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1 Introduction

In thiswork,we consider a nonlinear preconditioning strategy forQuasi-Newton (QN)
methods. QN methods are a class of root-finding methods, where the full Jacobian
is replaced with an approximation. In the context of this work, we consider secant
methods, which take into account a variable number of secant equations at each
nonlinear iteration. These types of methods are mostly used if the Jacobian of the
nonlinear system is expensive to evaluate, requires more storage, or is simply un-
available. Such scenarios are often encountered while solving coupled multiphysics
problems that require higher-order discretization, inverse problems, optimal control
problems, training of deep neural networks, etc.
To this aim, we consider the following abstract nonlinear minimization problem:

Find 𝑥∗ ∈ V that minimizes Ψ(𝑥), (1)

where Ψ : V → R denotes a bounded, twice continuously differentiable objective
function. The objective functionΨ is obtained by a finite element (FE) discretization
of a nonlinear optimization problem, and V denotes some FE space. To solve (1),
we can consider the first-order optimality condition for the function Ψ(𝑥), and then
a nonlinear iterative method can be employed to find the root of the nonlinear
equation 𝐹 (𝑥∗) = 0, where 𝐹 : V → V ′ is defined as 𝐹 (·) ≡ ∇Ψ(·). We also note
that the Hessian of the objective function ∇2Ψ is equivalent to the Jacobian 𝐹 ′.
Depending on the properties of the objective function Ψ, multiple approaches can
be considered to solve (1), for example, Newton’s method and its variants; nonlinear
Krylov methods; secant methods [11].
Among all these methods, Newton’s method is one of the most popular methods

to solve such problems due to its locally quadratic convergence property. However,
its convergence might suffer if the objective function is highly nonlinear with lo-
cally stiff or unbalanced nonlinearities and/or if the initial guess is far from a local
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minimizer. In recent years, some nonlinear preconditioning strategies have been de-
veloped to accelerate the convergence of Newton’s method, e.g.: Additive Schwarz
Preconditioned Inexact Newton (ASPIN) [1]; Nonlinear Elimination Preconditioned
Inexact Newton (NEPIN) [2]; Restricted Additive Schwarz Preconditioned Exact
Newton (RASPEN) [5]. Similarly, in the context of optimization methods, nonlin-
ear preconditioning strategies have been considered to improve the convergence of
a nonlinear Krylov method [3] and a quasi-Newton (QN) method [4]. To the best
of our knowledge, unlike the ASPIN, NEPIN, and RASPEN methods, the nonlin-
ear domain decomposition-based preconditioners have not yet been considered for
nonlinear Krylov methods and QN methods.
In this work, we apply the nonlinear Schwarz preconditioning strategies to ac-

celerate the convergence of the standard QN methods. We explore the “left” and
“right” nonlinear preconditioning strategies and discuss the necessary modifications
to the QN framework. Finally, we examine the efficiency of the preconditioned QN
methods by means of some numerical experiments.

2 Preconditioned Quasi-Newton methods

In this section, we discuss QN methods, nonlinear restricted additive Schwarz
(NRAS) methods, and how to nonlinearly precondition QN methods.

Quasi-Newton methods: Quasi-Newton (QN) methods are quite popular in the op-
timization community, especially when the Hessian of the underlying minimization
problem is unavailable or very expensive to evaluate. In QN methods, the evaluation
of the Hessian is replaced by its low-rank approximation. This low-rank approx-
imation of the Hessian is carried out using a secant condition. At each iteration,
the approximation of the Hessian 𝐵 is constructed using the information between
subsequent iterations. The approximate Hessian, 𝐵 (𝑘+1) , satisfies the secant equation

𝐵 (𝑘+1) 𝑠 (𝑘) = 𝑦 (𝑘) , (2)

where 𝑠 (𝑘) = 𝑥 (𝑘+1) − 𝑥 (𝑘) and 𝑦 (𝑘) = 𝐹 (𝑥 (𝑘+1) ) − 𝐹 (𝑥 (𝑘) ). As the secant equation
is not sufficient to uniquely determine the matrix 𝐵, additional constraints have to
be imposed on 𝐵, which gives rise to different variants of the QN methods. In this
work, we consider two types of multi-secant methods, namely the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method, and the Andersen acceleration (AA) method. As
one of themotivations of this work is reducing thememory footprint of the algorithm,
the limited-memory variant of the BFGS method (L-BFGS), and of the AA method,
becomes a natural choice. These methods utilize only the 𝑚 pairs of the vectors
{𝑠 (𝑖) , 𝑦 (𝑖) }𝑘−1

