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1 Introduction

We consider a Lipschitz domain Ω ⊂ Rd, d = 2, 3, and a triangulation T on Ω.
Now, we define V = span{φp}p∈N as a Finite Element (FE) space, where N
denotes a set of nodes of the mesh T . Furthermore, we introduce the feasible set
F = {v ∈ V | ψ 6 v 6 ψ}, where ψ,ψ denote the component-wise lower bound
and upper bound, respectively.

We consider the following abstract nonlinear minimization problem:

Find v∗ = arg minv∈Ff(v), (1)

where f : V → R denotes a bounded, twice-Lipschitz-continuously-differentiable
objective function. Problems of this type arise in numerous applications, such as
contact mechanics [15], or fracture mechanics [12, 13].

Under certain assumptions on the function f , the minimization problem (1) can
be equivalently rewritten as a nonlinear complementarity problem (NCP). As the
first-order optimality conditions for (1) are given as: Find v ∈ V such that

∇f(v) 6 0, v − ψ 6 0, 〈∇f(v), v − ψ〉 = 0, ∀v ∈ F \ F ,
∇f(v) > 0, ψ − v 6 0, 〈∇f(v), ψ − v〉 = 0, ∀v ∈ F \ F ,

(2)

where F = {v ∈ F | v = ψ} and F = {v ∈ F | v = ψ} denote boundaries
of the feasible set F . Standard approaches for solving such minimization problems
include penalty/augmented Lagrangian methods, interior-point methods, or active-
set methods; see [16] for a detailed overview. In this work, we focus our attention on
Newton-based active-set methods, namely the semismooth Newton method, and the
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sequential quadratic programming (SQP) Newton method. Although the active-set
methods are fairly efficient, their convergence tends to deteriorate due to three main
factors: inability to detect an active-set sufficiently fast; strong and highly unbalanced
nonlinearities; and ill-conditioning of the problem.

In the context of unconstrained nonlinear problems, nonlinear additive Schwarz
preconditioners have been demonstrated to accelerate the convergence of the Newton
methods; see for example Additive Schwarz Preconditioned Inexact Newton (AS-
PIN) [6], Restricted Additive Schwarz Preconditioned Exact Newton (RASPEN) [8],
or Nonlinear Elimination Preconditioned Inexact Newton (NEPIN) [7] methods. In
this work, we aim to extend a class of Schwarz preconditioned Newton methods to
solve constrained nonlinear optimization problems. To the best of our knowledge,
there have been only a few attempts to employ Schwarz methods to solve variational
inequalities, for instance [1, 2, 3, 11]. In this work, we introduce a two-level nonlinear
additive Schwarz preconditioner for the Newton-SQP method, which ensures that
the subdomain and coarse-level corrections remain in the feasible set.

2 Nonlinear preconditioning

We define a residual function F : V → V ′ as the gradient of the original objective
function, i.e., F (·) ≡ ∇f(·). Let G be a nonlinear preconditioner of the residual
functionF , such that in some senseG denotes an approximate inverse of the nonlinear
function F , i.e., G ≈ F−1. Now, we can define nonlinearly-preconditioned residual
function as F (v) := F (G(v)). This preconditioner is used to define a nonlinearly-
preconditioned variational inequality problem as follows: Find v ∈ V such that

F (v) 6 0, v − ψ 6 0, 〈F (v), v − ψ〉 = 0, ∀v ∈ F \ F ,
F (v) > 0, ψ − v 6 0, 〈F (v), ψ − v〉 = 0, ∀v ∈ F \ F ,

(3)

where the solution of (3) is the same as the solution of (1) and (2). Please note that
the operatorG is used as a “right-preconditioner", since this type of preconditioning
does not change the original nonlinear system, and it also avoids the transformation of
bound constraints into general inequality constraints. Generally, the preconditionerG
can be constructed implicitly as a fixed-point iteration, i.e., v(k+1) = G(v(k)). In
this work, we construct G using a variant of the nonlinear Restricted Additive
Schwarz (NRAS) method, termed as NRAS-B method. Contrary to the standard
NRAS method, the NRAS-B method ensures that the bound constraints are not
violated by taking the preconditioning step. Thus, the preconditionerG produces an
iterate that remains in the feasible set, i.e., v(k) ∈ F , for all k = 1, 2, . . .

