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1 Introduction

Adaptive, that is, problem-dependent coarse spaces provide a robust condition num-
ber estimate and thus a robust convergence behavior for FETI-DP (Finite Element
Tearing and Interconnecting - Dual Primal) and BDDC (Balancing Domain De-
composition by Constraints) methods for highly heterogeneous model problems;
see, e.g., [7, 10] for a condition number indicator and a related proof for a specific
adaptive coarse space in two spatial dimensions. In general, the setup of an adaptive
coarse space usually requires the solution of local eigenvalue problems on edges,
faces, or local parts of the domain decomposition interface. Even though the setup
and the solution of these eigenvalue problems can be parallelized in a parallel im-
plementation, it can take up the largest part of the overall time to solution, especially
for three-dimensional problems. Thus, in [2], we have proposed to train a supervised
classification model in form of a dense feedforward neural network to make an a pri-
ori decision, which of the eigenvalue problems are actually necessary for a robust
FETI-DP coarse space. By testing our approach for different realistic heterogeneous
model problems as, e.g., arising from a dual-phase steel in solid mechanics, we have
shown that it is possible to drastically reduce the number of necessary eigenvalue
problems while still maintaining the robustness of the iterative solver.
In [6], we have extended these results by directly learning the adaptive edge

constraints themselves. Hence, we have trained different regression neural network
models to compute an a priori approximation of the first 𝑘 ∈ N adaptive edge con-
straints, which are then used to enhance the classic FETI-DP method. In particular,
this approach does not require the setup or the solution of any eigenvalue problems
at all. In [6], we have trained the regression neural network models exclusively with
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training data obtained from straight edges and consequently evaluated the trained
network for test problems based on a regular domain decomposition only. Note that
the approach of learning the adaptive constraints in an offline phase is in general of
interest if a number of problems of the same class has to be solved, for example,
diffusion or elasticity problems with different material coefficient distributions.
In this paper, we extend our idea from [6] by training regression neural networks

which can be applied to both, regular domain decompositions as well as irregular
decompositions as obtained by METIS [4]. To generalize our approach to arbitrary
edge structures, we also train the network models with training data obtained from ir-
regular edges and, additionally, with a set of randomized coefficient distributions.We
provide numerical results for different heterogeneous stationary diffusion problems
in two spatial dimensions for both, regular and irregular domain decompositions,
and the adaptive coarse space from [10, 11].

2 Test problem and adaptive FETI-DP

As a test problem, we consider a stationary diffusion problem in two spatial dimen-
sions

− div (𝜌∇𝑢) = 1 in Ω
𝑢 = 0 on 𝜕Ω, (1)

where 𝜌 : Ω := [0, 1] × [0, 1] → R denotes a heterogeneous coefficient function. Its
weak formulation is discretized with piecewise linear conforming finite elements.
In this paper, we consider a hybrid, adaptive FETI-DP method which uses su-

pervised machine learning to setup a robust and efficient coarse space. Thus, we
decompose our domain Ω ⊂ R2 into a number of nonoverlapping subdomains Ω𝑖 ,
𝑖 = 1, . . . , 𝑁 . Due to space limitations, we refrain from explaining the classic, that is,
the non-adaptive FETI-DP method in detail. For a detailed description of the classic
FETI-DP method, we refer to, e.g., [9]. Let us note that in our implementation,
we always choose the vertices of the subdomains as primal variables. Additionally,
we implement adaptive, that is, problem-dependent edge constraints to enhance the
robustness of our methods; see the following discussion. For the remainder of the
paper, we denote by E𝑖 𝑗 the edge shared by the two neighboring subdomains Ω𝑖

and Ω 𝑗 .
The classic FETI-DP condition number bound using exclusively primal vertex

constraints is only robust under fairly restrictive assumptions on the coefficient
function 𝜌; see, for example, [8]. Thus, we enhance the FETI-DP method with a very
specific adaptive coarse space which was originally introduced in [10, 11].
Here, the main idea is to add selected eigenvectors to the coarse space, which are

obtained from the solution of the following generalized local eigenvalue problem for
each edge E𝑖 𝑗 : find 𝑤𝑖 𝑗 ∈