𝑖=𝑘−𝑚 from the 𝑚 most recent iterations to construct the approximate
Hessian. We note that the original AA method is not proposed in the context of the
optimization but its interpretation as a QN method is established in [6, 12]. The
approximate Hessians obtained by the L-BFGS method and the type-I AA method
(AA-I) at an iterate 𝑘 + 1 can be written in a compact matrix format in the following
manner:
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(L-BFGS) 𝐵 (𝑘+1) = 𝐵0 −
[
𝐵0𝑆𝑘 𝑌𝑘

] [𝑆𝑘𝐵0𝑆𝑘 𝐿𝑘

𝐿>
𝑘
−𝐷𝑘

]−1 [
𝑆>
𝑘
𝐵0

𝑌>
𝑘

]
,

(AA-I) 𝐵 (𝑘+1) = 𝐼 + (𝑌𝑘 − 𝑆𝑘 ) (𝑆>𝑘 𝑆𝑘 )
−1𝑆>𝑘 .

(3)

Here, 𝑆𝑘 := [𝑠 (𝑘−𝑚) , . . . , 𝑠 (𝑘−1) ], 𝑌𝑘 := [𝑦 (𝑘−𝑚) , . . . , 𝑦 (𝑘−1) ], 𝐿𝑘 and 𝐷𝑘 denote
the strictly lower triangular, and the diagonal part of matrix 𝑆>

𝑘
𝑌𝑘 , 𝐵0 denotes

some initial Hessian approximation. In order to find the search direction 𝑝 (𝑘) , we
need the inverse of the approximate Hessians, which is generally obtained using
the Sherman–Morrison–Woodbury formula. To accelerate the convergence speed of
these methods, we propose to precondition the QN methods with an NRAS method.

Nonlinear Restricted Additive Schwarz Methods: We consider a decomposition
of the domain Ω into 𝑛 non-overlapping domains {Ω𝑖}𝑛𝑖=1 and overlapping domains
as {Ω𝛿

𝑖
}𝑛
𝑖=1, such thatΩ𝑖 ⊂ Ω𝛿

𝑖
, here 𝛿 denotes the size of the overlap. The FE spaces

associated with the overlapping domains are defined as {V 𝛿
𝑖
}𝑛
𝑖=1, V

𝛿
𝑖
⊂ V . On

these overlapping subspaces, we define the restriction and prolongation operators
as 𝑅𝛿

𝑖
: V → V 𝛿

𝑖
and 𝑃𝛿

𝑖
: V 𝛿

𝑖
→ V , respectively. We note that for 𝛿 = 0, the

overlapping decomposition degenerates to a non-overlapping decomposition, i.e.,
Ω𝑖 = Ω0

𝑖
. The prolongation operator on the non-overlapping subspaces is termed

as restricted prolongation operator, 𝑃0
𝑖
: V0

𝑖
→ V . The overlapping and the non-

overlapping decomposition of the subspaces ensures that the partition of unity is
satisfied, e.g.,

∑𝑛
𝑖=1 𝑃

0
𝑖
𝑅𝛿
𝑖
= 𝐼.

Now, we can define a local nonlinear minimization problem restricted to each
overlapping subspace as follows. For a given initial guess 𝑥 (0)

𝑖
= 𝑅𝛿

𝑖
𝑥 (𝑘) :

Find 𝑥∗𝑖 ∈ V 𝛿
𝑖 that minimizes Ψ𝛿

𝑖 (𝑥𝑖). (4)

Here,Ψ𝛿
𝑖
: V 𝛿

𝑖
→ R is the restriction of the objective functionΨ to the subspace V 𝛿

𝑖
.

