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1 Introduction

The convergence rate of both the FETI-DP (Finite Element Tearing and Intercon-
necting - Dual Primal) and the BDDC (Balancing Domain Decomposition by Con-
straints) domain decomposition methods strongly depend on the spectrum, i.e., the
eigenvalues of the preconditioned system [7, 2]. To obtain a robust condition num-
ber estimate which is independent of the coefficient or material distribution, several
adaptive coarse spaces have been developed which rely on the solution of local
eigenvalue problems and use selected eigenvectors to enhance the coarse space; see,
e.g., [9]. Besides the robustness of the considered domain decomposition method, its
computational efficiency and parallel scalability is also of major interest. However,
for an increasing number of subdomains, the exact solution of the coarse problem
can become a scaling bottleneck within a parallel implementation. For the BDDC
method, the coarse problem has the same structure as the original problem. Thus,
it is straightforward to apply the BDDC preconditioner recursively either once or
several times to the coarse problem, leading to a three-level [14] or a multilevel
BDDC method [1, 10].
In the present work, we combine the three-level BDDC approach from [14] with

the choice of adaptive constraints from [9] and, other than in the adaptive multilevel
BDDC method in [12, 13], additionally with the frugal constraints from [3]. Since
the computation of the frugal edge constraints is fairly cheap, we aim to reduce
the computational effort of the adaptive three-level BDDC method by replacing the
eigenvalue problems either on the subdomain or on the subregion level by frugal
constraints while still retaining a satisfactory convergence behavior. We compare
the robustness of the resulting different three-level BDDC methods using frugal
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and/or adaptive edge constraints on either the second and/or the third level for
different heterogeneous stationary diffusion problems with high contrasts in two
spatial dimensions.

2 Problem and three-level BDDC

We consider a stationary diffusion problem in two spatial dimensions, i.e., the weak
formulation of

− div (𝜌∇𝑢) = 1 in Ω
𝑢 = 0 on 𝜕Ω. (1)

Here, 𝜌 : Ω := [0, 1] × [0, 1] → R denotes the coefficient function and in Section 4,
we will consider various heterogeneous coefficient functions 𝜌.
In this paper, we numerically investigate different coarse spaces and approximate

solvers for the BDDC domain decomposition method. Thus, we decompose the
domain Ω into 𝑁 ∈ N nonoverlapping subdomains Ω𝑖 , 𝑖 = 1, . . . , 𝑁 . For each of
these subdomains, we then compute a conforming finite element triangulation and
compute local stiffness matrices 𝐾 (𝑖) and local load vectors 𝑓 (𝑖) , 𝑖 = 1, . . . , 𝑁 . Due
to space limitations, we refrain from explaining the classic two-level BDDC method
in detail and focus instead on the description of the different approximate coarse
spaces and a specific adaptive BDDC coarse space. For a detailed description of the
two-level BDDC method, we refer to [2].
In a parallel implementation of the two-level BDDCmethod, the exact solution of

the coarse problem in form of the primally coupled Schur complement matrix 𝑆−1
ΠΠ

can become a scaling bottleneck; see, e.g., [4, 5] for related parallel numerical exper-
iments in a linear and a nonlinear framework, respectively. One possible approach to
delay the related scaling bottleneck is to apply the BDDC preconditioner recursively
and to compute only an approximation 𝑆−1

ΠΠ
of the coarse problem 𝑆−1

ΠΠ
, leading

to a three-level BDDC method [14]. Here, the main idea is to introduce a third
level of the domain decomposition by additionally decomposing the domain Ω into
a number of nonoverlapping subregions Ω 𝑗 , 𝑗 = 1, . . . , 𝑁 . In particular, each of the
subregions Ω 𝑗 comprises a given number of subdomains Ω𝑖 , 𝑖 = 1, . . . , 𝑁 𝑗 . Then,
all primal variables on the second level are again partitioned into inner, primal, and
dual variables on the subregion level. We denote the respective index sets on the
subregion level by 𝐼, Π, and Δ, respectively; see also Fig. 1 for an exemplary visu-
alization. On the subregion level, analogously to the subdomain level, all inner and
dual variables are eliminated, leading to a primal Schur complement system on the
third level which is, generally, of much smaller size than the respective system on the
second level depending on the number of subdomains per subregion. Hence, only
a smaller coarse problem on the third level has to be solved compared to the classic,
i.e., the two-level BDDC method. A complete mathematical description as well as
the related theory and a condition number bound for the three-level BDDC method
for stationary diffusion problems can be found in [14]. Parallel numerical results and
a weak scaling study for the three-level BDDC method in comparison with other



