
Parareal Algorithms for the Cahn-Hilliard
Equation

Gobinda Garai and Bankim C. Mandal

1 Introduction

In this work we are interested in designing time parallel algorithm for the Cahn-
Hilliard (CH) equation. The CH equation

∂u
∂ t

= ∆ f (u)− ε
2
∆

2u for (x, t) ∈Ω(⊂ R)× (0,T ],

∂u
∂n

=
∂ (∆u)

∂n
= 0 for (x, t) ∈ ∂Ω × (0,T ],

u(x,0) = u0(x) for x ∈Ω ,

(1)

is a prototype to display the evolution of a binary melted alloy below the critical
temperature; see [2, 3]. The nonlinear function f (u) satisfies f (u) = F ′(u), where
F(u) = 0.25(u2−1)2 is the homogeneous free energy. As the solution u of (1) takes
values in [−1,1], the function f (u) becomes Lipschitz with Lipschitz constant 2.
The solution of (1) involves two different dynamics, one being the phase separation
which is rapid in time and phase regions are separated by the interface of width
ε(0< ε� 1). Another is phase coarsening which is slower in time, during this stage
the solution lean towards an equilibrium state which reduces the internal energy. The
energy associated with the CH equation is

E (u) :=
∫

Ω

(
F(u)+

ε2

2
|∇u|2

)
dx,

known as the Ginzburg-Landau free energy functional. The energy functional E (u)
and total mass

∫
Ω

u satisfy the following
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d
dt

E (u)≤ 0,
d
dt

∫
Ω

u = 0.

And the energy minimization and mass conservation property of (1) is expected to
be preserved by numerical method. To deal with that, Eyre proposed an uncondi-
tionally gradient stable scheme in [4, 5]. The idea is to split the homogeneous free
energy F(u) into the sum of a convex and a concave term, and then treat the convex
term implicitly and the concave term explicitly to obtain a nonlinear approximation
for the CH equation (1) in 1D as:

un+1
j −un

j = ∆ tA(un+1
j )3−∆ tAun

j − ε
2
∆ tA2un+1

j , (2)

where ∆ t is the time step and A is the discrete Laplacian and the scheme is
O(∆ t +∆x2) accurate [4, 5]. To get a linear approximation of (1) the term (un+1

j )3

in (2) is rewritten as (un
j)

2un+1
j to get the following

un+1
j −un

j = ∆ tA(un
j)

2un+1
j −∆ tAun

j − ε
2
∆ tA2un+1

j , (3)

which is also an unconditionally gradient stable scheme and has the same accuracy
as the nonlinear scheme (2), see [4]. This is known as linearly stabilized splitting
scheme (LSS). We also use the following semi-implicit Euler (SIE) approximation
of (1)

un+1
j −un

j = ∆ tA(un
j)

3−∆ tAun
j − ε

2
∆ tA2un+1

j , (4)

though it is not a physically relevant approximation as the scheme is not gradient
stable [5]. The solution of (1) involves long time dynamics, namely phase coarsen-
ing stage, thus the CH equation (1) needs to be simulated over long time window
to get the solution. Therefore it is of great importance to develop efficient time par-
allel method for (1) to speed-up the computation. To achieve this we construct the
Parareal methods [9] for (1). The Parareal method has been successfully applied to:
fluid-structure interaction in [6], Navier-Stokes equation in [7], molecular-dynamics
in [1]. The main objective of this work is to adapt the Parareal algorithm for the CH
equation (1) and study the convergence behaviour.

We introduce the Parareal algorithm in one spatial dimension for the CH equa-
tion in Section 2. In Section 3 we discuss stability and convergence property of the
Parareal method. To illustrate our theoretical findings, the accuracy and robustness
of the proposed algorithms, we present the numerical results in Section 4.

