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1 Introduction

This paper develops a new domain-decomposition method for solving the KKT sys-
temwith heat-equation constraints. This effort is driven by the quadratic optimization
problem of the form

min
𝑧

1
2

∫ 𝑇

0
‖𝑢 − �̃�‖2

𝐿2 (Ω) 𝑑𝑡 +
𝜔

2

∫ 𝑇

0
‖𝑧‖2

𝐿2 (Ω) 𝑑𝑡

s.t. 𝜕𝑡𝑢 − 𝜈∇ · ∇𝑢 = 𝑧, 𝑥 ∈ Ω ⊂ R2, 𝑡 ∈ [0, 𝑇]
𝑢(𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω, 𝑡 ∈ [0, 𝑇], 𝑢(𝑥, 0) = 𝑢0 (𝑥), 𝑥 ∈ Ω

(1)

This quadratic PDE-constrained optimization problem finds a control 𝑧 such that the
solution 𝑢 to the heat equation matches the target �̃�. The spatial domain is Ω, the
time interval is [0, 𝑇], and the heat conductivity is 𝜈. Uniform homogenous boundary
conditions are assumed for all time, and the initial condition is prescribed by 𝑢0.
Many nonlinear methods use a series of quadratic approximations of the form

represented by Eq. 1 to solve PDE-constrained optimization problems (see for in-
stance sequential quadratic programming methods [8, 15, 27]). There have been
several studies focused on developing scalable preconditioners for the saddle-point
system that arises from the first-order necessary conditions. Often preconditioners
for saddle-point systems take the form of approximate factorization block precondi-
tioners [3]. These were explored for KKT systems in [4, 5]. Our work relies heavily
on the block preconditioners from the Wathen group [23, 24, 25].
This effort focuses on transient PDE constraints where the size of the system

scales with the number of spatial unknowns times the number of time steps, re-
sulting in substantial computational effort. To alleviate this, a number of efforts
have proposed accelerating the time solve using adaptive space-time discretiza-
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tions [16, 17], parareal [12, 20, 27], multigrid approaches [6, 7, 10, 13, 19], block
preconditioning [23, 24], and domain decomposition methods [14].
Our approach is also built on block preconditioning ideas. A difference is that our

technique exploits an observation that the Schur-complement of the KKT system is
elliptic in time (see [11, 18]). This allows us to leverage existing two level domain
decomposition approaches for elliptic systems to improve the parallel scalability of
the block preconditioner. Good performance is achieved by algorithmic choices that
ensure the forward and backward in time integrators can be applied on the fine level.

2 Discrete system and block preconditioner

In this article the PDE in Eq. 1 will be discretized on a 2D Cartesian grid using first
order backward Euler in time, and a second order finite difference stencil in space.
A row of the discrete space-time system for the heat equation satisfies:

𝑢𝑛+1𝑖, 𝑗 −𝑢𝑛𝑖, 𝑗+Δ𝑡𝜈
(
−𝑢𝑛+1(𝑖+1) 𝑗 + 2𝑢

𝑛+1
𝑖 𝑗

− 𝑢𝑛+1(𝑖−1) 𝑗

Δ𝑥2
+
−𝑢𝑛+1

𝑖 ( 𝑗+1) + 2𝑢
𝑛+1
𝑖 𝑗

− 𝑢𝑛+1
𝑖 ( 𝑗−1)

Δ𝑦2

)
= Δ𝑡𝑧𝑛+1𝑖 𝑗 .

(2)
Here 𝑖, 𝑗 are the interior space indices defined over 1 . . . 𝑛𝑥 − 1 and 1 . . . 𝑛𝑦 − 1.
The exterior indices are eliminated using the homogenous boundary conditions. The
superscript time index 𝑛 runs from 0 . . . 𝑁𝑡 . Each 𝑛 is referred to below as a time-
node. The control variable 𝑧’s index matches the implicit index on 𝑢, therefore 𝑧𝑛+1
is associated with the 𝑛th time interval. For a single time interval, Eq. 2 rewritten in
matrix form is

𝐽(𝑛+1) (𝑛+1)𝑢
𝑛+1 + 𝐽(𝑛+1)𝑛𝑢𝑛 + 𝐿 (𝑛+1) (𝑛+1) 𝑧

𝑛+1 = 0, (3)

and the global space-time system is

𝐽𝑢 + 𝐿𝑧 = 𝑓 . (4)

The right hand side 𝑓 includes contributions from the initial conditions. Thematrix 𝐽
is block lower triangular and the matrix 𝐿 is block diagonal.
The linear system whose solution solves the quadratic optimization problem from

