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1 Introduction

Isogeometric Analysis (IGA) is a novel computational technique for solving partial
differential equations (PDEs) first introduced by Hughes et al, see [6]. It integrates
computer-aided design (CAD) and simulation. In IGA, a geometric model cre-
ated within a CAD environment is used as the basis for analysis, and B-splines
or non-uniform rational B-splines (NURBS) are employed as basis functions. IGA
offers a new type of refinement strategy, in addition to the traditional mesh refine-
ment (ℎ-refinement) and 𝑝-refinement in Finite Element Analysis (FEA), namely
𝑘-refinement, which allows for changing the smoothness of the basis functions. The
aim of IGA is to improve the accuracy and efficiency of simulation by using CAD
models directly in the analysis process. In Section 2.1 we give a brief description
of the B-spline functions. For an extensive overview on the approximation theory
based on IGA, see [2].
Domain decomposition methods (DDM) are based on dividing the domain into

subdomains which leads to solve small local problems. The classical Schwarz meth-
ods use Dirichlet boundary conditions at the artificial interfaces, see [8], while the
Optimized Schwarz Methods (OSM) use Robin (𝜕𝑛𝑢 +𝜆𝑢) or higher order boundary
conditions at the artificial interfaces. The challenge is to find the optimal value of
the parameter 𝜆, this latter can be solved by virtue of Fourier transform, see [4]
for more details. Rather than relying on the existing literature on DDM for IGA as
described in [3], we adopt an approach that enforces C−1 smoothness of the B-spline
in the interface condition. For a more comprehensive understanding of it, please
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refer to [1]. For our analysis, we consider Algebraic Optimized Schwarz methods
(AOSM) which mimic OSM algebraically.
Our approach involves combining IGA and AOSM to solve partial differential

equations with complex geometries. The efficiency of the resulting algorithm is due
to the robustness of AOSM/OSM and the flexibility of IGA.

2 IGA analysis and algebraic optimized Schwarz methods

For our analysis we need to introduce B-spline and algebraic optimized Schwarz
methods.

2.1 B-spline based IGA

Let 𝑚 and 𝑝 be two positive integers, and Ξ be a set of non-decreasing real numbers
such that 𝜉1 ≤ 𝜉2 ≤ . . . ≤ 𝜉𝑚+𝑝+1. The 𝜉 𝑗 ’s are called the knots, the set Ξ is the knot
vector, and the interval [𝜉 𝑗 , 𝜉 𝑗+1) is the 𝑗-th knot span. Note that if 𝜉 𝑗 is repeated
𝑘 > 1 times in the knot vector (i.e. 𝜉 𝑗 = 𝜉 𝑗+1 = . . . = 𝜉 𝑗+𝑘−1), 𝜉 𝑗 is a multiple knot of
multiplicity k with no corresponding knot span; otherwise, it is a simple knot if 𝜉 𝑗
appears only once (or 𝑘 = 1). A knot vector is said to be uniform if its knots are
uniformly spaced; otherwise, it is called a nonuniform knot vector. A knot vector is
considered to be open if its first and last knots have multiplicity 𝑝 + 1. The interval
(𝜉1, 𝜉𝑚+𝑝+1) is called the patch. The maximum multiplicity allowed is 𝑝 + 1.
Once a knot vector is available, the B-spline basis functions can be defined

recursively, beginning with the first order, 𝑝 = 0 (piecewise constant)

𝑁0𝑗 (𝜉) := 𝜒[𝜉 𝑗 , 𝜉 𝑗+1) =

{
1, if 𝜉 𝑗 ≤ 𝜉 < 𝜉 𝑗+1,

0, otherwise.
(1)

For 𝑝 ≥ 1,

𝑁
𝑝

𝑗
(𝜉) :=


𝜉 − 𝜉 𝑗

𝜉 𝑗+𝑝 − 𝜉 𝑗
𝑁

𝑝−1
𝑗

(𝜉) +
𝜉 𝑗+𝑝+1 − 𝜉

𝜉 𝑗+𝑝+1 − 𝜉 𝑗+1
𝑁

𝑝−1
𝑗+1 (𝜉), if 𝜉 𝑗 ≤ 𝜉 < 𝜉 𝑗+𝑝+1,

0, otherwise.
(2)

we adopt the convention
0
0
= 0 in (2).

