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1 Introduction

Nonlinear domain decomposition methods (DDMs) are based on a decomposition
of a discretized nonlinear partial differential equation instead of applying a linear
DDM to the tangential systems in a Newton-type iteration. The advantages are
a faster convergence and an improved ratio of local work to communication, at least
for many problems. We focus on nonlinear FETI-DP (Finite Element Tearing and
Interconnecting - Dual Primal) methods here, which build a class of nonlinear two-
level approaches. These methods can have a (partially) nonlinear coarse level and
the integrated nonlinear right-preconditioner is based on a partial elimination of
arbitrary degrees of freedom collected in an index set 𝐸 . In [2], it was shown that
the combination of nonlinear FETI-DP with an adaptive coarse space [9], which was
implemented with a transformation of basis approach, improves the convergence.
Additionally, in [6] the concept of choosing an index set 𝐸 adaptively based on
the residual was investigated. Finally, in [3], both ideas are combined to a nonlinear
FETI-DP algorithm iterating in the transformed space, whichwe abbreviate withNL-
FETI-DP-XT here. Additionally, also in [3], an efficient implementation iterating in
the original finite element space is suggested using local saddle point problems [8]
instead of an explicit transformation of basis; this method is abbreviated by NL-
FETI-DP-X here. For the latter approach, modifications have to be made to the
elimination set 𝐸 . We will compare different strategies to modify 𝐸 and finally
suggest and numerically test a completely new and more efficient and robust strategy
for NL-FETI-DP-X based on an approximation of the transformed residual.
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2 Nonlinear FETI-DP

Let us briefly recall the unified framework of nonlinear FETI-DP methods. For
a detailed description, we refer to [5]. Throughout this article, we assume that we
have a computational domain Ω ⊂ R𝑑 , 𝑑 = 2, 3, which is divided into 𝑁 non-
overlapping subdomainsΩ𝑖 , i.e.,Ω =

⋃𝑁
𝑖=1Ω𝑖 . Each subdomain is the union of finite

elements and the associated finite element spaces are denoted by 𝑊 (𝑖) . We denote
the product space of all finite element spaces as 𝑊 = 𝑊 (1) × · · · ×𝑊 (𝑁 ) . In FETI-
DP methods, we partition all variables into interior (𝐼), dual (Δ), and primal (Π)
variables, where only continuity in the primal variables is prescribed and continuity
in the dual variables is enforced by Lagrange multipliers 𝜆 iteratively. Therefore,
we further introduce a subspace 𝑊 ⊂ 𝑊 of all finite element functions from 𝑊

that are continuous in the primal variables. A simple choice of primal variables are
subdomain vertices. More advanced strategies are based on enforcing continuity in
certain weighted averages over the degrees of freedoms of an edge or face. The
weights can, for example, be computed adaptively by solving localized eigenvalue
problems related to edges. This approach results in provably robust linear FETI-DP
methods; see, e.g., [7, 9]. For nonlinear FETI-DPmethods, the adaptive coarse space
can be computed using the tangential matrix linearized in the initial value; see [2].
We use this specific adaptive coarse space in all computations in this article.
For completeness, we also introduce the subspace 𝑊 ⊂ 𝑊 , which contains all

finite element functions that are continuous across the complete interface and it
holds 𝑊 ⊂ 𝑊 ⊂ 𝑊 . Let us introduce the primal assembly operator �̌�𝑇 : 𝑊 → 𝑊

and the nonlinear function 𝐾 (𝑢) : 𝑊 → 𝑊 obtained by a finite element discretization
of a nonlinear partial differential equation. Let us note that 𝐾 (𝑢) is not necessarily
continuous on the interface.
As it was shown in [4], finding the solution of the fully assembled finite element

problem is equivalent to solving the nonlinear FETI-DP saddle point system

𝐴(�̃�, 𝜆) =
[
𝐾 (�̃�) + �̌�𝑇 𝐵𝑇 𝜆 − �̌�𝑇 𝑓

𝐵�̌��̃�

]
=

[
0
0

]
, �̃� ∈ 𝑊, 𝐾 (�̃�) := �̌�𝑇 𝐾 (�̌��̃�) ∈ 𝑊. (1)

