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1 Introduction

Phase-field fracture models are employed to capture failure and cracks in structures,
alloys, and poroelastic media. The coupled model is based on solving the elasticity
equation and an Allen-Cahn-type phase-field equation. In hydraulic fracture, a Darcy-
type equation is solved to capture the pressure profile. Solving this coupled system
of equations is computationally expensive. Indeed, to provide an accurate estimation
(compared to the measurement) a very fine mesh profile is required. Of course, the
time-dependent and nonlinear nature of the problem gives rise to more complexity. An-
other challenge is related to the computational, mechanical, and geomechanical material
parameters. They have an essential effect on the simulations; however, many of them
can not be estimated experimentally.
In [11], we used the Bayesian inversion to identify the parameters based on hydraulic

fractures of porous media. A fracture response is realized through a phase-field equa-
tion [2] (based on the seminal work [3]). But that work is limited to small deformations.
In the current study, we extend [11] towards a large strain formulation [1, 7].
In consequence, the main objective is to utilize non-intrusive global-local models [4]

that are originally based on non-overlapping domain decomposition [12] to significantly
reduce the computational cost in Bayesian inversion. In extension to our prior work,
we introduce an adoption of the hydraulic phase-field fracture formulation of a material
that undergoes large deformation in poroelastic media. Finally, ensemble Kalman filters
are employed for the proposal adaption in Bayesian inversion to identify the mechanical
material parameters once the multiscale approach is used to solve the forward model.

2 Framework for failure mechanics in hydraulic fracture

Let us assume B ⊂ R𝛿 is the solid computational domain (here 𝛿 = 2) with its surface
boundary 𝜕B and time 𝑡 ∈ T = [0, 𝑇]. The given boundary-value problem (BVP)
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is a coupled multi-field system for the fluid-saturated porous media of the fracturing
material. Since we are dealing in large strain setting, it is required to define the mapping
between the referential position X towards spatial description x based on the motion 𝝋
of point 𝑃 at time 𝑡, see Figure 1. The media can be formulated based on a coupled three-
field system. At material points x ∈ B and time 𝑡 ∈ T , the BVP solution indicates the
deformation field 𝝋(x, 𝑡) of the solid, the fluid pressure field 𝑝(x, 𝑡), and the phase-field
fracture variable 𝑑 can be represented by

𝝋 :
{
B × T → R 𝛿

(X, 𝑡) ↦→ x = 𝝋(X, 𝑡) 𝑝 :
{
B × T → R
(X, 𝑡) ↦→ 𝑝(X, 𝑡) 𝑑 :

{
B × T → [0, 1]
(X, 𝑡) ↦→ 𝑑 (X, 𝑡) (1)

Here, 𝑑 (x, 𝑡) = 0 and 𝑑 (x, 𝑡) = 1 are referred to as the unfractured and completely
fractured parts of the material, respectively. The coupled BVP is formulated through
three specific primary fields to illustrate the hydro-poro-elasticity of fluid-saturated
porous media by

Global Primary Fields : U := {𝝋, 𝑝, 𝑑}. (2)

2.1 Elastic contribution

The elastic density function is formulated through a Neo-Hookean strain energy function
for a compressible isotropic elastic solid

𝑊elas (F, 𝑑) = 𝑔(𝑑) 𝜓elas (F) with 𝜓elas (F) =
𝜇

2

[
(F : F − 3) + 2

𝛽
(𝐽−𝛽 − 1)

]
, (3)

such that the shear modulus 𝜇 and the parameter 𝛽 := 𝛽(𝜈) = 2𝜈/(1 − 2𝜈) with the
Poisson number 𝜈 < 0.5 are used. Here, the material deformation gradient of the solid
denoted by F(X) := ∇𝝋(X, 𝑡) = Grad𝝋 with the Jacobian 𝐽 := det[F] > 0 augmented
with the symmetric right Cauchy-Green tensor C = F𝑇 F is used; for details the reader
is referred to [1, 11]. We note that the quadratic function 𝑔(𝑑) = (1− 𝑑)2 + 𝜅 is denoted
as a degradation function, with 𝜅 ≈ 10−8 that is chosen as a sufficiently small quantity.
According to the classical Terzaghi theorem, the constitutive modeling results in the
additive split of the stress tensor P to effective mechanical contribution and fluid part as
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Fig. 1 Setup of the notation for the configuration and motion of the continuum body 𝝋 (X, 𝑡) . The
initial position X in the undeformed configuration B toward the current position x in the spatial
configuration B𝑡 for the solid material undergoing finite strain.



