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1 Introduction

LetΩ be a bounded open set with Lipschitz boundary. We want to solve the problem

min
𝑘

1
2
‖𝑇 − 𝑇target‖2𝐿2 (Ω) ,

s.t. div(u𝑇) − div(𝑘∇𝑇) = 𝑓 in Ω, 𝑇 |𝜕Ω = 𝑇0 and 𝑘 ∈ 𝑈𝑎𝑑 ,

(1)

with 𝑓 ∈ 𝐿2 (Ω), u ∈ 𝐻1 (Ω) given s.t. divu = 0. The set of admissible control 𝑈𝑎𝑑

contains all 𝑘 (𝑥) ∈ [𝑎, 𝑏] for a.e. 𝑥 and 𝑎 > 0 and is chosen such that any sequences
(𝑘𝑛)𝑛 ⊂ 𝑈𝑎𝑑 have a subsequence converging a.e. in Ω. Such 𝑘 ∈ 𝑈𝑎𝑑 must be more
regular (e.g with bounded variation) and we refer to [9, p. 9, Assumption 1] for
an example of such 𝑈𝑎𝑑 . With all these assumptions, (1) has at least one optimal
solution (see e.g. [9, Theorem 3]).
We will focus on finding ways to compute a solution to (1) on several subdomains.

In recent years, a lot of papers started to look at ways to decompose the resolution
of optimal control problems. In [5], the authors split the optimization problem as
two independent optimization problems, splitted by subdomains, with an augmented
cost. The necessary (and sufficient) conditions of optimality let us see that it actually
reduces to a classical Schwarz method applied to the direct and adjoint systems,
where the control could be eliminated (see also [1, 2, 7]).
These papers rely on the huge literature analyzing the different flavors of the

Schwarz iterative method: we only refer to [4] for an introduction and to [8] for
a more in depth presentation of these methods (and other decomposition methods).
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In order to decompose the resolution of (1) across several subdomains, we will
also adopt an indirect approach: we will decompose the computations of the gradient
of the cost, which will be used afterward in a descent method. Since the control needs
to be defined on the whole domain Ω, it seems hard to define a decomposition of (1)
using an overlap. Therefore, we will focus on finding an optimized Schwarz iteration,
without overlap, to compute the gradient of the cost.

2 Direct and adjoint equations

First of all, we express the gradient of the cost which can be given thanks to an
adjoint equation. The next result can be proved using [6, Corollary 1.3].

Theorem 1 Let 𝐽 (𝑘) = 1
2 ‖𝑇 (𝑘) − 𝑇target‖2𝐿2 (Ω) with 𝑇 (𝑘) ∈ 𝐻1 (Ω) be the solution

to div(u𝑇) − div(𝑘∇𝑇) = 𝑓 in Ω and 𝑇 |𝜕Ω = 𝑇0. Then: 𝜕𝑘𝐽 (𝑘) = ∇𝑇 · ∇_, where _
solves

div(𝑘∇_ − u_) = 𝑇 − 𝑇target, _ |𝜕Ω = 0.

Therefore, the gradient of 𝐽 can be computed by solving for fixed 𝑘:{
−div(𝑘∇𝑇 − u𝑇) = 𝑓 , 𝑇 |𝜕Ω = 𝑇0,
div(𝑘∇_ + u_) = 𝑇 − 𝑇target, _ |𝜕Ω = 0. (2)

We now expose our strategy in order to accelerate the resolution of (1): we would like
to decompose the resolution of (2) across several subdomains in order to accelerate
the computation of the gradient. However, since our optimization parameter 𝑘 is
defined on Ω, it seems hard to imagine a decomposition method using an overlap. If
we were computing a solution of (2) on two subdomains Ω1 and Ω2 with an overlap,
then we would end with two different gradients 𝜕𝑘𝐽 (𝑘) on Ω1 ∩ Ω2, depending on
which side the gradient is computed. Therefore, using a descent technique would
produce two different controls 𝑘1 onΩ1 and 𝑘2 onΩ2, with possibly different values
on Ω1 ∩Ω2. This could prevent the convergence to an optimal solution of (1).
To summarize, we are interested in non-overlapping Schwarz techniques. It should

be noted that optimized Schwarzmethod for an advection-diffusion equation has been
done in [3] but, to the best of our knowledge, never for (2).

