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1 The standard NOSAS preconditioners
The nonoverlapping spectral additive Schwarz methods (NOSAS) were first intro-
duced as two-level domain decomposition preconditioners [5, 6] designed to solve
symmetric positive definite and sparse linear system 𝐴𝑥 = 𝑏 arising from highly
heterogeneous coefficients. NOSAS are of the nonoverlapping Schwarz type, and the
subdomain interactions are via the coarse problem. NOSAS preconditioners have
the following form

𝑀−1
NOSAS = 𝑅

𝑇
0 𝐴

−1
0 𝑅0︸     ︷︷     ︸

Coarse Level

+
𝑁∑︁
𝑖=1

𝑅𝑇𝑖 𝐴
−1
𝑖 𝑅𝑖︸          ︷︷          ︸

First Level

, (1)

where 𝑅𝑖 are restriction matrices fromΩ to the nonoverlapping open subdomainsΩ𝑖 .
We require each subdomain to be the union of elements with nodes on the boundaries
of neighboring subdomains matching across the interface. 𝐴𝑖 = 𝑅𝑖𝐴𝑅𝑇𝑖 are the local
Dirichlet solvers onΩ𝑖 , and 𝐴0 is the coarsematrix corresponding to the global coarse
bilinear form on the interface Γ := ∪𝑁

𝑖=1Γ𝑖 = ∪𝑁
𝑖=1 (𝜕Ω𝑖\𝜕Ω). 𝐴0 can be constructed

as "exact" with 𝐴0 = 𝑅0𝐴𝑅𝑇0 or as "inexact" with different choices of 𝐵
(𝑖)
ΓΓ
to obtain

better scalability property; see [6]. 𝑅𝑇0 is the global extension operator, which is the
sum of a discrete a-harmonic extension of the low-frequency eigenfunctions and a
low-cost extension for the high-frequency eigenfunctions inside each subdomain. The
eigenfunctions are obtained locally and in parallel from the following generalized
eigenvalue problem in each subdomain, (Cf. eq. (3.7) in [1] and eq. (7.3) in [2])

𝑆 (𝑖)𝜉 := (𝐴(𝑖)
ΓΓ

− 𝐴(𝑖)
Γ𝐼
(𝐴(𝑖)

𝐼 𝐼
)−1𝐴(𝑖)

𝐼Γ
)𝜉 = 𝜆𝐵 (𝑖)

ΓΓ
𝜉, (2)
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where 𝑆 (𝑖) is the local Schur complement, 𝐴(𝑖)
ΓΓ
, 𝐴

(𝑖)
Γ𝐼
, 𝐴

(𝑖)
𝐼Γ
, 𝐴

(𝑖)
𝐼 𝐼
are obtained from the

local Neumannmatrices 𝐴(𝑖) , where the subscripts Γ and 𝐼 denote the part associated
with the interface and interior of the subdomain, respectively. The right hand side 𝐵 (𝑖)

ΓΓ

is positive definite, and we have several choices [8, 7]. We can choose 𝐵 (𝑖)
ΓΓ

= 𝐴
(𝑖)
ΓΓ
,

which is the energy of the zero extension, or 𝐵 (𝑖)
ΓΓ

= �̂�
(𝑖)
ΓΓ
as the diagonal or block

diagonal of 𝐴(𝑖)
ΓΓ
. Next, a threshold 𝜂1 is set up to decompose the space of degrees

of freedom on Γ orthogonally with respect to 𝑆 (𝑖) and 𝐵 (𝑖)
ΓΓ
into two subspaces, the

low-frequency (eigenvalues smaller or equal to 𝜂1) eigenfunctions and the high-
frequency (eigenvalues larger than 𝜂1) eigenfunctions. This decomposition defines
naturally the extension 𝑅𝑇0 , which is the discrete a-harmonic extension for the low-
frequency eigenfunctions and zero extension for the high-frequency eigenfunctions.
Using 𝐵 (𝑖)

ΓΓ
and low-frequency eigenfunctions we can construct a coarse bilinear

form 𝑎0 (·, ·) and its corresponding matrix form 𝐴0. 𝑎0 (·, ·) can also be interpreted
as the sum of the energy of low-frequency eigenfunctions with respect to 𝑆 (𝑖) and
the energy of high-frequency eigenfunctions with respect to 𝐵 (𝑖)