NRAS-B method: We consider a decomposition of the FE space V into n over-
lapping and non-overlapping subspaces, denoted by {Vi}ni=1 and {Ṽi}ni=1, respec-
tively. The overlap between the subspaces is controlled by the variable δ, defined as
a multiple of the mesh-width h of the underlying mesh T . On these subspaces, we
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define the standard restriction operator Ri : V → Vi, and the prolongation operator
Pi : Vi → V , whereR>i = Pi. Similarly, we define a restricted prolongation operator
P̃i : Ṽi → V such that

∑n
i=1 P̃iRi = I .

Utilizing the aforementioned decomposition and the transfer operators, we now
define the constrained nonlinear optimization problem on each subspace as follows.
For a given initial guess v(0)i ∈ Fi, where v(0)i ← [ Riv(k):

Find v∗i = arg minvi∈Fi
fi(vi), (4)

where fi : Vi → R denotes a restriction of the function f to the subspace Vi. The fea-
sible set associatedwith the subspaceVi is given byFi = {vi ∈ Vi | ψi 6 vi 6 ψi}.
Here, we point out that the local minimization problems (4) are solved on overlap-
ping subspaces. However, the global iterate v(k) is updated using the corrections
associated with the non-overlapping subspaces, as in

v(k+1) = v(k) + α

n∑
i=1

P̃i(v
∗
i −Riv(k)), (5)

where v∗i denotes a solution of (4) and α is computed using a line-search strategy.
Solving (4) and update rule (5) comprise an iteration of the NRAS-B method.

Two-level NRAS-B method: The convergence of additive Schwarz methods is
known to deteriorate with an increasing number of subdomains. In order to achieve
algorithmic scalability, it is essential to ensure global information transfer through
a coarse space. In the context of constrained minimization problems, constructing
a coarse space is not a trivial task, as one has to ensure that the prolongated corrections
from the coarse level provide a sufficient decrease in the objective function f ,
and the updated iterate remains in the feasible set. We construct a coarse-level
objective function f0 : V0 → R, where V0 denotes a coarse space V0 ⊂ V , and T0
denotes a mesh associated with the FE space V0. The transfer of information between
the coarse level and the original problem is ensured by the prolongation operator
P0 : V0 → V and the restriction operatorR0 : V ′ → V ′0, whereR0 = P>0 .Moreover,
we also employ the projection operator Π0 : V → V0 in order to transfer primal
quantities to the coarse level.

In the context of nonlinear multilevel methods, several approaches for construct-
ing the coarse-level feasible set F0 = {v0 ∈ V0 | ψ0

6 v0 6 ψ0} are considered in
the literature [9, 10, 14]. Here, we utilize constraint-projection rules from [9] and
construct ψ

0
, ψ0 in a component-wise manner as

(ψ
0
)t = (v0)t + max

j∈N ∩ ( 8ω0)t
[(ψ − v(k))j ],

(ψ0)t = (v0)t + min
j∈N ∩ ( 8ω0)t

[(ψ − v(k))j ],
(6)

where the symbol (·)t denotes the value of a function associated with the t-th node
of the mesh. The support of the basis function (φ0)t is denoted by (ω0)t. Now, we
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Algorithm 1: RASPN-B method
Data: f : V → R, ψ ∈ V , ψ ∈ V , v(0) ∈ F , k ←[ 0
Result: v(k)

1 while ‖[∇f(v(k))]F‖ > εatol do
2 For given v(k), find v(+) by using a step of NRAS-B or TL-NRAS-B method
3 Assemble gradient and Hessian: g ←[ ∇f(v(+)),H ← [ ∇2f(v(+))

4 Find s(k) by solving the following constrained quadratic optimization problem
min
s(k)

Q(s(k)) := 1/2〈Hs(k), s(k)〉+〈g, s(k)〉, s. t. ψ−v(+) 6 s(k) 6 ψ−v(+)

5 Find α(k) using a line-search algorithm
6 Update the iterate: v(k+1) ← [ v(+) + α(k)s(k), k ←[ k + 1

can define the optimization problem on the coarse level as follows. For a given initial
guess v(0)0 ∈ F0, where v

(0)
0 ← [ Π0v

(k):

Find v∗0 = arg minv0∈F0
f̂0(v0). (7)

Please note thatminimization problem (7) is defined using an augmented coarse-level
objective function f̂0, defined as

f̂0(v0) = f0(v0) + 〈R0∇f(v(k))−∇f0(Π0v
(k)), v0〉, (8)

where v(k) denotes the current iterate on the fine level. By adding the first-order
consistency term to the objective function f0, we ensure that the gradient of the
augmented objective function f̂0 at the first iterate is the restricted fine-level gradient.

