On Algebraic Bounds for POSM and MRAS

Martin J. Gander and Michal Outrata

1 Introduction and preliminaries

We consider the Poisson equation as our model problem, i.e.,

$$
\begin{equation*}
\Delta u=f \quad \text { in } \Omega:=(-a, a) \times(0, b) \quad \text { and } \quad u=g \quad \text { on } \partial \Omega, \tag{1}
\end{equation*}
$$

where f and g are given. We decompose Ω into two subdomains $\Omega_{1}:=(-a, L / 2) \times$ $(0, b)$ and $\Omega_{2}:=(-L / 2, a) \times(0, b)$ with interfaces Γ_{1} and Γ_{2}, overlap $O:=$ $(-L / 2, L / 2) \times(0, b)$ (if $L>0$) and complements $\Theta_{2}:=\Omega \backslash \Omega_{1}$ and $\Theta_{1}:=\Omega \backslash \Omega_{2}$. Creating an equidistant mesh on Ω with mesh size h, we denote by $N_{r}+1$ the number of grid rows and $N_{c}+1$ the number of grid columns, see Figure 1. We also define the one-grid-column-prolonged subdomains $\Omega_{1}^{h}:=(-a, L / 2+h) \times(0, b)$ and $\Omega_{2}^{h}:=(-L / 2-h, a) \times(0, b)$ and also their interfaces $\Gamma_{1}^{h}:=(L / 2+h) \times(0, b)$ and $\Gamma_{2}^{h}:=(-L / 2-h) \times(0, b)$. We discretize (1) with a finite difference scheme, obtaining the block tridiagonal system matrix

$$
\left[\begin{array}{ccccc}
A_{\Theta_{1}} & A_{\Theta_{1}, \Gamma_{2}} & & & \tag{2}\\
A_{\Gamma_{2}, \Theta_{1}} & A_{\Gamma_{2}} & A_{\Gamma_{2}, O} & & \\
& A_{O, \Gamma_{1}} & A_{O} & A_{O, \Gamma_{1}} & \\
& & A_{\Gamma_{1}, O} & A_{\Gamma_{1}} & A_{\Gamma_{1}, \Theta_{2}} \\
& & & A_{\Theta_{2}, \Gamma_{1}} & A_{\Theta_{2}}
\end{array}\right] .
$$

We follow the notation of [3, Section 6.1] and introduce the parallel optimized Schwarz method (POSM) with the transmission operators $\mathcal{P}_{\Gamma_{1}}=\mathcal{P}_{\Gamma_{2}}=p I$ and $Q_{\Gamma_{1}}=Q_{\Gamma_{2}}=I$ acting on the Dirichlet and Neumann data along the interfaces. Hence POSM is given by the iteration operator $\mathcal{T}:\left(u_{1}^{(n-1)}, u_{2}^{(n-1)}\right) \mapsto\left(u_{1}^{(n)}, u_{2}^{(n)}\right)$, where $u_{1}^{(n)}, u_{2}^{(n)}$ are given as the solutions of the subdomain problems

Fig. 1 The physical domain (left), and the discrete mesh (right).
$\Delta u_{i}^{(n)}=f \quad$ in $\Omega_{i}, \quad u_{i}^{(n)}=g \quad$ on $\partial \Omega_{i} \backslash \Gamma_{i}$,
$\mathbf{n}_{i} \cdot \nabla u_{i}^{(n)}+p u_{i}^{(n)}=\mathbf{n}_{i} \cdot \nabla u_{j}^{(n-1)}+p u_{j}^{(n-1)} \quad$ on Γ_{i},\quad for $i, j=1,2,|i-j|=1$.
The convergence factor of POSM (see [1, Proposition 2]) as a function of $a, b, L / 2$ and the Fourier mode $k \in \mathbb{N}$ is given by

$$
\begin{equation*}
\frac{\frac{k \pi}{b} \operatorname{coth}\left(\frac{k \pi}{b}(a-L / 2)\right)-p}{\frac{k \pi}{b} \operatorname{coth}\left(\frac{k \pi}{b}(a+L / 2)\right)+p} \cdot \frac{\sinh \left(\frac{k \pi}{b}(a-L / 2)\right)}{\sinh \left(\frac{k \pi}{b}(a+L / 2)\right)} . \tag{3}
\end{equation*}
$$

