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1 Introduction

The mapped tent pitching algorithm (MTP) is a very advanced domain decomposi-
tion strategy for the parallel solution of hyperbolic problems. MTP was introduced
in [4] and computes the solution by iteratively constructing new polygonal space-time
subdomains, called tents, in a way that the hyperbolic problem can be solved ex-
actly within them. Due to the polygonal space-time structure of the subdomains, the
numerical solution is obtained by a process that maps the tents into space-time cylin-
ders (rectangles for 1D spatial problems), computes the solution in the transformed
subdomains, and maps it back into the original tents. Due to the tent mapping leading
to singularities, special time integrators are needed to mitigate order reduction.
To avoid this, we introduce a new, unmapped tent pitching algorithm (UTP), based

on a conceptual idea from Nievergelt in 1964 [5]: “In numerical analysis, one has
always tried to speed up computation by reducing the amount of work to be done, not
by performing redundant computations.” Introducing redundant computations, we
eliminate the mapping process from the MTP with a Schwarz waveform relaxation
method (SWR). We present our new UTP for the model problem

𝜕𝑡𝑡𝑢(𝑥, 𝑡) = 𝑐2𝜕𝑥𝑥𝑢(𝑥, 𝑡) for (𝑥, 𝑡) ∈ Ω × (0, 𝑇),
𝑢(𝑥, 0) = 𝑔0 (𝑥) and 𝜕𝑡𝑢(𝑥, 0) = 𝑔1 (𝑥) for 𝑥 ∈ Ω,

𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0 for 𝑡 ∈ [0, 𝑇],
(1)

where Ω = (0, 1), 𝑇 > 0, and 𝑔0 and 𝑔1 are sufficiently regular functions. We first
explain in Section 2 the classicalMTP process for the solution of (1) and characterize
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the corresponding advancing front in case of a uniform space decomposition. Then, in
Section 3, we introduce a red-black Schwarz waveform relaxation method (RBSWR)
and prove a particular relation between RBSWR and MTP. This relation leads us
very naturally to introduce our UTP in Section 4.

2 The mapped tent-pitching algorithm (MTP)

To describe the MTP algorithm introduced in [4] for the solution of (1), consider
a set Ω0 = {𝑥 𝑗 }𝑁𝑗=0 ⊂ Ω of nodes 0 = 𝑥0 < 𝑥1 < · · · < 𝑥𝑁 = 1. The core of MTP
is the strategy used to pitch tents at the nodes and define the advancing front of the
computed exact solution. In our one-dimensional setting, a tent is a hat-function 𝜙 𝑗
with value 1 at the node 𝑥 𝑗 and zero at the remaining nodes of Ω0. The advancing
front is the curve representing a portion of the boundary of the space-time subdomain
of Ω × [0, 𝑇] in which the exact solution has been computed by MPT at a certain
iteration. More precisely, the advancing front (at iteration 𝑘 ∈ N) is a continuous
functions 𝜏MTP

𝑘
: Ω → R, which is linear in the subintervals (𝑥 𝑗 , 𝑥 𝑗+1). The MTP

iteration is initialized with 𝜏MTP0 ≡ 0 and at the 𝑘-th iteration a new advancing
front 𝜏MTP

𝑘
is computed from 𝜏MTP

𝑘−1 with the property that 𝜏
MTP
𝑘

(𝑥) ≥ 𝜏MTP
𝑘−1 (𝑥) for

all 𝑥 ∈ Ω. The process terminates when an iteration 𝑘 = 𝐾 > 0 is reached with
𝜏MTP
𝐾

≡ 𝑇 . To obtain 𝜏MTP
𝑘

one needs to pitch a new tent on the front 𝜏MTP
𝑘−1 , that

means to select an appropriate node 𝑥 𝑗 inΩ0 and a 𝑣𝑘𝑗 > 0, and update the advancing
front as

𝜏MTP𝑘 (𝑥) := 𝜏MTP𝑘−1 (𝑥) + 𝑣
𝑘
𝑗 𝜙 𝑗 (𝑥). (2)

The node 𝑥 𝑗 and the value 𝑣𝑘𝑗 are computed to ensure that | (𝜏MTP𝑘
) ′(𝑥) | ≤ 1

𝑐
for all

𝑥 ∈ Ω \ Ω0. This is a CFL condition [2] and since 𝜏MTP𝑘
is piecewise linear, it is

equivalent to1

|𝜏MTP
𝑘

(𝑥ℓ) − 𝜏MTP𝑘
(𝑥
ℓ̃
) |

|𝑥ℓ − 𝑥ℓ̃ |
≤ 1
𝑐

for all ℓ = 0, . . . , 𝑁 and ℓ̃ ∈ Nℓ , (3)

where Nℓ denotes the set of indices of the neighboring nodes to 𝑥ℓ . Now, since 𝜙 𝑗
is zero on Ω0 \ {𝑥 𝑗 }, one has that 𝜏MTP𝑘

(𝑥ℓ) = 𝜏MTP
𝑘−1 (𝑥ℓ) for all 𝑥ℓ ∈ Ω0 \ {𝑥 𝑗 }.