We follow an inverted V-cycle approach, where a coarse-level update step is
followed by a single step of NRAS-B iteration, i.e., iterate v(k) is updated as follows:

v(k+
1/2) = v(k) + α̂P0(v

∗
0 −Π0v

(k)),

v(k+1) = v(k+
1/2) + α

n∑
i=1

P̃i(v
∗
i −Riv(k+

1/2)).
(9)

The symbol v∗0 in (9) denotes the solution of the coarse-level minimization prob-
lem (7), while v∗i is the solution of the subproblem (4) associated with the i-th
subspace. The step sizes α̂ and α are again obtained using a line-search algorithm.
Combining solutions of (7) and (4) with update rule (9), we can define an iteration
of the TL-NRAS-B method.

Nonlinearly-preconditioned Newton SQP method: Finally, we provide a brief
description of the nonlinearly-preconditioned Newton-SQP method for bound-
constrained optimization problems. As summarized in Alg. 1, the method consists
of two main phases. First, we invoke a step of the NRAS-B/TL-NRAS-B method
in order to obtain an updated iterate v(k). Later, we construct a quadratic model Q,
which is minimized subject to the bound constraints with the aim of obtaining a new



Nonlinear Preconditioning for Bound-Constrained Optimization Problems 323

search direction s(k). In contrast to standard preconditioned Newton methods [5, 7],
the minimization of the quadratic model is subjected to pointwise constraints, which
ensures that the updated iterates remain in the feasible set F . We note that the right-
preconditioning can also be interpreted as a multiplicative or a composite solver [4].

3 Numerical experiments

In this section, we investigate the performance of nonlinear Schwarz preconditioners
using two constrained minimization problems, namely the ignition and the minimal
surface problems. Both numerical examples are defined on a domain Ω := (0, 1)2

with boundary Γ = ∂Ω, which is decomposed into four parts: Γl = {0} × [0, 1],
Γr = {1} × [0, 1], Γb = [0, 1]× {0} and Γt = [0, 1] × {1}. The discretization is
performed using a mesh consisting of 120 × 120 uniform quadrilaterals which are
further decomposed into triangular elements. In the case of two-level methods, we
also employ a coarser mesh with 30× 30 elements in each direction.

Ignition: We minimize a variant of the Bratu problem, given as:

min
u∈H1(Ω)

fI(u) :=
1

2

∫
Ω

‖∇u‖2 − (ueu − eu) dx−
∫
Ω

f(x)u dx,

subject to ψ(x) 6 u 6 ψ(x), a.e. in Ω, u = 0, on Γ,
(10)

where f(x) = (9π2 + e(x
2
1−x

3
1) sin(3πx2)(x21 − x31) + 6x1 − 2) sin(3πx1). The bounds

are given as ψ(x) = 0.2− 8(x1 − 7/16)2 − 8(x2 − 7/16)2 and ψ(x) = 0.5.

Minimal Surface: This experiment aims to find the minimal surface described by
a function u by solving the following minimization problem:

min
u∈H1(Ω)

fM (u) =

∫
Ω

√
(1 + ‖∇u‖2) dx,

subject to


ψ(x) 6 u 6 ψ(x) a.e. in Ω.

u = −0.3 sin(2πx2) on Γl, u = 0.3 sin(2πx2) on Γr,
u = −0.3 sin(2πx1) on Γb, u = 0.3 sin(2πx1) on Γt,

(11)

where the lower bound is prescribed asψ(x) = 0.25− 8(x1 − 0.7)2 − 8(x2 − 0.7)2

and the upper bound is ψ(x) = 8(x1 − 0.3)2 − 8(x2 − 0.3)2 − 0.4.

