resulting method will apply succesfully to a broader set of problems, as was the
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case in [10] adding overlap and advection. Note that we here restrict our analysis to
homogeneous Dirichlet boundary conditions.
As already pointed out in [10], the largest two eigenvalues (i.e. closest to 1 in

modulus) of the RAS iteration operator for the 2-D symmetric Laplace model prob-
lem appear to be equal in modulus and of opposite signs, while the corresponding
eigenvectors appear to be one continuous (for the positive eigenvalue) and one dis-
continuous (for the negative one). We display these eigenmodes1 in Fig. 1 for various
square domain decompositions in the algebraically non-overlapping case (RAS then
reduces to Block Jacobi), as obtained using the SLEPc [12] eigenproblem companion
package to PETSc, with the traditional 5-point finite difference discretization. These
modes appear to be piecewise Q1 functions.
The Q1 basis functions at a cross point will be denoted by 𝑞1, 𝑞2, 𝑞3, 𝑞4 (i.e., bi-

linear with value 1 at the cross point and 0 at the other corners of the subdomain - see
Fig. 2a), the four of them building up a “hat” around the cross point. (Note that we
do not need to solve eigenproblems to use these Q1 functions.) The Half_Q1 coarse
space is based on the observation of the 2 × 2 eigenmodes (Fig. 1a and 1b): these
modes appear to be particular combinations of the Q1 basis functions at the cross
point, namely 𝑞1 + 𝑞2 + 𝑞3 + 𝑞4 (the “hat” itself) and 𝑞1 − 𝑞2 + 𝑞3 − 𝑞4. The
Half_Q1 coarse space is therefore obtained by taking these 2 combinations as basis
functions, thus with 2 basis functions per cross point instead of 4 in the Q1 case.
This is equivalent to taking the combinations 𝑞1 + 𝑞4 and 𝑞2 + 𝑞3 at each cross point.
By construction, the Half_Q1 space contains the first two eigenmodes of the

non-overlapping RAS iteration operator in the case of a 2 × 2 decomposition. In
turn, taking one of these first two RAS eigenmodes as initial guess of a coarse
corrected (i.e., two-level) RAS iteration process, we obtain convergence at iteration 1
using the Half_Q1 coarse space (with square subdomains and a non-overlapping
decomposition). For more than 2×2 subdomains, convergence at iteration 1 does not
hold, but it still holds (with the same restrictions) for square decompositions using
the Q1 coarse space, and it is moreover possible to define a Half_Q1+ coarse space,
larger than Half_Q1 but smaller than Q1, so as to include the first two modes, i.e.,
so that this convergence at iteration 1 is verified. This will be described in section 2.
Another new Q1-based coarse space, named Checkerboard, is introduced in

section 3. Based on the first two modes of the decomposition considered (not only
the 2 × 2 one), it can be applied to non-square decompositions.

2 The Half_Q1+ coarse space

The Half_Q1+ coarse space is built by adding a minimal number of extra basis
functions to the Half_Q1 coarse space so as to contain the first two eigenmodes of
the RAS iteration operator. It is meant to be smaller than the Q1 coarse space.

1 The problem solved here in thus 𝐺𝑥 = _𝑥 where 𝐺 := 𝐼 −
(∑𝐽

𝑗=1 �̃�
𝑇
𝑗
𝐴−1

𝑗
�̃� 𝑗

)
𝐴, and 𝑅 𝑗 are

restriction operators to the 𝐽 non-overlapping subdomains decomposing the global domain.
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(a) 2 × 2 continuous (b) 2 × 2 discontinuous

(c) 3 × 3 continuous (d) 3 × 3 discontinuous

(e) 4 × 4 continuous (f) 4 × 4 discontinuous

(g) 5 × 5 continuous (h) 5 × 5 discontinuous

Fig. 1 Eigenmodes of the non-overlapping RAS iteration operator corresponding to the two largest
eigenvalues in modulus for the 2 × 2 to 5 × 5 decompositions, for a global 256x256 fine mesh
resolution.
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(f) 7 × 7

Fig. 2 In red, basis functions to be added to the Half_Q1 coarse space to obtain the Half_Q1+ one,
for various decompositions. 𝑞𝑖

1, 𝑞
𝑖
2, 𝑞

𝑖
3, 𝑞

𝑖
4 are the Q1 basis functions at cross point 𝑖 and qC

represents a constant function in the considered subdomain. For the 5 × 5 to 7 × 7 decompositions,
only a schematic view is given, with c representing a constant and x a Q1 basis function.