(
ker 𝑆𝑖 𝑗

)⊥ such that
〈𝑃𝐷𝑖 𝑗

𝑣𝑖 𝑗 , 𝑆𝑖 𝑗𝑃𝐷𝑖 𝑗
𝑤𝑖 𝑗〉 = `𝑖 𝑗 〈𝑣𝑖 𝑗 , 𝑆𝑖 𝑗𝑤𝑖 𝑗〉 ∀ 𝑣𝑖 𝑗 ∈

(
ker 𝑆𝑖 𝑗

)⊥
. (2)
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Fig. 1 Visualization of our network models 𝑁𝑙 and 𝑁𝑙 , 𝑙 ≤ 3. As input data for the neural network,
we use samples of the coefficent function for the two neighboring subdomains of an edge (left).
Here, dark red corresponds to a high coefficient and white corresponds to a low coefficient. The
output of the network is a discretized egde constraint (right). Figure taken from [6, Fig. 1].

Here, 𝑆𝑖 𝑗 = diag(𝑆 (𝑖) , 𝑆 ( 𝑗) ) denotes a local Schur complement matrix with 𝑆 (𝑖)
and 𝑆 ( 𝑗) being the Schur complements of 𝐾 (𝑖) and 𝐾 ( 𝑗) , respectively, and 𝑃𝐷𝑖 𝑗

=

𝐵𝑇
𝐷,E𝑖 𝑗

𝐵E𝑖 𝑗
is a local jump operator, with 𝐵𝐷,E𝑖 𝑗

=

(
𝐵
(𝑖)
𝐷,E𝑖 𝑗

, 𝐵
( 𝑗)
𝐷,E𝑖 𝑗

)
being a local

submatrix of
(
𝐵
(𝑖)
𝐷
, 𝐵

( 𝑗)
𝐷

)
obtained by exclusively taking the rows corresponding

to the edge E𝑖 𝑗 ; see [10] for more details. The matrix 𝐵E𝑖 𝑗
is obtained by taking

the same rows from
(
𝐵 (𝑖) , 𝐵 ( 𝑗) ) . We assume that 𝑅 eigenvectors 𝑤𝑟

𝑖 𝑗
, 𝑟 = 1, ..., 𝑅,

belong to eigenvalues which are larger than a user-defined tolerance 𝑇𝑂𝐿 and then
enhance the FETI-DP coarse space with the edge constraint vectors

(𝑐𝑟𝑖 𝑗 )𝑇 := 𝐵𝐷,E𝑖 𝑗
𝑆𝑖 𝑗𝑃𝐷𝑖 𝑗

𝑤𝑟
𝑖 𝑗 , 𝑟 = 1, ..., 𝑅 (3)

using projector preconditioning; see [7, Sections 3,5] for more details. In the follow-
ing we refer to the constraint vectors as constraints. When enhancing the FETI-DP
coarse space with these adaptive constraints one can prove a robust condition number
bound, which exclusively depends on the user-defined tolerance 𝑇𝑂𝐿 and some geo-
metrical constants; see, e.g., [7, Theorem 5.1]. On the one hand, this ensures a robust
convergence behavior of the resulting FETI-DP algorithm, but, as a drawback, one
has to setup and solve the eigenvalue problems in Eq. (2) for all edges belonging to
the interface of our domain decomposition. Hence, in [6], we have proposed a hy-
brid FETI-DP method which uses a supervised regression model to directly learn
approximations of the adaptive edge constraints resulting from Eq. (3) such that the
solution of any eigenvalue problems is not necessary.