3 Optimized Schwarz method for coupled direct-adjoint system

We assume there is open setsΩ𝑖 such thatΩ = Ω1 ∪Ω2 with interface Γ∩ = Ω1∩Ω2.
A non-overlapping Schwarz method for (2) can then be roughly defined as

1. Take an initial guess (𝑇0
𝑖
, _0

𝑖
) defined on Ω𝑖 ,

2. Until some stopping criteria are met: Compute (𝑇𝑛+1
𝑖

, _𝑛+1
𝑖

) satisfying
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−div(𝑘∇𝑇𝑛+1

𝑖 ) + div(𝑢𝑇𝑛+1
𝑖 ) = 𝑓 , on Ω𝑖 , 𝑇

𝑛+1
𝑖 |𝜕Ω𝑖\Γ∩ = 𝑇0,

div(𝑘∇_𝑛+1𝑖 ) + div(𝑢_𝑛+1𝑖 ) = 𝑇𝑛+1 − 𝑇target on Ω𝑖 , _
𝑛+1
𝑖 |𝜕Ω𝑖\Γ∩ = 0,

(3)

and the following transmission conditions on the interface

𝑘𝜕n

(
𝑇𝑛+1
𝑖

_𝑛+1
𝑖

)
− u · n
2

(
𝑇𝑛+1
𝑖

−_𝑛+1
𝑖

)
+ (−1)𝑖+1S𝑖

(
𝑇𝑛+1
𝑖

|Γ∩
_𝑛+1
𝑖

|Γ∩

)
(4)

=𝑘𝜕n

(
𝑇𝑛
3−𝑖

_𝑛3−𝑖

)
− u · n
2

(
𝑇𝑛
3−𝑖

−_𝑛3−𝑖

)
+ (−1)𝑖+1S𝑖

(
𝑇𝑛
3−𝑖 |Γ∩

_𝑛3−𝑖 |Γ∩

)
,

where n is the outer normal to 𝜕Ω1. In (3)–(4), S𝑖 are linear operators acting on
traces of (𝑇𝑖 , _𝑖) (e.g. S𝑖 = 𝑝𝑖 id where 𝑝𝑖 are some constants and id is the identity
operator, or some linear differential operator involving tangential derivatives).
To study the convergence of the non-overlapping Schwarz method as well as its

convergence properties, we are going to restrict ourselves to the case 𝑘 = constant,
Ω = R2, Ω1 = (−∞, 0) × R and Ω2 = (0, +∞) × R. In such setting, we can rely on
Fourier analysis [4] to study the convergence and also to design optimized transmis-
sion operators S𝑖 that accelerate the convergence. Without loss of generality, we also
suppose that 𝑓 = 𝑇target = 0 since we are interested in the error.

3.1 Computation of the optimal transmission operator

We start by applying Fourier transform to (2) along the 𝑦 axis:

−𝑘𝜕𝑥𝑥
(
𝑇𝑛
𝑖

_̂𝑛
𝑖

)
+ 𝑢1𝜕𝑥

(
𝑇𝑛
𝑖

−_̂𝑛
𝑖

)
+

(
𝑘𝜔2 − 𝑖𝑢2𝜔 0

1 𝑘𝜔2 + 𝑖𝑢2𝜔

) (
𝑇𝑛
𝑖

_̂𝑛
𝑖

)
= 0, 𝑖 ∈ {1, 2}.

Along 𝑥, this is a second order ordinary differential equation which can be solved
explicitly. Define :

𝑟𝑇± (𝜔) =
𝑢1 ±

√︃
𝑢21 + 4𝑘2𝜔2 − 4𝑖𝑘𝑢2𝜔

2𝑘
, 𝑟_± (𝜔) =

−𝑢1 ±
√︃
𝑢21 + 4𝑘2𝜔2 + 4𝑖𝑘𝑢2𝜔

2𝑘
.

Concerning 𝑇 , using the Dirichlet condition at infinity, there exist functions 𝐴𝑛
𝑇
(𝜔)

and 𝐵𝑛
𝑇
(𝜔) such that:

𝑇𝑛
1 (𝑥, 𝜔) = 𝐴𝑛

𝑇 (𝜔)𝑒𝑟
𝑇
+ (𝜔)𝑥 , 𝑇𝑛

2 (𝑥, 𝜔) = 𝐵𝑛
𝑇 (𝜔)𝑒𝑟

𝑇
− (𝜔)𝑥 .

