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1 Introduction

We are interested in solving the heat equation 𝜕𝑡𝑢 − 𝜈𝜕2𝑥𝑥𝑢 = 𝑓 on (−𝐿, 𝐿) × (0, 𝑇),
with an initial condition and with Dirichlet boundary conditions. We will use
a Schwarz Waveform Relaxation (SWR) method and want to study the conver-
gence of this algorithm. More precisely our goal is to understand the influence of 𝑇
and 𝐿 on the convergence. We therefore study the equation on an adimentionalized
domain

L𝑢 :=
𝜕𝑢

𝜕𝑡
− 𝜈 𝜕𝑢

𝜕𝑥2
= 𝑓 on (−1, 1) × (0, 1),

𝑢(−1, ·) = 𝑔−1,
𝑢(1, ·) = 𝑔1,
𝑢(·, 0) = 𝑢0,

(1)

where 𝜈 = 𝜈𝑇
𝐿2 > 0. Then it suffices to study the influence of 𝜈 on the convergence

speed of the algorithm.
We will consider the SWR algorithm with Dirichlet boundary conditions (𝛿 > 0

is the overlap)

L𝑢𝑘1 = 𝑓 on (−1, 𝛿) × (0, 1), L𝑢𝑘2 = 𝑓 on (0, 1) × (0, 1),
𝑢𝑘1 (𝛿, ·) = 𝑢𝑘−12 (𝛿, ·) on (0, 1), 𝑢𝑘2 (0, ·) = 𝑢𝑘1 (0, ·) on (0, 1),
𝑢𝑘1 (·, 0) = 𝑢0 on (−1, 𝛿), 𝑢𝑘2 (·, 0) = 𝑢0 on (0, 1),
𝑢𝑘1 (−1, ·) = 𝑔−1 on (0, 1), 𝑢𝑘2 (1, ·) = 𝑔1 on (0, 1).

(2)

Martin J. Gander
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Fig. 1 Solution (in black) at several time steps of the heat equation (1) when 𝑔−1 (𝑡) = sin(3𝜋𝑡) ,
𝑔1 (𝑡) = 0 for 𝜈 = 10 (left) or 𝜈 = 0.1 (right). In red the bound given by Lemma 1.

The error 𝑒𝑘
𝑗
:= 𝑢 − 𝑢𝑘

𝑗
, 𝑗 = 1, 2 satisfies by linearity again the same algorithm (2)

but with homogeneous data, i.e. 𝑓 = 0, 𝑢0 = 0, 𝑔−1 = 𝑔1 = 0.
In Sections 2 and 3 we recall convergence results proved using the maximum

principle and we give numerical illustrations to understand the domain of validity of
each convergence bound. Then we explain in Section 4 how the Fourier transform is
usually used to measure the convergence speed of the algorithm and we discuss this
strategy when it is applied to a stationary or to an unstationary equation. We end in
Section 5 with numerical results to summarize the different regimes of convergence
depending on the value of 𝐿 and 𝑇 (or equivalently on the value of 𝜈).

2 Linear bound due to the maximum principle

In [4] a theorem is proved which gives a linear bound for the error corresponding to
algorithm (2). It relies on

Lemma 1 If 𝑢 is solution of the heat equation (1) with 𝑢0 = 0, 𝑓 = 0 then

‖𝑢(𝑥, ·)‖∞ ≤ ((1 − 𝑥)‖𝑔−1‖∞ + (𝑥 + 1)‖𝑔1‖∞)/2, −1 ≤ 𝑥 ≤ 1,

where ‖𝑔‖∞ = sup𝑡 ∈[0,1] |𝑔(𝑡) |.
Note that this bound does not depend on the value of 𝜈. If 𝜈 is large then 𝑢 tends
to satisfy 𝜕𝑥𝑥𝑢 ' 0 and then 𝑢 tends to be linear. The bound is sharp in this case.
However, if 𝜈 is small the solution tends to decay rapidly away from the boundary and
is close to 0 except near 𝑥 = −1 and 𝑥 = 1 where boundary layers appear. The bound
is not sharp in this case. In Figure 1 we show examples of the solution of the heat
equation in these two cases. Using Lemma 1, the following theorem is proved in [4]:

Theorem 1 The error of algorithm (2) satisfies for any 𝑘 ≥ 1

‖𝑒𝑘1 (0, ·)‖∞ ≤
(
1 − 𝛿
1 + 𝛿

) 𝑘
‖𝑒01 (0, ·)‖∞.