Adaptive Three-Level BDDC Using Frugal Constraints 289

Γ

Ω11 Ω12

Ω13 Ω14

Ω15 Ω16

Ω9 Ω10

Ω8Ω7

Ω6Ω5

Ω3 Ω4

Ω2Ω1

Γ

Ω2

Ω3 Ω4

Ω1

I

Fig. 1 Example of a three-level domain decomposition into 16 regular subdomains (bottom)
and 4 regular subregions (top). We mark in blue the interface Γ between subdomains and in red the
interface Γ between subregions. Primal nodesΠ on the third level and primal nodesΠ on the second
level are visualized as red and blue circles, respectively. Inner or dual nodes on the third level, i.e., 𝐼
or Δ, are visualized as green triangles or red squares, respectively. Figure taken from [15, Fig. 5.1].

approximate coarse solvers can, e.g., be found in [5]. Let us note that besides adding
a third level of the domain decomposition, also further additional levels can be added
leading to a recursive multilevel BDDC method; see, e.g., [1, 10].

3 Adaptive three-level BDDC combined with frugal edge
constraints

In general, we are interested in BDDC coarse spaces which can efficiently be com-
puted on a parallel computer and which are, preferably, robust for different hetero-
geneous problems. Unfortunately, the classic condition number bounds both for the
FETI-DP and the BDDCmethod are only independent of the coefficient contrast un-
der fairly restrictive assumptions on the coefficient distribution; see, e.g., [7, 8, 11]
for a closer discussion for FETI-DP and BDDC, respectively. A similar theoretical
condition number bound has also been derived for the three-level BDDC method;
see [14]. As a remedy, different adaptive, i.e., problem-dependent coarse spaces
have been developed. In the following, we will focus on a specific adaptive coarse
space strategy which has been originally introduced in [9]. Here, the main idea
is to solve a local generalized eigenvalue problem for each edge E𝑖 𝑗 between two
subdomains Ω𝑖 and Ω 𝑗 which is of the general form: find 𝑤𝑖 𝑗 ∈

(
ker 𝑆𝑖 𝑗

)⊥ such that
〈𝑃𝐷𝑖 𝑗

𝑣𝑖 𝑗 , 𝑆𝑖 𝑗𝑃𝐷𝑖 𝑗
𝑤𝑖 𝑗〉 = 𝜇𝑖 𝑗 〈𝑣𝑖 𝑗 , 𝑆𝑖 𝑗𝑤𝑖 𝑗〉 ∀𝑣𝑖 𝑗 ∈

(
ker 𝑆𝑖 𝑗

)⊥
. (2)
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Here, 𝑆𝑖 𝑗 =
(
𝑆 (𝑖)

𝑆 ( 𝑗)

)
is a local Schur complement matrix where 𝑆 (𝑖) and 𝑆 ( 𝑗) are

the Schur complements of 𝐾 (𝑖) and 𝐾 ( 𝑗) , respectively, and 𝑃𝐷𝑖 𝑗
= 𝐵𝑇

𝐷,E𝑖 𝑗
𝐵E𝑖 𝑗

is
a local jump operator; see [9] for more details. Assuming that 𝑅 eigenvectors 𝑤𝑟

𝑖 𝑗
,

𝑟 = 1, . . . , 𝑅 belong to eigenvalues which are larger than a user-defined tolerance
𝑇𝑂𝐿, we then enhance the BDDC coarse space with the edge constraints

