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1 Introduction

Finite element discretisations of large-scale time-harmonic wave problems typically
lead to ill-conditioned linear systems with a large number of unknowns. A promising
class of methods to solve such huge systems in parallel, both in terms of convergence
and computing time, is offered by domain decomposition methods (DDMs). These
approaches rely on a partition of the computational domain into smaller subdomains,
leading to subproblems of smaller sizes which are manageable by direct solvers.
A robust domain decomposition (DD) preconditioner for large-scale computations
is given in [4]. However, improving the efficiency of such preconditioners continues
to be a challenging issue.Recentwork has shown that transmission operators based on
perfectly matched layers (PMLs) are well-suited for two-dimensional configurations
of the Helmholtz problem within non-overlapping DDMs [10]. Further, PMLs have
been used successfully as transmission conditions in DDMs applied to geophysical
applications modelled by the Helmholtz equation [11].
In this work, we present an efficient PML-based Schwarz-type preconditioner

with overlapping subdomains to solve large-scale wave propagation problems. We
then assess the performance of this one-level DD algorithm, where the transmission
conditions at the boundaries between subdomains are PML conditions in order to
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provide a better approximation to the transparent boundary operator. Further, we
will investigate the convergence properties and compare them with the use of more
standard impedance transmission conditions.

2 Mathematical model

As an underlying model we consider the Helmholtz equation in free space, given by

−(Δ + 𝑘2 (x))𝑢(x) = 𝑔(x), x ∈ Ω (1)

for Ω = R𝑑 in dimension 𝑑 = 2 or 3, where 𝑘 (x) = 2𝜋
𝜆
is the wavenumber, with

𝜆 = 𝑐
𝑓
being the wavelength, 𝑐(x) the wave speed and 𝑓 the frequency. Note that the

angular frequency is then defined as𝜔 = 2𝜋 𝑓 . To close the problem we prescribe the
physically relevant condition at infinity known as the far field Sommerfeld radiation
condition

lim
|x |→∞

|x| 𝑑−12
(
𝜕𝑢

𝜕 |x| − 𝑖𝑘𝑢

)
= 0. (2)

Since we can not compute on the whole free space domain, we consider truncating
to an appropriate finite domain. Let us suppose now that Ω ⊂ R𝑑 represents a finite
computational domain capturing the physical area of interest. A typical approach, as
in [7], is to replace the Sommerfeld condition (2) with the first-order approximation

𝜕𝑢

𝜕n
+ 𝑖𝑘𝑢 = 0, x ∈ 𝜕Ω, (3)

known as the impedance (or Robin) boundary condition (Imp BC), with n being the
unit outward normal to the boundary 𝜕Ω. This enables the appropriate description
of wave behaviour in a bounded domain. The finite element discretisation of (1) can
then be written as a linear system 𝐴u = b.

2.1 PML formulation

Perfectly matched layers (PMLs) were introduced as a better alternative to absorbing
boundary conditions (ABCs) by Berenger [2] to achieve a higher accuracy in domain
truncation by eliminating undesired numerical reflections from boundaries, leading
to exponential convergence of the numerical solution to the exact solution [1]. PML
implementation is done by stretching Cartesian coordinates such that the stretching
is defined in a layer surrounding Ω, as in [6], giving a larger computational do-
main ΩPML. In this regard, we assume the boundaries of the artificially truncated
domain Ω are aligned with the coordinate axes.
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For simplicity of exposition, we will focus on truncating the problem in the 𝑥
direction. Let us suppose that the PML extends from the boundary of our domain
of interest at 𝑥 = 𝑎 to 𝑥 = 𝑎∗ and Dirichlet conditions are imposed on 𝑥 = 𝑎∗. The
stretched coordinate mapping used is given by

𝜕

𝜕𝑥pml
↦→ 1
1 − 𝑖

𝜔
𝜎(𝑥)

𝜕

𝜕𝑥
, where

{
𝜎(𝑥) = 0 if 𝑥 < 𝑎,

𝜎(𝑥) > 0 if 𝑎 < 𝑥 < 𝑎∗.
(4)