3 Learning coarse constraints in adaptive FETI-DP

The aim of our work is to compute discrete approximations of the first 𝑘 adaptive
edge constraints resulting from the local eigenvalue problem in Eq. (2) and to use the
learned constraints to enhance the classic FETI-DP coarse space; see [6]. In partic-
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ular, for each of the first 𝑘 adaptive edge constraints, we train a separate regression
neural network model that we denote by 𝑁𝑙 , 𝑙 ≤ 𝑘 . In the following, we always con-
sider 𝑘 = 3 and thus, train 3 different network models 𝑁𝑙 , 𝑙 ≤ 3, to obtain 3 discrete
approximations of the constraints resulting from the first 3 eigenmodes; see also [6].
As explained in more detail in [6], we additionally train separate neural network
models for edges which have direct contact to the Dirichlet boundary 𝜕Ω𝐷 of the
domain and for edges without any contact to 𝜕Ω𝐷 since both cases result in different
edge constraints due to the influence of the Dirichlet boundary condition on the local
Schur complement matrices 𝑆𝑖 𝑗 in Eq. (2). To distinguish between these different
network models, we denote the respective regression networks for edges with direct
contact to 𝜕Ω𝐷 by 𝑁𝑙 , 𝑙 ≤ 3; see also [6].
As input data for all neural network models 𝑁𝑙 , 𝑙 ≤ 3, we use a mesh-independent

image representation of the underlying coefficient function 𝜌 within the two subdo-
mains Ω𝑖 and Ω 𝑗 adjacent to the edge E𝑖 𝑗 . The concrete details of the computation
of this image representation are described in [2] such that, in the following, we
only briefly sketch the main idea. First, we compute an auxiliary grid of points
which we denote by sampling grid and which is independent of the finite element
grid. Then, we evaluate the coefficient function 𝜌 for each of these sampling points
within the sampling grid and use the corresponding 𝜌 values as input data for the
neural networks. In order to make sure that the input data always have the same
length and a consistent structure, we define a concrete order within our sampling
grid and encode sampling points with the dummy value −1 if they fall outside the
two neighboring subdomains for a given edge E𝑖 𝑗 . Let us note that this is especially
relevant for irregular decompositions of the domain as obtained by METIS [4]. In
particular, all trained network models 𝑁𝑙 and 𝑁𝑙 , 𝑙 ≤ 3, share the same input data
and only differ by their output data in order to define the concrete regression tasks.
As specific output data for the different network models, we use discrete values
of the adaptive edge constraints resulting from the local edge eigenvalue problems
in Eq. (2). For the training of the 𝑙-th network 𝑁𝑙 , we hence use a discretized version
of the respective edge constraint resulting from the eigenvector 𝑤𝑙

𝑖 𝑗
belonging to

the eigenvalue `𝑙
𝑖 𝑗
. All in all, we use 3200 sampling points as input data for the

neural networks and 19 output nodes, that is, 19 discrete values to approximate the
adaptive edge constraints. In principle, the output space of our networks corresponds
to an edge length defined by 𝐻/ℎ = 20. However, in order to be able to evaluate the
trained network for different finite element discretizations, we use an interpolation
technique to generalize our approach to different mesh sizes and thus only use the
number of 19 degrees of freedom for each edge as the basis for the interpolation. In
case we want to apply the approximated constraints for finer or coarser finite element
meshes, we linearly interpolate the obtained regression values by using the finite el-
ement mesh points as the interpolation points and the finite element basis functions
as interpolation basis. An exemplary visualization of our network models 𝑁𝑙 and 𝑁𝑙

is given in Fig. 1.
Other than in [6], where we have trained and tested the different network mod-

els exclusively for regular edges, in this paper, we generalize these results also to
irregular decompositions obtained by METIS [4]. Therefore, we train the different
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Fig. 2 Examples of three different randomly distributed coefficient functions obtained by using the
same randomly generated coefficient for a horizontal (left) or vertical (middle) stripe of a maximum
length of four finite element pixels, as well as by pairwise superimposing (right).