𝐵𝐷,E𝑖 𝑗
𝑆𝑖 𝑗𝑃𝐷𝑖 𝑗

𝑤𝑟
𝑖 𝑗 , 𝑟 = 1, . . . , 𝑅, (3)

with 𝐵𝐷,E𝑖 𝑗
=

(
𝐵
(𝑖)
𝐷,E𝑖 𝑗

, 𝐵
( 𝑗)
𝐷,E𝑖 𝑗

)
being a local submatrix of

(
𝐵
(𝑖)
𝐷
, 𝐵

( 𝑗)
𝐷

)
obtained

by taking the rows corresponding to the edge E𝑖 𝑗 . In particular, for two-dimensional
problems and primal subdomain vertices, enhancing the BDDC coarse space with
these adaptive constraints leads to a robust condition number which exclusively
depends on the chosen tolerance 𝑇𝑂𝐿 and some geometrical constants; see [6].
In order to benefit both from the robustness of the described adaptive coarse

space as well as from the increased parallel scalability of a three-level BDDC
method, we combine both approaches and also implement adaptive edge constraints
on the subregion level within a three-level BDDC method. To compute the local
eigenvalue problem for edges between two neighboring subregions Ω𝑖 and Ω 𝑗 ,
both the local Schur complement matrices 𝑆 (𝑖) and 𝑆 ( 𝑗) as well as the local jump
operator 𝑃𝐷𝑖 𝑗

in Eq. (2) are replaced by recursive versions with respect to the
primal variables on the subregion level. This leads to an adaptive three-level BDDC
approach; see also [12, 13] for previous work on adaptive multilevel BDDC. Due to
the implementation of adaptive constraints within each level, here, a robust condition
number estimate can be obtained.
As a drawback, we have to set up and solve local eigenvalue problems on both

the subdomain and the subregion level, which can be computationally expensive,
especially for three-dimensional problems. Hence, we propose a modified approach
of the adaptive multilevel approach presented in [12, 13] by replacing the eigenvalue
problems either on the second and/or the third level by frugal edge constraints as
introduced in [3]. The resulting frugal edge constraints serve as a low-dimensional
approximation of the adaptive coarse space defined in [9] and have been shown to
be robust for a range of different heterogeneous coefficient or material distributions
both in two and three spatial dimensions; see [3] for detailed experiments. For
two-dimensional stationary diffusion problems, the frugal edge constraints on the
subdomain level are defined as follows. We denote by 𝜔(𝑥) the support of the finite
element basis functions associated with a finite element node 𝑥 ∈ (Ω𝑖 ∪ Ω 𝑗 ). Then,
for each 𝑥 on 𝜕Ω𝑖 or 𝜕Ω 𝑗 , respectively, we compute �̂� (𝑖) (𝑥) = max

𝑦∈𝜔 (𝑥)∩Ω𝑖

𝜌(𝑦) and

�̂� ( 𝑗) (𝑥) = max
𝑦∈𝜔 (𝑥)∩Ω 𝑗

𝜌(𝑦). We define 𝑣 (𝑙)
𝐸𝑖 𝑗
on 𝜕Ω𝑙 for 𝑙 = 𝑖, 𝑗 by

𝑣
(𝑙)
𝐸𝑖 𝑗

(𝑥) :=
{
�̂� (𝑙) (𝑥), 𝑥 ∈ 𝜕Ω𝑙\Π (𝑙) ,
0, 𝑥 ∈ Π (𝑙) (4)
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and 𝑣𝑇
𝐸𝑖 𝑗
:= (𝑣 (𝑖)𝑇

𝐸𝑖 𝑗
,−𝑣 ( 𝑗)𝑇

𝐸𝑖 𝑗
); see also Fig. 2 for an exemplary illustration. Here, Π (𝑙)

denotes the index set of all local primal variables. Finally, we obtain the frugal
edge constraint by 𝑐𝐸𝑖 𝑗

:= 𝐵𝐷,E𝑖 𝑗
𝑆𝑖 𝑗𝑃𝐷𝑖 𝑗

𝑣𝐸𝑖 𝑗
in direct analogy to the adaptive edge

constraints in Eq. (3). Let us note that on the subregion level, the subdomains take over
the role of the finite elements on the subdomain level and thus, the 𝜌-coefficient is
not uniquely defined for each subdomain, i.e., each element on the third level. Hence,
for the additional construction of frugal edge constraints on the subregion level, we
use the stiffness, i.e., the diagonal entries of the local subregion Schur complement
matrices instead of using the maximum 𝜌-coefficient to construct 𝑣 (𝑙)

𝐸𝑖 𝑗
(𝑥) in Eq. (4).

