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1 Introduction

The Brinkman equations model a combination of Darcy’s law and the Navier-Stokes
equations, see [3]. They describe the incompressible viscous flow of a fluid in
complex porous media with a high-contrast permeability coefficient such that the
flow is dominated by Darcy in porous media regions and by Stokes in fluid regions,
which naturally defines a decomposition of the domain by the physics of the problem,
see for example [4, 7].
LetΩ ⊂ R𝑑 (𝑑 = 2, 3) be a bounded convex domain with Lipschitz boundary 𝜕Ω;

the Brinkmanmodel for the unknown velocity vector function u : Ω → R𝑑 , the scalar
pressure function 𝑝 : Ω → R and some given force term f : Ω → R𝑑 is

−𝜈Δu + 𝜈

𝜅
u + ∇𝑝 = f in Ω,

∇ · u = 0 in Ω, (1)
u = g on 𝜕Ω,

where 𝜈 denotes the viscosity and 𝜅 is the permeability coefficient of the porous
media which occupies the domain Ω.
We present here a new non-overlapping Schwarz method [5, 10] for solving the

Brinkman equation (1)with fully-coupledRobin-like transmission conditions [1, 12].
We derive a general expression for the iteration operator, and study the correspond-
ing min-max problems for local approximations to optimize performance using
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asymptotic analysis, which we also illustrate with numerical results. For the sake of
simplicity, we will consider the 2-D case with g = 0 and 𝜈 = 1 (we can always scale
the solution with 𝜈) in two spatial dimensions.

2 Iteration operator of a non-overlapping Schwarz algorithm

We consider (1) on a bounded domain Ω in R2 formed by two non overlapping
subregions: the porous mediumΩ1, the fluid domainΩ2, separated by an interface Γ.
We split the domain Ω into two subdomains determined by the porous media:
Ω = Ω1 ∪ Ω2, and the permeability coefficient 𝜅 is a corresponding piecewise
constant function. On the two subdomains Ω 𝑗 ( 𝑗 = 1, 2), we use a parallel Schwarz
iteration with generic Robin-like transmission conditions,

−Δu𝑛
𝑗 + ∇𝑝𝑛𝑗 + 𝜅−1𝑗 u𝑛

𝑗 = f in Ω 𝑗 ,

∇ · u𝑛
𝑗 = 0 in Ω 𝑗 , (2)

u𝑛
𝑗 = g on 𝜕Ω 𝑗 \ Γ,

𝜎𝑛
𝑗 · nj + 𝑆 𝑗u𝑛

𝑗 = 𝜎𝑛−1
3− 𝑗 · nj + 𝑆 𝑗u𝑛−1

3− 𝑗 on Γ = Ω1 ∩Ω2,

where 𝜎𝑛
𝑗
:= ∇u𝑛

𝑗
− 𝑝𝑛

𝑗
𝐼 is the stress tensor [4, 7, 2] in domain Ω 𝑗 (𝐼 represents

the 2×2 identity matrix), n 𝑗 is the outward normal vector, 𝑆 𝑗 is a general 2×2-matrix
of linear operators, and 𝑛 is the iteration index of the Schwarz algorithm.

Subdomain solutions: In order to study solutions of (2), we consider a model
problem on the infinite plane Ω = R2, with the two subdomains Ω1 = R × (−∞, 0),
and Ω2 = R × (0,∞).
We use the Fourier transform in the 𝑥 (horizontal) variable for the error equations

of (2), i.e. f = g = 0. In Fourier space, the PDE in Ω 𝑗 becomes an ODE in 𝑦 (for
each fixed frequency 𝑘),

−
(
−𝑘2ê𝑛𝑗 +

𝑑2ê𝑛𝑗
𝑑𝑦2

)
+

(𝑖𝑘𝜂𝑛
𝑗

𝑑 𝜂̂𝑛
𝑗

𝑑𝑦

)
+ 𝜅−1𝑗 ê𝑛𝑗 = 0 in Ω 𝑗 , (3)

𝑖𝑘𝑒𝑛𝑗,1 +
𝑑𝑒𝑛

𝑗,2

𝑑𝑦
= 0 in Ω 𝑗 , (4)