This system is the basis for all nonlinear FETI-DP methods. Here, the linear con-
straints 𝐵�̌��̃� = 0 together with Lagrange multipliers 𝜆 ∈ 𝑉 := range(𝐵) enforce
continuity in all dual variables.
To implement arbitrary coarse constraints, as, e.g., adaptive constraints, one can

use a transformation of basis approach. The underlying idea is to transform the
complete system into a space 𝑊𝑇 , where all primal constraints are again point-
wise constraints and can be enforced by a simple assembly operator as before.
A transformation matrix 𝑇 : 𝑊𝑇 → 𝑊 with orthonormal rows, that is, with 𝑇𝑇𝑇 = 𝐼,
can be computed for all coarse spaces based on edge and face averages; see [3] for
details. Then, the transformed nonlinear FETI-DP saddle point system writes
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𝐴𝑇 (�̃�𝑇 , 𝜆) =
[
𝐾𝑇 (�̃�𝑇 ) + �̌�𝑇𝑇𝑇 𝐵𝑇 𝜆 − �̌�𝑇𝑇𝑇 𝑓

𝐵𝑇 �̌��̃�𝑇

]
=

[
0
0

]
, 𝐾𝑇 (�̃�𝑇 ) := �̌�𝑇𝑇𝑇 𝐾 (𝑇 �̌��̃�).

(2)

As introduced in [5], we use a nonlinear right-preconditioner 𝑀𝑇 (�̃�𝑇 , 𝜆) that is
nonlinear in �̃�𝑇 and linear in 𝜆; see [5] for some desirable properties of 𝑀𝑇 . Instead
of 𝐴𝑇 (�̃�𝑇 , 𝜆) = 0, we now solve 𝐴𝑇 (𝑀𝑇 (�̃�𝑇 , 𝜆)) = 0with a Newton-Krylovmethod.
Following [5], the application of a nonlinear right-preconditioner can be interpreted
as a (partial) nonlinear elimination process, where different choices of 𝑀𝑇 lead to
different elimination sets. With this interpretation, it is obvious to divide the overall
set of variables into two different subsets 𝐸 and 𝐿, where 𝐸 contains all variables
that should be nonlinearly eliminated by the preconditioner 𝑀𝑇 , and 𝐿 contains the
remaining variables in which will be linearized.
After an appropriate rearrangement, we can split Eq. (2) according to the subsets 𝐸

and 𝐿. We can write the nonlinear saddle point system (Eq. (2)) as

𝐴𝑇 (�̃�𝑇 ,𝐸 , �̃�𝑇 ,𝐿 , 𝜆) =

𝐴𝑇 ,𝐸 (�̃�𝑇 ,𝐸 , �̃�𝑇 ,𝐿 , 𝜆)
𝐴𝑇 ,𝐿 (�̃�𝑇 ,𝐸 , �̃�𝑇 ,𝐿 , 𝜆)

𝐵𝑇 �̌��̃�𝑇

 =

0
0
0

 .
With the application of the nonlinear right-preconditioner, we now aim to eliminate
all variables �̃�𝐸 , which correspond to the subset 𝐸 . Thus, our preconditioner is
implicitly defined by solving the nonlinear equation

𝐴𝑇 ,𝐸 (𝑀𝑇 ,�̃�𝑇 ,𝐸
(�̃�𝑇 ,𝐿 , 𝜆), �̃�𝑇 ,𝐿 , 𝜆) = 0, (3)

where we have 𝑀𝑇 (�̃�𝑇 ,𝐸 , �̃�𝑇 .𝐿 , 𝜆) := (𝑀𝑇 ,�̃�𝑇 ,𝐸
(�̃�𝐿 , 𝜆), �̃�𝐿 , 𝜆), since, by construc-

tion, 𝑀𝑇 is linear in �̃�𝑇 ,𝐿 and 𝜆. After we have computed the nonlinear precondi-
tioner 𝑀𝑇 by solving Eq. (3) with Newton’s method, we obtain the nonlinear Schur
complement system [

𝐴𝑇 ,𝐿 (𝑀𝑇 ,�̃�𝑇 ,𝐸
(�̃�𝑇 ,𝐿 , 𝜆), �̃�𝑇 ,𝐿 , 𝜆)

𝐵𝑇 �̌��̃�𝑇

]
=

[
0
0

]
.