Writing (2) in its augmented form and modifying the interface block rows we get

$$
A_{\text {aug }}:=\left[\begin{array}{cc}
\tilde{A}_{\Omega_{1}} & \tilde{A}_{\Omega_{1}, \Omega_{2}} \tag{4}\\
\tilde{A}_{\Omega_{2}, \Omega_{1}} & \tilde{A}_{\Omega_{2}}
\end{array}\right]:=\left[\begin{array}{cccccccc}
A_{\Theta_{1}} & A_{\Theta_{1}, \Gamma_{2}} & & & & & \\
A_{\Gamma_{2}, \Theta_{1}} & A_{\Gamma_{2}} & A_{\Gamma_{2}, O} & & & & \\
& A_{O, \Gamma_{2}} & A_{O} & A_{O, \Gamma_{1}} & & & \\
& & A_{\Gamma_{1}, O} & \tilde{A}_{\Gamma_{1}} & & & \tilde{A}_{\Gamma_{1}, \Gamma_{1}} & A_{\Gamma_{1}, \Theta_{2}} \\
A_{\Gamma_{2}, \Theta_{1}} & \tilde{A}_{\Gamma_{2}, \Gamma_{2}} & & & \tilde{A}_{\Gamma_{2}} & A_{\Gamma_{2}, O} & & \\
& & & & A_{O, \Gamma_{2}} & A_{O} & A_{O, \Gamma_{1}} & \\
& & & & & & A_{\Gamma_{1}, O} & A_{\Gamma_{1}} \\
& & A_{\Gamma_{1}, \Theta_{2}} \\
& & & & & A_{\Theta_{2}, \Gamma_{1}} & A_{\Theta_{2}}
\end{array}\right],
$$

where we introduced the discrete transmission conditions in the last block row of [$A_{\Omega_{1}} A_{\Omega_{1}, \Omega_{2}}$] and the first block row of $\left[A_{\Omega_{2}, \Omega_{1}} A_{\Omega_{2}}\right.$], which are now given by

$$
\tilde{A}_{\Gamma_{1}}:=A_{\Gamma_{1}}+D, \tilde{A}_{\Gamma_{1}, \Gamma_{1}}:=-D \quad \text { and } \quad \tilde{A}_{\Gamma_{2}}:=A_{\Gamma_{2}}+D, \tilde{A}_{\Gamma_{2}, \Gamma_{2}}:=-D .
$$

We are interested in the subdomain version of the modified restricted additive Schwarz (MRAS ${ }^{1}$, see [2]), defined by its iteration matrix T,

$$
\begin{equation*}
T=I-\sum_{i=1}^{2} R_{\Omega_{i}}^{T} \tilde{A}_{\Omega_{i}}^{-1} R_{\Omega_{i}} \tilde{A}_{\text {aug }} \quad \text { with } R_{\Omega_{1}}=\left[I_{\Omega_{1}} 0_{\Omega_{2}}\right], R_{\Omega_{2}}=\left[0_{\Omega_{1}} I_{\Omega_{2}}\right] \text {. } \tag{5}
\end{equation*}
$$

[^0]Notice that the interface block structure of MRAS does not match the one in [3, Algorithm 2] but the transmission matrix D is chosen to get fast convergence, analogously to the parameter p in POSM. Setting

$$
\begin{aligned}
& E_{\Gamma_{2}}^{\Omega_{1}}:=\left[0_{\Theta_{1}} I_{\Gamma_{2}} 0_{O} 0_{\Gamma_{1}}\right]^{T}, E_{\Gamma_{1}}^{\Omega_{1}}:=\left[0_{\Theta_{1}} 0_{\Gamma_{2}} 0_{O} I_{\Gamma_{1}}\right]^{T}, E_{\Theta_{1}}^{\Omega_{1}}:=\left[A_{\Gamma_{2}, \Theta_{1}} 0_{\Gamma_{2}} 0_{O} 0_{\Gamma_{1}}\right]^{T}, \\
& E_{\Gamma_{2}}^{\Omega_{2}}:=\left[I_{\Gamma_{2}} 0_{O} 0_{\Gamma_{1}} 0_{\Theta_{2}}\right]^{T}, E_{\Gamma_{1}}^{\Omega_{2}}:=\left[0_{\Gamma_{2}} 0_{O} I_{\Gamma_{1}} 0_{\Theta_{2}}\right]^{T}, E_{\Theta_{2}}^{\Omega_{2}}:=\left[0_{\Gamma_{2}} 0_{O} 0_{\Gamma_{1}} A_{\Theta_{2}, \Gamma_{1}}\right]^{T},
\end{aligned}
$$

we can write

$$
\tilde{A}_{\Omega_{i}}=A_{\Omega_{i}}+E_{\Gamma_{i}}^{\Omega_{i}} D\left(E_{\Gamma_{i}}^{\Omega_{i}}\right)^{T}, \quad i=1,2
$$

and formulate a convergence result for MRAS, analogue to [2, Theorem 3.2].

