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1 Introduction

The algorithm considered in this paper is known as the RAGDSW – the Reduced
Adaptive Generalized Dryja-Smith-Widlund – method. Following an idea of Clark
Dohrmann, the GDSW algorithms were introduced in order to avoid the need for
coarser meshes for overlapping Schwarz algorithms, see [4]; for a general introduc-
tion to Schwarz method see [9, Chap. 2–3]. This was accomplished by borrowing
coarse spaces from another family of domain decomposition algorithms namely the
iterative substructuring methods, see [9, Chap. 4–6]. These algorithms were later
further refined decreasing the dimension of the coarse spaces, see [5, 6]. We note
that the GDSW methods, without adaptation, can be used for problems for which
only fully assembled stiffness matrices are available. Unfortunately, the adaptive
variants require access to the stiffness matrices for individual subdomains, matrices
that cannot be recovered from fully assembled matrices.
The purpose of our present work is to extend previous work on low order finite

elements to isogeometric analysis (IgA) based onB-splines andNURBS (nonuniform
rational B-splines) of arbitrary order 𝑝; for an introduction to IgA, see, e.g., [1]. Our
elliptic problems are scalar elliptic problems and compressible linear elasticity in two
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or three dimensions. We note that the NURBS are commonly used in computer aided
design and we always assume that the domains of the elliptic problems considered
can be represented exactly using this class of functions.With B-splines of order 𝑝 and
smoothness 𝑘 = 𝑝 − 1, there are 𝑝 one-dimensional (1D) B-spline basis functions
which differ from zero at any fixed internal knot. This is the origin of our fat
interfaces; see further Section 3.
New coarse spaces for overlapping Schwarz methods are generated adaptively

by solving generalized eigenvalue problems on subsets of the fat interface which
subdivide the domain of the elliptic problem into subdomains. We call these subsets
eigensets. The resulting eigenvectorswith eigenvalues less than or equal to a tolerance
are then extended by zero to the rest of the fat interface to provide Dirchlet data for
the computation of basis functions, of minimum energy, for the coarse subspace of
our Schwarz algorithms. We note that the AGDSW algorithms considered in [7] use
eigensets of the interface based of equivalence classes directly related to subdomain
vertices, edges, and faces while the RAGDSW algorithms of [8] use only one type
of eigensets each associated with a vertex of the interface. The latter choice leads to
considerably much smaller coarse subspaces. The two papers just cited, which have
provided a foundation for our work, are for low order finite elements. These new
algorithms improve the rate of convergence of the overlapping Schwarz algorithms, in
particular, for caseswhen thematerial coefficients of our problems vary considerably;
the work by Heinlein et al. have very strong results of that kind.
Our theoretical result provides an estimate of the condition number for our precon-

ditioned conjugate gradient methods in terms of the tolerance used in the selection
of eigenvectors of the generalized eigenvalue problems. Our experimental work with
our algorithm is still in progress and will further be reported in a forthcoming paper,
which will also provide complete proofs of our theoretical results.

2 The discrete problems

In this paper, the coarse space of the two-level additive Schwarz methods is given in
terms of a coarse partition of the domain into non-overlapping subdomains {Ω𝑘 }.The
union of the intersections of the boundaries of these subdomains form the interface Γ.
In a reference domain, each non-overlapping subdomains, Ω̂𝑘 , is a preimage of Ω𝑘

and is a square with a side length 𝐻 each of which is partitioned into elements, with
a side length of about ℎ, by B-spline knots which we assume to form a quasi-uniform
mesh. The coarse space of the pioneering paper [2] is associated with B-spline
elements given in terms of the reference subdomains and of the same degree as those
on the fine decomposition into small elements. In order to keep the dimension of the
coarse space small, maximal smoothness of the B-splines, 𝑘 = 𝑝−1, is chosen in that
paper and in our work and this assumption also assures us that the coarse space is
contained in the global space on the fine mesh which is also chosen to be of maximal
smoothness. In the reference subdomains, tensor-product B-splines, 𝐵𝑝
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(2D and 3D), respectively, are used. The physical subdomains are the images of
the reference subdomains under a mapping using NURBS. As already indicated
the coarse spaces of our algorithm is chosen differently. Our local subproblems are
given by Dirichlet problems on subdomains which share at least one layer of knots
with all their neghbors. This overlap is measured by a parameter 𝑟 ≥ 0 where 𝑟 = 0
represents minimal overlap and a value of 𝑟 > 0 indicates that 𝑟 layers of knots are
shared between the neighboring local problems.