According to (2), all B-spline functions are to be (𝑖) non-negative, (𝑖𝑖) have a local
support in [𝜉 𝑗 , 𝜉 𝑗+𝑝+1] (compact support) for all 𝑗 = 1, . . . , 𝑚, (𝑖𝑖𝑖) form a partition
of unity, and (𝑖𝑣) be linear independent, as shown in [9]. The basis functions of
order 𝑝, in general, have 𝑝 − 𝑘 continuous derivatives 𝒞𝑝−𝑘 across knot 𝜉 𝑗 . When
the multiplicity of a knot value is exactly 𝑝, the basis at that knot is interpolatory. If
the multiplicity of a basis is 𝑝 + 1, it can result the basis become discontinuous in
the𝒞−1 space. In Figure 1, we present an example of cubic basis functions generated
by 𝑝 = 3 from the uniform open knot vector Ξ = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 6, 6, 6}.
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Fig. 1 Cubic basis functions formed from Ξ = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 6, 6, 6}.

2.2 Algebraic optimized Schwarz methods

Descritizing PDEs using IGA analysis leads to solve linear systems of the form

𝐴𝑢 = 𝑓 , (3)

where 𝐴 is a block banded matrix of size 𝑛 × 𝑛 given by

𝐴 =


𝐴11 𝐴12
𝐴21 𝐴22 𝐴23

𝐴32 𝐴33 𝐴34
𝐴43 𝐴44

 , (4)

where 𝐴𝑖 𝑗 are blocks of size 𝑛𝑖 × 𝑛 𝑗 , 𝑖, 𝑗 = 1, . . . , 4, and 𝑛 =
∑

𝑖 𝑛𝑖 . For a two-
subdomain decomposition with overlap we have 𝑛1 � 𝑛2 and 𝑛4 � 𝑛3. To illustrate
this decomposition let us solve the Poison equation in Ω = R × (0, 1) with homoge-
neous Dirichlet at the boundary conditions. We discretize the continuous operator
on a grid with an interval of size ℎ in both the 𝑥 and 𝑦 directions and we assume that
ℎ = 1/(𝑁 +1) so that there are 𝑁 degrees of freedom in 𝑦-direction. For instance the
stiffness matrix obtained when we discretize with the finite element method using
piecewise linear functions, and using the subdomains Ω1 = (−∞, ℎ) × (0, 1) and
Ω2 = (0, +∞) × (0, 1), leading to the decomposition

𝐴 =


𝐴11 𝐴12 O O
𝐴21 𝐴22 𝐴23 O
O 𝐴32 𝐴33 𝐴34
O O 𝐴43 𝐴44

 =


. . .
. . .

. . .

−𝐼 𝐽 −𝐼
−𝐼 J -I

-I J −𝐼
−𝐼 𝐽 −𝐼

. . .
. . .

. . .


, (5)

where 𝐼 is the 𝑁 × 𝑁 identity matrix and 𝐽 is the 𝑁 × 𝑁 tridiagonal 𝐽 =

tridiag(−1, 4,−1). We have in this case 𝑛2 = 𝑛3 = 𝑁 . The Algebraic Optimized
Schwarz methods are iterative methods [5, Section 2, page 4], and the optimized
restricted additive and multiplicative Schwarz methods are defined by
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𝑇ORAS = 𝐼 −
2∑︁
𝑖=1