Once the minimization problem is approximately solved on each subdomain, the
global iterate is updated in the following manner

𝑥 (𝑘+1) = 𝑥 (𝑘) + 𝛼 (𝑘)
∑︁𝑛

𝑖=1
𝑃0𝑖 (𝑥∗𝑖 − 𝑅𝛿

𝑖 𝑥
(𝑘) ). (5)

We note that the problem (4) is solved on the overlapping subdomains, but the
correction is accepted only on the non-overlapping part. Furthermore, to construct
a two-level variant of the NRAS method, we define a coarse space V0 ⊂ V and
the restriction and the prolongation operators 𝑅0 : V ′ → V ′0 and 𝑃0 : V0 → V ,
where 𝑃>0 = 𝑅0. Also, we define a projection operator Π0 : V → V0 to transfer the
primal variables to the coarse level. The objective function on the coarse level is
defined as Ψ0 : V0 → R, which denotes a discretization of the function Ψ on the
space V0. The coarse space plays an important role in the NRASmethod, as it allows
global communication between the subdomains and ensures the scalability of the
algorithm. In this work, the coarse-level objective function is defined in the spirit of
the full approximation scheme (FAS) or the MG-Opt method [10]. The coarse-level
function is constructed by adding a first-order consistency term, which is also called
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a “defect” in the context of FAS. Thus, the optimization problem on the coarse level
is defined as follows. For an initial guess 𝑥 (0)0 = Π0𝑥

(𝑘) :

Find 𝑥∗0 that minimizes Ψ̂0 (𝑥0) := Ψ0 (𝑥0) + 〈𝛿𝑔0, 𝑥0〉 (6)

where 𝛿𝑔0 = 𝑅0∇Ψ(𝑥 (𝑘) ) − ∇Ψ0 (Π0𝑥 (𝑘) ) denotes the first-order consistency term.
Additionally, we employ a multiplicative variant of the coarse-level update, where
we first approximately solve the problem on the coarse level and bootstrap the initial
guess on the subdomains using the approximate solution from the coarse level. The
update step for the two-level NRAS is given as follows:

𝑥 (𝑘+1) = 𝑥 (𝑘) + �̂�𝑇0 (𝑥 (𝑘) ) + 𝛼
∑︁𝑛

𝑖=1
𝑃0𝑖 (𝑥∗𝑖 − 𝑅𝛿

𝑖 (𝑥 (𝑘) + �̂�𝑇0 (𝑥 (𝑘) ))) (7)

where 𝑇0 (𝑥 (𝑘) ) = 𝑃0 (𝑥∗0 −Π0𝑥
(𝑘) ) denotes the coarse-level correction. We note that

in (7), �̂� and 𝛼 are computed using a line-search method, while 𝑥∗
𝑖
and 𝑥∗0 denote the

approximate solutions of problems (4) and (6), respectively.

Nonlinear preconditioning: In this section, we discuss strategies to nonlinearly
preconditioned quasi-Newton methods. Recall, we seek 𝑥∗ ∈ V such that 𝐹 (𝑥∗) = 0.
A nonlinear preconditioner 𝐺 of the residual function 𝐹 is defined such that the
preconditioner 𝐺 approximates the inverse of the residual i.e., 𝐺 ≈ 𝐹−1. Practically,
it is not possible to obtain such a preconditioning operator𝐺 explicitly but, generally,
such an operator can be defined implicitly as a fixed-point nonlinear iterative scheme,
given as 𝑥 = 𝐺 (𝑥). The operator,𝐺, can be applied to the nonlinear residual as either
a “left” or a “right” preconditioner, which gives rise to two different nonlinearly
preconditioned residuals

F𝐿 (𝑥) = 𝐺𝐿 (𝐹 (𝑥)) = 𝑥 − 𝐺 (𝑥), F𝑅 (𝑥) = 𝐹 (𝐺𝑅 (𝑥)) = 𝐹 (𝐺 (𝑥)). (8)