Global-Local within Bayesian Inversion 377

P(F, 𝑝, 𝑑) := 𝜕𝑊elas
𝜕F = 𝑔(𝑑)P𝑒 𝑓 𝑓 (F) − 𝐵𝑝𝐽F−𝑇 with P𝑒 𝑓 𝑓 = 𝜇

[
F − 𝐽−𝛽F−𝑇 ] .

(4)
Here, the first Piola-Kirchoff stress tensor P is derived from the first-order derivative
of the pseudo-energy density function 𝑊elas given in (3). Thus, the balance of linear
momentum for the multi-field system prescribed through body force b reads

DivP(F, 𝑝, 𝑑) + b = 0. (5)

2.1.1 Fluid contribution

The fluid volume flux vectorF is described through the negative direction of the gradient
of the fluid pressure ∇𝑝 and permeability based on Darcy-type fluid’s

F := −K(F, 𝑑) ∇𝑝. (6)

Here, the second-order permeability tensorK(F, 𝑑), following [7], is additively decom-
posed into the permeability tensor into a Darcy-type flow for the unfractured porous
medium 𝑲𝐷𝑎𝑟𝑐𝑦 and Poiseuille-type flow in a completely fractured material 𝑲 𝑓 𝑟𝑎𝑐 by

𝑲 (F, 𝑑) = 𝑲Darcy (F) + 𝑑𝜁 𝑲frac (F) ,

𝑲Darcy (F) = 𝐾
𝜂𝐹
𝐽C−1 ,

𝑲frac (F) = 𝐾𝑐 𝜔
2 𝐽

[
C−1 − C−1N ⊗ C−1N

]
.

(7)

Here, 𝐾𝐷 is the isotropic intrinsic permeability of the pore space, 𝐾𝑐 is the spatial
permeability in the fracture, 𝜂𝐹 is the dynamic fluid viscosity, and 𝜁 ≥ 1 is a permeability
transition exponent. Following [7], the so-called crack aperture (or the crack opening
deformation) defined through 𝜔 = (𝜆⊥ − 1)ℎ𝑒 in terms of the stretch orthogonal to the
crack surface 𝜆2⊥ = ∇𝑑 · ∇𝑑/∇𝑑 · C−1 · ∇𝑑 and the characteristic element length ℎ𝑒.
Also, N = ∇𝑑/|∇𝑑 | denotes the outward unit normal to the fracture surface, ℎ𝑒 is the
characteristic discretization size, and I is an identity tensor. Thus, following [7, 1], the
fluid equation involve pressure files read

¤𝑝
𝑀

+ 𝐵 ¤𝐽 − 𝑟𝐹 + Div[F] = 0 . (8)

2.1.2 Fracture contribution

The crack driving state function in the regularized sense conjugate to crack phase-field
denoted as 𝐷 (𝝋, 𝑑, x) for every point x in domain act as a driving force for the fracture
evolution state reads

𝐷 (𝝋, 𝑑, x) := 2𝑙
𝐺𝑐

(1 − 𝜅)𝜓elas (F). (9)

Here, 𝐺𝑐 is the Griffith’s critical elastic energy release rate, and 𝑙 = 2ℎ𝑒 is the regular-
ization term. Following [6], the local evolution of the crack phase-field equation in the
given domain B results in the third Euler-Lagrange differential system as

(1 − 𝑑)H − [𝑑 − 𝑙2Δ𝑑] = 𝜂 ¤𝑑 𝑖𝑛 B, (D)
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Fig. 2 Configuration and loading setup of the single-scale BVP (left). Middle/right: global-local con-
figuration, by the fictitious domain B𝐹 through filling the gap between B𝐶 and B𝐿 with a same
constitutive modeling and discretization of B𝐶 such that its unification is a so-called global domain
B𝐺 := B𝐶 ∪ Γ𝐺 ∪ B𝐹 .

augmented by the homogeneous Neumann boundary condition that is ∇𝑑 ·n = 0 on 𝜕B,
with the maximum absolute value for the crack driving stateH = max𝑠∈[0,𝑡 ] 𝐷 (𝝋) ≥ 0
to avoid irreversibly. For different approach see [8]. Thus, following our recent work [11],
the variational formulations for the three PDEs for the coupled poroelastic media of the
fracturing material are