3 Equivalence classes, related subspaces, and preconditioners

For 2D, the subdomain vertices and edges of Γ are associated with equivalence
classes of the knots of the fine mesh. The pairs of indices, (𝑖, 𝑗), associated with
the fat interface, Γ 𝑓 𝑎𝑡 , are determined by the set of 2D B-splines with values which
differ from zero on part of the interface Γ. This fat interface, in turn, is divided into
equivalence classes of fat vertices and fat edges.
Each interior subdomain vertex, and for 𝑘 = 𝑝 − 1, is associated with a fat vertex

set of 𝑝2 knots with 𝑝2 B-spline basis functions that do not vanish at that vertex.
Similarly, each interior subdomain edge is associated with a fat edge with basis
functions which vanish at the two vertices at the end of the edge but differ from
zero on part of a particular edge of Γ. Each fat edge can be viewed as being built
from 𝑝 thin edges of knots parallel to the subdomain edge in question in the reference
domain. There is also an equivalence class of knots of the interior of any subdomain
basis functions which vanish identically on the interface Γ. In 3D, there are also fat
faces and the subspaces associated with fat vertices, fat edges, fat faces, and interiors
of subdomains which are defined very similarly to the 2D case.
The eigensets of the RAGDSW algorithms are only of one type each associated

with a subdomain vertex 𝑉 ; see Fig. 1. We denote such an eigenset by 𝑅 and by Ω𝑅

the interior of the union of the closure of four or eight subdomains which share
the vertex at the center of this eigenset for 2D and 3D, respectively. In Fig. 1, the
dots represent the locations of the maxima of the different B-spline basis functions
associated with the fat interfaces. In the 2D case, the dots of 𝑅 are those of the
fat vertex and of the parts of the fat edges which are closer to 𝑉 than to any other
subdomain vertex. We note that for an even value of 𝑝, none of these dots would fall
on the interface Γ. The figures would also look different if the parameter 𝑘 < 𝑝 − 1.
To decrease the cost of the computation of the elements of the matrices of the

generalized eigenvalue problems (1), we can also use a subset of Ω𝑅 making sure
that all the basis functions associated with the set 𝑅 are supported in the set that
replaces Ω𝑅 . We note that the theory, which we have developed, is equally valid in
this case.
Considering the 3D case, we can now provide details on the construction of the

set 𝑅. The B-spline knots and tensor-product B-splines associated with one of these
eigensets are those of its fat vertex and the halves of the fat edges closest to the
vertex and the nearest quarters of the adjacent fat faces; see Fig. 1. In case the
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Fig. 1 RAGDSW eigensets for 𝑝 = 3, 𝑘 = 2. Top left: A 2D eigenset consisting of the union of
a fat vertex (black dots) and adjcent halves of fat edges edges (red dots). Top right: the eigenset
on a quarter-ring domain. Bottom left: A 3D eigenset consisting of the union of a fat vertex (black
dots), halves of the adjacent fat edges (red dots), and quarters of adjacent fat faces (blue asterisks).
Bottom right: The eigenset in a thick quarter-ring domain.

number of knots on a subdomain edge is not even, we allocate the knots furthest
away from the relevant fat vertices to any of its closest eigensets. We also make
similar minor modifications of the set of knots of the fat subdomain faces. The union
of these eigensets, which do not overlap, covers the entire fat interface. We note that
the knots originating from the fat vertex and subsets of fat edges and fat faces are
displayed with different symbols and colors; we will need to partition this eigenset 𝑅,
accordingly, when constructing the generalized eigenvalue problems.
The generalized eigenvalue problem associated with such an eigenset is of the

form
𝑆
Ω𝑅

𝑅𝑅
𝜏★,𝑅 = _★,𝑅 𝐾

Ω𝑅

𝑅𝑅
𝜏★,𝑅, (1)

defined by the Schur complement 𝑆Ω𝑅

𝑅𝑅
generated from the stiffness matrix 𝐾Ω𝑅

of the Neumann problem on Ω𝑅 built from the four or eight subdomains sharing
the eigenset or from a subset of Ω𝑅 as indicated above. The Schur complement
is generated by eliminating all degrees of freedom except those of 𝑅. The other
matrix, 𝐾Ω𝑅