These solutions are reintroduced into the equation in order to solve it for _̂. There, the
equation is non-homogeneous, but the right hand-side is of the form 𝐶 (𝜔)𝑒𝐷 (𝜔)𝑥 ,
for some functions 𝐶 and 𝐷 independent of 𝑥. An arbitrary solution is therefore
easily found, and one proves that they take the form:
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_̂𝑛1 (𝑥, 𝜔) = 𝐴𝑛
_ (𝜔)𝑒𝑟

_
+ (𝜔)𝑥−𝐴_𝑇 (𝜔)𝑇𝑛

1 (𝑥, 𝜔),

_̂𝑛2 (𝑥, 𝜔) = 𝐵𝑛
_ (𝜔)𝑒𝑟

_
− (𝜔)𝑥−𝐵_𝑇 (𝜔)𝑇𝑛

2 (𝑥, 𝜔),

where 𝐴_𝑇 (𝜔) = (−𝑘𝑟𝑇+ (𝜔)2−𝑢1𝑟𝑇+ (𝜔)+𝑘𝜔2+𝑖𝑢2𝜔)−1 and 𝐵_𝑇 (𝜔) = (−𝑘𝑟𝑇− (𝜔)2−
𝑢1𝑟

𝑇
− (𝜔) + 𝑘𝜔2 + 𝑖𝑢2𝜔)−1.
We may now derive each solution with 𝑥:

𝜕𝑥𝑇
𝑛
1 (𝑥, 𝜔) = 𝑟𝑇+ (𝜔)𝑇𝑛

1 (𝑥, 𝜔), 𝜕𝑥𝑇
𝑛
2 (𝑥, 𝜔) = 𝑟𝑇− (𝜔)𝑇𝑛

2 (𝑥, 𝜔),

𝜕𝑥_̂
𝑛
1 (𝑥, 𝜔) = 𝑟_+ (𝜔)𝐴𝑛

_ (𝜔)𝑒𝑟
_
+ (𝜔)𝑥 − 𝐴_𝑇 (𝜔)𝑟𝑇+ (𝜔)𝑇𝑛

1 (𝑥, 𝜔),

𝜕𝑥_̂
𝑛
2 (𝑥, 𝜔) = 𝑟_− (𝜔)𝐵𝑛

_ (𝜔)𝑒𝑟
_
− (𝜔)𝑥 − 𝐵_𝑇 (𝜔)𝑟𝑇− (𝜔)𝑇𝑛

2 (𝑥, 𝜔).

We now assume that F𝑦 (S𝑖 (𝑇, _)) (𝑥, 𝜔) = 𝜎𝑖 (𝜔) (𝑇, _̂), where 𝜎𝑖 is a 2×2 complex
matrix. The transmission conditions then read:

𝑘𝜕𝑥

(
𝑇𝑛
1
_̂𝑛1

)
(𝑥, 𝜔) − 𝑢1

2

(
𝑇𝑛
1

−_̂𝑛1

)
(𝑥, 𝜔) + 𝜎1 (𝜔)

(
𝑇𝑛
1
_̂𝑛1

)
(𝑥, 𝜔)

=
(
𝑀+

𝑟 (𝑥, 𝜔) + 𝜎1 (𝜔)𝑀+
0 (𝑥, 𝜔)

) (
𝐴𝑛
𝑇
(𝜔)

𝐴𝑛
_
(𝜔)

)
,

𝑘𝜕𝑥

(
𝑇𝑛
2
_̂𝑛2

)
(𝑥, 𝜔) − 𝑢1

2

(
𝑇𝑛
2

−_̂𝑛2

)
(𝑥, 𝜔) + 𝜎2 (𝜔)

(
𝑇𝑛
2
_̂𝑛2

)
(𝑥, 𝜔)

=
(
𝑀−

𝑟 (𝑥, 𝜔) + 𝜎2 (𝜔)𝑀−
0 (𝑥, 𝜔)

) (
𝐵𝑛
𝑇
(𝜔)

𝐵𝑛
_
(𝜔)