This can be solved with the traditional Newton-Krylov-FETI-DP approach; see [5].
Putting it all together, in each of these (outer) Newton iterations, 𝑀𝑇 has to be
recomputed, which is typically done by an inner Newton iteration.
Both Newton loops iterate in the transformed space, that is, all outer Newton

updates 𝛿�̃�𝑇 and inner Newton updates 𝛿�̃�𝑇 ,𝐸 have to be projected back to the
original space after convergence. As in linear FETI-DP methods, the explicit usage
of 𝑇 leads to denser linear systems and thus, especially in three dimensions using
rich coarse spaces, to a higher memory demand and a slower time to solution. As in
the linear case, it is possible to reformulate nonlinear FETI-DP in the original nodal
space using local saddle point systems and some further tricks; see [3] for details.
It is possible to get rid of the matrix 𝑇 in all computations of nonlinear FETI-DP
without changing the nonlinear and linear convergence. Unfortunately, the additional
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assumption has to be made that 𝑇 has the block structure

𝑇 =

[
𝑇𝐸 0
0 𝑇𝐿

]
;

see [3] for details. To enforce this, all primal edges or faces, i.e., edges or faces
with at least one primal constraint, have to be either included in 𝐸 or 𝐿 completely.
In contrast, iterating in the transformed space, 𝐸 can be chosen arbitrarily. In this
article, we discuss different strategies of how to choose an appropriate 𝐸 adaptively
and compare nonlinear FETI-DP in the iterating in the nodal space (NL-FETI-DP-X)
with nonlinear FETI-DP iterating in the transformed space (NL-FETI-DP-XT).

3 Adaptive selection of 𝑬

NL-FETI-DP-XT allows for completely arbitrary elimination sets 𝐸 . For the more
efficient NL-FETI-DP-X we will fulfill the necessary assumption on 𝑇 by either
choosing an edge to be part of 𝐸 or, respectively, 𝐿 completely, i.e., we will not
split any edge. More precisely, in theory, it is sufficient to not split faces or edges
which carry primal constraints. The adaptive selection of 𝐸 used in this article is
a modification of the procedure suggested in [6]. This heuristic strategy is based on
the assembled nonlinear residual and is inspired by [1].
We first define the nonlinear residual in the 𝑘-th outer Newton iteration

𝑟 (𝑘) := 𝐾 (𝑢 (𝑘) ) + 𝐵𝑇 𝜆 (𝑘) − 𝑓 = 𝐾 (𝑇 �̌��̃� (𝑘)
𝑇

) + 𝐵𝑇 𝜆 (𝑘) − 𝑓

and the assembled and transformed residual by

𝑟
(𝑘)
𝑇
:= 𝑅𝑇𝑇𝑇 𝑟 (𝑘) ,

where 𝑅𝑇 : 𝑊 → 𝑊 assembles all degrees of freedom on the interface. We now
eliminate all variables, where the residual is comparably high, that is, if for the 𝑖-th
component 𝑟 (𝑘)

𝑇 ,𝑖
of 𝑟 (𝑘)

𝑇
the inequality

𝑟
(𝑘)
𝑇 ,𝑖

≥ 𝜌𝐸 | |𝑟 (𝑘)𝑇
| |∞

holds, the 𝑖-th degree of freedom is eliminated. That means, the index 𝑖 is added
to the elimination set 𝐸 . Let us remark that we only describe the scalar case here.
A procedure for systems of equations with more degrees of freedom in each physical
node, e.g., elasticity problems, is discussed in [6] and out of the scope of this article.
Here, 𝜌𝐸 < 1 is a user defined parameter and smaller values immediately result in
larger elimination sets 𝐸 . To avoid single and isolated physical points in the elimina-
tion set, 𝛿𝐸 layers of finite element nodes surrounding 𝐸 are added to the preselected
set 𝐸 . This is comparable to the procedure of selecting an overlap of a nonoverlap-
ping subdomain. The resulting 𝐸 can immediately be used within NL-FETI-DP-XT
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and we denote this procedure to find 𝐸 by basic strategy. Nonetheless, the resulting
𝐸 can not be used in NL-FETI-DP-X, where we are not allowed to split edges. We
suggest two different strategies to overcome this issue.

Strategy 1: After choosing 𝐸 with the basic algorithm, all edges which have
a nonempty intersection with 𝐸 are added to 𝐸 completely. Around these edges, 𝛿𝐸
layers of finite element nodes belonging to the interior of the adjacent subdomains
are also added to 𝐸 . We refer to Fig. 1 for a visualization of this strategy.
A disadvantage of strategy 1 and the basic approach is the need for computing 𝑇

which is used to compute 𝑟 (𝑘)
𝑇
. We will introduce a third strategy avoiding 𝑇 , since,

in the efficient implementation NL-FETI-DP-X, 𝑇 is not necessary at all. Only the
rows of 𝑇𝑇 belonging to primal variables are usually known. Sorting the variables
properly, we have