Thus, given a 𝜏MTP
𝑘−1 satisfying (3), the new tent must be pitched in a way that 𝜏

MTP
𝑘

satisfies (3) as well, that is

|𝜏MTP
𝑘−1 (𝑥 𝑗 ) + 𝑣

𝑘
𝑗
𝜙 𝑗 (𝑥 𝑗 ) − 𝜏MTP𝑘−1 (𝑥ℓ̃) |

|𝑥 𝑗 − 𝑥ℓ̃ |
≤ 1
𝑐

for all ℓ̃ ∈ N𝑗 . (4)

1 In [4], condition (3) appears with an additional constant depending on the shape regularity of the
decomposition. This constant is 1 in our one-dimensional framework.
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Algorithm 1Mapped Tent Pitching (sequential)
Require: A decomposition Ω0.
1: Set 𝑘 = 0 and initialize 𝜏MTP

𝑘
≡ 0.

2: while 𝜏MTP
𝑘
. 𝑇 do

3: Compute the set 𝐽𝑘 .
4: Select an index 𝑗 ∈ 𝐽𝑘 , the corresponding node 𝑥 𝑗 and set 𝑣𝑘𝑗 = 𝑤𝑘

𝑗
.

5: Update the advancing front: 𝜏MTP
𝑘

(𝑥) := 𝜏MTP
𝑘−1 (𝑥) + 𝑣

𝑘
𝑗
𝜙 𝑗 (𝑥) .

6: Solve (1) in the domain between 𝜏MTP
𝑘

and 𝜏MTP
𝑘−1 (below the new tent).

7: Update 𝑘 = 𝑘 + 1.
8: end while

Since 𝑣𝑘
𝑗
𝜙 𝑗 (𝑥) ≥ 0, 𝜏MTP

𝑘−1 satisfies (3), and 𝜙 𝑗 (𝑥 𝑗 ) = 1, (4) becomes 𝑣𝑘
𝑗

≤
min

ℓ̃∈N𝑗

( |𝑥 𝑗−𝑥ℓ̃ |
𝑐

+ 𝜏MTP
𝑘−1 (𝑥ℓ̃) − 𝜏

MTP
𝑘−1 (𝑥 𝑗 )

)
. To satisfy this condition and maximize

the advancement of the front, we define

𝑤𝑘ℓ := min
(
𝑇 − 𝜏MTP𝑘−1 (𝑥ℓ), min

ℓ̃∈Nℓ

( |𝑥ℓ − 𝑥ℓ̃ |
𝑐

+ 𝜏MTP𝑘−1 (𝑥ℓ̃) − 𝜏
MTP
𝑘−1 (𝑥ℓ)

))
(5)

for ℓ = 1, . . . , 𝑁 , and the set of admissible values 𝑣𝑘
𝑗
as 𝐽𝑘 := {ℓ ∈ {1, . . . , 𝑁} :

𝑤𝑘
ℓ
> 0}. Thus, at the 𝑘-th iterationMTP selects any node 𝑥 𝑗 with 𝑗 ∈ 𝐽𝑘 and pitches

a tent of height 𝑣𝑘
𝑗
= 𝑤𝑘

𝑗
. Once a new tent is pitched, MTP solves the problem within

this new tent by amapping process that transforms the tent into a cylinder (a rectangle
in this one-dimensional setting). The overall MTP procedure is given in Algorithm 1.
This is the sequential version of MTP. A parallel version can be easily obtained by
pitching multiple tents at each iteration, namely by modifying Step 4 and Step 5:

4: Select a set S𝑘 ⊂ 𝐽𝑘 of all indices 𝑗 ∈ S𝑘 such that the corresponding nodes are
not neighbors. Pick all nodes 𝑥 𝑗 with 𝑗 ∈ S𝑘 and set 𝑣𝑘𝑗 = 𝑤𝑘𝑗 .