𝑅𝑅
, is the principal minor, associated with 𝑅, of the same stiffness matrix
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after eliminating the off-diagonal blocks that represent coupling between the sets
from which the set 𝑅 is constructed.
It is easy to see that the Schur complement is singular with one constant null vector

for any scalar elliptic problem. For elasticity, there are three- and six-dimensional
null spaces for 2D and 3D, respectively; they originate from the rigid body modes.
This fact shows that the null space condition will always be satified. For elasticity
and the case 𝑝 = 1, the other matrix of the generalized eigenvalue problems can also
be singular but this issue does not arise if 𝑝 ≥ 2.
Working with a tolerance 𝑡𝑜𝑙𝑅 ≥ 0, we select all eigenvectors with _★,𝑅 ≤ 𝑡𝑜𝑙𝑅,

extend their values by zero to the rest of the fat interface and then compute their
minimal energy extensions to find the coarse space elements 𝑣★,𝑅 associated with 𝑅.
For each eigenvector, this requires the solutions of a Dirichlet problem for each of
the subdomains ofΩ𝑅 with a zero right hand side. Thus, any such basis function has
values in the interior of the subdomains obtained by a minimal energy extension.

4 A theoretical result

Our theoretical result is an estimate of the condition number of the two-level additive
Schwarz algorithm using the coarse space obtained from the coarse basis functions
introduced above and one local subspace for each sudomain Ω𝑘 . Any such local
subspace is associated with all the knots of the subdomain and the part of the fat
interface adjacent to the subdomain. Currently our proof does not work for smaller
overlaps.

Theorem 1 There are constants 𝐶1 and 𝐶2 such that the condition number of the
two-level additive Schwarz operator 𝑃𝑎𝑑𝑑 satifies

^(𝑃𝑎𝑑𝑑) ≤ 𝐶1 (1 + 𝐶2/𝑡𝑜𝑙). (2)

Here 𝑡𝑜𝑙 is the smallest tolerance 𝑡𝑜𝑙𝑅 used for the generalized eigenvalue problems
and 𝐶1 and 𝐶2 are computable constants independent of the number of subdomains,
the dimension of the subprobems, and the coefficients of our elliptic problems.

Our proof relies to a large extent on the work reported in the two papers by Hein-
lein et al.

5 Numerical results

In this section, we report on numerical experiments with the isogeometric RAGDSW
preconditioner for the 2D Poisson equation on a quarter-ring domain, discretized by
isogeometric NURBS spaces with mesh size ℎ, polynomial degree 𝑝, regularity
𝑘 = 𝑝 − 1, and the overlap parameter 𝑟 . The domain is decomposed into 𝑁 nonover-
lapping subdomains of characteristic size 𝐻. The linear systems of equations arising
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from the discretizations are solved by the PCG algorithm accelerated by the isoge-
ometric RAGSW preconditioner, with a zero initial guess and a stopping criterion
of a 10−6 reduction of the Euclidean norm of the PCG residual. In the tests, we study
how the convergence rate of the RAGDSW preconditioner depends on the parame-
ters ℎ, 𝑁 , 𝑝, and 𝑟 The numerical tests have been performed with a MATLAB code
based on the GeoPDEs library [3]. We expect to be able to show results for linear
elasticity and much larger 3D problems in a forthcoming paper.

Table 1 RAGDSWpreconditioner in 2D quarter-ring domain: condition number ^2, iteration count,
it, and coarse problem size 𝑁Π as a function of the number of subdomains 𝑁 and mesh size ℎ.
Fixed spline parameters 𝑝 = 2, 𝑘 = 1, minimal overlap parameter 𝑟 = 0, 𝑡𝑜𝑙 = 0.1.

RAGDSW preconditioner, quarter-ring domain
𝑝 = 2, 𝑘 = 1, 𝑟 = 0, 𝑡𝑜𝑙 = 0.1

1/ℎ = 8 1/ℎ = 16 1/ℎ = 32 1/ℎ = 64 1/ℎ = 128
𝑁 ^2 it. 𝑁Π ^2 it. 𝑁Π ^2 it. 𝑁Π ^2 it. 𝑁Π ^2 it. 𝑁Π

2 × 2 3.60 10 1 6.69 14 2 9.23 17 3 16.10 22 4 30.60 29 4
4 × 4 7.63 16 9 8.77 18 18 16.16 24 18 16.31 23 36
8 × 8 10.85 20 49 10.38 19 98 18.90 25 98
16 × 16 13.73 22 225 11.40 19 450
32 × 32 16.23 24 961

Table 2 RAGDSW preconditioner in 2D quarter-ring domain: condition number ^2, iteration
counts it. and coarse problem size 𝑁Π as a function of the number of subdomains 𝑁 and mesh
size ℎ, Fixed spline parameters 𝑝 = 3, 𝑘 = 2, minimal overlap parameter 𝑟 = 0, 𝑡𝑜𝑙 = 0.1.