Theorem 1 ([2, Section 3])

The MRAS iteration matrix T in (5) has the structure

$$
T=\left[\begin{array}{cc}
0 & K \tag{6}\\
L & 0
\end{array}\right], \quad K:=A_{\Omega_{1}}^{-1} E_{\Gamma_{1}}^{\Omega_{1}}\left[I+D\left(A_{\Omega_{1}}^{-1}\right)_{\Gamma_{1}, \Gamma_{1}}\right]^{-1}\left(-D\left(E_{\Gamma_{1}}^{\Omega_{2}}\right)^{T}+\left(E_{\Theta_{2}}^{\Omega_{2}}\right)^{T}\right),
$$

Moreover, the asymptotic convergence factor of MRAS is bounded by

$$
\begin{gather*}
\sqrt{\left\|M_{1} B_{1}\right\|_{2} \cdot\left\|M_{2} B_{2}\right\|_{2}}, \\
M_{1}:=\left[I+D\left(A_{\Omega_{1}}^{-1}\right)_{\Gamma_{1}, \Gamma_{1}}\right]^{-1}\left(-D-A_{\Gamma_{1}, \Theta_{2}} A_{\Theta_{2}}^{-1} A_{\Theta_{2}, \Gamma_{1}}\right), B_{1}:=\left(A_{\Omega_{2}}^{-1}\right)_{\Gamma_{1}, \Gamma_{2}}, \tag{7}\\
M_{2}:=\left[I+D\left(A_{\Omega_{2}}^{-1}\right)_{\Gamma_{2}, \Gamma_{2}}\right]^{-1}\left(-D-A_{\Gamma_{2}, \Theta_{1}} A_{\Theta_{1}}^{-1} A_{\Theta_{1}, \Gamma_{2}}\right), B_{2}:=\left(A_{\Omega_{1}}^{-1}\right)_{\Gamma_{2}, \Gamma_{1}} .
\end{gather*}
$$

Due to the symmetry of the model problem and the method we have $B:=B_{1}=B_{2}$ and $M:=M_{1}=M_{2}$, which in turn simplifies the bound in (7) to $\|M B\|_{2}$.

2 Analysis of the MRAS bound and its reformulation

First, we recall the sine series expansion in the $y \operatorname{direction} \mathcal{F}_{y}$, so that we have

$$
u(x, y)=\sum_{k=1}^{+\infty} \mathcal{F}_{y} u(x, k) \sin \left(\frac{k \pi}{b} y\right) \equiv \sum_{k=1}^{+\infty} \hat{u}(x, k) \sin \left(\frac{k \pi}{b} y\right)
$$

with $^{2} \mathcal{F}_{y} u:=\int_{0}^{b} u(x, y) \sin (k \pi y / b) \mathrm{d} y$. Next, we factor out $\left(A_{\Omega_{1}}^{-1}\right)_{\Gamma_{1}, \Gamma_{1}}$ and $\left(A_{\Omega_{2}}^{-1}\right)_{\Gamma_{2}, \Gamma_{2}}$ on the left from $M_{1,2}$, so that instead of (7) we focus on the asymptotically equivalent

[^1]\[

$$
\begin{equation*}
M B:=\underbrace{\left[\left(\left(A_{\Omega_{1}}^{-1}\right)_{\Gamma_{1}, \Gamma_{1}}\right)^{-1}+D\right]^{-1}}_{\left(T^{\text {Denom }}\right)^{-1}} \underbrace{\left(-D-A_{\Gamma_{1}, \Theta_{2}} A_{\Theta_{2}}^{-1} A_{\Theta_{2}, \Gamma_{1}}\right)}_{T^{\text {Numer }}} \underbrace{\left(A_{\Omega_{2}}^{-1}\right)_{\Gamma_{1}, \Gamma_{2}}\left(\left(A_{\Omega_{2}}^{-1}\right)_{\Gamma_{2}, \Gamma_{2}}\right)^{-1}}_{T^{\text {Over }}} \tag{8}
\end{equation*}
$$

\]

The key question is whether the bound (7), which now becomes $\|M B\|$, is the discrete analogue of (3) - piece by piece. Linking each of the blocks in (8) to a discrete linear operator with a continuous counterpart, we analyze it using the Fourier series expansion. Taking $\mathbf{b} \in \mathbb{R}^{N_{r}-1}$ and interpolating it to a function $\gamma: \Gamma_{1}^{h} \rightarrow \mathbb{R}$, the following problems are equivalent up to the FD discretization:

$$
A_{\Omega_{1}} \mathbf{u}=-\frac{1}{h^{2}} E_{\Gamma_{1}}^{\Omega_{1}} \mathbf{b} \quad \text { and } \quad \begin{align*}
& \Delta u=0 \quad \text { in } \Omega_{1}^{h}, \tag{9}\\
& u=0 \text { on } \partial \Omega_{1}^{h} \backslash \Gamma_{1}^{h}, \quad \text { and } \quad u=\gamma \quad \text { on } \Gamma_{1}^{h}
\end{align*}
$$