Linear, Super-Linear and Combined Fourier Heat Kernel Convergence Estimates 361

We expect this bound to be sharp for small spatial domains or large time, corre-
sponding to the case of a large value of 𝜈.

3 Superlinear bound

In [4] a superlinear bound is proved for the error of the algorithm (2):
Theorem 2 The error in algorithm (2) satisfies for any 𝑘 ≥ 1 the superlinear bound

‖𝑒𝑘1 (0, ·)‖∞ ≤ erfc
(
𝑘𝛿

2
√
𝜈

)
‖𝑒01 (0, ·)‖∞,

where erfc(𝑥) = 2√
𝜋

∫ +∞
𝑥

𝑒−𝑡
2
𝑑𝑡 is the complementary error function.

The proof (see [4]) consists in comparing 𝑒𝑘1 (0, ·) and 𝑒
𝑘
1 (0, ·) where 𝑒𝑘1 is defined

on an infinite spatial domain by

L𝑒𝑘1 = 0 on (−∞, 𝛿) × (0, 1),
𝑒𝑘1 (·, 0) = 0 on (−∞, 𝛿),
𝑒𝑘1 (𝛿, 𝑡) = max

0≤𝜏≤𝑡
|𝑒𝑘−12 (𝛿, 𝜏) | on (0, 1),

lim
𝑥→−∞

𝑒𝑘1 (𝑥, 𝑡) = 0 on (0, 1).

Using the maximum principle we have

|𝑒𝑘1 (0, 𝑡) | ≤ 𝑒
𝑘
1 (0, 𝑡) =

∫ 𝑡

0
‖𝑒𝑘−12 (𝛿, ·)‖𝐿∞ (0,𝜏)𝐾 (𝛿, 𝑡 − 𝜏)𝑑𝜏,

where the last equality is obtained since in the infinite domain (−∞, 𝛿) the solu-

tion 𝑒𝑘1 (0, 𝑡) can be computed using the heat kernel 𝐾 (𝑥, 𝑡) = 𝑥

2
√
𝜋

𝑒
− 𝑥2

4𝑡

𝑡3/2
. The result

is then obtained by induction. In Figure 2 we compare 𝑒𝑘1 and 𝑒
𝑘
1 . We can see that

for a large value of 𝜈 the superlinear bound is not sharp (due to the fact that 𝑒𝑘1 is
computed on an infinite spatial domain) while for a small 𝜈 a boundary layer has
appeared and the superlinear bound gives a sharper estimate than the linear bound.

4 Analysis using Fourier arguments

While in [4] and [5] the SWR for the heat equation were studied using arguments
coming from the PDE analysis, in [6] a method is proposed to use the Fourier
transform to obtain the convergence factor of a Schwarz algorithm for the stationary
convection-diffusion equation, and this technique was rapidly also applied to a time
dependent equation in [2], namely the heat equation.
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Fig. 2 Comparison of 𝑒𝑘1 ( ·, 𝑡) (in black) and 𝑒
𝑘
1 ( ·, 𝑡) (in blue) for several values of 𝑡 . Here 𝛿 = 0

and 𝜈 = 10 (left) or 𝜈 = 0.01 (right). In red the bound given by Lemma 1.

In the infinite spatial domain R and infinite time domain R+, the strategy in
the time dependent case consists in solving algorithm (2) for the errors in Laplace
variables. If 𝑠 := 𝜎 + 𝑖𝜔, 𝜎, 𝜔 ∈ R let 𝑓 (𝑠) =

∫ +∞
0

𝑓 (𝑡)𝑒−𝑠𝑡𝑑𝑡, <(𝑠) ≥ 𝛼 be the
Laplace transform of the function 𝑓 ∈ 𝐿1 (R) such that | 𝑓 (𝑡) | ≤ 𝐶𝑒𝛼𝑡 , 𝐶 > 0 and 𝛼
constants.
We first obtain

𝑒𝑘1 (𝑥, 𝑠) = 𝛼𝑘𝑒
√

𝑠
𝜈
𝑥 and 𝑒𝑘2 (𝑥, 𝑠) = 𝛽𝑘𝑒

−
√

𝑠
𝜈
𝑥 .

We suppose that the algorithm for the error is initialized with 𝑒02 (𝛿, 𝑡) = 𝑔(𝑡). By
induction using the Dirichlet boundary conditions we obtain

𝑒𝑘1 (0, 𝑠) = 𝜌(𝑠) (2𝑘−1)𝑔(𝑠),

where 𝜌(𝑠) := 𝑒−
√

𝑠
𝜈
𝛿 is the convergence factor of the algorithm.