𝑅̃𝑇
𝑖 𝐴̃

−1
𝑖 𝑅𝑖𝐴, and 𝑇ORMS =

1∏
𝑖=2

(𝐼 − 𝑅̃𝑇
𝑖 𝐴̃

−1
𝑖 𝑅𝑖𝐴), (6)

where the restriction operators with overlap are 𝑅1 = [𝐼 𝑂] and 𝑅2 = [𝑂 𝐼], of size
(𝑛1 + 𝑛2 + 𝑛3) × 𝑛 and (𝑛2 + 𝑛3 + 𝑛4) × 𝑛 respectively, using the prolongations 𝑅̃𝑇

𝑖

without the overlap, which are defined as

𝑅̃1 =

[
𝐼 𝑂

𝑂 𝑂

]
and 𝑅̃2 =

[
𝑂 𝑂

𝑂 𝐼

]
,

having the same order as the matrices 𝑅𝑖 , and where the identity in 𝑅̃1 is of order
𝑛1 + 𝑛2 and that in 𝑅̃2 is of order 𝑛3 + 𝑛4. The matrices 𝐴̃𝑖 are defined by

𝐴̃1 =


𝐴11 𝐴12
𝐴21 𝐴22 𝐴23

𝐴32 𝐴33 + 𝐷1

 , 𝐴̃2 =


𝐴22 + 𝐷2 𝐴23

𝐴32 𝐴33 𝐴34
𝐴43 𝐴44

 , (7)

for which the transmission blocks 𝐷1 and 𝐷2 have to be determined for fast conver-
gence. It has been shown in [5, Theorem 3.2] that the asymptotic convergence factor
of AOSM depends on the product of the two norms

‖ (𝐼 + 𝐷1𝐵33)−1 [𝐷1𝐵12 − 𝐴34𝐵13] ‖, ‖ (𝐼 + 𝐷2𝐵11)−1 [𝐷2𝐵32 − 𝐴21𝐵31] ‖. (8)

The blocks 𝐵𝑖 𝑗 depend on the inverses 𝐴−1
11 and 𝐴

−1
44 which are expensive to calculate.

Minimizing the linear part of equation (8) onmatrices𝐷1 and𝐷2within the spacesS1
and S2 with distinct sparsity patterns leads to various forms of AOSM. The 𝑂0𝑠
approach uses a scalar 𝛼𝑖 in 𝐷𝑖 = 𝛼𝑖 𝐼, while the O0 method employs a general
diagonal matrix 𝐷𝑖 and the O2 scheme uses a general tridiagonal matrix 𝐷𝑖 . The
optimal method, i.e., 𝐷1 = −𝐴34𝐴−1

44 𝐴43 and 𝐷2 = −𝐴21𝐴−1
11 𝐴12, converges in two

iterations [5].

3 IGA approximation of transmission conditions

3.1 AOSM approximations of 𝑫1 and 𝑫2

The challenge in approximating the transmission blocks 𝐷1 and 𝐷2 is to capture
efficiently the sparsity of the related matrices. In Figure 2 we present different
sparsity patterns for the model problem −Δ𝑢 = 𝑓 in a square domain Ω = (0, 1)2
for an IGA discretization with 32 × 32 elements with respect to B-spline degrees
𝑝 = 4, 5, 6. Because of the structure of the matrices we need to use adapted
algorithms which capture efficiently the sparsity of the transmissions blocks 𝐷1
and 𝐷2. For this purpose we introduce a new method, which we call 𝑂 𝑝+1, that
consists in approximating the blocks 𝐷1 and 𝐷2 using 2𝑝 + 1 diagonals, where 𝑝 is
B-spline degree.
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Fig. 2 The sparsity pattern of stiffness matrix in 2D with number of elements 32× 32 with respect
to spline polynomial degree 𝑝 = 4, 5, 6, and we allows maximum regularity 𝑘 = 1 at the internal
knots.

Fig. 3 Domain decomposition into two overlapping subdomains.

