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1 Introduction
We consider the following minimization problem:

min
x∈R𝑛

𝑓 (x), (1)

where 𝑓 : R𝑛 → R is a bounded, twice continuously differentiable objective function
and 𝑛 ∈ N is typically very large. Our goal is to minimize (1) using a nonlinear
multilevel minimization (NMM) method, e.g., MG-OPT [11] or RMTR [7]. The
main idea behind NMM methods is to employ a hierarchy of so-called coarse-
level objective functions, denoted by { 𝑓 ℓ }𝐿

ℓ=1, where 𝐿 > 1. These functions are
typically obtained by exploring the structure of the underlyingminimization problem,
e.g., by discretizing the underlying infinite-dimensional problem with a varying
discretization parameter. During the solution process, the functions { 𝑓 ℓ }𝐿

ℓ=1 are
utilized in order to construct the search-directions for the minimization problem at
hand in a computationally efficient manner.
The overall efficiency of NMM methods relies on the ability of the coarse-level

objective functions { 𝑓 ℓ }𝐿
ℓ=1 to approximate the function 𝑓 well. Indeed, the con-

vergence theory of the majority of NMM methods requires that the local behavior
of the coarse-level objective functions is at least first-order coherent with the local
behavior of 𝑓 . The coherence is commonly ensured by employing the so-called
𝜏-correction [1], which corrects the coarse-level objective function 𝑓 ℓ in an additive
manner. Although this approach is almost universally employed in the multilevel
literature, other approaches were also considered, e.g., a second-order additive cor-
rection approach [7, 12], or Galerkin-based coarse-level models [7, 9]. In this work,
we explore techniques from the surrogate-based/multi-fidelity optimization [4] in or-
der to construct the first-order coherent coarse-level models in the context of NMM
methods. In particular, we discuss how to correct functions { 𝑓 ℓ }𝐿

ℓ=1 using additive,
multiplicative, and hybrid approaches.
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2 Nonlinear multilevel minimization framework

In this work, we minimize (1) using the NMM method. To this aim, we con-
sider a hierarchy of 𝐿 levels. Each level ℓ = 1, . . . , 𝐿 is associated with some
model ℎℓ : R𝑛ℓ → R, where we assume that ℎℓ−1 is computationally cheaper to
minimize than ℎℓ and that 𝑛ℓ−1 < 𝑛ℓ . As we will discuss in Section 3, the
models {ℎℓ }𝐿

ℓ=1 are constructed during the minimization process by correcting
the objective functions { 𝑓 ℓ }𝐿

ℓ=1 by taking into account the knowledge of the
current iterate. Through this work, we assume that ℎ𝐿 := 𝑓 𝐿 := 𝑓 . Trans-
fer of the data between different levels of the multilevel hierarchy is performed
using the prolongation operator Iℓ+1

ℓ
: R𝑛ℓ → R𝑛ℓ+1 , and the restriction opera-

tor Rℓ
ℓ+1 : R

𝑛ℓ+1 → R𝑛ℓ , where Rℓ
ℓ+1 = (Iℓ+1

ℓ
)𝑇 . Moreover, we also employ the pro-

jection operator Pℓ
ℓ+1 : R

𝑛ℓ+1 → R𝑛ℓ to transfer iterates from the level ℓ + 1 to ℓ. The
operator Pℓ

ℓ+1 is constructed such that x
ℓ = Pℓ

ℓ+1 (I
ℓ+1
ℓ

xℓ), for any xℓ ∈ R𝑛ℓ .
Using the aforementioned definitions, we now describe a generic NMM method

in the form of a V-cycle, summarized in Algorithm 1. During the description, we use
a superscript to denote the level and a subscript to denote the iteration index. Starting
from the finest level, ℓ = 𝐿, and initial guess xℓ0, the NMM method performs 𝜇𝑠
nonlinear smoothing steps to approximately minimize model ℎℓ . The choice of the
nonlinear smoother depends on the particular choice of the NMM method. For
instance, one can employ a first-order method equipped with a line-search or trust-
region globalization strategy if a variant of multilevel line-search or trust-region
method is considered. The outcome of this minimization process, iterate xℓ𝜇𝑠 , is then
used to construct a coarse-level model ℎℓ−1 and initial guess xℓ−10 = Pℓ−1

ℓ
xℓ𝜇𝑠 . This

process is repeated recursively until the coarsest level is reached.
On the coarsest level, ℓ = 1, an NMM method approximately minimizes ℎℓ

using 𝜇𝑐 steps of a nonlinear solution strategy, giving rise to xℓ∗ . Afterwards, the
prolongated coarse-level correction sℓ+1