ê𝑛𝑗 → 0 when |𝑦 | → ∞, (5)

𝜎̂𝑛
𝑗 · n 𝑗 + 𝑆 𝑗 ê𝑛𝑗 = 𝜎̂𝑛−1

𝑗′ · n 𝑗 + 𝑆 𝑗 ê𝑛−1𝑗′ on Γ, 𝑗 ′ = 3 − 𝑗 , (6)

where 𝜂 𝑗 := 𝑝 |Ω 𝑗
− 𝑝𝑛

𝑗
and ê𝑛𝑗 := û|Ω 𝑗

− û𝑛
𝑗 = (𝑒𝑛

𝑗,1, 𝑒
𝑛
𝑗,2)

𝑇 . Here 𝑒𝑛
𝑗,1 and 𝑒

𝑛
𝑗,2 denote

the horizontal component and the vertical component of ê𝑛𝑗 .
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As in [8] and [6], we seek solutions using the ansatz

E𝑛
𝑗 :=

(
ê𝑛𝑗
𝜂𝑛
𝑗

)
(𝑦) = Φ𝑛

𝑗 𝑒
𝜉 𝑦 .

This leads to a system for Φ𝑛
𝑗
, namely

©­«
𝑘2 + 𝜅−1

𝑗
− 𝜉2 0 𝑖𝑘

0 𝑘2 + 𝜅−1
𝑗

− 𝜉2 𝜉

𝑖𝑘 𝜉 0

ª®®¬Φ𝑛
𝑗 = 0. (7)

In order to get a non-trivial solution to system (7), a necessary and sufficient condition
is that the matrix is singular, which leads to four possible values for 𝜉, 𝜉1 = |𝑘 |,
𝜉2 = 𝜆1, 𝜉3 = −|𝑘 |, and 𝜉4 = −𝜆2, with 𝜆 𝑗 :=

√︃
𝑘2 + 𝜅−1

𝑗
.

The solutions of (7) are linear combinations of four terms,

E𝑛
𝑗 =

4∑︁
𝑚=1

𝜸𝑛
𝑗,𝑚Φ𝑚𝑒

𝜉𝑚𝑦 ,

where ((Φ𝑚)1≤𝑚≥4) are the eigenvectors (corresponding to the eigenvalue 0), asso-
ciated with each of the 𝜉𝑚,

Φ1 =
©­«
−𝑖𝑘
−|𝑘 |
𝜅−11

ª®¬ , Φ2 =
©­«
𝜆1
−𝑖𝑘
0

ª®¬ , Φ3 =
©­«
−𝑖𝑘
|𝑘 |
𝜅−12

ª®¬ , Φ4 =
©­«
𝜆2
𝑖𝑘

0

ª®¬.
Due to the condition (5), 𝜉1, 𝜉2 ≥ 0 and 𝜉3, 𝜉4 ≤ 0, only two terms are possible in
the expression of E𝑛

𝑗
in each of the subdomain Ω 𝑗 , and we obtain for the subdomain

errors

E𝑛
1 (𝑦) =

2∑︁
𝑚=1

𝜸𝑛
1,𝑚Φ𝑚𝑒

𝜉𝑚𝑦 , E𝑛
2 (𝑦) =

4∑︁
𝑚=3

𝜸𝑛
2,𝑚Φ𝑚𝑒

𝜉𝑚𝑦 . (8)

Iteration operator: To obtain the iteration operator, we need to apply the trans-
mission conditions (6) to (8). Using the horizontal component of equation (3), we
can simplify the error in the pressure as

𝜂𝑛𝑗 =
𝑖

𝑘
((𝑘2 + 𝜅−1𝑗 )ê𝑛𝑗 −

𝑑2ê𝑛𝑗
𝑑𝑦2

) · (1, 0)𝑇 . (9)

Inserting the gradient of ê𝑛𝑗 and (9) into the transmission condition

∇ê𝑛𝑗 · n 𝑗 − 𝜂𝑛𝑗 𝐼 · n 𝑗 + 𝑆 𝑗 ê𝑛𝑗 = ∇ê𝑛−1𝑗′ · n 𝑗 − 𝜂𝑛−1𝑗′ 𝐼 · n 𝑗 + 𝑆 𝑗 ê𝑛−1𝑗′ ,
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and using that the normal vector n 𝑗 = (0, (−1) 𝑗−1)𝑇 at the interface, we obtain