Setup of the solution strategies: For all numerical experiments, we prescribe the
overlap δ = 3 and obtain the decomposition into the subdomains using the library
METIS. All considered solution methods terminate if ‖[∇f ]F‖ 6 10−8, where
[∇f ]F = PF (x−∇f(x))− x denotes the projected gradient. Here, the symbolPF
denotes the projection onto the feasible set F . Contrary to the traditional nonlin-
ear RAS methods, the subdomain solvers, coarse-level solvers, and constrained
quadratic minimization solvers are terminated using a fairly strict termination crite-
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Fig. 1 Convergence history of NRAS-B (Left) and TL-NRAS-B (Right) methods for the ignition
problem (Top) and the minimal surface (Bottom) problem. The experiments are performed with an
increasing number of subdomains (sbd).

rion, i.e., they terminate if ‖[∇f ]F‖ 6 10−11. Moreover, we employ a line-search
method with the Armijo condition for computing the step size in all inner and outer
solvers. The local and the coarse-level solvers for the NRAS-B/TL-NRAS-B meth-
ods employ the Newton-SQP method. On coarse levels, simply restriction of the
objective function fI and fM is used to construct f0.

Comparison between NRAS-B and TL-NRAS-B methods: The comparison is
performed with respect to an increasing number of subdomains. As we can observe
from Fig. 1, the standard NRAS-B method requires more iterations to satisfy the
termination criterion than the TL-NRAS-B method. Due to the strict termination
criterion, we notice that the NRAS-B method stagnates before reaching the termi-
nation criterion, while the TL-NRAS-B method manage to converge to the desired
tolerance irrespective of number of subdomains. We also notice that the NRAS-B
method requires more iterations with an increasing number of subdomains for both
problems. For the TL-NRAS-B, we observe scalable convergence with respect to the
number of subdomains for the minimal surface problem. However, for the ignition
problem, the number of iterations grows with the number of subdomains. This can be
attributed to the fact that the coarse grid is not able to represent the constraint func-
tion associated with this particular problem sufficiently well. Hence, the coarse-level
nonlinear problems become over-constrained, which amounts to small coarse-grid
corrections and insufficient global information transfer.
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Fig. 2 Convergence history of semismooth Newton (SS-Newton), Newton-SQP, RASPN-B, and
TL-RASPN-B methods for the ignition problem (Left) and minimal surface problem (Right).

Comparing RASPN-B method with other methods: In this section, we compare
the performance of the NRAS-B and TL-NRAS-B preconditioned Newton methods
with the semismooth Newton and Newton-SQP methods. In this study, the NRAS-B
and TL-NRAS-B methods employ 16 subdomains. We note that the semismooth
Newton method linearizes the nonlinearity of the problem and constraints simul-
taneously, while the Newton-SQP method first linearizes the nonlinearity of the
problem and at each Newton iteration a QP problem is solved with constraints.

From Fig. 2, we can see that the Newton-SQP method preconditioned with
NRAS-B and TL-NRAS-B method outperforms the semismooth Newton method
for both examples. As the ignition problem is only mildly nonlinear, preconditioned
Newton methods as well as the Newton-SQP method manage to satisfy the termina-
tion criterion in only 4 iterations. In the case of a minimal surface problem, which is
more nonlinear, the benefit of preconditioning the Newton method is more evident.
The RASPN-B and TL-RASPN-B methods converge in 7 and 4 iterations, respec-
tively. In comparison, the Newton-SQP and semismooth-Newton methods require
16 and 24 iterations to converge, respectively.

4 Conclusion

In this work, we presented a nonlinear additive Schwarz preconditioning method for
bound-constrained nonlinear optimization problems. The scalability of the method
is enhanced by introducing a coarse level with the first-order consistent objective
function and the constraints restricted from the fine level. The developed Schwarz
methods are then employed as a right preconditioner for the Newton-SQP method.
Our numerical results demonstrate that the proposed preconditioners enhance the
convergence of the Newton-SQPmethod and outperform standard active-set Newton
methods. We also show that the two-level preconditioner is algorithmically scalable
if a coarse space captures the constraints from the fine level sufficiently well.
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