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1 Introduction

We investigate the applicability of the Balancing Domain Decomposition by Con-
straints (BDDC) method to numerical solution of problems of incompressible flows.
In particular, we use BDDC to solving linear systems with a nonsymmetric ma-
trix arising from discretization of the Navier–Stokes equations by the finite element
method.
The BDDC method was introduced by Dohrmann in [1] for the Poisson prob-

lem and linear elasticity. The underlying theory for the condition number bound of
𝑂

(
log2 (1 + 𝐻/ℎ)

)
was presented by Mandel and Dohrmann in [5]. By discretizing

and linearizing the Navier-Stokes equations, we get saddle-point systems with non-
symmetric matrices. An application of the BDDCmethod to nonsymmetric matrices
arising from advection-diffusion problems was presented by Tu and Li [9], where
the method was formulated without building and solving an explicit coarse problem.
Finding explicit coarse basis functions and forming an explicit coarse problem of
BDDC was presented by Yano for nonsymmetric problems arising from the Euler
equations in [10]. A three-level extension of BDDC was presented by Tu [8], while
a general multilevel method was introduced and analysed for symmetric positive def-
inite problems by Mandel et al. [6]. We have extended the multilevel BDDC method
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to nonsymmetric matrices in [3]. A theoretically supported approach for handling
continuous pressure in the Stokes problem was introduced in [4].
An important building block of BDDC as well as other nonoverlapping domain

decomposition methods is the choice of weights used for averaging a discontinuous
solution at the interface between subdomains. Standard types of weights include an
arithmetic average (also known as cardinality scaling), or weighted average based
on diagonal entries of subdomain matrices. In [3], we have also presented a novel
averaging operator tailored to Navier-Stokes equations. The main idea behind it
is using the current approximation of velocity for preferring information opposite
the flow. Due to the similarity of this idea with numerical methods for convection
dominated flows, we called this choice as the upwind scaling.
In this contribution, we present a modification of the upwind scaling. While

the upwind scaling is superior for flows at higher Reynolds numbers, the simple
arithmetic scaling tends to perform better for flows at lower Reynolds numbers. For
this reason, we ‘blend’ the arithmetic and upwind scalings with the ratio based on
the local Reynolds number, and we call the proposed method as Reynolds-blended
(Re-blended) weights.
The rest of the paper is organized as follows. In Section 2, we recall the basics

of iterative substructuring and BDDC for the nonsymmetric saddle-point systems
arising from the finite element method (FEM). The new weights are proposed in
Section 3. Section 4 presents results of numerical experiments showing the benefits
of the 𝑅𝑒-blended weights, while Section 5 is devoted to the summary.

2 FEM and BDDC for Navier-Stokes equations

Weconsider a stationary incompressible flow in a bounded three-dimensional domain
Ω ⊂ R3 with its boundary 𝜕Ω consisting of two disjoint parts 𝜕Ω𝐷 and 𝜕Ω𝑁 ,
governed by the Navier-Stokes equations (see e.g. [2]),

(𝒖 · ∇)𝒖 − aΔ𝒖 + ∇𝑝 = 𝒇 in Ω, (1)
∇ · 𝒖 = 0 in Ω, (2)

where 𝒖 is the velocity vector of the fluid, a is the kinematic viscosity of the fluid, 𝑝 is
the kinematic pressure, and 𝒇 is the vector of body forces. In addition, we consider the
following boundary conditions: prescribed velocity on 𝜕Ω𝐷 and −a(∇𝒖)𝒏 + 𝑝𝒏 = 0
on 𝜕Ω𝑁 , with 𝒏 being the unit outer normal vector of 𝜕Ω.
We consider Taylor-Hood Q2-Q1 elements, and after substituting linear combi-

nations of the basis functions, we get the following system of algebraic equations[
aA + N(u) 𝐵𝑇

𝐵 0

] [
u
p

]
=

[
f
g

]
. (3)

Details can be found in [3].
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System (3) is nonlinear due to the matrix N(u), and we consider the Picard
iteration for its linearization. This leads to solving a sequence of linear systems of
equations in the form [

aA + N(u𝑝) 𝐵𝑇

𝐵 0

] [
u𝑝+1

p𝑝+1

]
=

[
f
g

]
. (4)