ΓΓ
. To obtain a better

convergence rate and a smaller global problem, instead of using the zero extension
for the high-frequency eigenfunctions in 𝑅𝑇0 , we can also use H

(𝑖)
𝛿,𝐷
, which is the

minimum a-energy extension inside a 𝛿 layer of Γ𝑖 and zero Dirichlet condition
elsewhere inside the subdomain. For this specific 𝑅𝑇0 , the right-hand side 𝐵

(𝑖)
ΓΓ
can

be chosen as 𝑆 (𝑖)
𝛿,𝐷
, which is the Schur complement corresponding to H (𝑖)

𝛿,𝐷
; or

choose 𝐵 (𝑖)
ΓΓ
as 𝑆 (𝑖)

𝐹
, which is a block matrix constructed from the zero extension of

vertices and Schur complement of each edge/face in a 𝛿 layer. The latter choice has
excellent parallel scalability since, then, the assembling 𝐵ΓΓ are block diagonal with
blocks related to the edges/faces only. In order to decrease the complexity of the
generalized eigenvalue problems, there is also an economic version [8] by replacing
the left-hand side 𝑆 (𝑖) with 𝑆 (𝑖)

𝛿,𝑁
, which is the Schur complement of the discrete

a-harmonic extension in a 𝛿 layer and with zero Neumann condition inside.
For the “exact” 𝐴0, i.e., choosing 𝐵 (𝑖)

ΓΓ
= 𝐴

(𝑖)
ΓΓ
or 𝐵 (𝑖)

ΓΓ
= 𝑆

(𝑖)
𝛿,𝐷
, the size of the coarse

problem is equal to the degrees of freedom (DOF) on the interface. However, for the
“inexact” 𝐴0, i.e., choosing 𝐵 (𝑖)

ΓΓ
= �̂�

(𝑖)
ΓΓ
or 𝐵 (𝑖)

ΓΓ
= 𝑆

(𝑖)
𝐹
the coarse problem can be sep-

arated into local and global interactions by using the Sherman-Morrison-Woodbury
formula [6]. The local part is based on the uncoupled 𝐵 (𝑖)

ΓΓ
, which corresponds to solv-

ing a small Dirichlet problem in a thin region near the edges/faces of the subdomains.
The global part is based on coupled low-frequency modes across the subdomains,
which are built from generalized eigenfunctions on the subdomains. The global part
is designed to guarantee the robustness of the preconditioner to any ill-conditioned
positive definite matrix 𝐴, and the size of the global problem is equal to the total
number of selected eigenfunctions.
Now, let 𝑉ℎ (Ω) be any finite element space on a bounded polygonal (polyhe-

dral) domain Ω, and the condition number of NOSAS preconditioners satisfies the
following theorem. For a detailed proof, see [7, 8].
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Theorem 1 For any 𝑢ℎ ∈ 𝑉ℎ (Ω) the following holds:

𝜂1
𝐶1 +1

𝑎(𝑢ℎ , 𝑢ℎ) ≤ 𝑎(𝑀−1
NOSAS𝐴𝑢ℎ , 𝑢ℎ) ≤ (𝐶1 +1)𝑎(𝑢ℎ , 𝑢ℎ),

where 𝐶1 is a constant based on different choices of 𝐵 (𝑖)
ΓΓ

.

For 𝐵 (𝑖)
ΓΓ

= 𝐴
(𝑖)
ΓΓ
or 𝐵 (𝑖)

ΓΓ
= 𝑆

(𝑖)
𝛿,𝐷
, we have𝐶1 = 1. For 𝐵 (𝑖)

ΓΓ
= �̂�

(𝑖)
ΓΓ
, we have 𝐴(𝑖)

ΓΓ
≤𝐶1𝐵 (𝑖)

ΓΓ

for 1 ≤ 𝑖 ≤ 𝑁 with 𝐶1 = 3 in two dimensions and 𝐶1 = 4 in three dimensions. For
𝐵
(𝑖)
ΓΓ