In the PML region, where 𝜎(𝑥) > 0, oscillating solutions turn into exponentially
decaying ones. In the original domain Ω, 𝜎(𝑥) = 0 so that the underlying equation
is unchanged. In this work we will study three different stretching functions [3, 8],
namely

𝜎−1 (𝑥) =
1

𝑎∗ − 𝑥
, 𝜎−2 (𝑥) =

2
(𝑎∗ − 𝑥)2

, and 𝜎2 (𝑥) = 𝛼(𝑎∗ − 𝑥)2. (5)

In 𝜎2 (𝑥), 𝛼 is experimentally chosen to take the value 30 in our simulations. To
incorporate a PML into other coordinate directions, we simply apply equivalent one-
dimensional transformations to obtain 𝜕

𝜕𝑦pml
and 𝜕

𝜕𝑧pml
. At the corners of the extended

computational domain ΩPML we will have PML regions that stretch along two or
three directions simultaneously; this will not generate any problems. Implementing
this mapping in, for instance, a three-dimensional domain requires a slight change
to the Helmholtz equation (1) over ΩPML, resulting in the Laplace operator Δ being
replaced by following operator which stretches in the PMLs

Δpml =
𝜕2

𝜕𝑥pml
2 +

𝜕2

𝜕𝑦pml
2 +

𝜕2

𝜕𝑧pml
2 . (6)

2.1.1 Accuracy assessment for PMLs

In this section we will solve the Helmholtz equation when PMLs are applied as
global boundary conditions for a 2D domain of length 10𝜆 in each direction. We
will compute the 𝐿2 relative error with respect to the analytical exact solution
and compare it with the situation where impedance boundary conditions are used
instead.We consider a scattering problem of a plane wave by a circular obstacle, with
a Dirichlet boundary condition on the boundary of the obstacle, shown in Figure 1.
First, in Table 1, we compare different stretching functions 𝜎 with the utilization of
higher order P3 Lagrange finite elements and discretization of 𝑛𝜆 = 20 points per
wavelength. We find that the best accuracy is obtained with 𝜎−1 and so we continue
our tests with this function here. Within our tests we vary the number of points per
wavelength 𝑛𝜆 and the PML length in order to investigate their relative effect on the
resulting error. Results are detailed in Table 2. We see that, except for 𝑛𝜆 = 5, PMLs
provide higher accuracy compared to impedance boundary conditions, even when
the length of the PMLs incorporate only 0.1𝜆. Moreover, for a fixed PML length,
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Fig. 1 Plane wave excitation solution when using PMLs as global boundary conditions in 2D.

Table 1 𝐿2 relative error for different stretching functions 𝜎 with PML length 𝐿pml = 𝜆. The
radius of the circular obstacle is 𝑅 = 𝜆.

Stretching functions
𝜎−1 𝜎−2 𝜎2
0.00112 0.001517 0.075495

Table 2 𝐿2 relative error for different PML lengths with 𝜎−1 or impedance boundary conditions
(Imp BCs), 𝑅 = 𝜆.

PML length
𝑛𝜆 0.1𝜆 0.2𝜆 0.3𝜆 0.5𝜆 𝜆 2𝜆 3𝜆 4𝜆 5𝜆 10𝜆 Imp BCs
5 0.10408 0.02441 0.02684 0.02120 0.01685 0.01251 0.00927 0.00741 0.00605 0.00265 0.05118
10 0.01354 0.01011 0.00665 0.00534 0.00425 0.00311 0.00235 0.00184 0.00150 0.00067 0.04642
20 0.00893 0.00467 0.00268 0.00159 0.00112 0.00078 0.00059 0.00046 0.00038 0.00017 0.04620
30 0.00797 0.00320 0.00175 0.00083 0.00050 0.00035 0.00026 0.00021 0.00017 0.00007 0.04620
40 0.00617 0.00246 0.00121 0.00056 0.00029 0.00020 0.00015 0.00012 0.00009 0.00006 0.046212
50 0.00578 0.00192 0.00096 0.00041 0.00020 0.00013 0.00010 0.00008 0.00006 0.00003 0.046216

and again even for 0.1𝜆, the error still decreases when increasing 𝑛𝜆, whereas for
impedance boundary conditions the error is dominated by the domain truncation
even for 𝑛𝜆 = 5. Of course, the error also decreases significantly with increasing
PML length, all the way down to 3 × 10−5 for 𝑛𝜆 = 50 and 10𝜆.

