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1 Introduction

The time-harmonicMaxwell equations are of great interest in current research fields,
e.g., [7, 8, 10, 14, 16]. As their numerical solution is challenging due to their ill-
posed nature, e.g., [2], suitable techniques need to be applied. The most prominent
technique in literature is based on domain decomposition techniques [5, 17]. The
work of Hiptmair [10] can only be applied for the problem in the time domain
(i.e., the well-posed problem).
In this work, we design a proof of concept to approximate the interface operator

with the help of a feedforward neural network [3, 9, 12]. To this end, a two-domain
problem is designed, which is then trained by exchanging data from a modern finite
element library deal.II [1] and the well-known PyTorch [15] library. Our main aim is
to showcase that our approach is feasible and can be a point of departure for detailed
future investigations. An extended version with more technical details and additional
computations is [13].
The outline of this work is as follows: In Section 2we introduce the time-harmonic

Maxwell’s equations and our notation. Next, in Section 3, domain decomposition
and neural network approximations are introduced. Afterward, we address in detail
the training process in Section 4. In Section 5, numerical tests demonstrate our proof
of concept.

Tobias Knoke, Sebastian Kinnewig, Sven Beuchler, Thomas Wick
Leibniz University Hannover, Institute of Applied Mathematics, Welfengarten 1, 30167 Hannover,
Germany, e-mail: tobias.knoke@stud.uni-hannover.de,
{beuchler,kinnewig,thomas.wick}@ifam.uni-hannover.de
and Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across
Disciplines), Leibniz Universität Hannover, Germany

271



272 Tobias Knoke et al.

2 Equations

Let Ω ⊂ R2 (here dimension 2, but usually we deal with dimension 3 in Maxwell’s
equations) be a bounded domain with sufficiently smooth boundary Γ. The latter is
partitioned into Γ = Γ∞ ∪ Γinc. Furthermore, the time-harmonic Maxwell equations
are then defined as follows: Find the electric field 𝐸 such that

curl
(
𝜇−1curl (𝐸)

)
− 𝜔2𝐸 = 0 in Ω

𝜇−1𝛾𝑡 (curl (𝐸)) − 𝑖𝜔𝛾𝑇 (𝐸) = 0 on Γ∞

𝛾𝑇 (𝐸) = 𝛾𝑇
(
𝐸 inc

)
on Γinc,

(1)

where 𝐸 inc : R2 → C2 is some given incident electric field, 𝜔 > 0 is the
wave number, 𝜇 is the relative permeability and 𝑖 denotes the imaginary num-
ber. For the weak form and corresponding definitions, we seek 𝐸 ∈ 𝐻 (curl,Ω) :=
{𝑣 ∈ L2 (Ω) | curl(𝑣) ∈ L2 (Ω)}. The traces 𝛾𝑡 : 𝐻 (curl,Ω) → 𝐻

−1/2
× (div, Γ) and

𝛾𝑇 : 𝐻 (curl,Ω) → 𝐻
−1/2
× (curl, Γ) are defined by

𝛾𝑡 (𝑣) = 𝑛 × 𝑣 and 𝛾𝑇 (𝑣) = 𝑛 × (𝑣 × 𝑛),

where 𝑛 ∈ R2 is the normal vector of Ω, 𝐻−1/2
× (div, Γ) := {𝑣 ∈𝐻−1/2 (Γ) | 𝑣 · 𝑛=0,

divΓ𝑣 ∈ 𝐻−1/2 (Γ)} is the space of well-defined surface divergence fields and
𝐻 (curl, Γ) := {𝑣 ∈ 𝐻−1/2 (Γ) | 𝑣 · 𝑛 = 0, curlΓ (𝑣) ∈ 𝐻−1/2 (Γ)} is the space of
well-defined surface curls. System (1), as well as its weak form (not shown here),
is called time-harmonic, because the time dependence can be expressed by 𝑒𝑖𝜔𝜏 ,
where 𝜏 ≥ 0 denotes the time.
For the implementation with the help of a Galerkin finite element method (FEM),

we need the discrete weak form. Based on the De-Rham cohomology, we need to
choose our basis functions out of the Nédélec space N 𝑝