= 𝑆
(𝑖)
𝐹
, we have 𝑆 (𝑖)

𝛿,𝐷
≤ 𝐶1𝐵 (𝑖)

ΓΓ
for 1 ≤ 𝑖 ≤ 𝑁 with 𝐶1 = 3 in two dimensions and

𝐶1 = 5 in three dimensions when 𝛿 < 𝐻
2 . Here we denote𝐻 as the size of the nonover-

lapping subdomain and ℎ as the size of the finite element. The threshold 𝜂1 is usually
chosen to be 𝑂 ( ℎ

𝐻
) so that the preconditioned system has condition number 𝑂 ( 𝐻

ℎ
).

Furthermore, the number of eigenfunctions we choose is only related to the geometry
of the heterogeneous coefficients, and we give quantitative results in [6].
A unique feature of the NOSAS preconditioner is that no weighting is required

to average the local solutions. This is different from methods like BDD, BDDC,
FETI, and FETI-DP, which require expensive deluxe weighting for some highly
heterogeneous problems. Moreover, the global matrix of the NOSAS has better
sparsity than the coarse matrix of BDD or FETI, with zero blocks corresponding to
the eigenfunctions in the subdomains that are not adjacent. NOSAS is constructed
purely algebraically from unassembled Neumann matrices 𝐴(𝑖) , which facilitates the
construction of the three-level NOSAS preconditioner, where we use the NOSAS
idea recursively on the coarse level.

2 The three-level NOSAS preconditioners
We note that the size of the global problem for NOSAS is the total number of eigen-
functions we choose in all subdomains. Therefore, for a large number of subdomains,
the coarse problem can become a bottleneck. The motivation of a three-level exten-
sion of the NOSAS methods is to approximate the coarse problem by replacing the
direct solver with a new preconditioner; see the three-level BDDC method [4] and
the three-level GDSW preconditioner [3]. We can also further recursively apply the
preconditioners to new levels, which is algorithmically straightforward leading to
multilevel extensions.
We first introduce some notations to define our three-level NOSAS. We decom-

pose Ω into 𝑁0 nonoverlapping open polygonal subregions Ω 𝑗 ,0 of size 𝑂 (𝐻0). We
denote 𝑊 𝑗𝑘 = Ω 𝑗 ,0 ∩Ω𝑘,0, which is the common vertex/edge/face of two adjacent
subregions when not empty. We further decompose each subregion Ω 𝑗 ,0 into some
subdomains Ω𝑖 of size 𝑂 (𝐻). We define Γ 𝑗 ,0 as the interface of subregion Ω 𝑗 ,0, and
define Γ 𝑗 ,𝐼 as the union of all subdomain interfaces Γ inside Ω 𝑗 ,0 without touch-
ing Γ 𝑗 ,0. The global interface Γ0 and the global interface interior Γ𝐼 are the union
of Γ 𝑗 ,0 and Γ 𝑗 ,𝐼 , respectively; see Figure 1 as an illustration. Therefore, we have that
Γ = Γ0 ⊕Γ𝐼 . Unless otherwise specified, we use𝑉ℎ (𝐷) to denote {𝑣 |𝐷 : 𝑣 ∈ 𝑉ℎ (Ω)},
where D is a set in Ω.
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Fig. 1 Comparison of a two-level mesh (left) and a three-level mesh (right) with ℎ = 1/32,𝐻 = 1/4,
𝐻0 = 1/2.

We need to decompose the coarse space 𝑉0 := {𝑣 |Γ : 𝑣 ∈ 𝑉ℎ (Ω)} into some new
local spaces and a coarser space. Following the procedure of additive Schwarz
methods, we define the local spaces𝑉 𝑗 ,0 (1 ≤ 𝑗 ≤ 𝑁0) as the restriction of𝑉0 on Γ 𝑗 ,𝐼

and vanishing on Γ 𝑗 ,0. The coarser space 𝑉0,0 is the restriction of 𝑉0 on Γ0. We
also define extrapolation operators 𝑅𝑇

𝑗,0 :𝑉 𝑗 ,0→𝑉0 as the extension by zero outside
of Ω 𝑗 ,0 for 1 ≤ 𝑗 ≤ 𝑁0, and 𝑅𝑇0,0 : 𝑉0,0 → 𝑉0 will be defined later. Then 𝑉0 admits
the following direct sum decomposition

𝑉0 = 𝑅
𝑇
0,0𝑉0,0 ⊕ 𝑅

𝑇
1,0𝑉1,0 ⊕ · · · ⊕ 𝑅𝑇𝑁0 ,0𝑉𝑁0 ,0.