Eq. 1 is the celebrated KKT system 𝐾u = f where

𝐾 =


𝑀𝑢 𝐽𝑇

𝜔𝑀𝑧 𝐿
𝑇

𝐽 𝐿

 , u =


𝑢

𝑧

𝑤

 , f =

𝑓𝑢
𝑓𝑧
𝑓

 . (5)

The final row is the discrete form of the PDE constraint, enforced by the Lagrange
multiplier 𝑤. We will also refer to 𝑤 as the adjoint solution. 𝑀𝑢 and 𝑀𝑧 are identity
matrices scaled byΔ𝑡Δ𝑥Δ𝑦. The matrix 𝐾 is a saddle point matrix, whose structure is
frequently observed in numerical optimization.Many effective block preconditioners
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have been developed for this class of matrix [2, 3, 4]. We focus on the block pre-
conditioning approach developed byWathen and collaborators for solving linearized
PDE-constrained optimization problems [23, 24, 25].
We write a block LDU factorization of the matrix 𝐾

𝐾 =


𝐼

𝐼

𝐽𝑀−1
𝑢 𝜔−1𝐿𝑀−1

𝑧 𝐼



𝑀𝑢

𝜔𝑀𝑧

−𝑆



𝐼 𝑀−1

𝑢 𝐽𝑇

𝐼 𝜔−1𝑀−1
𝑧 𝐿𝑇

𝐼

 (6)

where the Schur-complement is 𝑆 = 𝐽𝑀−1
𝑢 𝐽𝑇 + 1

𝜔
𝐿𝑀−1

𝑧 𝐿𝑇 . Following [23], 𝐾 is
preconditioned using the block diagonal operator

𝑃 =


𝑀𝑢

𝜔𝑀𝑧

𝑆

 , where 𝑆 = 𝐽𝑀−1
𝑢 𝐽𝑇 , 𝐽 = 𝐽 + 𝜔−1/2𝐿. (7)

This preconditioner leverages the result in [21], and approximately inverts the block
diagonal in the LDU factorization. The matrix 𝐽 used in the approximate Schur
complement 𝑆 is block lower triangular (similar to 𝐽), a fact thatwewill exploit below.
The choice of 𝑆 integrates the state Jacobian and the effects of the regularization
parameter. In [23, 24] and [26], this approximation is developed and shown to lead
to robust performance with respect to 𝜔.

3 Two-level domain decomposition Schur-complement

We propose a new domain decomposition approach for approximately inverting 𝑆.
This is motivated by the observation that the operator 𝑆 is elliptic in time (see [18]
and [11]). For simplicity, we show this discretely using only the term 𝐽𝑀−1

𝑢 𝐽𝑇 .
Consider the ODE 𝜕𝑡 𝑦 = −𝑦 discretized over three time steps with forward Euler:
𝑦𝑛+1 − 𝑦𝑛 + Δ𝑡𝑦𝑛 = 0. With 𝑀𝑢 = 𝐼, the Schur-complement 𝑆 is


1

−1 + Δ𝑡 1
−1 + Δ𝑡 1



1 −1 + Δ𝑡

1 −1 + Δ𝑡

1


=


1 −(1 − Δ𝑡)

−(1 − Δ𝑡) 2(1 − Δ𝑡) + Δ𝑡2 −(1 − Δ𝑡)
−(1 − Δ𝑡) 2(1 − Δ𝑡) + Δ𝑡2

 . (8)
Examining the second row it is clear the operator has a 1D Laplacian stencil in
time, with a positive perturbation on the diagonal. To take advantage of this ellip-
ticity, we will apply existing domain decomposition approaches to the 𝑆 operator.
This ellipticity principle enables scalable performance of a preconditioned Krylov
method.We also impose an efficiency constraint that the computational kernels in our
preconditioner use the time integration method for the state and adjoint unknowns.
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The ellipticity principle is realized by considering a restricted additive Schwarz
(RAS) method with 𝑁𝐷 subdomains (see [9]). Each subdomain contains the spatial
unknowns associated with a subset of time steps. For instance, if there are 𝑁𝑡 = 9
time steps, then for 𝑁𝐷 = 3 the subdomains contain time-nodes {1, 2, 3}, {3, 4, 5, 6},
and {6, 7, 8, 9} (the 0th time-node is the excluded initial condition). Notice that the
time-nodes are overlapped but the time steps are not. With these subsets, boolean
operators 𝑅𝑠 are defined that restrict a space-time vector to the time-nodes in a sub-
domain, giving the RAS preconditioner