E𝜑 (U, 𝛿𝝋) =
∫
B

[
P : ∇𝛿𝝋 − b̄ · 𝛿𝝋

]
𝑑𝑉 −

∫
𝜕𝑁 B

�̄� · 𝛿𝝋 𝑑𝐴 = 0 ,

E𝑝 (U, 𝛿𝑝) =
∫
B

[( 1
𝑀

(𝑝 − 𝑝𝑛) + 𝐵(𝐽 − 𝐽𝑛) − Δ𝑡 𝑟𝐹

)
𝛿𝑝 + (Δ𝑡 K ∇𝑝) · ∇𝛿𝑝

]
𝑑𝑉

+
∫
𝜕𝑁 B

𝑓 𝛿𝑝 𝑑𝐴 = 0 ,

E𝑑 (U, 𝛿𝑑) =
∫
B

[(
2𝜓𝑐 𝑑 + 2(𝑑 − 1)H

)
𝛿𝑑 + 2𝜓𝑐 𝑙2 ∇𝑑 · ∇𝛿𝑑

]
𝑑𝑉 = 0 .

(10)
This set of equation is now written in the abstract form through SS(U).

3 Multiscale modeling via a non-intrusive global-local method
The previously introduced system of equations for single-scale analysis in (10) for the
coupled problem of poroelasticity and fracture is further extended towards the global-
local (GL) method now. Following [1, 5], the GL formulation is rooted in domain
decomposition (e.g., [12]) by distinguishing the original domain into coarse and fine
discretizations, see Figure 2. To couple the domains, namely global and local domains,
we have introduced an additional auxiliary interface denoted as Γ between two disjoint
domains in poroelastic media (see [1]), and thus corresponding unknown fields, see Fig-
ure 2. These additional fields are the interface deformation 𝝋Γ (x, 𝑡) and pressure 𝑝Γ (x, 𝑡)
on auxiliary interface and their corresponding traction forces {𝝀𝝋

𝐿
, 𝝀𝝋
𝐶
} and {𝜆𝑝

𝐿
, 𝜆
𝑝

𝐶
}

that are introduced as Lagrange multipliers. These results in a set of coupling equations
at the interface by

𝝋𝐿 (X, 𝑡) = 𝝋Γ (X, 𝑡) at X ∈ Γ𝐿 ,
𝝋𝐺 (X, 𝑡) = 𝝋Γ (X, 𝑡) at X ∈ Γ𝐺 ,
𝝀𝜑
𝐿
(X, 𝑡) + 𝝀𝜑

𝐶
(X, 𝑡) = 0 at X ∈ Γ,

and


𝑝𝐿 (X, 𝑡) = 𝑝Γ (X, 𝑡) at X ∈ Γ𝐿 ,
𝑝𝐺 (X, 𝑡) = 𝑝Γ (X, 𝑡) at X ∈ Γ𝐺 ,
𝜆
𝑝

𝐿
(X, 𝑡) + 𝜆𝑝

𝐶
(X, 𝑡) = 0 at X ∈ Γ.

(11)
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Fig. 3 The pdf of posterior density of the material parameters using the BI-GL and BI-SS approaches
for fracture. The true values are shown with a dashed green line.

Now, the multi-physics problem for the global-local approach is described through
eleven primary fields to characterize the hydro-poro-elasticity of fluid-saturated porous
media at finite strains by

Extended Primary Fields : P := {𝝋𝐺 , 𝝋𝐿 , 𝑝𝐺 , 𝑝𝐿 , 𝑑𝐿 , 𝝀u
𝐶 , 𝝀

u
𝐿 , 𝜆

𝑝

𝐶
, 𝜆
𝑝

𝐿
, uΓ, 𝑝Γ} . (12)

Herein, a global constitutive model behaves as a poroelastic response, abbreviated as
E(elastic)-P(pressure), which is augmented with a single local domain and behaves
as a poroelastic material with fracture response, abbreviated as E(elastic)-P(pressure)-
D(damage). The resulting final algorithm is based on our prior work [1, 11].