Next, we follow the procedure of the NOSAS methods to define 𝑅𝑇0,0. We will use
only the Neumann matrices 𝐴(𝑖)

0 associated with the bilinear form 𝑎
(𝑖)
0 (·, ·). In the

subregion Ω 𝑗 ,0 (1 ≤ 𝑗 ≤ 𝑁0), we define the corresponding coarse bilinear form

𝑎
( 𝑗)
0,0 (·, ·) =

∑︁
𝑖∈N( 𝑗)

𝑎
(𝑖)
0 (·, ·),

whereN( 𝑗) is the set of indices of subdomains Ω𝑖 contained in the subregion Ω 𝑗 ,0.
Let Neumann matrices 𝐴( 𝑗)

0,0 be associated with the bilinear form 𝑎
( 𝑗)
0,0 (·, ·) defined

above. Then, 𝐴( 𝑗)
0,0 can be decomposed andwritten as the blockmatrix

[
𝐴
( 𝑗)
Γ0Γ0

𝐴
( 𝑗)
Γ0Γ𝐼

𝐴
( 𝑗)
Γ𝐼 Γ0

𝐴
( 𝑗)
Γ𝐼 Γ𝐼

]
,

where subscripts Γ0, Γ𝐼 denote the parts associated with Γ0 and Γ𝐼 , respectively.
We consider the following local generalized eigenvalue problem in each subregion
(1 ≤ 𝑗 ≤ 𝑁0) separately

𝑆
( 𝑗)
0 𝜙

( 𝑗)
𝑘
:= (𝐴( 𝑗)

Γ0Γ0
− 𝐴( 𝑗)

Γ0Γ𝐼
(𝐴( 𝑗)

Γ𝐼 Γ𝐼
)−1𝐴( 𝑗)

Γ𝐼 Γ0
)𝜙 ( 𝑗)

𝑘
= 𝜇

( 𝑗)
𝑘
𝐵
( 𝑗)
Γ0Γ0

𝜙
( 𝑗)
𝑘
, (𝑘 = 1, · · · , 𝑛 𝑗 ,0)

(3)
where 𝑆 ( 𝑗)0 is the Schur complement of 𝐴

( 𝑗)
0,0 and 𝑛 𝑗 ,0 is the number of DOFs on Γ 𝑗 ,0.

Similar to the two-level NOSAS, we have the following choices for the right-hand
side 𝐵 ( 𝑗)

Γ0Γ0
:

1. 𝐵 ( 𝑗)
Γ0Γ0

= 𝐴
( 𝑗)
Γ0Γ0
;

2. 𝐵 ( 𝑗)
Γ0Γ0

= �̂�
( 𝑗)
Γ0Γ0
, which is the diagonal or block diagonal version of 𝐴( 𝑗)

Γ0Γ0
;
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3. 𝐵 ( 𝑗)
Γ0Γ0

= 𝑆
( 𝑗)
𝛿0 ,𝐷
, which is the Schur complement defined as follows

𝑣𝑇𝑗 𝑆
( 𝑗)
𝛿0 ,𝐷

𝑢 𝑗 = 𝑎
( 𝑗)
0,0 (H

( 𝑗)
𝛿0 ,𝐷

𝑢 𝑗 ,H ( 𝑗)
𝛿0 ,𝐷

𝑣 𝑗 ), for all 𝑢 𝑗 , 𝑣 𝑗 ∈ 𝑉ℎ (Γ 𝑗 ,0).