3.2 Optimized Schwarz methods for IGA

In this section we consider the Poisson equation{
−Δ𝑢 = 𝑓 , in Ω,

𝑢 = 0, on 𝜕Ω,
(9)

in a square domain Ω = (0, 1)2 with Dirichlet boundary conditions. We decompose
the domain Ω into two overlapping subdomains Ω1 = (0, 𝛼) × (0, 1) and Ω2 =

(𝛽, 1) × (0, 1), see Figure 3. The size of the overlap is defined by 𝛿 = 𝛼 − 𝛽, where
𝛼 ≥ 𝛽 allowing 𝛼 = 𝛽 for non-overlapping decomposition.
The parallel Schwarz method, introduced by P. Lions, 1990 [7], equipped with

Robin boundary conditions for the model problem and the decomposition is


−Δ𝑢𝑛+11 = 𝑓 , in Ω1 = (0, 𝛼) × (0, 1),
𝑢𝑛+11 = 0, on 𝜕Ω1(
𝜕𝑛1 + 𝜆1

)
𝑢𝑛+11 =

(
𝜕𝑛1 + 𝜆1

)
𝑢𝑛2 , on Γ1 = {𝛼} × (0, 1),

−Δ𝑢𝑛+12 = 𝑓 , 𝑖𝑛 Ω2 = (𝛽, 1) × (0, 1),
𝑢𝑛+12 = 0, on 𝜕Ω2(
𝜕𝑛2 + 𝜆2

)
𝑢𝑛+12 =

(
𝜕𝑛2 + 𝜆2

)
𝑢𝑛1 , 𝑜𝑛 Γ2 = {𝛽} × (0, 1).

(10)
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The OSM is based on finding the optimal parameter set (𝜆1, 𝜆2) that yields a rapid
convergence, M. Gander [4] provides an explicit formulas for 𝜆1 and 𝜆2 based on
Fourier analysis for the model problem (𝜂−Δ)𝑢 = 𝑓 . But in our case, no formulas are
found yet. Thus, we relied on a numerical approximation supposing that 𝜆1 = 𝜆2 = 𝜆,
then conducting a grid search over a subset of 𝜆 to find the best value.

4 Numerical experiments

For our numerical experiments we consider the model problem (9) with two-
overlapping decomposition as described before. We allow the parameter 𝛿 = 𝛼 − 𝛽

to be zero for a non-overlapping decomposition. First we illustrate the performance
of the new method 𝑂 𝑝+1 compared the optimal method, O0, O0s, and O2, for the
methods labeled “Nonoverlapping” and “Overlapping” correspond to the nonover-
lapping block Jacobi and RAS methods respectively (for further details, consult[5,
Section 2.1]), see Figures 4, 5. Because of the banded sparsity of the matrices, the
optimal method does not converge in two iterations as it is known, see [5, page 10,
Proposition 4.4]. The algorithm𝑂 𝑝+1 has similar behavior as the optimal algorithm.
In table 1, we show the number of iterations taken by various methods when used
as iterative solvers and as preconditioners for GMRES in order to achieve a resid-
ual of 10−8. We can see that AOSMs work well combined with the IGA method,
outperforming the classical Schwarz methods.

Fig. 4 Convergence history of Additive (7) AOSM with respect to 𝑝 = 4, 5.

In Tables 2 and 3 we present the numerical experiments and the behavior of
𝐿2-norms for the parallel algorithm (10) using isogeometric analysis. We show
results for overlapping and non-overlapping decompositions, with the exact solution
𝑢(𝑥, 𝑦) = 𝑥 (1 − 𝑥) 𝑦 (1 − 𝑦), and 𝜆1 = 𝜆2 = 0.075.
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Fig. 5 Left: Convergence history of additive (7) with respect to 𝑝 = 6. Right: The asymptotic
behaviors of all methods with respect to ℎ and 𝑝 = 2.