ℎ
(Ω). For the description of

the Nédélec space we refer to [4]. The discrete form is given by, find 𝐸ℎ ∈ N 𝑝

ℎ
(Ω)

such that∫
Ω

𝜇−1curl (𝐸ℎ) curl (Φℎ) − 𝜔2𝐸ℎΦℎ d𝑥 +
∫
Γ∞

𝑖𝜔𝛾𝑇 (𝐸ℎ) 𝛾𝑇 (Φℎ) d𝑠

=

∫
Γ∞

𝛾𝑇 (𝐸 𝑖𝑛𝑐
ℎ )𝛾𝑇 (Φℎ) d𝑠 ∀Φℎ ∈ N 𝑝

ℎ
(Ω).

(2)

For a more in-depth derivation of equations (1) and their discretization see [14].
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3 Numerical approach

3.1 Domain decomposition

Since the solution of theMaxwell equation system (1) is challenging, we apply a non-
overlapping domain compositionmethod (DDM) in which the domain is divided into
subdomains as follows

Ω =

𝑛dom⋃
𝑖=0

Ω𝑖 with

Ω𝑖 ∩Ω 𝑗 = ∅ ∀𝑖 ≠ 𝑗 ,

in such a way, that every subdomain Ω𝑖 becomes small enough, so it can be handled
with a direct solver. The global solution of the electric field 𝐸 is obtained via an
iterative method, where we solve the time-harmonic Maxwell’s equations on each
subdomain with suitable interface conditions between the different subdomains. So
we obtain a solution 𝐸 𝑘

𝑖
for every subdomain Ω𝑖 , where 𝑘 denotes the 𝑘-th iteration

step. The initial interface condition is given by

𝑔𝑘=0𝑗𝑖 := −𝜇−1𝛾𝑡𝑖
(
curl

(
𝐸 𝑘=0
𝑖

))
− 𝑖𝑘𝑆

(
𝛾𝑇𝑖

(
𝐸 𝑘=0
𝑖

))
= 0, (3)

where 𝑆 describes the surface operator [6]. Please note that in 𝑖𝑘𝑆, 𝑖 denotes the imag-
inary number, while as subscript, 𝑖 is an index. Afterwards, the electric-field 𝐸 𝑘+1

𝑖
is

computed at each step by solving the following system
curl

(
𝜇−1curl

(
𝐸 𝑘+1
𝑖

) )
− 𝜔2𝐸 𝑘+1

𝑖
= 0 in Ω𝑖

𝜇−1𝛾𝑡
𝑖

(
curl

(
𝐸 𝑘+1
𝑖

) )
− 𝑖𝜔𝛾𝑇

𝑖

(
𝐸 𝑘+1
𝑖

)
= 0 on Γ∞

𝑖

𝛾𝑇
𝑖

(
𝐸 𝑘+1
𝑖

)
= 𝛾𝑇

𝑖

(
𝐸 inc
𝑖

)
on Γinc

𝑖

𝜇−1𝑆
(
𝛾𝑡
𝑖

(
curl

(
𝐸 𝑘+1
𝑖

) ) )
− 𝑖𝜔𝛾𝑇

𝑖

(
𝐸 𝑘+1
𝑖

)
= 𝑔𝑘

𝑗𝑖
on Σ𝑖 𝑗 ,

(4)

where Σ𝑖 𝑗 = Σ 𝑗𝑖 := 𝜕Ω𝑖 ∩ 𝜕Ω 𝑗 denotes the interface of two neighbouring elements
and the interface condition is updated by

𝑔𝑘+1𝑗𝑖 = −𝜇−1𝛾𝑡𝑖
(
curl

(
𝐸 𝑘+1
𝑖

))
− 𝑖𝑘𝑆

(
𝛾𝑇𝑖

(
𝐸 𝑘+1
𝑖

))
= −𝑔𝑘𝑖 𝑗 − 2𝑖𝑘𝑆

(
𝛾𝑇𝑖

(
𝐸 𝑘+1
𝑖

))
.