Here, we set 𝛿0 = 𝑙𝐻 with some integer 𝑙, andH ( 𝑗)
𝛿0 ,𝐷

is defined as the minimum
𝑎
( 𝑗)
0,0-energy extension from 𝑉ℎ (Γ 𝑗 ,0) to 𝑉ℎ (Γ 𝑗 ,0

⋃
Γ 𝑗 ,𝐼 ) with a zero Dirichlet

condition outside of a 𝛿0 layer from Γ 𝑗 ,0;
4. 𝐵 ( 𝑗)

Γ0Γ0
= 𝑆

( 𝑗)
𝑊
, which is the block diagonal of {𝐴( 𝑗)

𝑊𝑗𝑘 ,𝑊𝑗𝑘
}𝑊𝑗𝑘 ∈Γ 𝑗,0 if𝑊 𝑗𝑘 is a vertex

in 2D (vertex and edge in 3D) and {𝑆 ( 𝑗)
𝑊𝑗𝑘 , 𝛿0

}𝑊𝑗𝑘 ∈Γ 𝑗,0 if 𝑊 𝑗𝑘 is an edge in 2D

(face in 3D), where 𝐴( 𝑗)
𝑊𝑗𝑘 ,𝑊𝑗𝑘

is the submatrix of 𝐴( 𝑗)
0,0 relative to𝑊 𝑗𝑘 , and

𝑣𝑇𝑗𝑘𝑆
( 𝑗)
𝑊𝑗𝑘 , 𝛿0

𝑢 𝑗𝑘 = 𝑎
( 𝑗)
0,0 (H

( 𝑗)
𝑊𝑗𝑘 , 𝛿0

𝑢 𝑗𝑘 ,H ( 𝑗)
𝑊𝑗𝑘 , 𝛿0

𝑣 𝑗𝑘 ), for all 𝑢 𝑗𝑘 , 𝑣 𝑗𝑘 ∈ 𝑉ℎ (𝑊 𝑗𝑘 ),

whereH ( 𝑗)
𝑊𝑗𝑘 , 𝛿0

is defined as the minimum 𝑎 ( 𝑗)0,0-energy extension from 𝑉ℎ (𝑊 𝑗𝑘 )
to 𝑉ℎ (Γ 𝑗 ,0

⋃
Γ 𝑗 ,𝐼 ) with zero Dirichlet condition outside of a 𝛿0 layer from𝑊 𝑗𝑘 .

For a detailed comparison of the choices above; see [7]. Next, we solve the local
generalized eigenvalue problem (3) and fix a threshold 𝜂0 < 1. We pick the small-
est 𝑘 𝑗 eigenvalues less than 𝜂0 and their corresponding eigenvectors to construct the
space 𝑄 ( 𝑗)

0 and the local orthogonal projection Π ( 𝑗)
0,𝑆 : 𝑉ℎ (Γ 𝑗 ,0) →𝑄

( 𝑗)
0 with respect

to 𝐵 ( 𝑗)
Γ0Γ0
norm as follows

𝑄
( 𝑗)
0 = [𝜙 ( 𝑗)

1 , 𝜙
( 𝑗)
2 , · · · , 𝜙 ( 𝑗)

𝑘 𝑗
], Π

( 𝑗)
0,𝑆 =𝑄

( 𝑗)
0 (𝑄 ( 𝑗)𝑇

0 𝐵
( 𝑗)
Γ0Γ0

𝑄
( 𝑗)
0 )−1𝑄 ( 𝑗)𝑇

0 𝐵
( 𝑗)
Γ0Γ0

.

We also denote Π ( 𝑗)⊥
0,𝑆 = 𝐼

( 𝑗)
0 −Π

( 𝑗)
0,𝑆 , where 𝐼

( 𝑗)
0 : 𝑉ℎ (Γ 𝑗 ,0) →𝑉ℎ (Γ 𝑗 ,0) is the identity

mapping. Based on different choices of 𝐵 ( 𝑗)
Γ0Γ0
, we have the following choices for

𝑅
( 𝑗)𝑇
0,0 : 𝑉ℎ (Γ 𝑗 ,0) →𝑉ℎ (Γ 𝑗 ,0

⋃
Γ 𝑗 ,𝐼 ):

i. H ( 𝑗)
0 Π

( 𝑗)
0,𝑆 +E

( 𝑗)
0 Π

( 𝑗)⊥
0,𝑆 ,

ii. H (𝑖)
0 Π

( 𝑗)
0,𝑆 +

∑
𝑊𝑗𝑘 ∈Γ 𝑗,0H

( 𝑗)
𝛿0 ,𝐷

Π
( 𝑗)⊥
0,𝑆 ,

where H ( 𝑗)
0 and E ( 𝑗)