Defining the solution operator by $\mathcal{S}_{1}(\gamma)=\left.u\right|_{\Gamma_{1}}$ where u is the solution of (9), we have (up to the FD discretization) the equivalence of the linear operators $-1 / h^{2}\left(A_{\Omega_{1}}^{-1}\right)_{\Gamma_{1}, \Gamma_{1}}$ and \mathcal{S}_{1}. To calculate \mathcal{S}_{1} we expand in the y variable using \mathcal{F}_{y}, simplifying the continuous problem in (9) to the semi-discrete problem

$$
\begin{gather*}
\left(\partial_{x x}-\left(\frac{k \pi}{b}\right)^{2}\right) \hat{u}(x, k)=0 \quad \text { for } x \in(-a, L / 2+h) \text { and } k \in \mathbb{N}, \tag{10}\\
\hat{u}(-a, k)=0 \quad \text { and } \quad \hat{u}(L / 2+h, k)=\hat{\gamma}(k) \quad \text { for } k \in \mathbb{N}
\end{gather*}
$$

and denote by $\hat{\mathcal{S}}_{1}:=\mathcal{F}_{y} \mathcal{S}_{1}$ the Fourier symbol of \mathcal{S}_{1}. A direct calculation yields

$$
\hat{u}(x, k)=\frac{\sinh \left(\frac{k \pi}{b}(a+x)\right) \hat{\gamma}(k)}{\left.\sinh \left(\frac{k \pi}{b}(a+L / 2+h)\right)\right)}, \quad \hat{\mathcal{S}}_{1} \hat{\gamma}(k)=\frac{\sinh \left(\frac{k \pi}{b}(a+L / 2)\right)}{\left.\sinh \left(\frac{k \pi}{b}(a+L / 2+h)\right)\right)} \hat{\gamma}(k) .
$$

Therefore, the eigenvalues of the linear operator $-1 / h^{2}\left(A_{\Omega_{1}}^{-1}\right)_{\Gamma_{1}, \Gamma_{1}}$ approximate the modes $k=1, \ldots, N_{r}-1$ of $\hat{\mathcal{S}}_{1}$ given above, as we see in Figure 2. The rest of the blocks in (8) are summarized in Table 1 and illustrated in Figure 2, see [4] for detailed calculations. We see that the approximation is very accurate for the low-frequency modes but not quite accurate for the high-frequency ones. If D diagonalizes in the same basis as the rest of the blocks and we denote its eigenvalues by $\delta_{1}, \ldots, \delta_{N_{r}-1}$, then the eigenvalues of $T^{\text {Denom }}, T^{\text {Numer }}, T^{\text {Over }}$ approximate certain discrete (truncated) Fourier symbols we present in Table 2 and illustrate in Figure 3. We see that the inaccuracy on the high frequencies is still present. More importantly, comparing Table 2 with (3) shows that the contraction factor due to the domain overlap in (3) matches exactly θ_{k} for each k, i.e., the one due to the continuous representation of $T^{\text {Over }}$. However, this is clearly not the case for the contraction factor due to the transmission condition induced by D. The ratio η_{k} / ζ_{k} shows that choosing $\delta_{k}=p$ (the naive choice) is not the correct one (see [4] for more details) and we continue by reformulating Theorem 1 to reflect also the transmission part of (3).

Table 1 The blocks and corresponding linear operators (LO) from (8).