)
,

𝑀+
𝑟 (𝑥, 𝜔) =

(
(𝑘𝑟𝑇+ (𝜔) − 𝑢1

2 )𝑒
𝑟𝑇+ (𝜔)𝑥 0

−(𝑘𝑟𝑇+ (𝜔) − 𝑢1
2 )𝐴_𝑇 (𝜔)𝑒𝑟

𝑇
+ (𝜔)𝑥 (𝑘𝑟_+ (𝜔) − 𝑢1

2 )𝑒
𝑟_+ (𝜔)𝑥

)
𝑀+
0 (𝑥, 𝜔) =

(
𝑒𝑟

𝑇
+ (𝜔)𝑥 0

𝐴_𝑇 (𝜔)𝑒𝑟
𝑇
+ (𝜔)𝑥 𝑒𝑟

_
+ (𝜔)𝑥

)
, 𝑀−

0 (𝑥, 𝜔) =
(

𝑒𝑟
𝑇
− (𝜔)𝑥 0

−𝐵_𝑇 (𝜔)𝑒𝑟
𝑇
− (𝜔)𝑥 𝑒𝑟

_
− (𝜔)𝑥

)
𝑀−

𝑟 (𝑥, 𝜔) =
(

(𝑘𝑟𝑇− (𝜔) − 𝑢1
2 )𝑒

𝑟𝑇− (𝜔)𝑥 0
−(𝑘𝑟𝑇− (𝜔) − 𝑢1

2 )𝐵_𝑇 (𝜔)𝑒𝑟
𝑇
− (𝜔)𝑥 (𝑘𝑟_− (𝜔) − 𝑢1

2 )𝑒
𝑟_− (𝜔)𝑥

)
Using the conditions at 𝑥 = 0, we get the following recurrence:(

𝐴𝑛
𝑇
(𝜔)

𝐴𝑛
_
(𝜔)

)
=

[
𝑀+

𝑟 (0, 𝜔) + 𝜎1 (𝜔)𝑀+
0 (0, 𝜔)

]−1 [
𝑀−

𝑟 (0, 𝜔) + 𝜎1 (𝜔)𝑀−
0 (0, 𝜔)

]︸                                                                                ︷︷                                                                                ︸
𝑀1 (𝜔)[

𝑀−
𝑟 (0, 𝜔) − 𝜎2 (𝜔)𝑀−

0 (0, 𝜔)
]−1 [

𝑀+
𝑟 (0, 𝜔) − 𝜎2 (𝜔)𝑀+

0 (0, 𝜔)
]︸                                                                                 ︷︷                                                                                 ︸

𝑀2 (𝜔)

×
(
𝐴𝑛−2
𝑇

(𝜔)
𝐴𝑛−2
_

(𝜔)

)
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𝐵𝑛
𝑇
(𝜔)

𝐵𝑛
_
(𝜔)

)
=

[
𝑀−

𝑟 (0, 𝜔) − 𝜎2 (𝜔)𝑀−
0 (0, 𝜔)

]−1 [
𝑀+

𝑟 (0, 𝜔) − 𝜎2 (𝜔)𝑀+
0 (0, 𝜔)

]︸                                                                                 ︷︷                                                                                 ︸
𝑀2 (𝜔)[

𝑀+
𝑟 (0, 𝜔) + 𝜎1 (𝜔)𝑀+

0 (0, 𝜔)
]−1 [

𝑀−
𝑟 (0, 𝜔) + 𝜎1 (𝜔)𝑀−

0 (0, 𝜔)
]︸                                                                                ︷︷                                                                                ︸

𝑀1 (𝜔)

×
(
𝐵𝑛−2
𝑇

(𝜔)
𝐵𝑛−2
_

(𝜔)

)
Therefore, the optimal choice of 𝜎𝑖 cancels 𝑀1 (𝜔)𝑀2 (𝜔) and 𝑀2 (𝜔)𝑀1 (𝜔) ; this
reads:

𝜎
opt
1 (𝜔) = −𝑀−

𝑟 (0, 𝜔)
(
𝑀−
0 (0, 𝜔)

)−1
=

(
−𝑘𝑟𝑇− (𝜔) + 𝑢1

2 0
−𝑘𝐵_𝑇 (𝜔) [𝑟_− (𝜔) − 𝑟𝑇− (𝜔)] −𝑘𝑟_− (𝜔) − 𝑢1

2

)
,

𝜎
opt
2 (𝜔) = 𝑀+

𝑟 (0, 𝜔)
(
𝑀+
0 (0, 𝜔)

)−1
=

(
𝑘𝑟𝑇+ (𝜔) − 𝑢1

2 0
−𝑘𝐴_𝑇 (𝜔) [𝑟𝑇+ (𝜔) − 𝑟_+ (𝜔)] 𝑘𝑟_+ (𝜔) + 𝑢1

2

)
.