2.2 Domain decomposition preconditioner

A preconditioner 𝑀−1 is a linear operator whose use aims to reduce ill-conditioning
and allow faster convergence of an iterative solver. Usually (but not always) this
approximates 𝐴−1 and has a matrix–vector product that is much cheaper to compute
than solving the original linear system. To this end, we employ right preconditioning
within GMRES to solve our discretised linear system, namely by solving

𝐴𝑀−1y = f, where u = 𝑀−1y. (7)
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Right preconditioning benefits from minimising a residual that is independent of the
preconditioner, unlike left-preconditioned GMRES. Overlapping Schwarz methods
comewith the advantages of better convergence and easier implementation compared
to substructuring methods. Furthermore, contrary to non-overlapping methods, cor-
ners do not need specific treatment. Overlapping methods are also a natural choice
to consider when using PML transmission conditions, as the added PML can be
naturally included in the overlap region. In this work we use the optimised restricted
additive Schwarz (ORAS) domain decomposition preconditioner, given by

𝑀−1
ORAS =

𝑁sub∑︁
𝑠=1

𝑅𝑇
𝑠 𝐷𝑠𝐴

−1
𝑠 𝑅𝑠 , (8)

where 𝑁sub is the number of overlapping subdomains Ω𝑠 into which the domain Ω
is decomposed. To define the matrices present in (8), let N be an ordered set of the
unknowns of the whole domain and let N =

⋃𝑁sub
𝑠=1 N𝑠 be its decomposition into

the non-disjoint ordered subsets corresponding to the different overlapping subdo-
mains Ω𝑠 . Further, define 𝑁 = |N | and 𝑁𝑠 = |N𝑠 |. The 𝑁𝑠 × 𝑁𝑠 matrices 𝐴𝑠 stem
from the discretisation of local boundary value problems on Ω𝑠 with transmission
conditions chosen as either Robin or PML conditions to be implemented at the sub-
domain interfaces. The 𝑁𝑠 × 𝑁 matrix 𝑅𝑠 is the Boolean restriction matrix from Ω

to subdomain Ω𝑠 while 𝑅𝑇
𝑠 is then the extension matrix from subdomain Ω𝑠 to Ω.

The 𝑁𝑠 ×𝑁𝑠 diagonal matrices 𝐷𝑠 provide a discrete partition of unity, i.e., are such
that

∑𝑁sub
𝑠=1 𝑅𝑇

𝑠 𝐷𝑠𝑅𝑠 = 𝐼. See, e.g., [5, 9] for further details on such methods. PMLs
are introduced as transmission conditions on the interface boundaries of the local
subdomains in [10]. In this approach, the PML region is included strictly inside the
overlap, the PML region being the outermost layers within each overlapping domain.
This ensures that there is enough overlap for the approach to be efficient and sufficient
length of the PML for a good approximation of the interface transmission condition.

3 Numerical results

3.1 PML as transmission conditions for a 2D domain

As a simple model, we consider excitation by a Gaussian point source, 𝑆(𝑥, 𝑦) =

𝑒−30𝑘 ( (𝑥−5)
2+(𝑦−5)2) , in the center of a 2D domain of size [0, 10] × [0, 10], as shown

in Figure 2 (left). The convergence rate is studied when either PML or impedance
conditions are imposed as global boundary conditions (BCs) or interface condi-
tions (ICs). This leads to four different configurations in total1. To discretise we
employ P3 finite elements on regular grids with 𝑛𝜆 = 15.

1 In 2D we present results only with PMLs for the global BCs; a comparison with impedance BCs
will be given later for the full 3D problem in Table 5.
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Fig. 2 The solution of the 2D, with 𝑓 = 3𝐻𝑧 (left), and 3D, with 𝑓 = 1𝐻𝑧 (right), point source
excitation problem with PML boundary conditions.