𝑇𝑇 =

[
𝑇𝑇
ΠΠ

𝑇𝑇
Π𝐵

𝑇𝑇
𝐵Π

𝑇𝑇
𝐵𝐵

]
and only the block 𝐶 :=

[
𝑇𝑇
ΠΠ

𝑇𝑇
Π𝐵

]
is available. Let us note that 𝑇𝑇

𝐵,:
= [𝐼 0], where

𝐵 := [𝐼 Δ̂] and Δ̂ is the index set of all dual variables belonging to edges which do
not carry primal constraints. Therefore, we have

𝑟
(𝑘)
𝑇 ,𝐵

=

(
𝑅𝑇 𝑟 (𝑘)

)���
𝐵

which can be computed without knowing 𝑇 . For the computation of the primal
part 𝑟 (𝑘)

𝑇 ,Π
solely 𝐶 is necessary. Only the part related to the dual part of the primal

edges 𝑟 (𝑘)
𝑇 ,Δ\Δ̂

cannot be computed without using 𝑇𝑇 . In NL-FETI-DP-X, all edges
carrying primal constraints have to be either completely part of 𝐸 or, respectively, 𝐿.
Assuming to have an appropriate coarse space and that all important information
about the primal edges are transformed to the coarse space and thus to the vector 𝑟 (𝑘)

𝑇 ,Π
,

we can rely on 𝑟 (𝑘)
𝑇 ,Π
for the decision if an edge, which is part of Δ \ Δ̂, is chosen to

be part of 𝐸 or 𝐿. We therefore suggest the following modification.
Strategy 2: Choose the initial set 𝐸 applying the basic algorithm to 𝑟 (𝑘)

𝑇
:=

[𝑟 (𝑘)𝑇
𝑇 ,𝐵

, 𝑟
(𝑘)𝑇
𝑇 ,Π

, 0
Δ\Δ̂] instead of 𝑟

(𝑘)
𝑇
. Then proceed as in Strategy 1.

4 Problem and numerical results

We consider the nonlinear problem

−𝛼Δ𝑝𝑢 = 1 in Ω,
𝑢 = 0 on 𝜕Ω, (4)

with the scaled 𝑝-Laplace operator 𝛼Δ𝑝𝑢 := div(𝛼 |∇𝑢 |𝑝−2∇𝑢). Within this article,
we use 𝑝 = 4 and a coefficient function 𝛼 : Ω → Rwith jumps. Moreover, we always
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Fig. 1 Illustration of Strategy 1 to compute the elimination set 𝐸 with 𝛿𝐸 = 2. The starting point
or initial set 𝐸 is obtained based on the residual. In Strategy 1, first two layers are added, then all
necessary edges are included in 𝐸 , and finally an overlap of 𝛿𝐸 layers is added in the interior of
the subdomains adjacent to those edges. The result of the basic algorithm can solely be used in
NL-FETI-DP-XT.

Fig. 2 Coefficient distributions and domain decompositions used in the numerical computations.
Left: Channels with 𝛼 = 1𝑒3 crossing material with 𝛼 = 1, zoomed in to a quarter of the unit
square. Right: Randomly generated distribution with 𝛼 = 1𝑒6 in the small yellow stripes.

use the unit square Ω = [0, 1] × [0, 1] as the computational domain, a discretization
with piecewise linear finite elements, and a structured domain decomposition into
square subdomains. We consider two different coefficient distributions, which can
be found in Fig. 2. We always choose 𝑢 (0) (𝑥, 𝑦) = 𝑥(1 − 𝑥)𝑦(1 − 𝑦) as initial value
in all computations.
For all edges we compute the adaptive coarse constraints introduced in [9] using

the first linearized system and a tolerance of 𝑡𝑜𝑙 = 10 for the localized eigenvalue
problems. For linear problems, there is a provable condition number bound of 𝑁2E ·𝑡𝑜𝑙
for FETI-DP using this coarse space, where 𝑁E is the maximum number of edges
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Table 1 Results for model problems with randomly generated coefficients and channels; always
using vertices plus adaptive edge constraints; outer it. gives the total number of global Newton
iterations and in brackets the number of Newton-Krylov-FETI-DP steps used for stability is shown;
inner it. gives the number of inner Newton iterations summed up over the outer Newton iterations;
PCG it. gives the number of PCG iterations summed up over the outer Newton iterations; |𝐸𝑎𝑣𝑔 |
gives the average size of the elimination set in percentage of the number of degrees of freedom;
NL-FETI-DP-X and NL-FETI-DP-XT stand for the adaptive selection of the elimination set;
NL-FETI-DP-2 stands for eliminating all variables, i.e., 𝐸 = [𝐵 Π ]; NK-FETI-DP stands for
Newton-Krylov-FETI-DP. The best results are marked in bold.