However, as it is usual concerning the optimal Schwarz operator, an inverse Fourier
transform proves that S𝑜𝑝𝑡

𝑖
, the inverse Fourier transform of 𝜎opt

𝑖
, is a non-local

operator [4]. This property can be difficult to handle in a numerical method. This is
why we will restrict the set of admissible transmission operator S𝑖 to local constant
operators.

3.2 Computation of optimized transmission operator

Instead of using the optimal (non-local) operator, wewill search for an optimal lower-
triangular matrix 𝑃𝑖 , which we will suppose to be constant in 𝜔. All the calculations
above can be done similarly with this new assumption, and we may write similarly

the new matrices 𝑀1 (𝜔) and 𝑀2 (𝜔). Suppose 𝜎1 =
(
𝜎11 0
𝜎13 𝜎14

)
and 𝜎2 =

(
𝜎21 0
𝜎23 𝜎24

)
.

Then 𝑀𝑙 (𝜔)𝑀𝑚 (𝜔) =
(
𝑀11 (𝜔) 0
𝑀 𝑙𝑚
3 (𝜔) 𝑀14 (𝜔)

)
, where

𝑀11 (𝜔) =
(2𝑘𝑟𝑇− (𝜔) + 2𝜎11 − 𝑢1) (−2𝑘𝑟𝑇+ (𝜔) + 2𝜎21 + 𝑢1)
(2𝑘𝑟𝑇+ (𝜔) + 2𝜎11 − 𝑢1) (−2𝑘𝑟𝑇− (𝜔) + 2𝜎21 + 𝑢1)

,

𝑀14 (𝜔) =
(2𝑘𝑟_− (𝜔) + 2𝜎14 + 𝑢1) (2𝑘𝑟_+ (𝜔) − 2𝜎24 + 𝑢1)
(2𝑘𝑟_+ (𝜔) + 2𝜎14 + 𝑢1) (2𝑘𝑟_− (𝜔) − 2𝜎24 + 𝑢1)

,

and 𝑀 𝑙𝑚
3 (𝜔) for 𝑙, 𝑚 = 1, 2 can be computed as above but are not given since their

expressions are not needed in the subsequent analysis.
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A way that seems natural is to optimize the transmission conditions consists
in solving the min-max problem: min𝜎11 ,𝜎13 ,𝜎14 max𝜔∈[𝜔1 ,𝜔2 ] ‖𝑀1 (𝜔)𝑀2 (𝜔)‖ for
some matrix norm ‖ · ‖ and some constants 𝜔1 < 𝜔2. Solving this min-max problem
can be tricky: the result may depend on the chosen norm, and the complicated
expression of the components of 𝑀1𝑀2 makes the whole analysis inextricable.
Furthermore, it is not entirely clear how one could use either the product 𝑀1𝑀2 or
𝑀2𝑀1 in this min max problem. This could change the nature of the result.
However, we remark that the spectral radius appears to be useful in this case,

since 𝜌(𝑀1 (𝜔)𝑀2 (𝜔)) = 𝜌(𝑀2 (𝜔)𝑀1 (𝜔)) only depend on 𝜎11, 𝜎21, 𝜎14 and 𝜎24.
Furthermore, optimizing the spectral radius of the matrices may be done in two
independent optimization problems:

min
𝜎11 ,𝜎21

max
𝜔∈[𝜔1 ,𝜔2 ]

��������
(
−
√︃
𝑢21 + 4𝑘2𝜔2 − 4𝑖𝑘𝑢2𝜔 + 2𝜎11

) (
−
√︃
𝑢21 + 4𝑘2𝜔2 − 4𝑖𝑘𝑢2𝜔 + 2𝜎21

)
(√︃

𝑢21 + 4𝑘2𝜔2 − 4𝑖𝑘𝑢2𝜔 + 2𝜎11
) (√︃

𝑢21 + 4𝑘2𝜔2 − 4𝑖𝑘𝑢2𝜔 + 2𝜎21
)

�������� ,

min
𝜎14 ,𝜎24

max
𝜔∈[𝜔1 ,𝜔2 ]