5: Update the advancing front: 𝜏MTP
𝑘

(𝑥) := 𝜏MTP
𝑘−1 (𝑥) +

∑
𝑗∈S𝑘

𝑣𝑘
𝑗
𝜙 𝑗 (𝑥).

We illustrate the parallel MTP procedure with an example using a space decom-
position of 7 points (𝑥 𝑗 , 𝑗 = 0, . . . , 6), see Fig. 1, top left. TheMTP is initialized with
𝜏MTP0 ≡ 0. For 𝑘 = 1 all nodes can be potentially selected, that is 𝐽1 = {0, . . . , 6}, but
not all of them can be simultaneously selected. Thus, we assume that the nodes 𝑥1, 𝑥3
and 𝑥5 are selected and three tents are pitched on 𝜏MTP0 . The new resulting front
is 𝜏MTP1 , which is represented by the red line in Fig. 1, top left. Notice that the slopes
of 𝜏MTP1 are lower or equal to the slopes of the characteristic curves, because of con-
dition (5) and the fact that the decomposition considered is nonuniform2. Once 𝜏MTP1
is obtained, the set of admissible nodes is 𝐽2 = {0, 2, 4, 6}. These can be all se-
lected and give rise to the hat-functions (multiplied by the corresponding values 𝑣𝑘

𝑗
)

represented by the blue dashed lines in Fig. 1, top right. The new front 𝜏MTP2 (blue
line in Fig. 1, top right) is then obtained by summing all these functions to 𝜏MTP1 .
Repeating this process at iterations 3 and 4 leads to the fronts 𝜏MTP3 (magenta line in

2 For uniform decompositions, tents are always pitched along characteristic lines.
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𝑥𝐿 𝑥𝑅

𝑇

𝛿
𝑐𝑘 = 1

2𝛿
𝑐

𝑘 = 2

3𝛿
𝑐𝑘 = 3

Fig. 1 Top row, left: MTP iteration 1: 𝜏MTP1 (red) and 𝜏MTP0 (black). The tents 𝑣1
𝑗
𝜙 𝑗 coincide with

the red lines. The cross on the top right gives the slopes of the characteristic lines. Top row, right:
MTP iteration 2: 𝜏MTP2 (blue), 𝜏MTP1 (red), new tents 𝑣2

𝑗
𝜙 𝑗 (blue dashed).Middle row, left: MTP

iteration 3: 𝜏MTP3 (magenta), 𝜏MTP2 (blue), new tents 𝑣3
𝑗
𝜙 𝑗 (magenta dashed).Middle row, right:

MTP iteration 4: 𝜏MTP4 (black), 𝜏MTP3 (magenta), new tents 𝑣4
𝑗
𝜙 𝑗 (black dashed). Bottom row, left:

Full decomposition constructed by MTP. Bottom row, right: First three iterations of SWR. The
gray areas are the regions where the exact solution is computed.

Fig. 1, middle left) and 𝜏MTP4 (black line in Fig. 1, middle right). At convergence, we
obtain the decomposition shown in Fig. 1, bottom left, which is not uniform since the
initial space decomposition Ω0 is not uniform. It is finer (in time) where the space
decomposition is finer, and the front advances more slowly there. Note also that at
each iteration the MTP process solves the problem below characteristics, and the
conditions used to pitch new tents are satisfied when exact data is available on the
lower boundary of the new tent and can be propagated into it. We now characterize
the behavior of the advancing front for a uniform decomposition.

Lemma 1 (MTP advancing front for uniform decompositions)
Let the decomposition Ω0 be uniform with ℎ := 𝑥 𝑗 − 𝑥 𝑗−1 for 𝑗 = 1, . . . , 𝑁 .

Consider any interior subinterval I = [𝑥𝐿 , 𝑥𝑅], with 𝑅 ∈N even and 𝐿 =𝑅 − 1.
Assume that the (parallel) MTP selects alternatingly odd and even nodes of Ω0 at
odd and even iterates, respectively. Then, starting from 𝜏MTP0 ≡ 0, we have that
𝜏MTP1 (𝑥𝐿) = ℎ