𝑆−1RAS =
𝑁𝐷∑︁
𝑠=1

𝑅𝑇𝑠 𝐷𝑠

(
𝑅𝑠𝐽𝑀

−1
𝑢 𝐽𝑇 𝑅𝑇𝑠

)−1
𝑅𝑠 (9)

where 𝐷𝑠 is the (boolean) partition of unity matrix (Defn. 1.11 of [9]). RAS is
known to lead to effective preconditioners for elliptic problems and can be extended
to a multi-level schemes. While the ellipticity principle is exploited in 𝑆−1RAS, the
explicit formation of the product 𝐽𝑀−1

𝑢 𝐽𝑇 does not satisfy the efficiency constraint.
To satisfy the efficiency constraint note that the range of 𝐽𝑇 𝑅𝑇𝑠 is nonzero on

time-nodes in the 𝑠th subdomain and one time-node earlier. For instance, if the
subdomain contains nodes {3, 4, 5, 6} then the range is nonzero on {2, 3, 4, 5, 6}.
Let 𝑄𝑠 be a new extended restriction operator whose action produces a space-time
vector for time-nodes that are nonzero in the range of 𝐽𝑇 𝑅𝑇𝑠 . Further, choose 𝑄𝑠 so
that

𝑄𝑠 =

[
𝑊𝑠

𝑅𝑠

]
and 𝑄𝑠𝑄

𝑇
𝑠 = 𝐼 . (10)

The operator 𝑊𝑠 restricts the space-time vector to the time-nodes contained in the
earlier time step relative to the 𝑠th subdomain. Because 𝑄𝑠 is a restriction operator
that represents the nonzero range of 𝐽𝑇 𝑅𝑇𝑠 , we have that 𝑄𝑇

𝑠 𝑄𝑠𝐽
𝑇 𝑅𝑇𝑠 = 𝐽𝑇 𝑅𝑇𝑠 .

Recalling that 𝑀𝑢 is diagonal, we can rewrite the subdomain solve in 𝑆−1𝑅𝐴𝑆
as

𝑅𝑠𝐽𝑀
−1
𝑢 𝐽𝑇 𝑅𝑇𝑠 = 𝑅𝑠𝐽𝑄

𝑇
𝑠 (𝑄𝑠𝑀

−1
𝑢 𝑄𝑇

𝑠 )𝑄𝑠𝐽
𝑇 𝑅𝑇𝑠 (11)

Using the constraint in Eq. 10, we have the additional identities 𝑅𝑠 = 𝑅𝑠𝑄
𝑇
𝑠 𝑄𝑠 and

𝑅𝑇𝑠 = 𝑄𝑇
𝑠 𝑄𝑠𝑅

𝑇
𝑠 . This permits a final rewrite of the operator in Eq. 11

𝑅𝑠𝐽𝑀
−1
𝑢 𝐽𝑇 𝑅𝑇𝑠 = 𝑅𝑠𝑄

𝑇
𝑠 𝐽𝑠𝑀

−1
𝑠 𝐽𝑇𝑠 𝑄𝑠𝑅

𝑇
𝑠 (12)

where 𝐽𝑠 = 𝑄𝑠𝐽𝑄
𝑇
𝑠 and 𝑀−1

𝑠 = 𝑄𝑠𝑀
−1
𝑢 𝑄𝑇

𝑠 . The inverse action of 𝐽𝑠𝑀−1
𝑠 𝐽𝑇𝑠 is

easily computed in a matrix free way on the time-nodes in the extended subdomain.
Motivated by this equivalence, we define a new one-level preconditioner

𝑆−1RASQ =

𝑁𝐷∑︁
𝑠=1

𝑅𝑇𝑠 𝐷𝑠

(
𝑅𝑠𝑄

𝑇
𝑠 𝐽

−𝑇
𝑠 𝑀𝑠𝐽

−1
𝑠 𝑄𝑠𝑅

𝑇
𝑠

)
𝑅𝑠 . (13)

The term in parentheses is different from the term inverted in Eq. 9. The difference
is that the inverse computed in Eq. 9 is constrained to have a zero initial condition



A 2-Level DD Preconditioner for KKT Systems 467

outside of the subdomain. This revised operator satisfies our efficiency constraint as
computing 𝐽−1𝑠 and 𝐽−𝑇𝑠 is done using the time integration method.
To obtain scalability with respect to the number of subdomains a coarse grid cor-

rection is required. Again leveraging the elliptic nature of the Schur-complement we
consider the Nicolaides coarse space developed for solving the Poisson problem [22].
Following the presentation in [9], the Nicolades coarse space is defined as

𝑍 =


𝐷1𝑅1Φ1 . . .

𝐷2𝑅2Φ2
. . .

...
. . .

. . .

. . . 𝐷𝑁𝐷
𝑅𝑁𝐷

Φ𝑁𝐷


, where Φ𝑠 =


1 −1
1 −1 + 2

𝑁𝑠

...
...