In our tests, we set the wave speed to 𝑐 = 1 and we vary the frequency 𝑓 from 3Hz
to 10Hz, which leads to a number of wavelengths in the domain ranging from 30
to 100. That also results in different values of #DoFs, which represents the number of
degrees of freedom in the discrete problem. We decompose the global domain into
either 𝑁 = 8 × 8 = 64 or 𝑁 = 10 × 10 = 100 square subdomains and use interface
PML regions of length 𝐿pmli.
In Table 3, simulations results are given using the 𝜎−1 stretching function2, where

the interface PML length is 𝐿pmli = 1ℎ and ℎ = 𝜆
𝑛𝜆
is the mesh size. The PML length

on the global boundary is chosen to be 𝐿pml = 2𝜆 and the number of overlapping
layers of elements between subdomains is varied from 2 to 8 layers. We first observe
that when interface PMLs are used we always require fewer iterations compared to
using impedance ICs. Secondly, with the impedance condition the iteration counts
increase with frequency 𝑓 , but this is not the case when using interface PMLs where
iteration counts remain insensitive to 𝑓 . Finally, we note that an overlap of 4 layers is
sufficient here for the PMLs with little benefit seen as we increase the overlap further
while for the impedance condition a larger overlap is needed to continually reduce
the iteration counts.
In Table 4, the simulations with 𝑓 = 3Hz are repeated but now with 𝐿pmli = 5ℎ.

Note that for the appropriate transmission of data between subdomains, we should
consider the length of the overlap to be larger than the length of the PML region. This
can be seen in Table 4 where an overlap of more than 5 layers is required for good
convergence. Comparing the number of iterations, when the overlap is sufficient,
with those in Table 3, we can see a small improvement in the convergence when
using a larger interface PML region. Note that the one-level preconditioner is by
nature not robust, in the sense that the number of iterations usually depends on the
number of subdomains. That is to say, the number of iterations does not depend only
on the quality of the approximation of the absorbing interface conditions, which as
we can see from Table 2 is already good when using PMLs of small length.

2 A comparison with other choices of stretching function 𝜎 will be given later in Table 7.
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Table 3 Iteration counts for varying frequency 𝑓 and choices of ICs, discretised using P3 elements
with 𝑛𝜆 = 15. Within the PMLs we use 𝜎−1, 𝐿pmli = 1ℎ and 𝐿pml = 𝜆.

Overlap
𝑁 = 64 𝑁 = 100

BCs ICs 𝑓 (Hz) #DoFs 2 4 6 8 2 4 6 8
PML Imp

3 2,076,481
52 48 44 41 65 58 53 51

PML PML 39 33 33 32 49 42 40 42
PML Imp

5 5,480,281
63 59 56 54 70 65 60 57

PML PML 41 35 33 34 49 42 41 42
PML Imp

10 21,077,281
69 67 63 61 77 71 67 68

PML PML 40 34 33 34 48 41 41 41

Table 4 Iteration counts for 𝑓 = 3 𝐻𝑧 and varying choices of ICs, discretised using P3 elements
with 𝑛𝜆 = 15. Within the PMLs we use 𝜎−1, 𝐿pmli = 5ℎ and 𝐿pml = 𝜆.

Overlap
𝑁 = 64 𝑁 = 100

BCs ICs 𝑓 (Hz) #DoFs 2 4 6 8 2 4 6 8
PML Imp

3 2,076,481
52 48 44 41 65 58 53 51

PML PML 110 64 31 31 140 80 39 39

3.2 PML as transmission conditions for a 3D domain

In this section, we consider a similar Gaussian point source excitation in the center of
the 3D domain, 𝑆(𝑥, 𝑦, 𝑧) = 𝑒−30𝑘 ( (𝑥−5)