RAGDSW preconditioner, quarter-ring domain
𝑝 = 3, 𝑘 = 2, 𝑟 = 0, 𝑡𝑜𝑙 = 0.1

1/ℎ = 8 1/ℎ = 16 1/ℎ = 32 1/ℎ = 64 1/ℎ = 128
𝑁 ^2 it. 𝑁Π ^2 it. 𝑁Π ^2 it. 𝑁Π ^2 it. 𝑁Π ^2 it. 𝑁Π

2 × 2 7.15 14 1 9.72 15 2 16.87 18 3 20.10 20 4 26.63 22 8
4 × 4 11.79 22 9 14.41 23 18 17.34 24 27 22.40 24 36
8 × 8 17.16 27 49 14.53 23 98 17.55 23 147
16 × 16 22.15 29 225 14.91 23 450
32 × 32 26.42 30 961

5.1 Scalability in 𝑵 and quasi-optimality in 𝑯/𝒉

The condition number ^2 of the RAGDSW preconditioned system and the conjugate
gradient iteration count, it, are reported in Tables 1 and 2 as a function of the number
of subdomains 𝑁 and the mesh size ℎ for 𝑝 = 2 and 𝑝 = 3, respectively. In both
cases, we consider the maximal regularity 𝑘 = 𝑝 − 1. We set the adaptive tolerance
to 𝑡𝑜𝑙 = 0.1. The results show that the proposed preconditioner is scalable, since,
moving along the diagonals of each table, both the condition number and iteration
count exhibit a moderate increase that seems to level off and approach a constant
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Fig. 2 Scalability of RAGDSW preconditioner in 2D quarter-ring domain: condition number ^2
(top) and iteration counts it. (bottom) as a function of the number of subdomains 𝑁 , fixed ratio
𝐻/ℎ = 4, overlap parameter 𝑟 = 0 and 𝑟 = 2, 𝑡𝑜𝑙 = 0.1.

value; see also Fig. 2. We note that for the largest problems of these tables, the
dimension of the coarse space appears to increase about four times when the number
of subdomains increases by four.

5.2 Dependence on 𝒑

In this test, we study the robustness of the RAGDSW preconditioner with respect to
the spline polynomial degree 𝑝. The quarter-ring domain is discretized with a mesh
size ℎ = 1/64 and 𝑁 = 4 × 4 subdomains, while the degree 𝑝 varies from 2 to 8 and
the regularity 𝑘 = 𝑝−1 is always maximal. The results reported in Table 3 show that
the condition numbers and iteration counts exhibit a moderate increase up to 𝑝 = 5.
They then start to increase, more slowly when the adaptive tolerance 𝑡𝑜𝑙 is large
and the coarse space sufficiently rich. We note that the condition numbers without
preconditioning – not reported – grows very rapidly with 𝑝.



442 Olof B. Widlund et al.

Table 3 RAGDSW preconditioner in 2D quarter-ring domain: condition number ^2 and iteration
counts it. as a function of the spline polynomial degree 𝑝 and adaptive tolerance parameter 𝑡𝑜𝑙,
with maximal regularity 𝑘 = 𝑝 − 1, fixed number of subdomains 𝑁 = 4 × 4, 1/ℎ = 64, 𝑟 = 0. 𝑁Π

denotes the dimension of the coarse space.

RAGDSW prec., quarter-ring domain
𝑁 = 4 × 4, 1/ℎ = 64, 𝑟 = 0

𝑡𝑜𝑙 = 0.05 𝑡𝑜𝑙 = 0.1 𝑡𝑜𝑙 = 0.2 𝑡𝑜𝑙 = 0.5
𝑝 dofs ^2 it 𝑁Π ^2 it 𝑁Π ^2 it 𝑁Π ^2 it 𝑁Π

2 4356 16.16 24 18 16.16 24 18 10.76 18 36 10.76 18 36
3 4489 22.21 27 18 17.34 24 27 12.20 20 36 8.56 17 81
4 4624 17.56 25 18 14.98 21 27 10.60 19 63 9.24 17 144
5 4761 29.15 31 18 20.05 26 63 13.51 22 108 11.48 20 225
6 4900 52.77 40 54 31.18 32 99 26.33 29 288 24.09 27 324
7 5041 35.19 41 99 26.17 33 252 25.14 31 441 25.14 31 441
8 5184 135.56 73 243 89.68 57 513 82.49 55 576 82.49 55 576
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