𝑐
and 𝜏MTP1 (𝑥𝑅) = 0, and for any 𝑛 > 0 that

𝜏MTP2𝑛 (𝑥𝐿) = (2𝑛 − 1)ℎ/𝑐 𝜏MTP2𝑛 (𝑥𝑅) = 2𝑛ℎ/𝑐, (6a)
𝜏MTP2𝑛+1 (𝑥𝐿) = (2𝑛 + 1)ℎ/𝑐, 𝜏MTP2𝑛+1 (𝑥𝑅) = 2𝑛ℎ/𝑐. (6b)
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Proof Denote byNℓ the set of neighboring nodes of 𝑥ℓ . The proofworks by induction
and uses (2) and (5).We begin with the base case 𝑛 = 0. Since 𝜏MTP0 ≡ 0, using (5) we
compute 𝑣1

𝐿
= ℎ
𝑐
. Thus, (2) leads to 𝜏MTP1 (𝑥𝐿) = ℎ

𝑐
and 𝜏MTP1 (𝑥ℓ) = 0 for all ℓ ∈ N𝐿 ,

and then 𝜏MTP1 (𝑥𝑅) = 0. Now, we consider the induction step. Thus, assuming
that (6a) and (6b) hold, we use (2) to write 𝜏MTP2𝑛+2 (𝑥ℓ) = 𝜏

MTP
2𝑛+1 (𝑥ℓ) + 𝑣

2𝑛+2
𝑅

𝜙𝑅 (𝑥ℓ) for
ℓ ∈ {𝑅, 𝐿}. Using (5) with the fact that the decomposition is uniform, we obtain for
ℓ ∈ N𝑅 that

𝑣2𝑛+2𝑅 =
ℎ

𝑐
+ 𝜏MTP2𝑛+1 (𝑥ℓ) − 𝜏

MTP
2𝑛+1 (𝑥𝑅) =

ℎ

𝑐
+ (2𝑛 + 1) ℎ

𝑐
− 2𝑛 ℎ

𝑐
= 2

ℎ

𝑐
,

and thus 𝜏MTP2𝑛+2 (𝑥𝐿) = (2𝑛 + 1) ℎ
𝑐
and 𝜏MTP2𝑛+2 (𝑥𝑅) = (2𝑛 + 2) ℎ

𝑐
. Now, (2) implies that

𝜏MTP2𝑛+3 (𝑥ℓ) = 𝜏
MTP
2𝑛+2 (𝑥ℓ) + 𝑣

2𝑛+2
𝐿

𝜙𝐿 (𝑥ℓ) for ℓ ∈ {𝑅, 𝐿}, and (5) allows us to compute
𝑣2𝑛+2
𝐿

= 2 ℎ
𝑐
. Hence, we get that 𝜏MTP2𝑛+3 (𝑥𝐿) = (2𝑛 + 3) ℎ

𝑐
and 𝜏MTP2𝑛+3 (𝑥𝑅) = (2𝑛 + 2) ℎ

𝑐
,

and the claim follows. �

3 Red-black Schwarz waveform relaxation (RBSWR)

Consider a decomposition of Ω into 𝑁 − 1 subdomains 𝐼 𝑗 = (𝑥 𝑗 , 𝑥 𝑗+2), 𝑗 =

0, . . . , 𝑁 − 2, where 𝑥 𝑗 are the nodes in Ω0. This is a decomposition with gen-
erous overlap. Let R = {0, 2, 4, . . . } and B = {1, 3, 5, . . . } be two subsets of
{0, 1, . . . , 𝑁 − 2}. RBSWR is defined by solving in parallel the subproblems

𝜕𝑡𝑡𝑢
𝑘
𝑗 (𝑥, 𝑡) = 𝑐2𝜕𝑥𝑥𝑢𝑘𝑗 (𝑥, 𝑡) in 𝐼 𝑗 × (0, 𝑇), (7)

𝑢𝑘𝑗 (𝑥, 0) = 𝑔0 (𝑥) and 𝜕𝑡𝑢𝑘𝑗 (𝑥, 0) = 𝑔1 (𝑥) for 𝑥 ∈ 𝐼 𝑗 , (8)

𝑢𝑘𝑗 (𝑥 𝑗 , 𝑡) = 𝑢𝑘−1𝑗−1 (𝑥 𝑗 , 𝑡) for 𝑡 ∈ [0, 𝑇], (9)

𝑢𝑘𝑗 (𝑥 𝑗+2, 𝑡) = 𝑢𝑘−1𝑗+1 (𝑥 𝑗+2, 𝑡) for 𝑡 ∈ [0, 𝑇], (10)

where 𝑘 is the iteration index, and 𝑗 ∈ R for 𝑘 odd and 𝑗 ∈ B for 𝑘 even. Moreover,
the exterior boundary conditions have to be appropriately replaced for 𝑗 = 0 at 𝑥0
and for 𝑗 = 𝑁−2 at 𝑥𝑁−1. Now, we assume that the decompositionΩ0 is uniform and
denote the overlap by 𝛿 = 𝑥 𝑗−𝑥 𝑗−1. Convergence of (7) was proved in [3, Theorem 1],
where it is shown that the exact solution is obtained for 𝑘 ≥ 𝑇 𝑐