In Table 1, we summarize the different coarse spaces presented here as well as
their main benefits and drawbacks. The overall goal of this paper is to combine
the different BDDC methods discussed above to benefit from the robustness of the
presented adaptive constraints, a reduced computational effort when using frugal
constraints, and the increased parallel scalability of a three-level BDDC method.
In the following, we consider four different possibilities of how to combine the

presented BDDCmethods fromTable 1. In particular, we consider three-level BDDC
with:

i) Frugal constraints on the second and the third level.
ii) Frugal constraints on the second and adaptive constraints on the third level.
iii)Adaptive constraints on the second and the third level.
iv)Adaptive constraints on the second and frugal constraints on the third level.

Furthermore, variants i) and ii) can be slightly modified by using the stiffness
instead of the maximum 𝜌-coefficient values for the construction of the frugal sub-
domain edge constraints. We denote these variants by i a/b) and ii a/b), respectively,
in the experiments in Section 4.

Ω𝑖 Ω 𝑗
E𝑖 𝑗

𝑥𝜔 (𝑥) ∩Ω𝑖 𝜔 (𝑥) ∩Ω 𝑗

E𝑖 𝑗

𝑣
(𝑖)
𝐸𝑖 𝑗 |E𝑖 𝑗

E𝑖 𝑗

−𝑣 ( 𝑗)
𝐸𝑖 𝑗 |E𝑖 𝑗

Fig. 2 Visualization of the construction of a frugal edge constraint in two dimensions for a given
heterogeneous coefficient distribution. Left/Right:Maximum coefficient per finite element node of
E𝑖 𝑗 with respect to Ω𝑖 and Ω 𝑗 , respectively, for the coefficient distribution in the middle.Middle:
Exemplary heterogeneous coefficient distribution for two neighboring subdomains Ω𝑖 and Ω 𝑗

sharing the edge E𝑖 𝑗 . High coefficients are marked in grey and low coefficients are marked in white.
Figure taken from [15, Fig. 6.1].
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Table 1 Non-exhaustive overview of benefits and drawbacks of the different BDDC algorithms
considered in this paper.

Coarse space Benefits Drawbacks
Adaptive Theoretical proof of robustness Expensive setup
Frugal Cheap setup Limited robustness
3-Level, Classic Increased parallel scalability Robust only for moderate heterogeneities

4 Numerical results

In this section, we compare different BDDC methods using varying coarse spaces
for different heterogeneous stationary diffusion problems in two dimensions. All
shown computations were performed using MATLAB and a transformation-of-basis
approach to implement the different coarse space enhancements. For all presented
results, we choose all vertices as primal variables and we always use 𝜌-scaling unless
explicitly mentioned otherwise. In Fig. 3, we show three different heterogeneous
coefficient distributions which we use to evaluate the robustness of the four presented
BDDCmethods. Here, we always consider 𝜌 = 1𝑒6 in the dark blue pixels and 𝜌 = 1
otherwise. Note that for the coefficient distribution in Fig. 3 (right), the ratio 𝐻/ℎ
has to be a multiple of five. Hence, we choose 𝐻/ℎ = 20 for this case.
In Table 2 (top), we compare the iteration numbers and condition number esti-

mates for the coefficient distribution in Fig. 3 (right) with coefficient jumps along
and across both, subdomain and subregion edges. As we can observe from the results
in Table 2, implementing adaptive constraints on both levels, i.e., algorithm iii) leads
to the lowest iteration counts and lowest condition number estimates. However, all
other BDDC variants using frugal edge constraints on the second and/or the third
level also show condition numbers which are independent of the coefficient contrast
and thus are robust. In particular, using frugal constraints on the subdomain level and
computing adaptive constraints exclusively on the subregion level, i.e., algorithm ii),
delivers results which are fairly similar to the fully adaptive approach. Hence, in this