𝜇𝑠+1 := Iℓ+1
ℓ

(xℓ∗ − xℓ0) is used to update the
current iterate xℓ+1𝜇𝑠

on level ℓ + 1. However, before this update is performed, the
correction sℓ

𝜇𝑠+1 has to undergo some convergence control. The type of convergence
control again depends on the particular type of the NMMmethod. For example, if the
multilevel trust-region method is used, then sℓ+1

𝜇𝑠+1 is required to provide a decrease in
ℎℓ+1 to be accepted by the algorithm. If a variant of a line-searchmethod is used, then
an appropriate step size has to be determined. In the end, the algorithm performs 𝜇𝑠
post-smoothing steps, starting from xℓ+1

𝜇𝑠+1 and giving rise to xℓ+1∗ . This process is
again repeated on all levels until the finest level is reached.

3 Construction of coarse-level models

Oneach level ℓ, theNMMmethodsminimize themodel ℎℓ : R𝑛ℓ → R approximately.
The result of this minimization, the iterate xℓ∗ , is then used to construct the search
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Algorithm 1 NMM(ℓ, ℎℓ , xℓ0)
Require: ℓ ∈ N, ℎℓ : R𝑛ℓ → R, xℓ0 ∈ R𝑛ℓ and 𝜇𝑠 , 𝜇𝑐 ∈ N
1: xℓ𝜇𝑠

= Nonlinear_smoothing(ℎℓ , xℓ0 , 𝜇𝑠)
2: Construct ℎℓ−1 using xℓ𝜇𝑠

, and ∇ℎℓ (xℓ𝜇𝑠
)

3: if ℓ = 2 then
4: xℓ−1∗ = Nonlinear_solve(ℎℓ−1, Pℓ−1

ℓ
xℓ𝜇𝑠

, 𝜇𝑐)
5: else
6: xℓ−1∗ = NMM(ℓ − 1, ℎℓ−1, Pℓ−1

ℓ
xℓ𝜇𝑠
)

7: end if
8: xℓ

𝜇𝑠+1 = Convergence_control(ℎ
ℓ , xℓ𝜇𝑠

, 𝑰ℓ
ℓ−1 (xℓ−1∗ − Pℓ−1

ℓ
xℓ𝜇𝑠

))
9: xℓ∗ = Nonlinear_smoothing(ℎℓ , xℓ

𝜇𝑠+1, 𝜇𝑠)
10: return xℓ∗

direction for the minimization on the next finer level. As a consequence, the overall
efficiency of NMM methods depends on the capabilities of the models {ℎℓ }𝐿

ℓ=1 to
approximate 𝑓 as accurately as possible.
Given an initial guess xℓ0 = Pℓ

ℓ+1x
ℓ+1
𝜇𝑠
, the model ℎℓ is constructed during each

V-cycle by correcting the function 𝑓 ℓ , such that the following condition holds:

∇ℎℓ (xℓ0) = Rℓ
ℓ+1∇ℎ

ℓ+1 (xℓ+1𝜇𝑠
). (2)

This ensures that ℎℓ and ℎℓ+1 are locally first-order coherent and that the follow-
ing relation holds: 〈∇ℎℓ (xℓ0), s

ℓ〉 = 〈∇ℎℓ+1 (xℓ+1𝜇𝑠
), Iℓ+1

ℓ
sℓ〉. In this work, we discuss

three different approaches for constructing models {ℎℓ }𝐿
ℓ=1, namely additive, multi-

plicative and hybrid. Our discussion considers only the first-order coherent models,
constructed using the Taylor approximation of the associated correction function.
However, models enforcing higher-order coherency as well as different approxima-
tions of the correction function could also be considered.

3.1 An additive approach

Using the additive approach, the coarse-level model ℎℓadd : R
𝑛ℓ → R is obtained by

correcting the low-cost function 𝑓 ℓ as follows

ℎℓadd (x
ℓ) = 𝑓 ℓ (xℓ) + 𝛾ℓadd (x

ℓ), (3)

where the additive correction function 𝛾ℓadd : R
𝑛ℓ → R accounts for the difference

between the value of 𝑓 ℓ and the fine-level model ℎℓ+1, i.e.,

𝛾ℓadd (x
ℓ) := ℎℓ+1 (Iℓ+1ℓ xℓ) − 𝑓 ℓ (xℓ). (4)



306 Alena Kopaničáková

Unfortunately, the evaluation of 𝛾ℓadd at any given xℓ requires an evaluation of
the fine-level model ℎℓ+1 at Iℓ+1