We remark that the left preconditioning operator is not equivalent to a fixed-point
nonlinear iterative method 𝐺𝐿 ≠ 𝐺, while the right preconditioning operator is
a fixed-point iteration scheme 𝐺𝑅 = 𝐺. The ASPIN and RASPEN methods are the
“left” preconditioned methods, where the nonlinear residual is first computed using
a fixed-point method, and Newton’s method is used to solve the equationF𝐿 (𝑥) = 0.
The NEPIN method [2], nonlinear FETI-DP and BDDC methods [7] are considered
to be the “right” preconditioned methods.
We define generic iterations for both types of preconditioning strategies. The iter-

ation for the preconditioned QN method can be achieved by replacing the residual 𝐹
with the preconditioned residual given asF𝐿/𝑅. For a given initial iterate 𝑥 (𝑘) , we first
compute 𝑥 (+) using a NRAS method, i.e., 𝑥 (+) = 𝐺 (𝑥 (𝑘) ). Once the preconditioning
step has been carried out, we can define the iteration for the “left-preconditioned”
QN method as,

𝑥 (𝑘+1) = 𝑥 (𝑘) − 𝛼 (𝑘)
(
𝐵
(𝑘)
𝐿

)−1F𝐿 (𝑥 (𝑘) ), where F𝐿 (𝑥 (𝑘) ) = 𝑥 (𝑘) − 𝐺 (𝑥 (𝑘) ). (9)
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Algorithm 1: Nonlinearly Preconditioned QN method
Data: 𝐹 : V → V ′, 𝑥 (0) ∈ V , 𝑘 ←[ 0
Result: 𝑥 (𝑘)

1 while ‖𝐹 (𝑥 (𝑘) ) ‖ > 𝜖rtol ‖𝐹 (𝑥 (0) ) ‖ do
2 For given 𝑥 (𝑘) , compute the preconditioned residual F𝐿/𝑅 (𝑥 (𝑘) )
3 Compute direction using L-BFGS/AA-I approximation of preconditioned Hessian

𝑝
(𝑘)
𝐿/𝑅 ← [ −

(
𝐵
(𝑘)
𝐿/𝑅

)−1F𝐿/𝑅𝑥
(𝑘)

4 Find 𝛼 (𝑘) using a line-search algorithm
5 Update iterate: 𝑥 (𝑘+1) ← [ 𝑥 (𝑘) + 𝛼 (𝑘) 𝑝 (𝑘)

𝐿
or 𝑥 (𝑘+1) ←[ 𝑥 (+) + 𝛼 (𝑘) 𝑝 (𝑘)

𝑅

6 Compute 𝑠 (𝑘)
𝐿/𝑅 as in (12) and 𝑦

(𝑘)
𝐿/𝑅 using (13)

7 Update the history of secant pairs {𝑠 (𝑘)
𝐿/𝑅 , 𝑦

(𝑘)
𝐿/𝑅 }

8 Update 𝑘 ←[ 𝑘 + 1

The update process for the “right-preconditioned” QNmethod differs from the “left-
preconditioning” approach. The iteration for the “right-preconditioned” QN method
is given as

𝑥 (𝑘+1) = 𝑥 (+) − 𝛼 (𝑘)
(
𝐵
(𝑘)
𝑅

)−1F𝑅 (𝑥 (𝑘) ), where F𝑅 (𝑥 (𝑘) ) = 𝐹 (𝐺 (𝑥 (𝑘) )). (10)

In (9) and (10), we compute 𝛼 (𝑘) using a line-search method. We note that, the oper-
ator 𝐺 can be explicitly given by (5) and (7) for one-level and two-level NRAS pre-
conditioner, respectively. Here, 𝐵 (𝑘)

𝐿
and 𝐵 (𝑘)

𝑅
denote the approximation of the “left”

and “right” preconditioned Hessians, respectively. The QN method aims to approx-
imate the Hessian of the underlying optimization function utilizing a set of vectors
{𝑠𝑘 , 𝑦𝑘 }. As we have preconditioned the QN method, we also have to change the un-
derlying secant equation and corresponding secant pairs. The corresponding secant
equations for the “left” and the “right” preconditioned systems are now given as

𝐵
(𝑘+1)
𝐿

𝑠
(𝑘)
𝐿

= 𝑦
(𝑘)
𝐿

, 𝐵
(𝑘+1)
𝑅

𝑠
(𝑘)
𝑅

= 𝑦
(𝑘)
𝑅

. (11)