0 are the minimum 𝑎
( 𝑗)
0,0-energy extension and zero extension

from 𝑉ℎ (Γ 𝑗 ,0) to 𝑉ℎ (Γ 𝑗 ,0
⋃
Γ 𝑗 ,𝐼 ), respectively. For simplicity, we choose 1. and 2.

for 𝐵 ( 𝑗)
Γ0Γ0
and their corresponding option i. in 𝑅 ( 𝑗)𝑇

0,0 for the rest of the paper. Therefore,
∀𝑢Γ0 ∈ 𝑉0,0, we define 𝑅𝑇0,0 : 𝑉0,0→𝑉0 as

𝑅𝑇0,0𝑢Γ0 =


𝑢Γ0

𝑁0∑︁
𝑗=1

−𝑅𝑇𝐼 𝑗 𝐼0 (𝐴
( 𝑗)
Γ𝐼 Γ𝐼

)−1𝐴( 𝑗)
Γ𝐼 Γ0

Π
( 𝑗)
0,𝑆𝑅Γ 𝑗Γ0𝑢Γ0

 ,
where 𝑅Γ 𝑗Γ0 : 𝑉0,0→𝑉ℎ (Γ 𝑗 ,0) and 𝑅𝑇𝐼 𝑗 𝐼0 : 𝑉ℎ (Γ 𝑗 ,𝐼 ) →𝑉ℎ (Γ𝐼 ) are the trivial restric-
tion and extension operators, respectively.
Then, we define �̂�0,0 corresponding to the following bilinear form
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�̂�0,0 (𝑢Γ0 , 𝑣Γ0 ) = 𝑣𝑇Γ0

𝑁0∑︁
𝑗=1

(
(Π ( 𝑗)
0,𝑆𝑅Γ 𝑗Γ0 )𝑇 𝑆

( 𝑗)
0 (Π ( 𝑗)

0,𝑆𝑅Γ 𝑗Γ0 ) + (Π ( 𝑗)⊥
0,𝑆 𝑅Γ 𝑗Γ0 )𝑇 𝐵

( 𝑗)
Γ0Γ0

(Π ( 𝑗)⊥
0,𝑆 𝑅Γ 𝑗Γ0 )

)
𝑢Γ0

= 𝑣𝑇Γ0

𝑁0∑︁
𝑗=1

𝑅𝑇
Γ 𝑗Γ0

(
𝐵

( 𝑗)
Γ0Γ0

−𝐵 ( 𝑗)
Γ0Γ0

𝑄
( 𝑗)
0 𝐷

( 𝑗)
0 (𝑄 ( 𝑗)𝑇

0 𝐵
( 𝑗)
Γ0Γ0

𝑄
( 𝑗)
0 )−1𝑄 ( 𝑗)𝑇

0 𝐵
( 𝑗)
Γ0Γ0

)
𝑅Γ 𝑗Γ0𝑢Γ0 ∀𝑢Γ0 , 𝑣Γ0 ∈ 𝑉0,0,

where 𝐷 ( 𝑗)
0 = diagonal(1− 𝜇 ( 𝑗)1 ,1− 𝜇 ( 𝑗)2 , · · · ,1− 𝜇 ( 𝑗)

𝑘 𝑗
) and 𝜇 ( 𝑗)

𝑘
are the generalized

eigenvalues corresponding to 𝜙 ( 𝑗)
𝑘
.