Linear system (4) is solved by means of iterative substructuring (see, e.g., [7]).
In order to use the BDDC method, we decompose the solution domain Ω into 𝑁

nonoverlapping subdomains. Then we reduce the system (4) to the interface to get

𝑆

[
uΓ

pΓ

]
= 𝑔, (5)

where 𝑆 is the Schur complement of the interior unknowns and 𝑔 is the reduced
right-hand side.
Problem (5) is solved by the BiCGstab method using one step of BDDC as the

preconditioner. In each action of the BDDC preconditioner, a coarse problem and
independent subdomain problems are solved. Before solving it in each iteration, we
need to set-up the preconditioner. This is performed by solving two saddle-point
systems [

𝑆𝑖 𝐶
𝑇
𝑖

𝐶𝑖 0

] [
Ψ𝑖

Λ𝑖

]
=

[
0
𝐼

] [
𝑆𝑇
𝑖
𝐶𝑇
𝑖

𝐶𝑖 0

] [
Ψ∗
𝑖

Λ𝑇
𝑖

]
=

[
0
𝐼

]
(6)

where 𝑆𝑖 is the Schur complement with respect to the interface of the 𝑖-th subdomain,
𝐶𝑖 is the matrix defining coarse degrees of freedom, which has as many rows as is the
number of coarse degrees of freedom defined at the subdomain. The solution Ψ𝑖 is
the matrix of coarse basis functions with every column corresponding to one coarse
unknown on the subdomain. These functions are equal to one in one coarse degree
of freedom, and they are equal to zero in the remaining local coarse unknowns.
The solution Ψ∗

𝑖
is the matrix of adjoint coarse basis functions which is needed

for nonsymmetric problems as was shown in [10]. The coarse problem matrix is
assembled in the setup of the BDDC preconditioner as 𝑆𝐶 =

∑𝑁
𝑖=1 𝑅

𝑇
𝐶𝑖
Ψ∗𝑇
𝑖

𝑆𝑖Ψ𝑖𝑅𝐶𝑖 .
One step of the BDDC preconditioner 𝑀𝐵𝐷𝐷𝐶 : r𝑙 → u𝑙

Γ
proceeds as follows:

𝑟 𝑙𝑖 = 𝑊𝑖𝑅𝑖𝑟
𝑙

coarse problem

𝑟 𝑙𝐶 =

𝑁∑︁
𝑖=1

𝑅𝑇
𝐶𝑖Ψ

∗𝑇
𝑖 𝑟 𝑙𝑖

𝑆𝐶𝑢𝐶 = 𝑟 𝑙𝐶

𝑢𝐶𝑖 = Ψ𝑖𝑟
𝑙
𝐶𝑖𝑢𝐶

subdomain problems

[
𝑆𝑖 𝐶

𝑇
𝑖

𝐶𝑖 0

] [
𝑢𝑖
_

]
=

[
𝑟 𝑙
𝑖

0

]

𝑢𝑙Γ =

𝑁∑︁
𝑖=1

𝑅𝑇
𝑖 𝑊𝑖 (𝑢𝑖 + 𝑢𝐶𝑖),
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where 𝑅𝑖 is an operator restricting a global interface vector to the 𝑖-th subdomain,
𝑅𝐶𝑖 is the restriction of the global vector of coarse unknowns to those present at the
𝑖-th subdomain, and matrix𝑊𝑖 applies weights to satisfy the partition of unity, which
will be elaborated in the next section. Details of the application of this method to
Navier-Stokes equations can be found in [3].

3 Weight operators

Let us now discuss several particular choices of the matrix of weights 𝑊𝑖 . An
important class of these matrices is represented by diagonal matrices

𝑊𝑖 =
©«
𝑊1

𝑖𝑁

𝑊2
𝑖𝑁

. . .

ª®®¬ , (7)

where𝑊 𝑘
𝑖𝑁
denotes the weight matrix for the unknowns in the 𝑘-th (with respect to

the subdomain interface) node of the 𝑖-th subdomain. These matrices differ for nodes
with just velocity unknowns and those containing also a pressure unknown ordered
after the velocity ones. For example, in 3D the former and latter looks respectively as

𝑊 𝑘
𝑖𝑁 =

©«
𝑤𝑘
𝑖

𝑤𝑘
𝑖

𝑤𝑘
𝑖

ª®¬ , 𝑊 𝑘
𝑖𝑁 =

©«
𝑤𝑘
𝑖

𝑤𝑘
𝑖

𝑤𝑘
𝑖
1
𝑁𝑆

ª®®®¬ , (8)

where 𝑁𝑆 is the number of subdomains sharing the node.
A general scheme for constructing these matrices satisfying the partition of unity

can be described in the following way. Every subdomain first generates a nonnegative
weight 𝑤𝑘