��������
(
−
√︃
𝑢21 + 4𝑘2𝜔2 + 4𝑖𝑘𝑢2𝜔 + 2𝜎14

) (
−
√︃
𝑢21 + 4𝑘2𝜔2 + 4𝑖𝑘𝑢2𝜔 + 2𝜎24

)
(√︃

𝑢21 + 4𝑘2𝜔2 + 4𝑖𝑘𝑢2𝜔 + 2𝜎14
) (√︃

𝑢21 + 4𝑘2𝜔2 + 4𝑖𝑘𝑢2𝜔 + 2𝜎24
)

�������� .
This kind of min max problem can be solved. Suppose 𝜔1 = 0, 𝜔2 = 𝜋/ℎ and
applying results from [3, p. 35, Eq. (2.11)] prove, assuming ℎ is small enough, that
the solution in this case is:

𝜎11 = 𝜎14 =

(
𝑘𝜋 |𝑢1 |3
2ℎ

)1
4

, 𝜎21 = 𝜎24 =

(
25𝑘3𝜋3 |𝑢1 |

ℎ3

)1
4

. (5)

Other similar results can be found in [3]. However, this approach of optimizing the
spectral radius let the parameters 𝜎13 and 𝜎23 free, and 𝑀123 (𝜔) and 𝑀213 (𝜔) both
depend on 𝜎13 and 𝜎23. We show below how these parameters can be chosen.

3.3 Random tests for the last parameters

In order to see the influence of the parameters 𝜎𝑖3, we ran a batch of numerical
tests with random values for 𝜎𝑖3. We then solve (2) on Ω = (−1, 1) × (0, 1) with
𝑘 = 1, 𝑓 = 𝑇target = 0, u = (−2, 0), 𝑇0 |𝑥=−1 = 0, 𝑇0 |𝑥=1 = 2 and 𝑇0 |𝑦∈{0,1} = 1.
We first solve the equation on Ω, and compare it with the solution of (3)–(4), where
Ω1 = (−1, 0) × (0, 1), Ω2 = (0, 1) × (0, 1), Γ∩ = {0} × [0, 1] and 𝜎𝑖1, 𝜎𝑖4 are
assigned using (5). 𝜎13 and 𝜎23 are assigned randomly between −150 and +150. We
used second order centered finite differences, a ghost point for the Robin boundary
conditions and a 20 × 20 uniform grid for each subdomain. We then run 5 and
10 iterations of (3)–(4), and compare the result with the solution on the whole
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Fig. 1 Number random values between −150 and +150 generated for 𝜎𝑖3 VS Error (infinity norm)
on _ at the 5th (Left) and 10th (Right) iteration using random antidiagonal elements (blue dots) or
just 0 (red line).

domain, which let us compute an error at the end of the iterations. We did this
experiment with 250 random couples for 𝜎13 and 𝜎23, and plot the error. The results
are given in Figure 1. From these results, we see that the choice 𝜎13 = 𝜎23 = 0 seems
to give the lowest error (the red line in (1)). Indeed, after 5 (resp. 10) iterations, the
lowest error is at 0.0189 (resp. 3.5919 × 10−5) with the random values, while the
error with 𝜎13 = 𝜎23 = 0 is at 0.0051 (resp. 8.4667 × 10−6). This choice is special
since it decouples 𝑇 and _ at the interface Γ∩. It then suggests that the resolution of𝑇
first, and then _, is more efficient, with respect to the number of Schwarz iterations.

3.4 Schwarz iteration as critical points of an optimization problem

We conclude this proceeding by showing that each iteration of the Schwarz method
can be obtained by computing the critical points of some specific Lagrange func-
tional. We restrict ourselves to transmission conditions (4), where S𝑖 are lower-
triangular matrices with constant coefficients and recall that n is the outer normal
to 𝜕Ω1. We consider the next sub-domain problem{

−div(𝑘∇𝑇𝑖 − u𝑇𝑖) = 𝑓 in Ω𝑖 ,

𝑘𝜕n𝑇𝑖 + 𝑎𝑖u · n𝑇𝑖 + (−1)𝑖+1𝑝𝑖𝑇𝑖 = (−1)𝑖+1𝑔𝑖 on Γ∩, 𝑇𝑖 = 𝑇0 on 𝜕Ω𝑖 \ Γ∩.
(6)

Its variational formulation is: Find 𝑇 ∈ 𝐻1 (Ω𝑖) such that 𝑇𝑖 |𝜕Ω𝑖\Γ∩ = 𝑇0 and
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𝑎𝑖 (𝑇𝑖 , _𝑖) :=
∫
Ω𝑖