For the 2 × 2 decomposition, the Half_Q1+ coarse space is the same as the
Half_Q1 one. This is not the case anymore for the 3 × 3 decomposition: starting
from one of the first two modes of the RAS iteration operator (Figs. 1c and 1d),
convergence of the Half_Q1 coarse-corrected RAS iteration process is not obtained
at iteration 1, while it is the case with Q1. But what is missing in Half_Q1 to achieve
convergence at iteration 1? Observing Figs. 1c and 1d, one can intuitively infer that
adding a constant coarse function in the central subdomain to the Half_Q1 coarse
space will greatly improve convergence. Our numerical implementation showed that
this is actually sufficient to obtain convergence at iteration 1. The Half_Q1+ coarse
space is thus obtained from Half_Q1 by adding one single constant coarse function
in the central subdomain (qC in Fig. 2b) and is of size 9 (8 for Half_Q1 and 16
for Q1).
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For the 4×4 decomposition, the first two RASmodes are given in Figs. 1e and 1f.
In this case, the minimal function set we found to add to Half_Q1 to resolve the first
two modes is made out of one constant coarse function on each inner subdomain
as well as the extra Q1 basis functions located at the four “inner corners” one
subdomain away from the boundary, namely 𝑞14, 𝑞

3
3, 𝑞

7
2, 𝑞

9
1 in Fig. 2c. Thus, for this

decomposition, Half_Q1+ is of size 26 (18 for Half_Q1 and 36 for Q1).
We pursued our investigations for larger 𝑁 × 𝑁 decompositions and observed

that the extra basis functions to be added to the Half_Q1 coarse space to build
Half_Q1+ remain of two types, namely constants on each non-boundary subdomain
and extra Q1 basis functions located one subdomain away from the boundary, as
described schematically in Figs. 2d, 2e and 2f. Note that for 𝑁 odd, the extra basis
functions on the “middle" subdomain on each side (one subdomain away from the
boundary) appear not to be needed (see Figs. 2d and 2f). However, these appear to be
needed in the case 𝑁 = 11, 15, 19, 23, ... This was tested numericallly up to 𝑁 = 50,
i.e., 2500 subdomains. Note that, while the size of Q1 and Half_Q1 asymptotically
grow as 4𝑁2 and 2𝑁2 respectively, the size of Half_Q1+ grows as 3𝑁2.

(a) Square decompositions up to 32 × 32. (b) Square decompositions up to 64 × 64.

(c) With 4 × 2, 8 × 4 and 16 × 8 decompositions.

𝑞11

𝑞14 𝑞23

𝑞22

𝑞13

𝑞12 𝑞21

𝑞24

(d) 3 × 2 Checkerboard

Fig. 3 (a) to (c): Weak scaling experiment for overlapping RAS2 (256x256 fine mesh per subdo-
main) for various decompositions. Solid: number of iterations, dashed: computing times. (d): 3× 2
Checkerboard coarse basis function definition.
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(a) 3 × 2 continuous (b) 3 × 2 discontinuous

Fig. 4 Eigenmodes of the non-overlapping RAS iteration operator corresponding to the two largest
eigenvalues in modulus in the case of 3× 2 subdomains, for a global 256x256 fine mesh resolution.

Once defined, the Half_Q1+ coarse space can be used in a general context: weak
scaling experiment results for RAS with overlap 1 (in the PETSc sense, i.e, algebraic
overlap of 2) are given in Fig. 3a. Starting from a random initial guess, the number of
iterations and computing times necessary to bring the relative tolerance below 1.e-8
are given. In terms of iterations, Half_Q1+ tends to behave asymptotically like Q1,
while using only 3𝑁2 coarse functions instead of 4𝑁2. In terms of computing time,
Half_Q1+ yields scalable timings very close to Q1 and better than Half_Q1.
Note that the Half_Q1+ coarse space is not defined in the general rectangular case

since then even the Q1 coarse space does not resolve the first two non-overlapping
RAS eigenmodes. This is the case for instance for the 3 × 2 subdomain case whose
eigenmodes are depicted in Figs. 4a and 4b. A close observation of these plots
reveals that what appears as a horizontal edge at 𝑦 = .5 (assuming three subdomains
in 𝑥 and two in 𝑦) is in fact slightly curved, giving an intuitive explanation to the
non-inclusion of these modes into the Q1 coarse space.