block	discrete LO	continuous LO	Fourier symbol
$\left(A_{\Omega_{1}}^{-1}\right)_{\Gamma_{1}, \Gamma_{1}}$	$-\frac{1}{h^{2}}\left(A_{\Omega_{1}}^{-1}\right)_{\Gamma_{1}, \Gamma_{1}}$	$\mathcal{S}_{1}:\left.\gamma \mapsto u\right\|_{\Gamma_{1}}$	$\hat{\mathcal{S}}_{1}=\frac{\sinh \left(\frac{k \pi}{b}(a+L / 2)\right)}{\left.\sinh \left(\frac{k \pi}{b}(a+L / 2+h)\right)\right)}$
$A_{\Gamma_{1}, \Theta_{2}} A_{\Theta_{2}}^{-1} A_{\Theta_{2}, \Gamma_{1}}$	$-h^{2} A_{\Gamma_{1}, \Theta_{2}} A_{\Theta_{2}}^{-1} A_{\Theta_{2}, \Gamma_{1}}$	$\mathcal{S}_{2}:\left.\gamma \mapsto u\right\|_{\Gamma_{1}}$	$\hat{\mathcal{S}}_{2}=\frac{\sinh \left(\frac{k \pi}{b}(a-L / 2-h)\right)}{\left.\sinh \left(\frac{k \pi}{b}(a-L / 2)\right)\right)}$
$\left(A_{\Omega_{2}}^{-1}\right)_{\Gamma_{1}, \Gamma_{2}}$	$-\frac{1}{h^{2}}\left(A_{\Omega_{2}}^{-1}\right)_{\Gamma_{1}, \Gamma_{2}}$	$\mathcal{S}_{3}:\left.\gamma \mapsto u\right\|_{\Gamma_{1}}$	$\hat{\mathcal{S}}_{3}=\frac{\sinh \left(\frac{k \pi}{b}(a-L / 2)\right)}{\left.\sinh \left(\frac{k \pi}{b}(a+L / 2+h)\right)\right)}$
$\left(A_{\Omega_{2}}^{-1}\right)_{\Gamma_{2}, \Gamma_{2}}$	$-\frac{1}{h^{2}}\left(A_{\Omega_{2}}^{-1}\right)_{\Gamma_{2}, \Gamma_{2}}$	$\mathcal{S}_{4}:\left.\gamma \mapsto u\right\|_{\Gamma_{2}}$	$\hat{\mathcal{S}}_{4}=\frac{\sinh \left(\frac{k \pi}{b}(a+L / 2)\right)}{\left.\sinh \left(\frac{k \pi}{b}(a+L / 2+h)\right)\right)}$

Fig. 2 Results obtained for the parameters $a=b=1, L=2 h, N_{r}=22$.

Table 2 The matrices and their corresponding (truncated) Fourier symbols.

$\left(T^{\text {Denom }}\right)^{-1}$	$T^{\text {Numer }}$	$T^{\text {Over }}$
$\eta_{k}:=\delta_{k}-\frac{1}{h^{2}} \frac{\sinh \left(\frac{k \pi}{b}(a+L / 2+h)\right)}{\sinh \left(\frac{k \pi}{b}(a+L / 2)\right)}$	$\zeta_{k}:=-\delta_{k}+\frac{1}{h^{2}} \frac{\sinh \left(\frac{k \pi}{b}(a-L / 2-h)\right)}{\left.\sinh \left(\frac{k \pi}{b}(a-L / 2)\right)\right)}$	$\theta_{k}:=\frac{\sinh \left(\frac{k \pi}{b}(a-L / 2)\right)}{\left.\sinh \left(\frac{k \pi}{b}(a+L / 2)\right)\right)}$
$\left(\bar{T}^{\text {Denom }}\right)^{-1}$	$\bar{T}^{\text {Numer }}$	$\bar{T}^{\text {Over }}$
$\bar{\eta}_{k}:=-\frac{1}{h} \frac{k \pi}{b} \operatorname{coth}\left(\frac{k \pi}{b}(a+L / 2)\right)-\lambda_{k}$	$\bar{\zeta}_{k}:=-\frac{1}{h} \frac{k \pi}{b} \operatorname{coth}\left(\frac{k \pi}{b}(a-L / 2)\right)+\lambda_{k}$	$\bar{\theta}_{k}:=\frac{\sinh \left(\frac{k \pi}{b}(a-L / 2)\right)}{\left.\sinh \left(\frac{k \pi}{b}(a+L / 2)\right)\right)}$

The main tool used to obtain Theorem 1 is the Sherman-Morrison-Woodbury formula for the inverse of a low-rank updated matrix, here the update was the corner block D. We now show that using the same formula for a slightly different block gives the "correct" result. We split the interface blocks as in [3, Section 5.2] and write $A_{\Gamma_{1}}=A_{\Gamma_{1}}^{L}+A_{\Gamma_{1}}^{R}$ and $A_{\Gamma_{2}}=A_{\Gamma_{2}}^{L}+A_{\Gamma_{2}}^{R}$ so that we have