𝑝-Laplace random; see Fig. 2 (right)
𝑝 = 4; 𝐻/ℎ = 25; 25 subdomains; 𝑡𝑜𝑙 = 10

Stra- outer inner PCG
method tegy 𝛿𝐸 𝜌𝐸 |𝐸 |𝑎𝑣𝑔 it. it. it. (sum)
NL-FETI-DP-2 - - - 37.5% 8(5) 57 142
NK-FETI-DP - - - - 15(15) - 284
NL-FETI-DP-XT basic 2 0.01 6.9% 13(10) 36 254
NL-FETI-DP-XT basic 5 0.01 33.3% 4(0) 53 81
NL-FETI-DP-X 1 2 0.01 11.1% 11(2) 74 200
NL-FETI-DP-X 1 5 0.01 41.1% 4(0) 55 78
NL-FETI-DP-X 2 2 0.01 8.3% 13(6) 68 237
NL-FETI-DP-X 2 5 0.01 38.7% 4(0) 53 77

𝑝-Laplace channels; see Fig. 2 (left)
𝑝 = 4; 𝐻/ℎ = 32; 36 subdomains; 𝑡𝑜𝑙 = 10

Stra- outer inner PCG
method tegy 𝛿𝐸 𝜌𝐸 |𝐸 |𝑎𝑣𝑔 it. it. it. (sum)
NL-FETI-DP-2 - - - 71.4% 7(2) 43 80
NK-FETI-DP - - - - 19(19) - 237
NL-FETI-DP-XT basic 2 0.01 5.2% 16(12) 61 197
NL-FETI-DP-XT basic 5 0.01 7.5% 14(9) 101 180
NL-FETI-DP-X 1 2 0.01 20.2% 6(0) 53 72
NL-FETI-DP-X 1 5 0.01 43.8% 4(0) 45 54
NL-FETI-DP-X 2 2 0.01 19.9% 6(0) 53 73
NL-FETI-DP-X 2 5 0.01 43.8% 4(0) 45 54

a subdomain can have; see [7] for the proof. In our computations, the outer Newton
iteration is stopped if a relative reduction of 10−5 of the globally assembled residual
is reached. The inner iteration is stopped, if the inner Newton update is smaller
than 10−5 in the 𝑙2-norm. Let us finally note that, for stability reasons, we will always
switch to a Newton-Krylov-FETI-DP approach, if no further reduction of the residual
is reached in the outer loop. We never switch back to nonlinear FETI-DP.
We always compute the average size of the elimination set 𝐸 to give a rough

estimate on the computational cost of the elimination process in the inner loop. We
therefore compute the value

|𝐸 |𝑎𝑣𝑔 :=
1
𝑁𝑜

𝑁𝑜∑︁
𝑘=1

|𝐸 (𝑘) |
𝑁𝑑𝑜 𝑓

· 100%,
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where |𝐸 (𝑘) | is the number of degrees of freedom in the elimination set of the 𝑘-th
outer iteration, 𝑁𝑑𝑜 𝑓 is the number of total degrees of freedom, and 𝑁𝑜 the number
of outer iterations. Let us remark that |𝐸 (𝑘) | = 0 for each Newton-Krylov iteration
and thus |𝐸 |𝑎𝑣𝑔 can be small if many Newton-Krylov steps have to be made.
The results for both model problems can be found in Table 1. It can be observed

that NL-FETI-DP-X can compete with NL-FETI-DP-2 in terms of nonlinear and
linear convergence; at least if appropriate elimination sets are chosen. Let us remark
that NL-FETI-DP-X has in all setups less than 44% of the local computational cost.
Additionally, both approaches outperform classical NK-FETI-DP. Strategies 1 and 2
have only been introduced in order to implement the theoretical need for edges
not being split up in the efficient implementation of NL-FETI-DP-X. Nonetheless,
splitting edges, which happens often in the basic strategy used in NL-FETI-DP-XT,
actually deteriorates the performance, which was not expected. The most efficient
Strategy 2, which does not need𝑇 explicitly, is competitive to Strategy 1 and therefore
it is our suggestion to use this approach in NL-FETI-DP-X. Of course more tests and
also three dimensional problems have to be investigated in the future.
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