4 Bayesian inversion for parameter estimation
In this study, we use MCMC (Markov chain Monte Carlo) techniques to identify the
material parameters in the hydraulic porous medium phase-field fracture setting. The
latter is solved with the previously described GL approach. In general, we can employ
the following probabilistic model to update the available prior information according to
the forward model (here considers the phase-filed fracture) and a reference observation
(arising frommeasurement, or a synthetic observation). First, we introduce the following
statistical model

M = P(𝒙, 𝜒) + 𝜀. (13)

Here M refers to the reference observation arising from the experimental data (a mea-
sured value) and P considers to the model response related to 𝜒 a set of 𝑑-dimensional
material parameters. Furthermore, 𝒙 ∈ R𝛿 and 𝜀 indicates the measurement error. It is
assumed to have Gaussian independent and identically distributed error 𝜀 ∼ N(0, 𝜎2 𝐼),
having the parameter 𝜎2. Since P in (13) is a model response which results in our
computation, such that in our presented model can be approximated through

signle-scale: P ≈ PSS or global-local: P ≈ PGL,

corresponds to equations (SS) and (GL), respectively. Thus, (13) becomes as

M = P• (Θ) + 𝜀, with • ∈ {SS,GL}. (14)
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Despite the simplicity of the Metropolis-Hastings algorithm, it is not suitable for
complicated cases, specifically when several parameters should be estimated (multi-
dimensional domains). In this study, we use MCMC with ensemble-Kalman filter, see
for a detailed discussion [11]. The ensemble Kalman filter (EnKF) indicates the error
covariance matrix by a large random ensemble of model observations. Here, to achieve
a reliable estimation of posterior density, a Kalman gain is computed using the mean and
the covariance of the prior density and the cross-covariance betweenmaterial parameters
and observations. Using an ensemble-Kalman filter, we adopt the proposal density with
𝜒★ = 𝜒 𝑗−1 + Δ𝜒, where Δ𝜃 is the jump of Kalman-inspired proposal. Afterwards,
we update the candidate via Δ𝜒 = K

(
𝑦 𝑗−1 + 𝑠 𝑗−1

)
. The Kalman gain is computed by

K = C𝜃𝑀 (C𝑀𝑀 + R)−1, where C𝜃𝑀 is the covariance matrix between the unknowns
and the model response, C𝑀𝑀 denotes the covariance matrix of the PDE-based model,
and R is the measurement noise covariance matrix [13]. Moreover, 𝑦 𝑗−1 is the residual
of candidates w.r.t the model and 𝑠 𝑗−1 ∼ N(0,R) relates to the density of measurement.
Denoting obs as an observation, 𝑦 𝑗−1 = obs − 𝑓 (𝜃 𝑗−1). We refer the reader to [9] for
more details and the codes.
Thus, we are now able to use Bayesian inversion to identify the fracking process using

multiscale approach material parameters that cannot be measured with usual techniques.

5 Numerical example

In this section, we investigate a numerical test with the main goal that Bayesian inversion
yields accurate parameter identifications at a cheap cost of the governing global-local
phase-field solver. The mechanical and geomechanical descriptoion of the parameters is
given in [10]. In the following, a BVP is applied to the square plate shown in Figure 4.
The geometry and boundary conditions are from [1]. The single-scale (SS) model
results considering the phase-field and pressure are given in Figure 5. Then, we employ
our global-local approach, with findings shown in Figure 6. Figure 7 shows the load-
displacement curve for both approachs, indicating the accuracy of the GL approach.
Finally, the computational costs of both approaches using the Bayesian setting is given
in Table 1, denoting the significant efficiency of the domain decomposition technique.
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Fig. 4 Joining of two cracks driven by fluid volume injection. (a) Geometry and boundary conditions;
and (b) described crack phase-field 𝑑 as a Dirichlet boundary conditions at 𝑡 = 0 𝑠.

6 Conclusion

In this study, we extended a global-local (GL) approach for phase-field fracture as the
PDE-based model with Bayesian inversion. We applied the proposed idea to hydraulic
fracturing within poromechanics concepts, for materials undergoing large deformations.
For our numerical example, Bayesian inversion using GL is 20 times faster than the
signle-scale model, while the accuracy is similar.
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Fig. 5 The evolution of the phase-field (first line) and pressure (second line) for different fluid injection
time, i.e., 𝑡 ∈ [0.1, 10, 15, 20] seconds using SS model.

Fig. 6 The evolution of the phase-field (first line) and pressure (second line) for different fluid injection
time, i.e., 𝑡 ∈ [0.1, 10, 15, 20] seconds using GL model.

Fig. 7 A comparison between the maximum pressure obtained by the true values (the reference obser-
vation) and the mean value of posterior density of BI-GL (left) and BI-SS (right).
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Table 1 A comparison between the computational costs of BI-SS and BI-GL approaches for hydraulic
fracture. The unit is given in seconds.

Model min 𝑇 max 𝑇 mean 𝑇
∑︁

𝑇 ratio 𝑇
BI − SS 5 645 5 767 5 704 1.14×106 19.47

BI − GL 277 296.2 287.1 5.75×104 –
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