1 −1 + 2 𝑁𝑠

𝑁𝑠


(14)

The columns of Φ𝑠 form a constant and linear basis over the 𝑁𝑠 subdomain time-
nodes. The coarse restriction 𝑅0 = 𝑍𝑇 is used in the definition of the coarse operator
𝑆0 = 𝑅0𝐽𝑀

−1
𝑢 𝐽𝑇 𝑅𝑇0 . The coarse solve is applied in a multiplicative way

𝑆−12−level = 𝑆
−1
RASQ𝑅

𝑇
0 𝑆

−1
0 𝑅0. (15)

Due to the structure of 𝑅0 the coarse operator 𝑆0 can be constructed in parallel. This
does represent a violation of the efficiency constraint to be addressed by future work.

4 Numerical experiments

To demonstrate this approach we discretize the quadratic optimization problem from
Eq. 1 as described in Sec. 2. The 2D spatial domain is Ω = (0, 1) × (0, 2) ⊂ R2, and
the time domain is [0, 1]. The initial conditions and target solutions are

𝑢0 (𝑥, 𝑦) = −𝑥𝑦(𝑥−1) (𝑦−2), �̃�(𝑥, 𝑦, 𝑡) = sin(2.0𝜋𝑡) sin(2.0𝜋𝑥) sin(2.0𝜋𝑦). (16)

The regularization parameter 𝜔 varies over five orders of magnitude. Experiments
were run with 9 × 9, 17 × 17, and 33 × 33 mesh points. Qualitatively, variation
with number of spatial points was not a factor in the convergence. This is not
surprising as the implicit operator in space is inverted with a direct solve. As a result,
the computations below are all for the case of 17 × 17 mesh points. Recall that
homogeneous boundary conditions are removed, giving 15 × 15 unknowns in each
time step. The linear system 𝐾u = f (Eq. 5) is solved using right preconditioned
GMRES from PyAMG [1] iterated until a relative residual tolerance of 10−6 is
achieved.
Figure 1 presents three weak-scaling studies ranging from 100 to 3200 time steps.

The number of time steps per subdomain is fixed at 80 in the left plot, 20 in the
center plot, and 5 in the right plot. For the case of 80 steps, the fewest number of
time steps is 200 (the minimum number of time steps evenly divisible by 80 in the
chosen sequence). The plots, show the number of iterations as a function of time
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Fig. 1 Three weak scaling studies for different numbers of time-steps per subdomain. The two
level scheme (triangles) has flat iteration counts for regardless of the number of time steps, the
subdomain size, and the regularization parameter. Asymptotically the one level method shows
a strong dependence with respect to the number of subdomains and time steps.

Fig. 2 This plot demonstrates the robustness of the two level scheme (triangle markers) with respect
to the regularization parameter 𝜔. Note that for many cases the one level scheme (circle markers)
did not converge in the 420 iterations (the maximum allowed), thus those values are omitted.

step count for GMRES preconditioned using 𝑃 from Eqn 7 with Schur complement
approximations 𝑆−1RASQ for the one level case (circle markers), and 𝑆

−1
2−level for the

two level case (triangle markers). Different values for the regularization parameter𝜔
are indicated using solid (10−2), dashed (10−3) or dotted (10−4) lines. These plots
demonstrate that the performance of the two level method is independent of both the
number of subdomains, and the number of time steps. Further, independence holds
regardless of the value of the regularization parameter. As anticipated the one level
method has substantial growth with the number of time steps, and variability with the
regularization parameter. However, it is worth noting that dependent on the number
of subdomains and the size of the regularization parameter the one level method may
be faster despite its lack of scalability. For instance, when using 40 subdomains and
a regularization parameter of 10−4 the one-level method takes the same number of
iterations but lacks the synchronization and added cost of the two level method.
The scalingwith respect to the regularization parameter is investigated in Figure 2.

In these plots the preconditioned iteration counts are plotted as a function of the
inverse regularization parameter. Data points are excluded when the number of
iterations exceeded the maximum iteration count for GMRES (in this case 420).
Here again the two level method scales well, yielding essentially flat iteration counts
as a function of the regularization parameter. The one level method shows strong
dependence on 𝜔, though it improves dramatically for smaller values.
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5 Conclusion

In this paper, motivated by results in block preconditioning and the elliptic-in-
time nature of the KKT system, we develop a two level domain decomposition
preconditioner that facilitates a parallel-in-time solver for the discrete optimality
system constrained by the heat equation. While limited in their breadth, initial
results for this approach show excellent scalability with respect to the number of
time steps, subdomains, and the regularization parameter. Future work will focus on
achieving improved scaling by including more levels in the hierarchy, and applying
this technique to a broader class of problems and discretizations.
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