(5)

In case of success we obtain lim𝑘→∞ 𝐸 𝑘
𝑖

= 𝐸 |Ω𝑖
, but this convergence depends

strongly on the chosen surface operator 𝑆 (see [5, 6]).
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3.2 Neural network approximation

Since the computation of a good approximation of 𝑆 is challenging, we examine
a new approach in which we attempt to approximate this operator with the help of
a neural network (NN). For a first proof of concept, we choose a prototype example
and explore whether at all an NN can approximate the values on the interfaces. As it
is not feasible to compute the exact surface operator 𝑆, we aim to compute 𝑔𝑘+𝑙

𝑖 𝑗
, 𝑙 > 0

with an NN, where we use 𝑔𝑘
𝑖 𝑗
and 𝐸 𝑘+1

𝑖
as input. Another benefit of this approach is

that we can generate easily a training data set from a classical domain decomposition
method, as described in section 4.3. For simplicity, we choose 𝑆 = 1 inside of our
classical domain decomposition method. Hence, the advantage of this approach is
that the interface condition can be updated without recomputing the system (4) at
each step, rising hope to reducing the computational cost.

4 Neural network training

In this section,we describe the training process. Besides themathematical realization,
we also need to choose the software libraries. For computing the time-harmonic
Maxwell equations with the finite element method (FEM), we utilize deal.II [1]. The
neural network is trained with PyTorch [15].

4.1 Decomposing the domain

Before we construct the NN, we choose the domain, the decomposition and the
grid on which the system (4) is solved to obtain the training values, because they
will influence the size of the network. The domain in our chosen example, given
by Ω = (0, 1) × (0, 1) is divided into two subdomains Ω0 = (0, 1) × (0, 0.5) and
Ω1 = (0, 1) × (0.5, 1), see Figure 1 and the grid (obtained from two times uniform

Ω0

Ω1

Γinc

Γ∞

Σ01 = Σ10
𝑔01

𝑔10

Fig. 1 Visualization of the domainΩwith
the chosen decomposition

refinement) on which the FEM is applied is
a mesh of 32 × 32 elements with quadratic
Nédélec elements.
Hence, 32 elements with each 4 degrees

of freedom (dofs) are located on the interface
in both subdomains. We evaluate the inter-
face condition and the solution on each dof
and use the values as the input and the tar-
get of the NN. Therefore the input contains
4 · dim(𝑔𝑖 𝑗 ) + 4 · dim(𝐸𝑖) = 16 values and
the output consists of 4 · dim(𝑔 𝑗𝑖) = 8 values
and we obtain 32 input-target pairs with one
computation.
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4.2 Neural network construction

Regarding the previous considerations, we need an input layer with 16 neurons and an
output layer with 8 neurons. Furthermore, we use one hidden layer with 500 neurons.
Our tests revealed, that this is a sufficent and reasonable size for our purpose, since it
leads to more effective networks in terms of error minimization and training duration
than other sizes we tested (e.g. 50, 100 and 300 neurons in the hidden layer). The
activation functions used are the sigmoid function given by 𝑓 (𝑥) = (1 + 𝑒−𝑥)−1 in
the hidden layer, which turned out to be the most effective among those we tested
(e.g. tanh(𝑥), log

(
(1 + 𝑒−𝑥)−1

)
and max(0, 𝑥) + min(0, 𝑒𝑥 − 1)) and the identity in

the other layers. Moreover, we apply separate networks 𝑁01 and 𝑁10 of the same
shape for both interface conditions 𝑔01 and 𝑔10, since it turned out that they are
approximated differently fast and accurately.

4.3 Training

To obtain enough training data, we vary the boundary condition 𝐸 inc and create a set
of training values and a set of test values to control the network during the training
and avoid overfitting. The training set and the test set are generated by the boundary
values that are displayed in Table 1.

Table 1 Boundary values for generating the training set and the test set

𝐸 inc for the training set 𝐸 inc for the test set(
𝑒

−(𝑥−0.7)2
0.008

0

) (
cos(𝜋2𝑦) + sin(𝜋2𝑥)𝑖
sin(𝜋2𝑦) + 0.5 cos(𝜋2𝑥)𝑖

) (
𝑒

−(𝑥−0.5)2
0.003

0

)
(
𝑒

−(𝑥−0.2)2
0.002

1

) (
sin(𝜋2𝑥) + sin(𝜋2𝑥)𝑖
sin(𝜋2𝑦) + 0.5 cos(𝜋2𝑥)𝑖

) (
cos(𝜋2𝑦) + sin(𝜋2𝑥)𝑖
cos(𝜋2𝑦) + 0.5 cos(𝜋2𝑥)𝑖

)
(
𝑒

−(𝑥−0.7)2
0.003

1

) (
sin(𝜋2𝑥) + sin(𝜋2𝑥)𝑖
sin(𝜋2𝑥) + 0.5 cos(𝜋2𝑥)𝑖

)
(
𝑒

−(𝑥−0.8)2
0.003

sin(𝜋2𝑥)