2 Parareal method
To solve the following system of ODEs

du
dt

= f (u), u(0) = u0, t ∈ (0,T ], (5)

Lions et al. proposed the Parareal algorithm in [9], where f : R+ ×Rd → Rd is
Lipschitz. The method constitutes of the following strategy: first a non-overlapping
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decomposition of time domain (0,T ] into N smaller subintervals of uniform size,
i.e., (0,T ] =∪N

n=1[Tn−1,Tn] with Tn−Tn−1 = ∆T = T/N, secondly one divides each
time slice [Tn−1,Tn] into J smaller time slices with ∆ t = ∆T/J, then a fine propa-
gator F which is expensive but accurate, and a coarse propagator G which is cheap
but may be inaccurate are assigned to compute the solution in fine grid and coarse
grid, respectively. Then the Parareal algorithm for (5) starts with an initial approxi-
mation U0

n at Tn’s, obtained by the coarse operator G and solve for k = 0,1, . . .

Uk+1
0 = u0,

Uk+1
n+1 = G(Tn+1,Tn,Uk+1

n )+F(Tn+1,Tn,Uk
n )−G(Tn+1,Tn,Uk

n ),
(6)

where S(Tn+1,Tn,Uk
n ) provides solution at Tn+1 by taking the initial solution Un at Tn

for the k-th iteration for S = For G. The Parareal solution Uk+1
n+1 converges towards

the fine resolution in finite step. To get a practical parallel algorithm we should have
k� N.
Now to employ discrete Parareal method for the CH equation (1) we discretize (1)
as shown earlier and denote Uk

n as u( jh,Tn), j = 1,2, . . . ,Nx in (6) for k-th iteration,
where h is spatial mesh size and Nx is number of nodes in spatial domain. We fix the
fine propagator F to be the LSS scheme (3) in (6). For the coarse operator G in (6)
we consider the following three choices:

(i) The coarse propagator G is given by the LSS scheme in (3).
(ii) The coarse propagator G is given by the SIE scheme in (4).

(iii) The coarse propagator G is given by the implicit scheme of the heat equation

ut = 2∆u, (7)

which is a linearization of (1) with respect a constant solution and then truncate
the fourth order derivative term as ε is small.

The third choice of coarse operator is interesting as the equation (7) does not
represent the underlying physics of the equation (1). Here we study the conver-
gence behaviour of the Parareal algorithm corresponding to the coarse operators (ii)
and (iii). The coarse operator corresponding to (ii) and (iii) can be written as

GSI(U) =
(
I + ε

2
∆TA2)−1

(U +∆TA f (U)) , U ∈ RNx , (8a)

GIH(U) = (I−2∆TA)−1 U, U ∈ RNx (8b)

respectively, and A = 1
h2 [1 −2 1] ∈RNx×Nx with A(1,2) = 2 = A(Nx,Nx−1) is the

discrete Laplacian with homogeneous Neumann boundary conditions.
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3 Stability and convergence result

In this section, we discuss the stability and convergence issues related to the coarse
operators in (8). We start with a few auxiliary results.

Lemma 1 (Growth of coarse operators)
The coarse operators in (8) satisfy the growth condition

‖ GSI(U) ‖ ≤‖U ‖, ∀U ∈ RNx (9a)

‖ GIH(U) ‖ ≤‖U ‖, ∀U ∈ RNx . (9b)

Proof The eigenvalues of A are λp =
2
h2

{
cos
(
(p−1)π
Nx−1

)
−1
}
, p= 1, · · · ,Nx. Clearly,

λp’s are distinct and satisfy λp ≤ 0,∀p. By taking norm on (8a) and using Lip-

schitz condition on f we get ‖ GSI(U) ‖≤ max
λp

∣∣∣ 1+2∆T λp
1+ε2∆T λ 2

p

∣∣∣ ‖ U ‖. Now the func-

tion g(x) = 1−2∆T x
1+ε2∆T x2 ≤ 1, ∀x ≥ 0. Hence, we have (9a). Now ‖ (I−2∆TA)−1 ‖=

1
min
λp
{1−2∆T λp} = 1. Then by taking norm on (8b) we have (9b). �

Lemma 2 (Lipschitz property of G)
The coarse operators in (8) satisfy the Lipschitz condition