This formula seems to say that 𝜌(𝜎 + 𝑖𝜔) explains the convergence behavior
of the single frequency 𝜔. We will see in the next subsections that this is true for
a stationary problem like the screened Laplace equation. However the situation is
more complex for an unstationary problem like the heat equation. To understand this
point, let us back-transform the previous formula to obtain

𝑒𝑘1 (0, 𝑡) =
∫ 𝑡

0
𝑔(𝑡 − 𝜏)𝐾 ((2𝑘 − 1) 𝛿√

𝜈
, 𝜏)𝑑𝜏, (3)

where 𝐾 (𝑥, 𝑡) = 𝑥

2
√
𝜋

𝑒
− 𝑥2

4𝑡

𝑡3/2
is the heat kernel. We see that the error is expressed as

a convolution between the heat kernel and 𝑔.
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Fig. 3 On the left, errors 𝑒𝑘1 (0, 𝑦) for the screened equation at iterations 𝑘 = 1, 𝑘 = 5 and 𝑘 = 10

when the first guess is 𝑒02 (𝛿, 𝑦) = sin(3𝜋𝑦) . On the right, errors 𝑒𝑘1 (0, 𝑡) for the heat equation at
iterations 𝑘 = 1, 𝑘 = 10 and 𝑘 = 20 when the first guess is 𝑒02 (𝛿, 𝑡) = sin(3𝜋𝑡) .

4.1 Using Fourier arguments is different for time dependent and
stationary problems

To understand the difference between the stationary case and the unstationary one,
we first consider the screened Laplace equation L̃𝑢 := 𝜂𝑢−4𝑢 = 𝑓 inΩ := R2, with
𝜂 > 0. If the domainΩ is split into the two overlapping subdomainsΩ1 := (−∞, 𝛿)×R
and Ω2 := (0, +∞) × R, where 𝛿 > 0 is the overlap parameter, then the classical
Schwarz algorithm (for the errors) solves for iteration index 𝑘 = 1, . . .

L̃𝑒𝑘1 = 0 on (−∞, 𝛿) × R, L̃𝑒𝑘2 = 0 on (0, +∞) × R,
𝑒𝑘1 (𝛿, ·) = 𝑒𝑘−12 (𝛿, ·) on R, 𝑒𝑘2 (0, ·) = 𝑒𝑘1 (0, ·) on R.

(4)

If the initial error is a pure sine signal on the interface, 𝑒02 (𝛿, 𝑦) := sin(𝜆𝑦), then the
errors for each iteration 𝑘 = 1, 2, . . . can be obtained by a direct computation to be

𝑒𝑘1 (0, 𝑦) = 𝑒−(2𝑘−1) 𝛿
√
𝜂+𝜆2 sin(𝜆𝑦) =: 𝜌(𝜆)2𝑘−1 sin(𝜆𝑦),

which means that at each iteration the initial sine error is contracted by the conver-
gence factor 𝜌(𝜆). This result is consistent with the definition of the convergence
factor in [1] which was obtained by a Fourier transform in the 𝑦 direction with
Fourier variable 𝜔.
In Figure 3 left, we can see the errors 𝑒𝑘1 (0, 𝑦) at iterations 𝑘 = 1, 𝑘 = 5 and

𝑘 = 10. The initial sine is contracted as the iterations grow as predicted by the
previous formula. Let us see what happens for the heat equation (Figure 3, right):
a sine is introduced (𝑒02 (𝛿, 𝑡) := sin(𝜆𝑡)) and we can see now that the sine is not just
contracted anymore, it is also transported! We can use the formula (3) to understand
that 𝑒𝑘1 (0, 𝑡) is not anymore a sine function. We need therefore a more detailed
analysis which is given in the next section.
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4.2 Analysis for the heat equation

If the Fourier analysis were relevant for the heat equation, then introducing a pure sine
frequency in the algorithm would give a pure sine frequency at any iteration 𝑘 > 0,
which is not the case as we saw in the previous subsection. A better understanding of
the behavior of the pure sine frequency can be obtained from the following theorem,
proved in [3].