Table 1 Number of iterations to attends a residual of 10−8 for: Additive (7) AOSM+IGA used
as iterative method: top 32 elements, bottom 64 element in each direction (left), additive (7)
AOSM+IGA used as preconditioner method: top 32 elements, bottom 64 element in each direction
(right).

degree Nonoverlap Overlap Optimal O0 O0s O2 O𝑝+1
1 61 29 2 50 29 NC NC
2 75 26 2 11 10 12 8
3 87 28 7 28 24 13 9
4 92 24 6 167 24 16 9
5 111 26 9 NC 49 NC 16
6 132 25 9 NC NC NC 20
1 122 48 2 187 153 NC NC
2 135 47 2 122 21 97 9
3 148 43 2 89 29 72 11
4 147 45 5 33 44 17 11
5 146 41 6 41 41 NC 12
6 187 63 4 NC 32 NC 22

degree Nonoverlap Overlap Optimal O0 O0s O2 O𝑝+1
1 22 13 2 34 17 NC NC
2 25 11 2 7 7 8 5
3 26 12 4 12 9 8 5
4 26 12 4 55 10 10 6
5 27 13 5 NC 33 NC 8
6 29 13 5 NC NC NC 9
1 23 16 2 68 49 NC NC
2 27 18 2 73 15 51 3
3 20 19 2 40 15 45 3
4 22 12 3 34 22 8 4
5 25 17 3 21 16 NC 5
6 30 26 2 NC 12 NC 3

Table 2 𝐿2-norm without overlap after 10 iterations with respect to the number of element 16× 16
(left), and 32 × 32 (right) for OSM method.

degree ‖𝑢 − 𝑢ℎ
1 ‖𝐿2 (Ω1 ) ‖𝑢 − 𝑢ℎ

2 ‖𝐿2 (Ω2 )
2 2.80753e-07 3.13938e-06
3 3.82578e-07 1.66811e-06
4 4.89011e-07 1.12886e-06
5 5.38786e-07 8.99693e-07
6 5.71149e-07 7.84679e-07

degree ‖𝑢 − 𝑢ℎ
1 ‖𝐿2 (Ω1 ) ‖𝑢 − 𝑢ℎ

2 ‖𝐿2 (Ω2 )
2 5.52967e-07 8.66084e-07
3 5.87442e-07 7.20705e-07
4 6.05761e-07 6.65119e-07
5 6.08555e-07 6.47844e-07
6 6.41174e-07 6.28697e-07

Table 3 𝐿2-norm with overlap 𝛿 = 0.2 after 10 iterations with respect to the number of elements
16 × 16 (left), and 32 × 32 (right) for OSM method.

degree ‖𝑢 − 𝑢ℎ
1 ‖𝐿2 (Ω1 ) ‖𝑢 − 𝑢ℎ

2 ‖𝐿2 (Ω2 )
2 2.32116e-09 2.32095e-09
3 3.95799e-08 3.88673e-08
4 3.08054e-08 3.08057e-08
5 1.53245e-12 4.18834e-12
6 7.09721e-10 3.29485e-08

degree ‖𝑢 − 𝑢ℎ
1 ‖𝐿2 (Ω1 ) ‖𝑢 − 𝑢ℎ

2 ‖𝐿2 (Ω2 )
2 6.62172e-09 8.50223e-10
3 7.10352e-09 7.10352e-09
4 2.85556e-08 3.08303e-08
5 2.40483e-08 2.4419e-08
6 3.0926e-08 1.34111e-09
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Concluding remarks

We presented an algebraic computational technique for solving a model problem
that has been discetized using IGA. Our numerical experiments suggest that AOSM
are well-suited for IGA. However, we found that the methods O0, O0s, and O2 are
not effective in capturing the sparsity of IGA matrices, resulting in deteriorating
performance. On the other hand, the 𝑂 𝑝+1 method efficiently captures the sparsity
of the matrices. Our simulations of OSM for the model problem are encouraging for
further analysis of OSM with IGA.
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hammed VI Polytechnic University and sponsored by OCP.
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