𝛿
. The convergence

behavior depends on the propagation of the exact solution in the overlap; see [3,
Figure 1] and Fig. 1, bottom right. In particular, it is possible to show that at odd
iterations 𝑘 = 2𝑛 + 1, 𝑛 = 0, 1, 2, . . . , the exact solution is computed in the overlap
below the characteristic curve intersecting the interface {𝑥𝐿} × (0, 𝑇) at (2𝑛 + 1) 𝛿

𝑐
,

cf. Fig. 1, bottom right. Similarly, at even iterations 𝑘 = 2𝑛, 𝑛 = 1, 2, . . . , the exact
solution is computed in the overlap below the characteristic curve intersecting the
interface {𝑥𝑅}× (0, 𝑇) at 2𝑛 𝛿

𝑐
, cf. Fig. 1, bottom right. Thus, we can define a RBSWR

advancing front, denoted by 𝜏RBSWR
𝑘

(𝑥), as the function lying on the characteristic
curves and such that below its graph the method has already computed the exact
solution, independently of the initial guess 𝑢0. An example of the first 4 iterations of
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Ω1 Ω3 Ω5

Ω2 Ω4

𝑘 = 1𝑘 = 1 𝑘 = 1
𝑘 = 2 𝑘 = 2

𝑘 = 3𝑘 = 3 𝑘 = 3

𝑘 = 4 𝑘 = 4

𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

Fig. 2 First four iterations of the red-black SWR for a 5-subdomain case. The gray areas are the
regions where the exact solution is computed.

RBSWR is given in Fig. 2. The fronts 𝜏RBSWR
𝑘

(𝑥) are red and black lines delimiting
the gray regions where the exact solution has been computed.
The RBSWR advancing front is characterized in the next lemma, whose proof

can be deduced from Fig. 1, bottom right, and Fig. 2.

Lemma 2 (RBSWR advancing front)
Assume that the decomposition Ω0 is uniform with ℎ = 𝑥 𝑗 −𝑥 𝑗−1 for 𝑗 = 1, . . . , 𝑁 .

Consider any interior subinterval I = [𝑥𝐿 , 𝑥𝑅], with 𝑅 ∈ N even and 𝐿 = 𝑅 − 1.
Consider the RBSWR with overlap 𝛿 = 𝑥𝑅 − 𝑥𝐿 and initialized with any (sufficiently
regular) function 𝑢0 such that 𝜏RBSWR0 ≡ 0. The advancing front 𝜏RBSWR

𝑘
satisfies

𝜏RBSWR1 (𝑥𝐿) = 𝛿
𝑐

, 𝜏RBSWR1 (𝑥𝑅) = 0, and, for any 𝑛 = 1, 2, . . . , the relations

𝜏RBSWR2𝑛 (𝑥𝐿) = (2𝑛 − 1)𝛿/𝑐, 𝜏RBSWR2𝑛 (𝑥𝑅) = 2𝑛𝛿/𝑐, (11a)

𝜏RBSWR2𝑛+1 (𝑥𝐿) = (2𝑛 + 1)𝛿/𝑐, 𝜏RBSWR2𝑛+1 (𝑥𝑅) = 2𝑛𝛿/𝑐. (11b)

The relation between MTP and RBSWR arises immediately by comparing
Lemma 1 and Lemma 2 and it is stated in the following theorem.

Theorem 1 (RBSWR and MPT for uniform decompositions)
Consider a uniform decomposition Ω0 with ℎ = 𝑥 𝑗 − 𝑥 𝑗−1 for 𝑗 = 1, . . . , 𝑁 .

Assume that the (parallel) MTP selects alternately odd and even nodes of Ω0 at odd
and even iterates, respectively. Further, notice that the overlap is 𝛿 = ℎ. Then, for
any initial guess 𝑢0 such that 𝜏RBSWR0 ≡ 0, the fronts 𝜏MTP

𝑘
and 𝜏RBSWR

𝑘
coincide in

all interior nodes of Ω0, thus in all interior subintervals.