‖ GSI(Tn+1,Tn,U)−GSI(Tn+1,Tn,V ) ‖ ≤‖U−V ‖, ∀U,V ∈ RNx (10a)

‖ GIH(Tn+1,Tn,U)−GIH(Tn+1,Tn,V ) ‖ ≤‖U−V ‖, ∀U,V ∈ RNx . (10b)

Proof The results are straight forward. �

Lemma 3 (Local truncation error (LTE) differences)
Let F(Tn+1,Tn,U) be the fine operator in (3). For any coarse operators among

GSI(Tn+1,Tn,U),GIH(Tn+1,Tn,U) in (8), the following LTE differences hold

F(Tn+1,Tn,U)−GSI(Tn+1,Tn,U) = c2(U)∆T 2 + c3(U)∆T 3 + · · · , (11a)

F(Tn+1,Tn,U)−GIH(Tn+1,Tn,U) = c′1(U)∆T + c′2(U)∆T 2 + · · · , (11b)

where c j(U), c′j′(U) are continuously differentiable function for j = 2,3, . . . , j′ =
1,2, . . .

Proof Let S(Tn+1,Tn,U) be the exact solution of (1). Since F and GSI have LTE
of O(∆T 2), we have

F(Tn+1,Tn,U)−GSI(Tn+1,Tn,U)

=F(Tn+1,Tn,U)−S(Tn+1,Tn,U)+S(Tn+1,Tn,U)−GSI(Tn+1,Tn,U)

=c̃2(U)∆T 2 + c̃3(U)∆T 3 + · · ·+ ĉ2(U)∆T 2 + ĉ3(U)∆T 3 + · · ·
=c2(U)∆T 2 + c3(U)∆T 3 + · · · .

Similarly one can obtain LTE differences for GIH. �
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Theorem 1 (Stability) Let GSI(Tn+1,Tn,Un) be the coarse operator in (8a), then the
corresponding Parareal method is stable, i.e., for each n and k, there exist a con-
stant C such that

‖Uk+1
n+1 ‖≤‖ u0 ‖+C∆T 2(n+1)

(
max

0≤ j≤n
‖Uk

j ‖
)
.

Proof Taking norm in the correction step (6) we have

‖Uk+1
n+1 ‖ ≤‖ GSI(Tn+1,Tn,Uk+1

n ) ‖+ ‖ F(Tn+1,Tn,Uk
n )−GSI(Tn+1,Tn,Uk

n ) ‖
≤‖Uk+1

n ‖+C∆T 2 ‖Uk
n ‖,

(12)

where in the 2nd inequality we use (9a) and (11a). Taking the sum over n on the
recurrence relation (12) we have

‖Uk+1
n+1 ‖ − ‖Uk+1

0 ‖≤C∆T 2
n

∑
j=0
‖Uk

j ‖≤C∆T 2(n+1)
(

max
0≤ j≤n

‖Uk
j ‖
)
.

Now using Uk+1
0 = u0 we get the stated result. �

Theorem 2 (Stability) Let GIH(Tn+1,Tn,Un) be the coarse operator in (8b), then the
corresponding Parareal method is stable, i.e., for each n and k, there exist a con-
stant C such that

‖Uk+1
n+1 ‖≤‖ u0 ‖+C∆T (n+1)

(
max

0≤ j≤n
‖Uk

j ‖
)
.

Proof Proof can be obtained by following Theorem 1. �

Theorem 3 (Convergence) Let F(Tn+1,Tn,Un) be the fine operator in (3) and
GSI(Tn+1,Tn,Un) be the coarse operator in (8a). The propagator F and GSI satisfy
LTE differences (11a) and GSI satisfies Lipschitz condition (10a), then the corre-
sponding Parareal method satisfies the following error estimation

‖U(Tn)−Uk
n ‖≤

C′3
C′1

(C′1∆T 2)k+1

(k+1)!

k

∏
j=0

(n− j),

where the constants C′1, C′3 are related to LTE.