) (
cos(𝜋2𝑦) + sin(𝜋2𝑥)𝑖
cos(𝜋2𝑥) + 0.5 cos(𝜋2𝑥)𝑖

)
(
𝑒

−(𝑥−0.5)2
0.003

cos(𝜋2𝑥)

) (
cos(𝜋2𝑥) + sin(𝜋2𝑥)𝑖
cos(𝜋2𝑦) + 0.5 cos(𝜋2𝑥)𝑖

)

Since we choose 10 different boundary values for the training set and 2 for the
test set and each of them generates a set of 32 training/test values (one per element
on the interface), we obtain all in all a set of 32 · 10 = 320 input-target pairs (each
with with a total of 16 + 8 = 24 values) for the training and a test set of 32 · 2 = 64
input-target pairs for both networks. To keep the computations simple, we choose a
small wave number 𝜔 = 𝜖 2𝜋3 , where 𝜖 denotes the relative permittivity, and compute
the sets with the iterative DDM in 4 steps. Afterwards we use the results

(
𝑔1
𝑖 𝑗
, 𝐸2

𝑖

)
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and 𝑔3
𝑗𝑖
as the input and the targets to train our NNs with the application of the mean

squared error as the loss function and the Adam algorithm [11] as the optimizer. The
network 𝑁01 is trained with the learning rate 10−5. The initial training error 3.12
and the test error 5.87 are reduced to 1.7 · 10−4 and 3 · 10−3 after 29 843 steps of the
optimization method. At 𝑁10 the initial training error 0.72 and the test error 1.28 are
reduced to 3 · 10−4 and 4 · 10−3 after 20 326 steps with learning rate 10−5 and after
further training with learning rate 10−6 in 3706 steps, we finally achieve the training
error 2.9 · 10−4 and the test error 3 · 10−3.

5 Numerical tests

In this section, we apply the implemented and trained NNs for different numerical
examples. For the first example, we choose the following boundary condition

𝐸 inc (𝑥, 𝑦) =
(
cos

(
𝜋2 (𝑦 − 0.5)

)
+ sin

(
𝜋2𝑥

)
𝑖

cos
(
𝜋2𝑦

)
+ 0.5 sin

(
𝜋2𝑥

)
𝑖

)
,

and compute the first interface conditions 𝑔110 and 𝑔
1
01 and the solutions 𝐸

1
1 and 𝐸

1
0 by

solving (4) and (5) once. Afterwards, these values are passed on to the networks 𝑁01

Fig. 2 First example: Real part (above) and imaginary part (below) of the NN solution (left) and
the DDM solution (right)
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Fig. 3 Second example: Real part (above) and imaginary part (below) of the NN solution (left) and
the DDM solution (right)

and 𝑁10. The output they return is then handled as our new interface condition which
we use to solve system (4) one more time. With that, we obtain the final solution.
Moreover, we compute the same example with the DDM in 4 steps. The results that
are displayed in Figure 2 show excellent agreement.
As a second example, we increase the wave number, which leads to a more

complicated problem. Therefore we repeat the same computation with 𝜔 = 𝜖𝜋 and
leave the other parameters (especially the networks) unchanged. In contrast to the
previous example, the results that are displayed in Figure 3 show differences. While
the imaginary part is still well approximated, the real part of the NN solution differs
significantly from the DDM solution and shows a discontinuity on the interface.

6 Conclusion

In this contribution, we provided a proof of concept and feasibility study for a neu-
ral network approximation of the interface conditions in domain decomposition.
Analyzing our numerical tests, it can be inferred that the approach works for two
subdomains. Ongoing work is the extension to more subdomains.
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