Fig. 3 Examples of three different heterogeneous coefficient functions. We set 𝜌 = 1𝑒6 in the dark
blue pixels and 𝜌 = 1 elsewhere. Left: Shifted boxes of a high coefficient with jumps along and
across vertical edges; see Table 2 (top).Middle: One straight channel of a high coefficient crossing
each vertical edge; see Table 2 (middle).Right: Two straight channels of a high coefficient crossing
each vertical edge; see Table 2 (bottom).
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Table 2 Iteration numbers (it) and condition numbers (cond) for a stationary diffusion problem
with heterogeneous coefficient distributions as in Fig. 3. Decomposition of the domain into 4 × 4
subdomains and 2 × 2 subregions.

2𝒏𝒅 level 3𝒓𝒅 level it cond
Shifted boxes; see Fig. 3 (left). 𝐻/ℎ = 16.

i a) frugal, stiffness frugal, stiffness 24 108.59
i b) frugal, rho-max frugal, stiffness 18 35.58
ii a) frugal, stiffness adaptive 19 24.78
ii b) frugal, rho-max adaptive 18 30.11
iii) adaptive adaptive 18 21.73
iv) adaptive frugal, stiffness 25 65.73
One straight channel; see Fig. 3 (middle). 𝐻/ℎ = 16.
i a) frugal, stiffness frugal, stiffness 17 11.11
i b) frugal, rho-max frugal, stiffness 19 36.87
ii a) frugal, stiffness adaptive 15 11.11
ii b) frugal, rho-max adaptive 14 33.97
iii) adaptive adaptive 16 34.53
iv) adaptive frugal, stiffness 20 35.93
Two straight channels; see Fig. 3 (right). 𝐻/ℎ = 20.
i a) frugal, stiffness frugal, stiffness 41 19 376
i b) frugal, rho-max frugal, stiffness 42 54 582
ii a) frugal, stiffness adaptive 34 19 355
ii b) frugal, rho-max adaptive 28 55 009
iii) adaptive adaptive 22 42.92
iv) adaptive frugal, stiffness 26 141.02

case, variant ii) would be our favored approach since it requires only the solution
of smaller eigenvalue problems on the subregion level whereas the construction of
frugal constraints on the subdomain level is computationally cheap.
For the coefficient distribution in Fig. 3 (middle) which is symmetric with respect

to all edges and which has only a single channel crossing each subdomain edge,
the numerical results for frugal and adaptive edge constraints are even more similar;
see Table 2 (middle). This can be interpreted as an indicator that for this specific case,
the computed frugal constraint is indeed a good approximation of the corresponding
adaptive constraint. This will be further investigated in future research.
For the coefficient distribution in Fig. 3 (right) where we have more coefficient

jumps along and across the subdomain and subregion edges, only adaptive three-
level BDDC, i.e., algorithm iii) is robust with respect to the coefficient contrast;
see Table 2 (bottom). However, also the remaining variants which use three-level
BDDC with frugal constraints show satisfactory iteration numbers, indicating that
we obtain only a few outliers within the spectrum of the preconditioned system.
As a conclusion, for completely arbitrary coefficient distributions with numerous

jumps along and across the subdomain and subregion edges, only adaptive three-level
BDDC ensures a robust condition number independent of the coefficient contrast.
However, for rathermoderate heterogeneities, also replacing the eigenvalue problems
on either the second or the third level by frugal edge constraints can deliver a robust
algorithm.With respect to computational efficiency, variant ii), i.e., frugal constraints
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on the subdomain level and adaptive constraints on the subregion level would be our
favored choice due to the smaller size of the eigenvalue problems exclusively on
the subregion level. For future research, we plan to fully integrate all proposed
approaches into our parallel BDDC software and to test it more extensively with
respect to parallel scalability for both, two- and three-dimensional problems.
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