ℓ
xℓ . As a consequence, numerical computations

involving ℎℓadd are computationally more demanding than computations performed
using ℎℓ+1 directly. To ease the computational burden, we evaluate 𝛾ℓadd exactly only
at the initial coarse-level iterate xℓ0 = Pℓ+1

ℓ
xℓ+1𝜇𝑠
. Thus, we impose

𝛾ℓadd (x
ℓ
0) := ℎℓ+1 (xℓ+1𝜇𝑠

) − 𝑓 ℓ (xℓ0),

only at xℓ0. For any other xℓ , we approximate the correction function 𝛾ℓadd by means
of the first-order Taylor approximation, defined around xℓ0 as follows

�̃�ℓadd (x
ℓ) = 𝛾ℓadd (x

ℓ
0) + 〈∇𝛾ℓadd (x

ℓ
0), xℓ − xℓ0〉.

Replacing 𝛾ℓadd with �̃�
ℓ
add in (3) gives rise to

ℎℓadd (x
ℓ) := 𝑓 ℓ (xℓ) + ℎℓ+1 (xℓ+1𝜇𝑠

) − 𝑓 ℓ (xℓ0) + 〈∇𝛾ℓadd (x
ℓ
0), x

ℓ − xℓ0〉, (5)

where

∇𝛾ℓadd (x
ℓ
0) := Rℓ

ℓ+1∇ℎ
ℓ+1 (xℓ+1𝜇𝑠

) − ∇ 𝑓 ℓ (xℓ0). (6)

Note, the quantity ℎℓ+1 (xℓ+1𝜇𝑠
)− 𝑓 ℓ (xℓ0) enforces zeroth-order coherence between ℎ

ℓ+1

and ℎℓadd at x
ℓ+1
𝜇𝑠
and xℓ0, respectively, i.e., ℎ

ℓ
add (x

ℓ
0) = ℎℓ+1 (xℓ+1𝜇𝑠

). However, this term
does not affect the evaluation of the derivatives of ℎℓadd, and therefore it is often
neglected in practice. We also point out that the term ∇𝛾ℓadd (x

ℓ
0), known in the

multilevel literature as 𝜏-correction, ensures that condition (2) holds.

3.2 A multiplicative approach

Optimization methods that exploit multiple fidelities often employ multiplicative
correction functions [4]. In this case, the low-cost approximation 𝑓 ℓ associated with
level ℓ is made coherent with the model ℎℓ+1 as follows:

ℎℓmult (x
ℓ) = 𝛾ℓmult (x

ℓ) 𝑓 ℓ (xℓ). (7)

Here, the multiplicative correction function 𝛾ℓmult : R
𝑛ℓ → R is given as

𝛾ℓmult (x
ℓ) :=

ℎℓ+1 (Iℓ+1
ℓ

xℓ) + 𝜅

𝑓 ℓ (xℓ) + 𝜅
, (8)

where 𝜅 ≈ 𝜖 ensures numerical stability as the value of 𝑓 ℓ (xℓ) approaches zero.
Similar to the additive approach, evaluating 𝛾ℓmult precisely at all coarse-level

iterates is computationally expensive. Therefore, we impose (8) only at xℓ0, i.e.,
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𝛾ℓmult (x
ℓ
0) :=

ℎℓ+1 (xℓ+1𝜇𝑠
) + 𝜅

𝑓 ℓ (xℓ0) + 𝜅
,

where we explored that xℓ+1𝜇𝑠
= Iℓ+1

ℓ
xℓ0. At any other iterate xℓ , we approximate 𝛾ℓmult

by means of the first-order Taylor approximation, defined around xℓ0 as

�̃�ℓmult (x
ℓ) = 𝛾ℓmult (x

ℓ
0) + 〈∇𝛾ℓmult (x

ℓ
0), xℓ − xℓ0〉. (9)

Replacing 𝛾ℓmult with �̃�
ℓ
mult in (7) then gives rise to the first-order coherent model

ℎℓmult (x
ℓ) := �̃�ℓmult (x

ℓ) 𝑓 ℓ (xℓ). (10)

The numerical evaluation of �̃�ℓmult amounts to

�̃�ℓmult (x
ℓ) :=

ℎℓ+1 (xℓ+1𝜇𝑠
) + 𝜅

𝑓 ℓ (xℓ0) + 𝜅
+ 〈∇𝛾ℓmult (x

ℓ
0), xℓ − xℓ0〉,

where ∇𝛾ℓmult (x
ℓ
0) is given by

∇𝛾ℓmult (x
ℓ
0) :=

1
𝑓 ℓ (xℓ0) + 𝜅

(
Rℓ
ℓ+1∇ℎ

ℓ+1 (xℓ+1𝜇𝑠
)
)
−

ℎℓ+1 (xℓ+1𝜇𝑠
) + 𝜅

( 𝑓 ℓ (xℓ0) + 𝜅)2
∇ 𝑓 ℓ (xℓ0).