$$
\begin{align*}
& -\left.h\left(A_{\Gamma_{1}, O} \mathbf{u}_{O}+A_{\Gamma_{1}}^{L} \mathbf{u}_{\Gamma_{1}}\right) \approx u_{x}\right|_{\Gamma_{1}}, \quad-h\left(A_{\Gamma_{1}, \Theta_{2}} \mathbf{u}_{\Theta_{2}}+A_{\Gamma_{1}}^{R} \mathbf{u}_{\Gamma_{1}}\right) \approx-\left.u_{x}\right|_{\Gamma_{1}}, \\
& -h\left(A_{\Gamma_{2}, O}, \mathbf{u}_{O}+A_{\Gamma_{2}}^{R} \mathbf{u}_{\Gamma_{2}}\right) \approx-\left.u_{x}\right|_{\Gamma_{2}}, \quad-\left.h\left(A_{\Gamma_{2}, \Theta_{1}} \mathbf{u}_{\Theta_{1}}+A_{\Gamma_{2}}^{L} \mathbf{u}_{\Gamma_{2}}\right) \approx u_{x}\right|_{\Gamma_{2}} \tag{11}
\end{align*}
$$

This is natural for FD and FEM discretizations. Using the so-called ghost point trick we get $A_{\Gamma_{1}}^{L}=A_{\Gamma_{1}}^{R}=\frac{1}{2} A_{\Gamma_{1}}, A_{\Gamma_{2}}^{L}=A_{\Gamma_{2}}^{R}=\frac{1}{2} A_{\Gamma_{2}}$. Adopting this we rewrite $\tilde{A}_{\text {aug }}$ as

Fig. 3 Results obtained with $a=b=1, L=2 h, N_{r}=21$ and $D=\operatorname{diag}\left(\pi^{2} / h\right)$.
with the transmission conditions kept the same as in (4) but reorganized with

$$
\bar{A}_{\Gamma_{1}}:=A_{\Gamma_{1}}^{R}+D, \quad \text { and } \quad \bar{A}_{\Gamma_{2}}:=A_{\Gamma_{2}}^{L}+D
$$

As a result, the Sherman-Morrison-Woodbury formula is now used for $\left(A_{\Omega_{1}}^{L}+\bar{A}_{\Omega_{1}}\right)^{-1}$ and $\left(A_{\Omega_{1}}^{R}+\bar{A}_{\Omega_{2}}\right)^{-1}$ and analogously to [2, Lemma 3.1, Theorem 3.2] we obtain Theorem 2 (we take advantage of the symmetry, for the general case see [4]).

Theorem 2 The MRAS iteration matrix T in (5) can also be written as

$$
\begin{gathered}
\bar{T}=\left[\begin{array}{cc}
0 & \bar{K} \\
L & 0
\end{array}\right], \text { with } \\
\bar{K}:=\left(A_{\Omega_{1}}^{L}\right)^{-1} E_{\Gamma_{1}}^{\Omega_{1}}\left(\left(\left(A_{\Omega_{1}}^{L}\right)^{-1}\right)_{\Gamma_{1}, \Gamma_{1}}\right)^{-1}\left[\left(\left(\left(A_{\Omega_{1}}^{L}\right)^{-1}\right)_{\Gamma_{1}, \Gamma_{1}}\right)^{-1}+\bar{A}_{\Gamma_{1}}\right]^{-1}\left(-D\left(E_{\Gamma_{1}}^{\Omega_{2}}\right)^{T}+\left(E_{\Theta_{2}}^{\Omega_{2}}\right)^{T}\right), \\
\bar{L}:=\left(A_{\Omega_{2}}^{R}\right)^{-1} E_{\Gamma_{2}}^{\Omega_{2}}\left(\left(\left(A_{\Omega_{2}}^{R}\right)^{-1}\right)_{\Gamma_{2}, \Gamma_{2}}\right)^{-1}\left[\left(\left(\left(A_{\Omega_{2}}^{R}\right)^{-1}\right)_{\Gamma_{2}, \Gamma_{2}}\right)^{-1}+\bar{A}_{\Gamma_{2}}\right]^{-1}\left(-D\left(E_{\Gamma_{2}}^{\Omega_{1}}\right)^{T}+\left(E_{\Theta_{1}}^{\Omega_{1}}\right)^{T}\right) .
\end{gathered}
$$