Theorem 3 Let 𝑇 = +∞ and 𝐿 = +∞. If the Schwarz Waveform Relaxation algo-
rithm (2) is initialized with the pure sine frequency 𝑒02 (𝛿, 𝑡) = sin(𝜆𝑡), then the error
is given by

𝑒𝑘1 (0, 𝑡) = |𝜌(𝜆) |2𝑘−1 sin
(
𝜆𝑡 − (2𝑘 − 1)𝛿

√︂
𝜆

2𝜈

)
+ 𝑧2

(
(2𝑘 − 1) 𝛿√

𝜈
, 𝑡;𝜆

)
,

where 𝑧2 satisfies for large frequency 𝜆

𝑧2

(
(2𝑘 − 1) 𝛿√

𝜈
, 𝑡;𝜆

)
=

1

𝜆
𝐾

(
(2𝑘 − 1) 𝛿√

𝜈
, 𝑡

)
+ O

(
1

𝜆3

)
,

and for large iteration 𝑘𝑧2 (
(2𝑘 + 1) 𝛿√

𝜈
, ·;𝜆

)
𝐿∞ (0,+∞)

∼
(
2𝑘 − 1

2𝑘 + 1

)2 𝑧2 (
(2𝑘 − 1) 𝛿√

𝜈
, ·;𝜆

)
𝐿∞ (0,+∞)

.

An analogous result also holds for 𝑒𝑘2 .

This theorem states that if you introduce a pure sine frequency as the initial guess,
then along the iterations the error becomes a sine which is contracted by 𝜌 but which
is also translated. In addition the sine is distorted by a term proportional to the heat
kernel 𝐾 .

5 Numerical results

In this section we illustrate the previous results with numerical experiments. An
implicit scheme in time is used to discretize the heat equation. The spatial and time
discretization parameters are Δ𝑥 = Δ𝑡 = 2

2001 and the overlap is 𝛿 = 5Δ𝑥. We will
consider two values for 𝜈 so that we will obtain the different behaviors described in
the previous sections.
We first consider the value 𝜈 = 1000which corresponds to a small spatial domain,

or large time. The initial guess is the pure sine 𝑒02 (𝛿, 𝑡) = sin(25𝑡). In Figure 4 left,
we show the error at 𝑥 = 𝛿 as a function of 𝑡 at iterations 𝑘 = 0 and 𝑘 = 100. We see
that the sine is exactly contracted, which we can understand using Figure 4 right: 𝜈 is
so large that the error is linear and the convergence is dictated by the maximum
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Fig. 4 𝜈 = 1000. On the left, the error 𝑒𝑘1 (0, 𝑡) as a function of 𝑡 . On the right, the error
𝑒𝑘1 (𝑥, 𝑡 = 0.9965) as a function of 𝑥 at iterations 1, 20, 50 and 100.
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Fig. 5 Error ‖𝑒𝑘1 (0, ·) ‖∞ as function of the Schwarz Waveform Relaxation iterations 𝑘. On the
left 𝜈 = 1000, on the right 𝜈 = 0.05.

principle described in Section 2. This result is confirmed in Figure 5, left, where we
show the norm of the error versus the iterations: we exactly obtain the linear bound
described in Section 2.
We then consider the value 𝜈 = 0.05which corresponds to a large spatial domain,

or small time interval. The initial guess is the pure sine 𝑒02 (𝛿, 𝑡) = sin(50𝑡).
In Figure 6 we show the solution as a function of 𝑥 at 𝑡 = 0.1. We see that now

the boundary conditions at 𝑥 = ±1 do not influence the solution and the behavior
is not linear anymore. In Figure 7 we show the error 𝑒𝑘1 (𝛿, 𝑡) as a function of 𝑡
for iterations 𝑘 = 10, 𝑘 = 30 and 𝑘 = 45. We see that the initial guess sin(50𝑡)
is not only contracted, it is also translated and transformed by the heat kernel. In
Figure 5 right, we show the error as a function of the iterations. The convergence is
first guided by the Fourier convergence factor. For later iterations however, the heat
kernel we observed in Figure 7 becomes dominant for the convergence mechanism
of the SchwarzWaveform Relaxation algorithm. Then the heat kernel leaves the time
domain and the superlinear regime dominates.
We have thus shown that for time dependent problems, Fourier analysis techniques

can be applied to study Schwarz Waveform Relaxation algorithms, but care must be
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Fig. 6 𝜈 = 0.05. Error 𝑒𝑘1 (𝑥, 𝑡 = 0.1) as a function of 𝑥 at iterations 10 and 50.
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Fig. 7 𝜈 = 0.05. Error 𝑒𝑘1 (0, 𝑡) as a function of 𝑡 from left to right at iterations 𝑘 = 10 and 𝑘 = 30.
In magenta the heat kernel term 1

𝜆
𝐾 ( (2𝑘 − 1) 𝛿√

𝜈
, 𝑡) .

taken due to the evolution nature of the problem: Fourier modes initially still contract
for diffusion problems away from the initial conditions as expected, but eventually
heat kernel components dominate and change the convergence behavior.
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