Straightforward calculations show that model ℎℓmult, defined by (10), is zeroth-order
and first-order coherent with ℎℓ+1 at xℓ0 and xℓ+1𝜇𝑠

, respectively.

3.3 A hybrid approach

From a computational point of view, additive and multiplicative approaches are
comparable. However, their behavior is very different. The additive approach adds
new terms to 𝑓 ℓ , which can be interpreted as uniform translation (zeroth-order),
and rotation (first-order) of the function graph; see also Fig. 1. In contrast, the
multiplicative approach introduces skewing, whichmight not be desirable if 𝑓 and 𝑓 ℓ
are in good agreement, at least locally. However, if functions 𝑓 ℓ and 𝑓 are not in
good agreement, then additional skewing can be beneficial [3], e.g., if the polynomial
order of 𝑓 is higher than the polynomial order of 𝑓 ℓ . Moreover, multiplication of 𝑓 ℓ
with �̃�ℓmult can introduce new minima on level ℓ, where ℓ < 𝐿. For instance, let us
suppose that 𝑓 ℓ is a second-order polynomial. Its multiplication with �̃�ℓmult increases
the order of the polynomial, i.e., we obtain a model ℎℓmult which is quartic and has,
in general, more minima than quadratic function.
In general, it is not known a priori whether the additive or the multiplicative

model is more suitable for a given optimization problem. To overcome this difficulty,
a hybrid approach [6] can be employed. A coarse-level model ℎℓmix is then obtained
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as a convex combination of the additive ℎℓadd and the multiplicative ℎ
ℓ
mult models, i.e.,

ℎℓmix (x
ℓ) := 𝑤ℓ

add ℎ
ℓ
add (x

ℓ) + 𝑤ℓ
mult ℎ

ℓ
mult (x

ℓ), (11)

where 𝑤ℓ
add/mult ∈ R and 𝑤

ℓ
add + 𝑤ℓ

mult = 1. In order to maximize the approximation
properties of ℎℓmix, the weights 𝑤

ℓ
add, 𝑤

ℓ
mult have to be chosen carefully. Below, we

describe two different strategies for selecting the values 𝑤ℓ
add and 𝑤

ℓ
mult.

3.3.1 Matching function values (MFV) at the previously evaluated fine-level
iterate

Following [2], the weights 𝑤ℓ
add, 𝑤

ℓ
mult can be selected by matching the function value

at the previously evaluated fine-level iterate, denoted by xℓ+1𝑝 , as in

𝑤ℓ
add =

ℎℓ+1 (xℓ+1𝑝 ) − ℎℓmult (x
ℓ
0)

ℎℓadd (x
ℓ
0) − ℎℓmult (x

ℓ
0)

and 𝑤ℓ
mult = 1 − 𝑤ℓ

add. (12)

From a computational point of view, evaluating (12) is cheap as ℎℓ+1 (xℓ+1𝑝 ) is readily
available, for instance from the 𝜇𝑠 − 1 pre-smoothing step performed on level ℓ + 1.

3.3.2 Bayesian updating approach

To maximize the approximation properties of ℎℓmix, it might be beneficial to take into
account the history of the 𝑑ℓ previously evaluated fine-level iterates [3]. Therefore,
we consider the dataset Dℓ = {(ℎℓ+1 (xℓ+1𝑝 ), ℎℓadd (P

ℓ
ℓ+1x

ℓ+1
𝑝 ), ℎℓmult (P

ℓ
ℓ+1x

ℓ+1
𝑝 )}𝑑ℓ

𝑝=1,
where each sample contains the function value of ℎℓ+1 at xℓ+1𝑝 , as well as the function
values of the coarse-level models ℎℓadd/mult obtained at Pℓ

ℓ+1x
ℓ+1
𝑝 . In this work, we

construct Dℓ by taking into account the last 𝑑ℓ iterates which were transferred from
level ℓ + 1 to level ℓ. For example, if 𝑑ℓ = 3, then Dℓ is constructed by taking into
account the iterate xℓ+1𝑝 = xℓ+1𝜇𝑠