Moreover, the asymptotic convergence factor of POSM is bounded by

$$
\begin{equation*}
\|\overline{M B}\|_{2}, \quad \text { where } \tag{12}
\end{equation*}
$$

$$
\begin{align*}
& \bar{M}:=\left(\bar{T}^{\text {Denom }}\right)^{-1} \bar{T}^{\text {Numer }}=\left[\left(\left(\left(A_{\Omega_{1}}^{L}\right)^{-1}\right)_{\Gamma_{1}, \Gamma_{1}}\right)^{-1}+\bar{A}_{\Gamma_{1}}\right]^{-1}\left(\left(A_{\Gamma_{1}}^{R}-A_{\Gamma_{1}, \Theta_{2}} A_{\Theta_{2}}^{-1} A_{\Theta_{2}, \Gamma_{1}}\right)-\bar{A}_{\Gamma_{1}}\right), \tag{13}\\
& \bar{B}:=\bar{T}^{\text {Over }}=\left(\left(A_{\Omega_{2}}^{R}\right)^{-1}\right)_{\Gamma_{1}, \Gamma_{2}}\left(\left(\left(A_{\Omega_{2}}^{R}\right)^{-1}\right)_{\Gamma_{2}, \Gamma_{2}}\right)^{-1} .
\end{align*}
$$

Focusing on the first block in (13), we take $\mathbf{b} \in \mathbb{R}^{N_{r}-1}$ and interpolating it to a function $\gamma: \Gamma_{1} \rightarrow \mathbb{R}$, the following problems are equivalent up to the FD discretization:

$$
A_{\Omega_{1}}^{L} \mathbf{u}=-\frac{1}{h} E_{\Gamma_{1}}^{\Omega_{1}} \mathbf{b} \quad \text { and } \quad \begin{align*}
\Delta u & =0 \quad \text { in } \Omega_{1}, \tag{14}\\
u=0 & \text { on } \partial \Omega_{1} \backslash \Gamma_{1}, \quad \text { and } \quad \mathbf{n}_{1} \cdot \nabla u=\gamma \quad \text { on } \Gamma_{1} .
\end{align*}
$$

Setting $\overline{\mathcal{S}}_{2}(\gamma)=\left.u\right|_{\Gamma_{1}}$, where u is the solution of (14) we have the equivalence (up to the FD discretization) of $-1 / h\left(A_{\Omega_{1}}^{-1}\right)_{\Gamma_{1}, \Gamma_{1}}$ and $\overline{\mathcal{S}}_{2}$. Considering

$$
\begin{gather*}
\left(\partial_{x x}-\left(\frac{k \pi}{b}\right)^{2}\right) \hat{u}(x, k)=0 \quad \text { for } x \in(-a, L / 2+h) \text { and } k \in \mathbb{N} \tag{15}\\
\hat{u}(-a, k)=0 \quad \text { and } \quad \hat{u}_{x}(L / 2+h, k)=\hat{\gamma}(k) \quad \text { for } k \in \mathbb{N}
\end{gather*}
$$

we set $\hat{\overline{\mathcal{S}}}_{1}:=\mathcal{F}_{y} \overline{\mathcal{S}}_{1}$ and a direct calculation yields the solution of (15) and $\hat{\overline{\mathcal{S}}}_{1}$ as

$$
\hat{u}(x, k)=\frac{\sinh \left(\frac{k \pi}{b}(a+x)\right)}{\left.\frac{k \pi}{b} \cosh \left(\frac{k \pi}{b}(a+L / 2)\right)\right)}, \quad \hat{\overline{\mathcal{S}}}_{1} \hat{\gamma}(k)=\frac{\sinh \left(\frac{k \pi}{b}(a+L / 2)\right)}{\left.\frac{k \pi}{b} \cosh \left(\frac{k \pi}{b}(a+L / 2)\right)\right)} \hat{\gamma}(k)
$$

Therefore, the eigenvalues of $-1 / h\left(\left(A_{\Omega_{1}}^{L}\right)^{-1}\right)_{\Gamma_{1}, \Gamma_{1}}$ approximate the first $N_{r}-1$ modes of $\mathcal{F}_{y} \overline{\mathcal{S}}_{1}$ with better accuracy in high-frequencies than we observed with \mathcal{S}_{1}, see Figure 2 and Figure 4. For the other blocks see Table 3 and Figure 4. If $-\bar{A}_{\Gamma_{1}}^{R}$ diagonalizes in the Fourier discrete basis with eigenvalues $\lambda_{1}, \ldots, \lambda_{N_{r}-1}$, then the eigenvalues of $\bar{T}{ }^{\text {Denom }}, \bar{T}^{\text {Numer }}, \bar{T}{ }^{\text {Over }}$ approximate certain discrete (truncated) Fourier symbols, presented in Table 2 and Figure 3. Notice that at the discrete level we have $M B=\overline{M B}$, i.e., the difference is in the representation of the bound (blue markers in Figure 3) as we changed only the block organization in the Sherman-Morrison-Woodbury formula. Comparing Table 2 with (3), we get the link between λ_{k} (and hence also δ_{k}) and the Robin parameter p in (3). Calculating the optimal p now directly translates to the optimal choice of D by

$$
p I=-h W^{T}\left(A_{\Gamma_{1}}^{R}+D\right) W \quad, \text { i.e., } \quad D=-\frac{p}{h} I-A_{\Gamma_{1}}^{R}
$$