𝑖
. These values are then shared with all neighbouring subdomains, and the

normalized weight 𝑤𝑘
𝑖
satisfying the partition of unity is obtained by dividing the

local weight with the sum of contributions from all neighbours,

𝑤𝑘
𝑖 =

𝑤𝑘
𝑖∑𝑁𝑆

𝑗=1 𝑤
𝑘
𝑗

. (9)

The first type of weights is based on the cardinality (card) of the set of subdomains
sharing the node. Hence, 𝑤𝑘

𝑖
= 1, and

𝑤𝑘
𝑖 =

1
𝑁𝑆

. (10)

For example, the weight is simply 𝑤𝑘
𝑖
= 1/2 if the node is shared by two subdomains.
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The second type of weights was introduced in [3], and it is inspired by numerical
schemes for flow problems, namely by upwinding. The underlying idea is that for
dominant advection, it should be beneficial to consider the subdomain from which
the fluid flows with a higher weight than for the one where the node is a part of an
inflow boundary.
More specifically, these upwind weights are based on the inner product of the

vector of velocity at the 𝑘-th interface node 𝒖𝑘 and the unit vector of the outer
normal to the 𝑖-th subdomain boundary 𝒏𝑘

𝑖
, therefore

𝑝𝑘𝑖 =
𝒖𝑘 · 𝒏𝑘

𝑖𝒖𝑘

2
.

The values of the 𝑝𝑘
𝑖
are from the interval [−1, 1]. To derive a nonnegative weight,

these values are mapped to the interval [0, 1] by taking 𝑤𝑘
𝑖
=

𝑝𝑘
𝑖
+1
2 , which is used

for all velocity unknowns. More details, such as the discrete construction of 𝒏𝑘
𝑖
, can

be found in [3].
The third type is the new approach obtained by linear interpolation of the previous

two weights. For this method, we choose a critical Reynolds number Re𝐶 , and then
the resulting Reynolds-blended (Reblended) weight is defined according to the local
Reynolds number Reloc = |𝒖𝑘 |𝐿/a as

𝑤𝑘
𝑖 =


𝑤𝑘
card for Reloc ≤ 1,
Reloc
Re𝐶 𝑤𝑘

upwind +
(
1 − RelocRe𝐶

)
𝑤𝑘
card for 1 < Reloc < Re𝐶 ,

𝑤𝑘
upwind for Reloc ≥ Re𝐶 .

(11)

Here 𝐿 corresponds to the characteristic length of the problem. Thus for small local
Reynolds numbers, the scaling behaves as cardinality weights and for high Reynolds
number as upwind weights depending on the chosen critical Reynolds number Re𝐶 .
Note that these weights are updated after each nonlinear iteration.

4 Numerical results

In this section, we compare the behaviour of the 2-level BDDC method for dif-
ferent types of interface weights described in Section 3, namely the cardinality
scaling (card), upwind, and the proposed Reblended weights. We assume two prob-
lems, namely the lid-driven cavity and the backward facing step problems. First we
look at the cavity problem. We consider unit cube with unit velocity on the top wall
as in [2]. For Reblended, we consider two critical Reynolds numbers, Re𝐶 = 100 and
Re𝐶 = 200. For these simulations, the number of subdomains is 125 with 8 elements
per subdomain edge. The decomposed solution domain can be seen in Fig. 1. For
this problem, Reynolds number is defined as Re = |𝒖top |𝐿/a, where |𝒖top | = 1 is the
velocity at the lid, and 𝐿 = 1 is the cube size. We compare Re = 1 and Re = 200
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monitoring the number of nonlinear iterations, the minimal, maximal, and mean
number of linear iterations over all nonlinear iterations, the mean setup time of the
BDDC preconditioner, the mean time for the Krylov subspace method with the mean
time for one linear iteration, the mean time for one nonlinear iteration, and the time
for all nonlinear iterations.
The computations are performed on the Karolina supercomputer at the IT4I Na-

tional Supercomputing Centre in Ostrava, Czech Republic. The computational nodes
are equipped with two 64-core AMD 7H12 2.6 GHz processors, and 256 GB RAM.
The values are presented in Tables 1 and 2.