4 Unmapped tent-pitching

Theorem 1 suggests that the mapping process is not necessary to obtain the exact
solution below the tents. This process can be avoided by using SWR on appropriately
defined space-time subdomains, even though few redundant computations need to be
performed. The key idea is to consider rectangular space-time subdomains having
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𝑘 = 1

regions of redundant computations

Ω1 Ω3 Ω5

Ω2 Ω4
𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

𝑘 = 2

regions of redundant computations

Ω1 Ω3 Ω5

Ω2 Ω4
𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

𝑘 = 3

Ω1 Ω3 Ω5

Ω2 Ω4
𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

𝑘 = 4

Ω1 Ω3 Ω5

Ω2 Ω4
𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

Fig. 3 First four iterations of UTP on a 5 subdomain decomposition. Red and black boxes are the
space-time subdomains constructed by UTP at odd and even iterations. The black lines correspond
to the tents that MTP constructs. The blue hatched regions are the portions of the domain where
UTP computes the exact solution.

the same height of the tents pitched on the space subdomains and width equal
to the length of the space subdomains themselves. The space-time subdomains
can be considered as rectangular tents, in which the solution can be computed
directly, using, e.g., a time-stepping method, without the need of mapping the tent
into a rectangular box (the subdomain is already a rectangular tent!). We call this
approach the unmapped tent pitching (UTP) algorithm, and describe it in detail for
a uniform space decompositionΩ0 and for a parallel MTP selecting alternatingly odd
and even nodes. Extensions to nonuniform decompositions and higher dimensions
are possible, but beyond the scope of this short manuscript. They will be presented
in the future work [1]. The UTP process begins by selecting the odd nodes ofΩ0 and
computing the heights 𝑣0

𝑗
of the tents that the MTP would pitch. Instead, rectangular

space-time subdomains T𝑗 are pitched, and one RBSWR iteration is performed
restricted on them. This step is shown in Fig. 3, top left, where the three (red)
subdomains are represented together with the tents that the parallel MTP would
pitch. RBSWRcomputes the exact solution below the tents, as represented by the blue
hatched regions in Fig. 3, top right. However, wrong approximations are computed
in the areas above the tents, which correspond to the regions where redundant
computations are performed. The second iteration of the UTP is shown in Fig. 3, top
right. Here, the new pitched rectangular subdomains are depicted in black. Within
them one RBSWR iteration is performed. The exact solution is obtained below the
classical MTP tents, while redundant computations are performed above them. As
a result, the exact solution is computed in the blue hatched area depicted in Fig. 3,
bottom left. By repeating this process iteratively one obtains the subdomains and
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Algorithm 2 Unmapped Tent Pitching by RBSWR
Require: A decomposition Ω0 of 𝑁 nodes and an initial guess function 𝑢0.
1: Set 𝑘 = 1 and 𝑣0

𝑗
= 0 for all 𝑗 = 1, . . . , 𝑁 .

2: while ∃ 𝑗 ∈ {0, 1, . . . , 𝑁 − 1} : 𝑣𝑘−1
𝑗

≠ 𝑇 do
3: Set 𝐽𝑘 = {1, 3, . . . } if 𝑘 is odd and 𝐽𝑘 = {2, 4, . . . } if 𝑘 is even.
4: Use (5) to compute the heights 𝑣𝑘

𝑗
= 𝑤𝑘

𝑗
+ 𝑣𝑘−1

𝑗
for all 𝑗 ∈ 𝐽𝑘 .

5: For each 𝑗 ∈ 𝐽𝑘 pitch a rectangular subdomain T𝑗 := [𝑥 𝑗−1, 𝑥 𝑗+1 ] × [𝑣𝑘−1
𝑗
, 𝑣𝑘

𝑗
].

6: Solve (7) to get 𝑢𝑘+1
𝑗
in T𝑗 for all 𝑗 ∈ 𝐽𝑘 , and extend them by 𝑢0 above T𝑗 .

7: Update 𝑘 = 𝑘 + 1.
8: end while

the exact solution areas shown in Fig. 3 for 𝑘 = 3 and 𝑘 = 4. The overall UTP
Algorithm 2 terminates when the exact solution is computed in the entire space-time
domain.
To conclude, our new unmapped tent pitching algorithm computes to the mapped

tent pitching algorithm equivalent approximations, using redundant computations.
It is however cheaper, since it does not have to compute the tent mappings, and the
volume of the redundant computations is also present in the tents after the mapping.
Its implementation is also straightforward, and one can use standard time integrators,
since there is no danger of order reduction without the tent mapping.
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