networks 𝑁𝑙 and 𝑁𝑙 , 𝑙 ≤ 3, with both, regular and irregular edges. Additionally, in
contrast to [6], we do not train the networks with our manually constructed set of
coefficient distributions that we have denoted by smart training data in [6], but use
a set of randomized coefficient distributions. In [3], we have shown that it is possible
to achieve comparable accuracy results for the classification model as defined in [3]
when using randomized training data with a slight structure compared to the smart
training data. Considering these results and with regard to better expected general-
ization properties in three spatial dimensions, here, we have decided to also train our
regression neural networks with randomized coefficient distributions. Three exem-
plary randomized coefficient distributions where we have additionally controlled the
ratio of high versus low coefficient values are shown in Fig. 2. To obtain the entire
set of training and validation data, we have generated various randomized coefficient
distributions and combined them with pairs of subdomains adjacent to both, straight
edges and edges resulting from the respective decompositions obtained by METIS.
In particular, to generate the input and output data for the networks, we have used
a regular decomposition of the unit square into 4 × 4 subdomains and a mesh size
defined by 𝐻/ℎ ∈ {10, 20, 40} as well as the corresponding irregular decomposi-
tions obtained by METIS. All in all, this results in 4800 training and validation data
configurations. In all coefficient configurations, we always set the high coefficient
to 𝜌1 = 1𝑒6 and the low coefficient to 𝜌2 = 1. For the selection of the necessary
adaptive constraints, we always choose the tolerance 𝑇𝑂𝐿 = 100.
Finally, for each of the network models 𝑁𝑙 and 𝑁𝑙 , 𝑙 ≤ 3, we train a separate

dense feedforward regression neural network [1] with 4 hidden layers and 50 neurons
per layer. For each layer, we use the ReLU activation function and 20% dropout for
each layer. For the optimization process, we have chosen the stochastic gradient
descent (SGD) method using the Adam optimizer [5] with its default parameters,
the initial learning rate of 0.001, and a batch size of 32. As loss function, we use the
MSE (mean squared error) between the true adaptive and the predicted constraint
vectors at the output grid points. For the final model, we obtain a MSE of 9.77𝑒-03
for the training data and a MSE of 4.62𝑒-02 for the validation data.
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4 Numerical results

In this section, we provide numerical results for our proposed hybrid FETI-DP
method using the approximated edge constraints as learned by the neural networks
in direct comparison with the adaptive coarse space from [10].
To test our approach, we consider both, a regular decomposition and an irregular

METIS decomposition of basically the same test problem. In both cases, the un-
derlaying problem is a heterogeneous stationary diffusion problem, which we have
already used in [6, Sect. 3]; see also Fig. 3 for a visualization. Only the underlying
finite element discretization differs in both cases. Let us remark that this test con-
figuration was of course not included in the training or validation data used for the
training of the networks. For the test case with regular subdomains, we decompose
our domainΩ = [0, 1]2 into 4×4 square subdomains and use a regular finite element
mesh defined by 𝐻/ℎ = 10. We choose all vertices as primal variables and consider
a coefficient contrast of 𝜌1/𝜌2 = 1𝑒6. In particular, we compare the robustness of the
resulting coarse space when implementing our trained edge constraints to the adap-
tive coarse space from [10] and the condition and iteration numbers from [6, Sect. 3]
where we have trained the regression networks exclusively with training data from
straight edges. Note again that in this paper, we train the networks with both, training
data from straight edges and from irregular edges resulting from a decomposition by
METIS. In Fig. 4 (top), we show the two adaptive edge constraints resulting from the
local eigenvalue problem in Eq. (2) for the tolerance 𝑇𝑂𝐿 = 100, that is, the ground
truth as well as the learned approximations from our regression neural networks.
As we can see from Fig. 4 (top), for an exemplary straight edge E𝑖 𝑗 between two
floating subdomains, both approximations using either just straight edges for the
training or using both, straight and irregular edges, result in quantitatively similar
approximations of the two adaptive edge constraints. Using the approximated edge
constraints in our hybrid FETI-DP method leads to an iteration number of 14 and
a condition number estimate of 35.5 when training the network with straight edges
only while training the network with both straight and irregular edges results in an
iteration number of 17 and a condition number estimate of 57.9; see also Table 1.
In particular, both approximate coarse spaces result in robust condition number es-
timates independent of the coefficient contrast and using both, straight and irregular
edges for the training of the network models provides qualitatively similar results as
we have obtained in [6].
To test the performance of our approach with a METIS decomposition, we con-