From (9) and (10), it is clear that 𝑠 (𝑘)
𝐿/𝑅 at each iteration are defined as corrections,

which are given as

𝑠
(𝑘)
𝐿

= 𝑥 (𝑘+1) − 𝑥 (𝑘) , 𝑠
(𝑘)
𝑅

= 𝑥 (𝑘+1) − 𝑥 (+) . (12)

Now, we focus our attention on the computation of 𝑦 (𝑘)
𝐿/𝑅, which are defined as the

difference between the preconditioned residuals

𝑦
(𝑘)
𝐿

= F𝐿 (𝑥 (𝑘+1) ) − F𝐿 (𝑥 (𝑘) ), 𝑦
(𝑘)
𝑅

= 𝐹 (𝑥 (𝑘+1) ) − 𝐹 (𝑥 (+) ). (13)

We note that for the “right” preconditioning approach, the nonlinear preconditioner
can be simplified as F𝑅 (𝑥 (𝑘) ) = 𝐹 (𝐺 (𝑥 (𝑘) )) = 𝐹 (𝑥 (+) ), and the iteration in (10)
can be further simplified as
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𝑥 (𝑘+1) = 𝑥 (+) − 𝛼 (𝑘)
(
𝐵
(𝑘)
𝑅

)−1
𝐹 (𝑥 (+) ).

This update process can be interpreted as a half iteration, while the first half of the it-
eration is the preconditioning step 𝑥 (+) = 𝐺 (𝑥 (𝑘) ). Hence, the “right-preconditioned”
QN method should only construct the approximation of the Hessian for the second
half of the iteration.
A sketch of the nonlinearly preconditioned quasi-Newton method is provided in

Algorithm 1.

3 Numerical experiments

We investigate the performance of the nonlinearly preconditioned QN method
through some numerical experiments. To this aim, we consider a domain Ω =

(0, 1)2 with the boundary Γ. The boundary Γ is decomposed into four parts: top
(Γ𝑡 = [0, 1] × {1}), bottom (Γ𝑏 = [0, 1] × {0}), left (Γ𝑙 = {0} × [0, 1]) and right
(Γ𝑟 = {1} × [0, 1]). We use the discretize-then-optimize approach, where the dis-
cretization is done with the first-order FE method using a mesh with 200 × 200
quadrilateral elements. The coarse level is also constructed with the same approach,
where a mesh with 10 × 10 elements is employed for discretization.

Minimal surface: This experiment aims to find the surface of the minimal area
described by the function 𝑢 by solving the following minimization problem:

min
𝑢∈𝐻 1 (Ω)

Ψ𝑀 (𝑢) =
∫
Ω

√︁
(1 + ‖∇𝑢‖2) 𝑑𝑥,

subject to

{
𝑢 = −0.5 sin(2𝜋𝑥2) on Γ𝑙 , 𝑢 = 0.5 sin(2𝜋𝑥2) on Γ𝑟 ,
𝑢 = −0.5 sin(2𝜋𝑥1) on Γ𝑏 , 𝑢 = 0.5 sin(2𝜋𝑥1) on Γ𝑡 .

(14)

Setup for the solution methods: As we aim to study the behavior of the precon-
ditioned QN method, we use a fixed configuration of the TL-NRAS method. The
overlap for all experiments is prescribed as 𝛿 = 2, and the domain Ω is decom-
posed into 8 subdomains. The partitioning of the mesh is carried out using the
METIS library. The preconditioned QN is terminated if one of these conditions
is satisfied: ‖𝐹 (𝑥 (𝑘) )‖ < 10−7 or ‖𝐹 (𝑥 (𝑘) )‖ < 10−6‖𝐹 (𝑥 (0) )‖. The subdomain
solvers in the TL-NRAS method employ Newton’s method, which terminates if
‖𝐹𝑖 (𝑥 (𝑘)𝑖

)‖ < 10−10 or ‖𝐹𝑖 (𝑥 (𝑘)𝑖
)‖ < 10−1‖𝐹𝑖 (𝑥 (0)𝑖

)‖ is satisfied. On the coarse
level, we also employ Newton’s method, which terminates if ‖𝐹0 (𝑥 (𝑘)0 )‖ < 10