𝑀
𝑑2 ê𝑛1
𝑑𝑦2

+ 𝑑ê𝑛1
𝑑𝑦

+ 𝑃1ê𝑛1 + 𝑆1ê𝑛1 = 𝑀
𝑑2 ê𝑛−12
𝑑𝑦2

+ 𝑑ê𝑛−12
𝑑𝑦

+ 𝑃2ê𝑛−12 + 𝑆1ê𝑛−12 ,

−𝑀 𝑑2 ê𝑛2
𝑑𝑦2

− 𝑑ê𝑛2
𝑑𝑦

− 𝑃2ê𝑛2 + 𝑆2ê𝑛2 = −𝑀 𝑑2 ê𝑛−11
𝑑𝑦2

− 𝑑ê𝑛−11
𝑑𝑦

− 𝑃1ê𝑛−11 + 𝑆1ê𝑛−11 ,
(10)

with 𝑀 :=
(
0 0
𝑖
𝑘
0

)
, and 𝑃 𝑗 :=

(
0 0
𝜆2
𝑗

𝑖𝑘
0

)
, 𝑗 = 1, 2. Using (8), we then get

ê𝑛1 (𝑦) = 𝑀12𝑒
𝜉12𝑦𝜸𝑛

12 , ê𝑛2 (𝑦) = 𝑀34𝑒
𝜉34𝑦𝜸𝑛

34 , with

𝑀12 :=
(
−𝑖𝑘 𝜆1
−|𝑘 | −𝑖𝑘

)
, 𝑒 𝜉12𝑦 :=

(
𝑒 𝜉1𝑦 0
0 𝑒 𝜉2𝑦

)
, 𝜸𝑛

12 :=
(
𝛾𝑛1,1
𝛾𝑛1,2

)
,

𝑀34 :=
(
−𝑖𝑘 𝜆2
|𝑘 | 𝑖𝑘

)
, 𝑒 𝜉34𝑦 :=

(
𝑒 𝜉3𝑦 0
0 𝑒 𝜉4𝑦

)
, 𝜸𝑛

34 :=
(
𝛾𝑛2,3
𝛾𝑛2,4

)
.

Therefore (10) becomes 𝐻11𝜸
𝑛
12 = 𝑤𝑖𝑑𝑒ℎ𝑎𝑡𝐻12𝜸

𝑛−1
34 , 𝐻22𝜸

𝑛
34 = 𝐻21𝜸

𝑛−1
12 ,

where, with 𝑑𝑀12𝑒
𝜉12𝑦𝜸𝑛

12
𝑑𝑦

= 𝑀12𝜉12𝑒
𝜉12𝑦𝜸𝑛

12 and
𝑑2𝑀12𝑒

𝜉12𝑦𝜸𝑛
12

𝑑𝑦
= 𝑀12𝜉

2
12𝑒

𝜉12𝑦𝜸𝑛
12,

we have

𝐻11 = 𝑀𝑀12

(
𝜉21 0
0 𝜉22

)
+ 𝑀12

(
𝜉1 0
0 𝜉2

)
+ 𝑃1𝑀12 + 𝑆1𝑀12,

𝐻12 = 𝑀𝑀34

(
𝜉23 0
0 𝜉24

)
+ 𝑀34

(
𝜉3 0
0 𝜉4

)
+ 𝑃2𝑀34 + 𝑆1𝑀34,

𝐻22 = −𝑀𝑀34

(
𝜉23 0
0 𝜉24

)
− 𝑀34

(
𝜉3 0
0 𝜉4

)
− 𝑃2𝑀34 + 𝑆2𝑀34,

𝐻21 = −𝑀𝑀12

(
𝜉21 0
0 𝜉22

)
− 𝑀12

(
𝜉1 0
0 𝜉2

)
− 𝑃1𝑀12 + 𝑆2𝑀12.