Then, the three-level NOSAS preconditioners have the following form

𝑀−1
3NOSAS = 𝑅

𝑇
0
( Third Level︷         ︸︸         ︷
𝑅𝑇0,0 �̂�

−1
0,0𝑅0,0+

Second Level︷              ︸︸              ︷
𝑁0∑︁
𝑗=1
𝑅𝑇𝑗,0 �̂�

−1
𝑗 ,0𝑅 𝑗 ,0

)
𝑅0︸                                               ︷︷                                               ︸

Coarse Level

+
𝑁∑︁
𝑖=1

𝑅𝑇𝑖 𝐴
−1
𝑖 𝑅𝑖︸          ︷︷          ︸

First Level

. (4)

For the first level, 𝐴𝑖 = 𝑅𝑖𝐴𝑅𝑇𝑖 , (1 ≤ 𝑖 ≤ 𝑁) are the matrices corresponding to the
exact local bilinear form of 𝐴, the same as in the two-level method. For the second
level, �̂� 𝑗 ,0 = 𝑅 𝑗 ,0𝐴0𝑅

𝑇
𝑗,0, (1 ≤ 𝑗 ≤ 𝑁0) are the matrices form corresponding to the

following exact local bilinear form of 𝐴0

�̂� 𝑗 ,0 (𝑢 𝑗 ,0, 𝑣 𝑗 ,0) = 𝑎0 (𝑅𝑇𝑗,0𝑢 𝑗 ,0, 𝑅
𝑇
𝑗,0𝑣 𝑗 ,0), ∀𝑢 𝑗 ,0, 𝑣 𝑗 ,0 ∈ 𝑉 𝑗 ,0.

For the third level, �̂�0,0 is the matrix form of �̂�0,0 (·, ·) defined above.
To show the condition number of three-level NOSAS preconditioners, we first

focus on the preconditioner in the coarse level and define 𝐵−1
0 as

𝐵−1
0 = 𝑅𝑇0,0 �̂�

−1
0,0𝑅0,0 +

𝑁0∑︁
𝑗=1
𝑅𝑇𝑗,0 �̂�

−1
𝑗 ,0𝑅 𝑗 ,0.

Wenote that 𝐵0 can be seen as an approximation of 𝐴0, and 𝐵−1
0 is a two-level NOSAS

preconditioner of 𝐴0. Therefore, similar to the two-level methods, we should also
consider the relation of 𝐵 ( 𝑗)

Γ0Γ0
with 𝐴( 𝑗)

Γ0Γ0
. For different choices of 𝐵 ( 𝑗)

Γ0Γ0
, let 𝐶0 be

the constant such that 𝐴( 𝑗)
Γ0Γ0

≤ 𝐶0𝐵 ( 𝑗)
Γ0Γ0
for 1 ≤ 𝑗 ≤ 𝑁0. For 𝐵 ( 𝑗)

Γ0Γ0
= 𝐴

( 𝑗)
Γ0Γ0
, we have

𝐶0 = 1. For 𝐵 ( 𝑗)
Γ0Γ0

= �̂�
( 𝑗)
Γ0Γ0
, we have 𝐶0 = 3 in two dimensions and 𝐶0 = 4 in three

dimensions. Then, using theNOSASmethods property we have shown in Theorem 1,
we have ∀𝑢Γ ∈ 𝑉0,

𝜂0
𝐶0 +1

𝑢𝑇Γ 𝐴
−1
0 𝑢Γ ≤ 𝑢𝑇Γ 𝐵−1

0 𝑢Γ ≤ (𝐶0 +1)𝑢𝑇Γ 𝐴−1
0 𝑢Γ .

Since 𝐴0 and 𝐵0 are symmetric and positive definite matrices, it is equivalent to

1
𝐶0 +1

𝑢𝑇Γ 𝐴0𝑢Γ ≤ 𝑢𝑇Γ 𝐵0𝑢Γ ≤ 𝐶0 +1
𝜂0

𝑢𝑇Γ 𝐴0𝑢Γ .
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Using the above property of 𝐵0 and combining it with the abstract theory of the
additive Schwarz method, we can obtain the following condition number for the
three-level NOSAS methods.

Theorem 2 For any 𝑢ℎ ∈ 𝑉ℎ (Ω) the following holds:(𝐶1
𝜂1

+ 𝐶0 +1
𝜂1𝜂0

)−1
𝑎(𝑢ℎ , 𝑢ℎ) ≤ 𝑎(𝑀−1

3NOSAS𝐴𝑢ℎ , 𝑢ℎ) ≤ (1+𝐶1 +𝐶1𝐶0)𝑎(𝑢ℎ , 𝑢ℎ).