𝑘∇𝑇𝑖 · ∇_𝑖 − 𝑇𝑖 u · ∇_𝑖 𝑑𝑥

−
∫
Γ∩

(
𝑝𝑖 + (−1)𝑖+1 (1 + 𝑎𝑖)u · n

)
𝑇𝑖_𝑖 𝑑𝑠

=

∫
Ω𝑖

𝑓 _𝑖 𝑑𝑥 +
∫
Γ∩

𝑔𝑖_𝑖 𝑑𝑠, ∀_𝑖 ∈ 𝑉𝑖 :=
{
𝜑 ∈ 𝐻1 (Ω𝑖) | 𝜑|𝜕Ω𝑖\Γ∩ = 0

}
.

We then have the next result whose proof can formally be done by direct computation.

Theorem 2 Given 𝛼𝑖 ∈ 𝐿∞ (Γ∩), 𝛽𝑖 ∈ 𝐿2 (Γ∩), we consider the Lagrangian

L𝑖 (𝑇𝑖 , _𝑖) =
1
2
‖𝑇𝑖 − 𝑇target‖2𝐿2 (Ω𝑖) + 𝑎𝑖 (𝑇𝑖 , _𝑖) −

∫
Ω𝑖

𝑓 _𝑖 𝑑𝑥 −
∫
Γ∩

𝑔𝑖_𝑖 𝑑𝑠

+
∫
Γ∩

(𝛼𝑖

2
𝑇2𝑖 + 𝛽𝑖𝑇𝑖

)
𝑑𝑠, ∀

(
𝑇𝑖 − 𝑇0,𝑖

)
, _𝑖 ∈ 𝑉𝑖 ,

where 𝑇0,𝑖 ∈ 𝑉𝑖 is an extension of 𝑇0. Let (𝑇𝑖 , _𝑖) satisfying 𝜕𝑇𝑖 ,_𝑖L𝑖 (𝑇𝑖 , _𝑖) = 0.
Then 𝑇𝑖 is a weak solution to (6) and _𝑖 ∈ 𝑉𝑖 is a weak solution to the (adjoint)
problem{

div(𝑘∇_𝑖 + u_𝑖) = 𝑇𝑖 − 𝑇target in Ω𝑖 , _𝑖 = 0 on 𝜕Ω𝑖 \ Γ∩,
𝑘𝜕n_𝑖 + (1 + 𝑎𝑖)u · n_𝑖 + (−1)𝑖+1𝑝𝑖_𝑖 = (−1)𝑖+1 (𝛼𝑖𝑇𝑖 + 𝛽𝑖) on Γ∩.

(7)

From Theorem 2, we see that chosing 𝑎𝑖 = − 12 , 𝑝𝑖 = 𝜎𝑖1, 𝛼𝑖 = −𝜎𝑖3,

𝑔𝑖 =𝑘𝜕n𝑇
𝑛
3−𝑖 + 𝑎𝑖u · n𝑇𝑛

3−𝑖 + (−1)𝑖+1𝑝𝑖𝑇𝑛
3−𝑖 ,

𝛽𝑖 =

(
𝑘𝜕n_

𝑛
3−𝑖 + (1 + 𝑎𝑖)u · n_𝑛3−𝑖 + (−1)𝑖+1𝑝𝑖_𝑛3−𝑖 + 𝛼𝑖𝑇

𝑛
3−𝑖

)
,

yields that (𝑇 𝑘+1
𝑖

− 𝑇0,𝑖 , _
𝑘+1
𝑖

) ∈ 𝑉𝑖 × 𝑉𝑖 is a critical point of L𝑖 . Each iterate
of the DDM can then be obtained by solving an optimization problem on each
subdomain (see also e.g. [1, 5]).

4 Conclusion

Using a Schwarz method on (2) appears to be harder than expected. The transmission
conditions found in [3] can be adapted to this case, but only gives a partial clue to
define some optimized transmission operator. Furthermore, solving (2) only let us
compute the gradient of the cost which only accelerates the computation of the
gradient, but not necessarily the resolution of (1). Concerning (2), we still wonder
if one can take advantage of the triangular structure of (1): is it better to solve first
for 𝑇 alone, and then for _, or could we find efficient iterations to compute the
couple (𝑇, _)? Additional works in this direction are on-going projects.
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