Assuming that 𝐻11 and 𝐻22 are invertible ,we thus get for the error coefficients 𝜸𝑛
12

the recurrence relation 𝜸𝑛
12 = 𝐻−1

11 𝐻12𝐻
−1
22 𝐻21𝜸

𝑛−2
12 . Hence, the convergence factor

of the error in the Schwarz method (2) is determined by the spectral radius of the
iteration operator given by

𝐻 (𝑘, 𝑆1, 𝑆2) := 𝐻−1
11 𝐻12𝐻

−1
22 𝐻21. (11)

Convergence factor: In order to ensure fast convergence of the Schwarz algorithm
for all possible frequencies 𝑘 ∈ R, we have to choose operators 𝑆 𝑗 ( 𝑗 = 1, 2) that
make the convergence factor small [9, 5, 2]. The convergence factor is

𝜌OSM (𝑘, 𝑆1, 𝑆2) := 𝜌(𝐻 (𝑘, 𝑆1, 𝑆2)) < 1, (12)

where 𝜌(𝐻) is the spectral radius of 𝐻 for a fixed 𝑘 and 𝑆 𝑗 ( 𝑗 = 1, 2).
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Optimal operators: The symbols 𝑆 𝑗 (or equivalently operators 𝑆 𝑗 ) are still free
to be chosen at this point. It is possible to make the right hand of the transmission
conditions (10) vanish, and to obtain an algorithm that converges in two iterations,
if we choose

𝑆∗1 := −𝑀𝑀34

(
𝜉23 0
0 𝜉21

)
𝑀−1
34 − 𝑀34

(
𝜉3 0
0 𝜉4

)
𝑀−1
34 − 𝑃2,

𝑆∗2 := 𝑀𝑀12

(
𝜉21 0
0 𝜉21

)
𝑀−1
12 + 𝑀12

(
𝜉1 0
0 𝜉2

)
𝑀−1
12 + 𝑃1,

and a lengthy calculation permits to simplify the preceding expressions, yielding

𝑆∗1 =

(
|𝑘 | + 𝜆2 (𝑘) 𝑖𝑘

|𝑘 |𝜆2 (𝑘)
−𝑖𝑘
|𝑘 | 𝜆2 (𝑘)

𝜆2 (𝑘)
|𝑘 | ( |𝑘 | + 𝜆2 (𝑘))

)
, 𝑆∗2 =

(
|𝑘 | + 𝜆1 (𝑘) −𝑖𝑘

|𝑘 | 𝜆1 (𝑘)
𝑖𝑘
|𝑘 |𝜆1 (𝑘)

𝜆1 (𝑘)
|𝑘 | ( |𝑘 | + 𝜆1 (𝑘))

)
.

(13)
Some terms in these operators are not polynomials in 𝑖𝑘 , and thus the corresponding
operators 𝑆 𝑗 = F −1

𝑥 (𝑆 𝑗 ) in real space are nonlocal in 𝑥, which is not convenient for
implementations, since it requires convolution computations.

3 Optimized Schwarz methods and asymptotic performance

We would therefore like to approximate 𝑆∗
𝑗
by local operators that still give very

fast convergence of the Schwarz iteration. The idea is to find local operators 𝑆 𝑗 that
minimize the convergence factor (12) uniformly over a relevant range of frequencies,
which leads to the min-max problem

min
𝑆̂ 𝑗

(
max

𝑘∈[𝑘min ,𝑘max ]
𝜌OSM (𝑘, 𝑆1, 𝑆2)

)
. (14)

Although the problem we considered before is a continuous model on the infinite
plane, the range of frequencies can be bounded by incorporating information about
the actual discretized problem we intend to solve. In (14), 𝑘min can in general be
negative, but when the optimized 𝑆 𝑗 lead to an even convergence factor in 𝑘 , as we
will see later, we can equivalently assume 𝑘min > 0. Thus the minimal frequency
component of the solution can be estimated by 𝑘min = 𝜋

𝐿
for an interface of length 𝐿,

and 𝑘max = 𝜋
ℎ
with grid spacing ℎ, see for example [9, 6].