Table 3 The blocks and corresponding linear operators (LO) from (8).

block	discrete LO	continuous LO	Fourier symbol
$\left(\left(A_{\Omega_{1}}^{L}\right)^{-1}\right)_{\Gamma_{1}, \Gamma_{1}}$	$-\frac{1}{h}\left(\left(A_{\Omega_{1}}^{L}\right)^{-1}\right)_{\Gamma_{1}, \Gamma_{1}}$	$\overline{\mathcal{S}}_{1}:\left.\gamma \mapsto u\right\|_{\Gamma_{1}}$	$\hat{\bar{S}}_{1}=\frac{k \pi}{\left.\frac{k \pi}{b} \operatorname{coth}\left(\frac{k \pi}{b}(a+L / 2)\right)\right)}$
$\overline{\bar{A}}_{\Gamma_{1}}^{R}-A_{\Gamma_{1}, \Theta_{2}} A_{\Theta_{2}}^{-1} A_{\Theta_{2}, \Gamma_{1}}$	$-h\left(\bar{A}_{\Gamma_{1}}^{R}-A_{\Gamma_{1}, \Theta_{2}} A_{\Theta_{2}}^{-1} A_{\Theta_{2}, \Gamma_{1}}\right)$	$\overline{\mathcal{S}}_{2}:\left.\gamma \mapsto \mathbf{n}_{1} \cdot \nabla u\right\|_{\Gamma_{1}}$	$\left.\hat{\overline{\mathcal{S}}}_{2}=\frac{k \pi}{b} \operatorname{coth}\left(\frac{k \pi}{b}(a-L / 2)\right)\right)$
$\left(\left(A_{\Omega_{2}}^{R}\right)^{-1}\right)_{\Gamma_{1}, \Gamma_{2}}$	$-\frac{1}{h}\left(\left(A_{\Omega_{2}}^{R}\right)^{-1}\right)_{\Gamma_{1}, \Gamma_{2}}$	$\overline{\mathcal{S}}_{3}:\left.\gamma \mapsto u\right\|_{\Gamma_{1}}$	$\hat{\bar{S}}_{3}=\frac{\sinh \left(\frac{k \pi}{b}(a-L / 2)\right)}{\left.\frac{k \pi}{b} \cosh \left(\frac{k \pi}{h}(a+L / 2)\right)\right)}$
$\left(\left(A_{\Omega_{2}}^{R}\right)^{-1}\right)_{\Gamma_{2}, \Gamma_{2}}$	$-\frac{1}{h}\left(\left(A_{\Omega_{2}}^{R}\right)^{-1}\right)_{\Gamma_{2}, \Gamma_{2}}$	$\overline{\mathcal{S}}_{4}:\left.\gamma \mapsto u\right\|_{\Gamma_{2}}$	$\hat{\overline{\mathcal{S}}}_{4}=\frac{\sinh \left(\frac{k \pi}{h}(a+L / 2)\right)}{\left.\frac{k \pi}{b} \cosh \left(\frac{k \pi}{b}(a+L / 2)\right)\right)}$

Fig. 4 Results obtained for the parameters $a=b=1, L=2 h, N_{r}=21$.

References

1. Gander, M. J. On the influence of geometry on optimized Schwarz methods. SeMA Journal 53(1), 71-78 (2013).
2. Gander, M. J., Loisel, S., and Szyld, D. B. An optimal block iterative method and preconditioner for banded matrices with applications to PDEs on irregular domains. SIAM Journal on Matrix Analysis and Applications 33(2), 653-680 (2012).
3. Gander, M. J. and Zhang, H. A class of iterative solvers for the Helmholtz equation: factorizations, sweeping preconditioners, source transfer, single layer potentials, polarized traces, and optimized Schwarz methods. SIAM Review 61(1), 3-76 (2019).
4. Outrata, M. Schwarz methods, Schur complements, preconditioning and numerical linear algebra. Ph.D. thesis, University of Geneva, Math Department (2022).

[^0]: ${ }^{1}$ MRAS was introduced in the so-called globally deferred correction form, where we iterate on the global solution unknowns, in contrast to iterating on the subdomain solution unknowns here. This is but a technicality and hence we keep the name; the equivalence is shown in [3, Section 6.1, 6.2].

[^1]: ${ }^{2}$ Using the sine series relies on the Dirichlet boundary conditions (BCs) along $\{y=0\}$ and $\{y=b\}$ in (1); for different BCs see [4].