, obtained as a result of the pre-smoothing step during
the previous three V-cycles. For simplicity, we use the notation 𝑑ℓ = ∞ to denote all
previous V-cycles.
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Having constructed the datasetDℓ , we can now employ the Bayesian posterior up-
dating approach [3] to determine the values of𝑤ℓ

add/mult. Starting from𝑤ℓ
add/mult = 0.5,

the weights are updated every time the model ℎℓ is constructed as follows:

𝑤ℓ
add/mult =

𝑤ℓ
add/mult𝜓

ℓ
add/mult

𝑤ℓ
mult/add𝜓

ℓ
mult/add + 𝑤ℓ

add/mult𝜓
ℓ
add/mult

. (13)

The model likelihoods 𝜓ℓ
add/mult in (13) are evaluated as

𝜓ℓ
add/mult =

(
2𝜋𝜎2add/mult

)−𝑑ℓ/2 exp(−𝑑ℓ/2), (14)

and the maximum likelihood estimator of the model variance is given by

𝜎2add/mult =
1
𝑑ℓ

𝑑ℓ∑︁
𝑝=1

(ℎℓ+1 (xℓ+1𝑝 ) − ℎℓadd/mult (P
ℓ
ℓ+1x

ℓ+1
𝑝 )). (15)

4 Numerical results and discussion
In this section,we investigate the influence of different coarse-levelmodels on the per-
formance of theNMMmethod using numerical examples from the field of supervised
learning, namely classification using ResNets [8]. Given a dataset S = {(z𝑠 , c𝑠)}𝑛𝑠𝑠=1,
where z𝑠 ∈ R𝑛𝑖𝑛 and c𝑠 ∈ R𝑛𝑜𝑢𝑡 , our goal is to find parameters x ∈ R𝑛 of a ResNet,
defined as RN : R𝑛𝑖𝑛 × R𝑛 → R𝑛𝑜𝑢𝑡 , by solving the followingminimization problem:

min
x∈R𝑛

𝑓 (x) := 1
𝑛𝑠

𝑛𝑠∑︁
𝑠=1

𝑔(RN(z𝑠 , x), c𝑠), (16)

where 𝑔 denotes the cross-entropy loss function.
Since (16) is a non-convex function, we choose the NMMmethod to be a variant

of the RMTR method [7]. The multilevel hierarchy and transfer operators are con-
structed by leveraging the fact that the ResNet can be interpreted as a forward Euler
discretization of an ordinary differential equation; see [10, 5] for details. Here, we
construct a hierarchy of ResNets by uniformly refining a ResNet with three layers
three times. Fig. 4 demonstrates the number of effective gradient evaluations1 of
the RMTR method with respect to different coarse-level models for three different
datasets.
As we can observe, the choice of the coarse-level model has a significant impact

on the overall efficiency of the multilevel method. For all three examples, hybrid
approaches outperform purely additive and multiplicative ones. In terms of hybrid

1 The number of effective gradient evaluations is obtained as
∑𝐿

ℓ=1 2ℓ−𝐿𝑊ℓ𝐶𝐿 , where𝐶𝐿 represents
a cost associatedwith an evaluation of the gradient on the level 𝐿,𝑊ℓ describes a number of gradient
evaluations performed on a level ℓ, and 2ℓ−𝐿 is a coarsening factor in 1D.
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Model/Example Blobs Smiley Spiral
ℎadd 29 ± 5.3% 676 ± 11.2% 203 ± 12.3%
ℎmult 32 ± 6.1% 485 ± 15.1% 153 ± 15.9%
ℎmix (𝑤 = 0.5) 38 ± 4.8% 404 ± 10.3% 297 ± 11.3%
ℎmix (MFV) 25 ± 4.2% 352 ± 6.5% 123 ± 7.1%
ℎmix (𝑑ℓ = 5) 25 ± 3.4% 514 ± 6.3% 197 ± 6.8%
ℎmix (𝑑ℓ = 20) 24 ± 2.9% 471 ± 7.7% 156 ± 7.4%
ℎmix (𝑑ℓ = ∞) 25 ± 3.8% 301 ± 6.9% 126 ± 9.9%

Fig. 2 Left: Blobs, Smiley, and Spiral datasets (Top to Down). Each class is illustrated by different
color. Right: The average number of effective gradient evaluations of the RMTRmethod (4 levels).
Averages are obtained from 5 independent runs.

models, we observe that the Bayesian approach performs similar, or superior toMFV,
especially if all prior fine-level iterates are considered (𝑑ℓ = ∞).
Given our (limited) numerical experience, we believe that employing hybrid,

and possibly other types of novel coarse-level models, provides a promising future
direction for improving the efficiency and the reliability of NMM methods.
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