3 The Checkerboard coarse space

The Checkerboard coarse space is based on the first two modes of the decompo-
sition considered, not only the 2 × 2 one as in the Half_Q1 case. It is defined for
square and rectangular decompositions, and contains 2 modes. For the 3×2 case and
as illustrated in Fig. 3d these two modes are 𝑞11 + 𝑞14 + 𝑞23 + 𝑞22 and 𝑞

1
3 + 𝑞12 + 𝑞21 + 𝑞24.

This definition comes from the observation of Fig. 4a and 4b. Starting from one of
these two modes, we observed that the Checkerboard coarse space gives the exact
same iterates as Half_Q1 but with 2 coarse functions instead of 4.
For the 3 × 3 case, the two Checkerboard modes are defined to be (using the

numbering in Fig. 2b and not including the constants) 𝑞11+𝑞
2
2+𝑞

3
3+𝑞

4
4+𝑞

1
4+𝑞

2
3+𝑞

3
2+𝑞

4
1

for the first mode and the sum of the 8 other 𝑞𝑖
𝑗
for the second mode. This comes

from the observation of Figs. 1c and 1d. It again produces the same iterates as
Half_Q1 but with 2 coarse functions instead of 8.
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For the 4 × 4 case, the observation of Figs. 1e and 1f leads us to define the
first Checkerboard coarse basis functions as (using the numbering in Fig. 2c and
grouping the 𝑞𝑖

𝑗
functions by subdomain) 𝑞11 + (𝑞22 + 𝑞31) + (𝑞14 + 𝑞23 + 𝑞42 + 𝑞51) +

(𝑞34 + 𝑞62) + (𝑞43 + 𝑞71) + (𝑞54 + 𝑞63 + 𝑞82 + 𝑞91) + (𝑞74 + 𝑞83) + 𝑞94 and the second one as
made out of the other 𝑞𝑖

𝑗
. Here these two Checkerboard coarse functions do not

produce the same iterates as the Half_Q1 coarse functions (18 in this case). This is
not surprising since no scalability can be achieved with only two coarse functions.
Nevertheless, it is still possible to obtain a scalable - at least in terms of iterations -

two-level method based on the two Checkerboard functions, by adding the constant
function in each subdomain, yielding a coarse space of size 𝑁2+2 that will be named
Nicolaides-Checkerboard since it is the same as theNicolaides coarse space [13]
but with two extra basis functions. Fig. 3b presents the sameweak scaling experiment
as Fig. 3a, but extended up to 4096 cores and also to other coarse spaces defined
in [10], namely Middle (classical coarse space with one coarse point in the middle
of each subdomain) and Q1_fair (same number of coarse mesh points as Q1, but
equally distributed in space). The two extra Checkerboard functions yield a major
improvement to the Nicolaides coarse space in terms of number of iterations, and this
improvement is scalable in that it remains as effective when increasing the number of
subdomains. In terms of computing time, the new coarse space appears not scalable
above 1024 cores: the coarse solve (performed here with a parallel direct solver)
remains a challenge, the two extra functions implying the whole domain.
Fig. 3c includes non-square decompositions up to 16 subdomains in one direction.

These appear to require more iterations (and computing time) than their square
counterparts. For the Half_Q1 coarse space, this can be related to the absence of
affine modes for non-square subdomains pointed out in [6].

4 Conclusions

We introduced two new Q1-based coarse spaces. Firstly, the Half_Q1+ coarse space
is built from Half_Q1 (thus from the first twoRASmodes of the 2×2 decomposition)
so as to contain the first two RAS modes of the considered (square) decomposition
while using a minimal set of coarse functions in order to remain smaller than Q1.
It was shown to behave asymptotically like Q1 in terms of number of iterations,
but using 3𝑁2 coarse functions instead of 4𝑁2. Secondly, the Checkerboard coarse
space is built as the first two RASmodes of the decomposition considered and can be
defined for square and rectangular decompositions. Combined with Nicolaides into
the Nicolaides-Checkerboard coarse space, it yields a significant improvement
in terms of number of iterations. Its scalability in time is still under investigation.
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