Theorem 4 (Convergence) Let F(Tn+1,Tn,Un) be the fine operator in (3) and
GIH(Tn+1,Tn,Un) be the coarse operator in (8b). The propagator F and GIH satisfy
LTE differences (11b) and GIH satisfies Lipschitz condition (10b), then the corre-
sponding Parareal method satisfies the following error estimation

‖U(Tn)−Uk
n ‖≤

C′′3
C′′1

(C′′1 ∆T )k+1

(k+1)!

k

∏
j=0

(n− j),

where the constants C′′1 , C′′3 are related to LTE.
The proof of Theorems 3 & 4 is followed by the argument of the proof of Theo-

rem 1 in [8].
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4 Numerical illustration

We now show numerical experiments of Parareal method for (1) corresponding to
three different coarse operators. We consider the random initial condition for (1).
The Parareal error is measured in L∞(0,T ;L2), and we fix the spatial domain
Ω = (0,2).

4.1 F = LSS, G = LSS

We first run the numerical experiments of Parareal method corresponding to fine
and coarse operator as LSS scheme (3). We plot the error curves for short as well
as long time window on the left panel in Figure 1 with ε2 = 0.01, J = 40 and
h = 1/64. The method converges in four iterations to the fine solution of tempo-
ral accuracy O(10−4) for different T . For T = 1 we can see that the Parareal method
20 times faster than the serial method on single processor. To see the dependency
of the parameter ε , we plot the error curve on the right in Figure 1 for different ε

by fixing T = 1, N = 80, J = 40. We observe that the method behaves similar ir-
respective of any choice of ε . On the left of the Figure 2 we plot error curves for
more refined solution for T = 1, N = 80, J = 40, ε2 = 0.01. We observe that the
convergence is independent of mesh parameters.
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0 2 4 6 8 10
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10-10

10-5

100

e
rr

o
r

2=0.1
2=0.05
2=0.01
2=0.005

Fig. 1 On the left: different T and N; On the right: different choice of ε .

4.2 F = LSS, G = SIE

Now we run experiments of Parareal method corresponding to fine operator as LSS
scheme (3) and coarse operator as SIE scheme (4). We plot the error curves on the
right panel in Figure 2 for short as well as long time window with the parameters
ε2 = 0.01, h = 1/64, J = 40. Ignoring the cost of computing the coarse operator, it
is visible that a reasonable speed up is possible; for example to get the solution at
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Fig. 2 On the left: different h,∆ t for LSS; On the right: different T,N for SIE.
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Fig. 3 On the left: different ε; On the right: different h,∆ t.

T = 4 with an accuracy of O(10−4) the method needs four iterations and this implies
that the solution can be obtained 80 times faster than serial method on a single
processor. We plot the error curves on the left in Figure 3 for different ε by taking
T = 1, N = 80, J = 40 and we see that the convergence is independent of the choice
of ε . On the right of the Figure 3 we plot error curves for more refined solution for
T = 1, N = 80, J = 40, ε2 = 0.01. We see that the convergence is independent of
mesh parameters.

4.3 F = LSS, G = IH

We finally take the fine operator as LSS scheme (3) and coarse operator as implicit
scheme of (7).We plot the error curves on the left in Figure 4 for short as well as
long time window with the parameters ε2 = 0.01, h = 1/64, J = 40 and small ∆T .
We observe the convergence but it is not immediate. Even if we take reasonably
large ∆T we obtain convergence but with very less speed up, see on the right of
Figure 4. Even though the heat equation (7) as coarse operator provide solution we
need further investigation to obtain the speed up.
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Fig. 4 On the left: small ∆T ; On the right: large ∆T .

5 Conclusions

We formulated and studied the Parareal methods for the CH equation in 1D. We gave
stability and convergence estimates of the Parareal method for different choices of
coarse operator. Lastly we presented numerical experiments for all the proposed
algorithms.
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