Let 𝑆 𝑗 ( 𝑗 = 1, 2) keep the sign, symmetry and parity of the optimal operator

in (13), and let us denote 𝑆 𝑗 :=
(
S 𝑗

11 (𝑘) S
𝑗

12 (𝑘)
S 𝑗

21 (𝑘) S
𝑗

22 (𝑘)

)
,withS 𝑗

21 (𝑘) = −S 𝑗

12 (𝑘) ( 𝑗 = 1, 2).

We first study properties of 𝐻 (𝑘, 𝑆1, 𝑆2) for these 𝑆 𝑗 , which can be obtained by
a lengthy technical computation that will appear elsewhere [11].
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Lemma 1 Assuming that S 𝑗

12 = 𝑖𝑘 · 𝑓0 𝑗 (𝑘) and S 𝑗

𝑙𝑙
and 𝑓0 𝑗 (𝑘) (𝑙, 𝑗 = 1, 2) are even

functions of 𝑘 , then 𝐻 (𝑘, 𝑆1, 𝑆2) is always of the form

𝐻 (𝑘, 𝑆1, 𝑆2) =
(
𝑓1 (𝑘) 𝑖𝑔1 (𝑘)
𝑖𝑔2 (𝑘) 𝑓2 (𝑘)

)
,

where 𝑓𝑙 (𝑘) are even functions and 𝑔𝑙 (𝑘) are odd functions of 𝑘 for 𝑘 ∈ R (𝑙 = 1, 2).
Furthermore, this implies that

- the eigenvalues of 𝐻 (𝑘, 𝑆1, 𝑆2) are even functions of 𝑘 for 𝑘 ∈ R,
- the optimized problem in (14) is equivalent to restricting 𝑘 ∈ R+.

Now, we derive optimized Robin-like transmission conditions for continuous and
discontinuous coefficients 𝜅.

The continuous case, 𝜅1 = 𝜅2 := 𝜅: In this case, 𝜆 𝑗 (𝑘) =
√︃
𝑘2 + 1

𝜅
= 𝜆(𝑘), and

we introduce the structurally consistent approximations replacing 𝑘 by the constant 𝑝
for the non-local terms 𝑘 and 𝜆 𝑗 (𝑘), c.f. (13),

𝑆𝑐1 :=

(
𝑝 + 𝜆(𝑝) 𝑖𝑘

𝑝
𝜆(𝑝)

−𝑖𝑘
𝑝
𝜆(𝑝) 𝜆(𝑝)

𝑝
(𝑝 + 𝜆(𝑝))

)
, 𝑆𝑐2 :=

(
𝑝 + 𝜆(𝑝) −𝑖𝑘

𝑝
𝜆(𝑝)

𝑖𝑘
𝑝
𝜆(𝑝) 𝜆(𝑝)

𝑝
(𝑝 + 𝜆(𝑝))

)
,

with one free parameter 𝑝, where 𝑝, 𝑘 > 0 (using superscript 𝑐 for continuous to
distinguish from the following discontinuous case). With 𝑆 𝑗 = 𝑆𝑐

𝑗
, the convergence

factor 𝜌OSM (𝑘, 𝑆1, 𝑆2) only depends on 𝑘 and 𝑝, so we denote it by 𝜌OSM (𝑘, 𝑝).
A lengthy computation shows that 𝐻−1

11 𝐻12 = 𝐻−1
22 𝐻21, and we obtain the following

property to choose the maximum of the two eigenvalues of 𝐻.

Lemma 2 The eigenvalues 𝜇± (𝑘, 𝑝) of 𝐻 (𝑘, 𝑆𝑐1 , 𝑆
𝑐
2 ) are always positive, and

sign(𝜇+ (𝑘, 𝑝) − 𝜇− (𝑘, 𝑝)) = sign(𝑝 − 𝑘).