−12 or
‖𝐹0 (𝑥 (𝑘)0 )‖ < 10

−10‖𝐹0 (𝑥 (0)0 )‖ is satisfied, also the maximum number of iterations
is set to 5. We note, Newton’s method can be replaced by a multigrid preconditioned
Jacobian-free Newton-Krylov method [9] to reduce the memory requirement of the
overall methodology. We employ backtracking line-search algorithm with strong
Wolfe condition [11, Alg. 3.1, Eq. (3.7)], with 𝑐1 = 10−4, 𝑐2 = 0.99, and the value
of 𝜌 is chosen to be 0.5 for global solvers and 0.1 for subdomain solvers. The ex-
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Table 1 Number of iterations and the time to solution for the L-BFGS method and the TL-NRAS
preconditioned QN methods. (L)/(R) denote left/right preconditioning.

Memory m = 1 m = 3 m = 5 m = 7 m = 10
Time (s) # Iter Time (s) # Iter Time (s) # Iter Time (s) # Iter Time (s) # Iter

L-BFGS 698.16 643 720.01 642 699.53 646 702.62 679 536.40 513
L-BFGS (L) 301.37 25 288.69 23 296.82 24 288.61 23 300.00 25
L-BFGS (R) 426.21 36 296.99 22 278.68 20 273.99 19 272.45 20
AA-I (L) 350.60 30 285.56 22 284.20 22 287.44 23 284.43 22
AA-I (R) 374.47 36 274.40 22 281.74 23 269.98 21 281.21 22

0 10 20 30 40

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

# iterations

∥F
(x

)∥
2

Newton
TL-NRAS
L-BFGS
L-BFGS (L)
L-BFGS (R)
AA-I (L)
AA-I (R)
RASPEN (L)
RASPEN (R)

Fig. 1 Convergence history of the L-BFGS method, Newton’s method, TL-NRAS method, and
TL-NRAS preconditioned QN and RASPEN methods. The QN methods are configured to use the
last 7 secant pairs.

periments are carried out using MATLAB on a system with an Intel Core i9-9880H
processor, and 16GB of memory.

Convergence study: In order to study the convergence behavior of the precondi-
tioned QNmethod, the “left” and the “right” preconditioned variants of the L-BFGS
methods and the AA-I method are considered. For this numerical experiment, we
store𝑚 pairs of secant vectors, where𝑚 ∈ {1, 3, 5, 7, 10}. Table 1 depicts the time to
solution and the required number of iterations to satisfy the termination criterion for
different solution methods and different values of 𝑚. We have included only precon-
ditioned AA-I method in our study.★ From Table 1, it is clear that the preconditioned
QN methods outperform the standard L-BFGS method both in terms of the number
of iterations and the computational time. Regardless of the number of stored secant
pairs, the preconditioned L-BFGS methods and AA-I methods are two times faster
than the L-BFGSmethod. The preconditioned AA-I methods and the preconditioned
L-BFGS methods have comparable performance. While the “right” preconditioned
L-BFGSmethods outperform all other methods if more pairs of secant pairs are used.
Figure 1 depicts the convergence history of the preconditioned QNmethods, the two-
level NRAS method, and Newton’s method. We can observe that the preconditioned

★ The AA-I method requires factorization of 𝑆>
𝑘
𝑌𝑘 , which is not possible if the successive pairs of

{𝑠 (𝑘) , 𝑦 (𝑘) } are very similar. To avoid such issues, one can construct the pairs in such a way that
successive 𝑠 (𝑘) are orthogonal [12].
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QN method outperforms Newton’s method and the L-BFGS method. Also, we can
see that the TL-NRAS method has linear convergence, and by employing a QN
method as an outer solver we can reduce the number of required iterations in half.
Specifically for the left-preconditioning, in comparison with the RASPEN methods
the preconditioned QN method shows only mild deterioration in the convergence.
From the performed experiments, we can conclude that the proposed domain

decomposition-based preconditioning strategy is quite robust both in the case of the
L-BFGS method and the type-I AA method. This works provides a promising future
direction for problems when memory is a limiting factor, for example for solving the
phase field fracture problems [8] or for the training of deep neural networks.
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