Table 1 Re = 1. Number of nonlinear iterations, number of linear iterations (minimal, maximal,
and mean), mean setup time, time for the BiCGstab iterations, time for one linear iteration, time for
one nonlinear iteration, and the total time for solving the nonlinear problem.

weights type nonl linear solve time [s]
min max mean setup BiCGstab iter (one iter) nonl total

card 4 13.5 13.5 13.5 4.50 4.07 (0.30) 8.57 32.28
upwind 4 13.5 18.5 17.3 4.53 5.20 (0.30) 9.73 38.92

Re-blended (Re𝐶 = 100) 4 13.5 13.5 13.5 4.58 4.09 (0.30) 8.67 34.68
Re-blended (Re𝐶 = 200) 4 13.5 13.5 13.5 4.51 4.10 (0.30) 8.61 34.44

Table 2 Re = 200. Number of nonlinear iterations, number of linear iterations (minimal, maximal,
and mean), mean setup time, time for the BiCGstab iterations, time for one linear iteration, time for
one nonlinear iteration, and the total time for solving the nonlinear problem.

weights type nonl linear solve time [s]
min max mean setup BiCGstab iter (one iter) nonl total

card 29 14 91.5 86.2 5.01 27.99 (0.32) 33.0 1517.2
upwind 29 14 85.5 34.2 4.99 10.79 (0.32) 15.78 1029.1

Re-blended (Re𝐶 = 10) 29 14 85.5 34.0 4.99 10.76 (0.32) 15.75 1028.6
Re-blended (Re𝐶 = 100) 29 14 89 137.8 4.99 12.15 (0.32) 17.14 1069.5
Re-blended (Re𝐶 = 200) 29 14 137.5 58.1 5.05 18.22 (0.31) 23.27 1240.44

From Tables 1 and 2, we can see that for small Reynolds numbers, the cardinality
weight is slightly more efficient and for the high Reynolds number the same stands
for the upwind weight. The critical Reynolds weight seems to benefit from both
depending on the Reynolds number. For Re = 1, it inclines to the cardinality and for
Re = 200 to the upwind weight.
Let us now explore the effect of the Reynolds-blended weight on the backward

facing step problem. This problem was investigating in [2] in 2D. The solution
domain is shown in Fig. 1 with prescribed unit inlet velocity, zero velocity on the
top and bottom walls, and symmetry boundary condition on the side walls. With the
𝑥-axis aligned with the flow, the step occurs for 𝑥 = 1, where the height changes
from 1 to 2. The length of the domain is 5, and its width is 1. The solution domain
consists of 37 thousand elements which correspond to 978 thousand unknowns. The
mesh is decomposed into 32 subdomains using a vertical partitioner, which cuts
the domain along the 𝑥 direction (see Fig. 1). The Reynolds number is defined as
Re = |𝒖inlet |𝐿/a, where |𝒖inlet | = 1 is the input velocity, and 𝐿 = 1 is the size of the
narrow part.
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Fig. 1 Decomposed solution domain for the cavity problem (left) and for the backward facing step
problem (right).

We set the critical Reynolds number for our new weight to 20 and plot the
mean number of linear iterations and the average time for solving one linearized
problem (4) depending on Reynolds number in Fig. 2.
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Fig. 2 Number of BiCGstab iterations (left) and average time for solving one linearized problem
(right) for different Reynolds numbers for cardinality, upwind, and Re-blended operators.

From these plots we can see that up to a certain Re, cardinality performs better
while for larger Re, the upwind is more effective. The Reynolds-blended weight
operator with a suitably chosen critical Reynolds number Re𝐶 provides the best
results for almost every Re, and therefore it again combines advantages of cardinality
and upwind weight operator. Interestingly, it even outperforms the upwind weight
operator. This positive effect is attributed to the fact that the blending based on the
local Reynolds number Reloc reduces the effect of upwinding in zones with reduced
velocity such as in boundary layers.

5 Conclusions

We have presented a new scaling operator for the BDDC method in applications to
saddle-point linear systems arising from discretization of the Navier-Stokes equa-
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tions. It can be seen as a correction of the recent upwind operator when applied
to flows with low Reynolds numbers, for which arithmetic scaling is superior. We
have compared the relevant weight operators on the cavity and the backward facing
step problems. The results demonstrate the intended behaviour of the new scaling,
namely mimicking the arithmetic averaging for low Re and the upwind scaling for
high Re. Although our simulations show promising results for the considered small
and moderate Reynolds numbers, for larger Re some kind of stabilization of the
discretization would be needed. Investigating the performance of the new method
for other flow problems and the choice of the Re𝐶 parameter will be a matter of our
future research.
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