2+(𝑦−5)2+(𝑧−5)2) ; see Figure 2 (right). For this
problem we discretise with P2 finite elements and use 𝑛𝜆 = 5 and 𝐿pml = 2𝜆. When
recording iteration counts in this section, the use of−means the simulation failed due
to memory limitations while • indicates a lack of convergence in 2000 iterations.
In Table 5 we use 𝜎−1 and compare all four combinations of BCs and ICs when
𝐿pmli = 1ℎ and 𝑓 = 1Hz, this results in #DoFs = 2,803,221. We observe that using
PML rather than impedance conditions reduces iteration counts both when used as
BCs or ICs, in particular, when swapping from impedance for both BCs and ICs
to PMLs we see at least a 2/3 reduction in iterations. Furthermore, using PML BCs
again provides a somewhat more accurate solution when comparing 𝐿2 relative error
with respect to the analytical exact solution. Here, we consider 𝑁 = 6 × 6 × 5 = 180
and 𝑁 = 7 × 7 × 6 = 294 subdomains.
In Table 6, simulations for the full PML case are repeated for different lengths

of 𝐿pmli. Again we see the overlap should be larger than the interface PML length
and, when so, iteration counts slowly decrease as 𝐿pmli increases.
Finally,we compare different stretching functions𝜎 for the case of 𝐿pmli = 4ℎ. The

results in Table 7 show that the best convergence is provided when we choose 𝜎−1.
While the iteration counts when using 𝜎−2 have only a small increase, it is always
more effective to use 𝜎−1. The convergence observed for 𝜎2 is much poorer, demon-
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Table 5 Iteration counts and 𝐿2 error for 𝑓 = 1Hz and varying choices of BCs and ICs, discretised
using P2 elements with 𝑛𝜆 = 5. Within the PMLs we use 𝜎−1, 𝐿pmli = 1ℎ and 𝐿pml = 2𝜆.

Overlap
𝑁 = 180 𝑁 = 294

BCs ICs 2 4 6 8 2 4 6 8 𝐿2 relative error
Imp Imp 40 31 27 − 45 35 32 34

0.211853
Imp PML 36 29 26 − 42 35 29 31
PML Imp 30 22 20 − 33 25 23 21

0.0709828
PML PML 24 20 18 − 27 23 20 19

Table 6 Iteration counts for 𝑓 = 1Hz with PML BCs and ICs varying the PML interface length
𝐿pmli, discretised using P2 elements with 𝑛𝜆 = 5. Within the PMLs we use 𝜎−1 and 𝐿pml = 2𝜆.

Overlap
𝑁 = 180 𝑁 = 294

BCs ICs 𝐿pmli 2 4 6 8 2 4 6 8
PML PML 1ℎ 24 20 18 − 27 23 20 19
PML PML 2ℎ 30 19 17 − 34 22 19 18
PML PML 4ℎ 37 21 15 − 42 24 17 15
PML PML 6ℎ 38 21 18 − 43 24 21 15

Table 7 Iteration counts for 𝑓 = 1Hz and varying choice of ICs and PML stretching function 𝜎,
discretised using P2 elements with 𝑛𝜆 = 5. Within the PMLs we use 𝐿pmli = 4ℎ and 𝐿pml = 2𝜆.

Overlap
Stretching 𝑁 = 180 𝑁 = 294

BCs ICs function 2 4 6 8 2 4 6 8
PML Imp

𝜎−1
30 22 20 − 33 25 23 21

PML PML 37 21 15 − 42 24 17 15
PML Imp

𝜎−2
33 28 24 − 38 30 27 26

PML PML • 33 19 − • 38 23 19
PML Imp

𝜎2
• • 973 − • • 1984 1201

PML PML • • • − • • • •

strating the importance of choosing a suitable stretching function in order to be
advantageous in the domain decomposition preconditioner. In our tests 𝜎−1 provided
the best choice and justifies its use in our previous simulations.

4 Conclusion

In this work, we have introduced the use of PMLs as interface conditions within an
overlapping domain decomposition solver for Helmholtz equations. With the choice
of PMLs as interface conditions, better convergence is achieved compared to using
impedance conditions. Results on 2D and 3D model problems show the utility of the
approach with a suitable choice of stretching function.
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