3 Numerical experiments
We present numerical results for the variational formulation of

∫
Ω
𝜌(𝑥)∇𝑢 · ∇𝑣𝑑𝑥 =∫

Ω
𝑓 𝑣𝑑𝑥 with 𝑓 = 1 and a heterogeneous coefficient function 𝜌(𝑥). We choose four

specific 𝜌(𝑥) from the SPE10 model problems, 𝐾𝑥𝑥_06 and 𝐾𝑥𝑥_85, with the
computational domain Ω = (0,22) × (0,6). We decompose Ω into 33 congruent
square subregions of size 𝐻0 = 2, and 528 congruent square subdomains of size
𝐻 = 1/2. We further decompose each square subdomain into (𝐻/ℎ)2 congruent
small squares of size ℎ = 0.1. The shape-regular partition Tℎ is obtained by dividing
each of these small squares into two right triangle elements.𝑉ℎ (Ω) are the piecewise
linear basis functions on the triangulation Tℎ . We impose a zero Dirichlet boundary
condition on 𝜕Ω and use the PCG method for the preconditioned system with the
relative residual error 10−6 in the 𝑙2 norm.

Table 1 The two-level NOSAS preconditioners applied to four SPE10 model problems with dif-
ferent 𝜂1.

𝜂1 Iter. Cond. Size of global problem
0.025 46 34.45 431
0.05 39 24.47 443
0.1 32 15.52 486
0.2 23 6.82 735
0.4 16 4.05 1674

Kxx_06

𝜂1 Iter. Cond. Size of global problem
0.025 46 29.43 480
0.05 42 27.71 513
0.1 33 13.92 600
0.2 25 8.61 833
0.4 18 4.57 1535

Kxx_85

Table 2 The three-level NOSAS preconditioners applied to four SPE10 meshes with 𝜂0 = 0.25
and different 𝜂1.

𝜂1 Iter. Cond. Size of global problem
0.025 57 48.62 123
0.05 49 31.16 124
0.1 45 31.19 130
0.2 34 14.94 163
0.4 26 9.36 236

Kxx_06

𝜂1 Iter. Cond. Size of global problem
0.025 62 61.18 169
0.05 54 38.68 174
0.1 45 27.55 191
0.2 39 23.88 226
0.4 28 11.93 276

Kxx_85
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The scalability of NOSAS methods with the “inexact” solver is shown in [5, 6].
The main focus of our numerical experiments is to compare two-level NOSAS
preconditioners with three-level NOSAS preconditioners, and show that three-level
NOSAS have a smaller size of the global problem while maintaining a good iteration
and condition number. For the two-level NOSAS preconditioners, we choose 𝐵 (𝑖)

ΓΓ
=

𝑆
(𝑖)
𝐹
with 𝛿 = 2ℎ, and choose 𝑅𝑇0 the discrete a-harmonic extension for the low-

frequency eigenfunctions and H (𝑖)
𝛿,𝐷
for the high-frequency eigenfunctions in (2).

For the three-level NOSAS preconditioners, 𝐵 (𝑖)
ΓΓ
, 𝑅𝑇0 are the same as the two-level

preconditioners. Then we choose 𝐵 ( 𝑗)
Γ0Γ0

= �̂�
( 𝑗)
Γ0Γ0
as the diagonal of 𝐴( 𝑗)

Γ0Γ0
, and 𝑅𝑇0,0

as the discrete a-harmonic extension for the low-frequency eigenfunctions and zero
extension for the high-frequency eigenfunctions in (3). Note that ℎ

𝐻
= 0.2 and Table 1

shows the performance of the two-level NOSAS with different thresholds 𝜂1 for the
SPE10 model problems. For the three-level NOSAS, we choose a fixed 𝜂0 = 𝐻

𝐻0
and

show the corresponding results for different thresholds 𝜂1 in Table 2. All our test
results support the theoretical condition number bound in Theorem 1 and Theorem 2.
In addition, we observe a much smaller condition number numerically. The reason
is that numerically, the constant 𝐶0 is close to 1.8 and 𝐶1 is close to 1.5 for the
“inexact” solver.
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