From Fig.1 (left), we find that the optimized parameter 𝑝∗ for continuous 𝜅 is
characterized by an equioscillation property: 𝜌OSM (𝑘min, 𝑝∗) = 𝜌OSM (𝑘max, 𝑝∗).
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Fig. 1 Left: Optimized 𝜌OSM (𝑘, 𝑝) for 𝜅1 = 𝜅2. Right: Optimized 𝜌OSM (𝑘, 𝑝, 𝑞) for 𝜅1 ≠ 𝜅2.
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Theorem 1 The optimized parameter 𝑝∗ solved from 𝜇+ (𝑘min, 𝑝) = 𝜇− (𝑘max, 𝑝) is

𝑝∗ ∼ 𝐶𝑝ℎ
− 12 , 𝐶𝑝 :=

√︄
𝐿2 − 𝐷2

4𝜅 𝐷2

𝐿

, 𝐷 := 𝜋
√
𝜅 −

√︁
𝐿2 + 𝜅𝜋2,

when 𝑘min =
𝜋
𝐿

and 𝑘max =
𝜋
ℎ

. Furthermore, the asymptotic convergence factor of
the resulting one-side optimized Schwarz method is

min
𝑘∈[𝑘min ,𝑘max ]

𝜌OSM (𝑘, 𝑝∗) ∼ 1 − 𝐶 · ℎ 12 , 𝐶 :=
4𝐶𝑝

𝜋
.

Proof We make the ansatz 𝑝∗ := 𝐶𝑝 · ℎ− 12 . Expanding for small ℎ, we obtain

𝜇+ (𝑘min, 𝑝∗) = 1 −
𝐿 (𝐿2 − 𝐷2)
𝐶𝑝𝜅𝜋𝐷

2

√
ℎ +𝑂 (ℎ), where 𝐷 = 𝜋

√
𝜅 −

√︁
𝐿2 + 𝜅𝜋2,

𝜇− (𝑘max, 𝑝∗) = 1 −
4𝐶𝑝

𝜋

√
ℎ +𝑂 (ℎ)

Solving 𝜇+ (𝑘min, 𝑝) = 𝜇− (𝑘max, 𝑝) asymptotically then determines 𝑝∗. �

The discontinuous case, 𝜅1 ≠ 𝜅2: For 𝑝 and 𝑞 (𝑝, 𝑞 > 0) two free parameters, we
introduce the structurally consistent approximations (superscript 𝑑 for discontinuous)

𝑆𝑑1 =

(
𝑝 + 𝜆2 (𝑝) 𝑖𝑘

𝑝
𝜆2 (𝑝)

−𝑖𝑘
𝑝
𝜆2 (𝑝) 𝜆2 (𝑝)

𝑝
(𝑝 + 𝜆2 (𝑝))

)
, 𝑆𝑑2 =

(
𝑞 + 𝜆1 (𝑞) −𝑖𝑘

𝑞
𝜆1 (𝑞)

𝑖𝑘
𝑞
𝜆1 (𝑞) 𝜆1 (𝑞)

𝑞
(𝑞 + 𝜆1 (𝑞))

)
,

and study the associated convergence factor 𝜌OSM (𝑘, 𝑝, 𝑞) numerically. We show in
Fig.1 (right) that

• the optimized parameters 𝑝∗ and 𝑞∗ are characterized by an equioscillation prop-
erty: 𝜌OSM (𝑘min, 𝑝∗, 𝑞∗) = 𝜌OSM (𝑘max, 𝑝∗, 𝑞∗) = 𝜌OSM ( 𝑘̄ , 𝑝∗, 𝑞∗),
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Fig. 2 Log–log plot of the convergence factor and the optimized parameters for 𝜅1 = 10−5 and
𝜅2 = 5 × 10−3.



246 Martin J. Gander, Yiying Wang, and Yingxiang Xu

• high contrast 𝜅 leads to fast convergence,
• the two parameters (two-sided Robin) give better convergence than the one pa-
rameter (one sided Robin) case earlier.

Numerically, we observe in Fig. 2 that the asymptotic performance is given by

𝑝∗ = 𝐶1ℎ
− 14 , 𝑞∗ = 𝐶2ℎ

− 34 , 𝑘̄ = 𝐶3ℎ
− 12 , 𝜌OSM (𝑘, 𝑝∗, 𝑞∗) = 1 − 𝐶0ℎ

1
4 +𝑂 (ℎ 12 ),

(15)
where 𝐶0, 𝐶1, 𝐶2 and 𝐶3 are constants.
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