sider a decomposition of the unit square into 4×4 irregular subdomains computed by
METIS [4] and we choose 3200 finite elements for each subdomain; see also Fig. 3
(right). Again, we consider a coefficient contrast of 𝜌1/𝜌2 = 1𝑒6. We evaluate our
regression neural networks 𝑁𝑙 and 𝑁𝑙 , 𝑙 ≤ 3, trained with straight and irregular
edges for all 34 irregular edges resulting from the domain decomposition obtained
by METIS in Fig. 3 (right), and integrate the learned edge constraints into the FETI-
DP coarse space. The resulting iteration number and condition number estimate are
given in Table 1, wherewe also show the corresponding values for the adaptive coarse
space from [10] and the tolerance 𝑇𝑂𝐿 = 100. As we can observe from Table 1,
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Fig. 3 Heterogeneous test problem: Stationary diffusion problem, coefficient contrast 1𝑒6, Ω =

[0, 1]2 decomposed into 4 × 4 subdomains. Left: Regular decomposition, mesh size defined by
𝐻/ℎ = 10. Right: Irregular decomposition computed by METIS with 3200 FEs per subdomain.

Fig. 4 Results for a straight edge of the regular decomposition (top row) and for an exemplary
edge of the irregular decomposition (bottom row) of the test problem; see Fig. 3. Green, solid line:
ground truth for the tolerance TOL = 100. Blue, dashed line: prediction as obtained by the neural
networks in [6]. Red, dashed-dotted line: prediction as obtained by the neural networks trained with
both, straight and irregular edges. See Table 1 for the resulting condition and iteration numbers.

using the learned constraints leads to a condition number estimate of 67.64 that is
clearly independent of the coefficient contrast and in a quantitatively similar order
of magnitude as the respective condition number for the adaptive FETI-DP coarse
space. Thus, the learned coarse space seems to serve as a good approximation of
the respective adaptive FETI-DP coarse space. Furthermore, in Fig. 4 (bottom), we
show the learned constraints as well as the ground truth for an exemplary edge within
the irregular decomposition. We can see that the learned constraints when training
the networks with both, straight and irregular edges, are quantitatively similar to the
ground truth. However, evaluating our networks from [6], which were only trained
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Table 1 Condition number estimates (cond) and iteration numbers (iter) for the adaptive FETI-DP
coarse space and the hybrid coarse spaces as learned by the regression neural networks for the
coefficient distributions in Fig. 3. We denote by METIS nets the neural networks that are trained
with both, straight and irregular edges.

Regular METIS
decomposition decomposition
iter cond iter cond

Classic FETI-DP 55 32443 79 375020
Adaptive FETI-DP 10 2.81 19 3.32
Learned constraints from [6] 14 35.56 41 7055.95
Learned constraints from METIS nets 17 57.97 26 67.64

with straight edges, for an irregular edge, provides a relatively poor approximation
of the constraints. Note again that the setup of the learned coarse space does not
require the solution of any eigenvalue problems at all and the training of the differ-
ent network models can be executed in parallel and in an apriori offline phase. In
particular, in this work, we have shown that it is possible to generalize our results
from [6] also to non-straight edges as, e.g., resulting from METIS [4].
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