
Auxiliary Space Preconditioning
with a Symmetric Gauss-Seidel Smoothing
Scheme for IsoGeometric Discretization
of H0(curl)-elliptic Problem

Abdeladim El Akri, Khalide Jbilou, Nouredine Ouhaddou, and Ahmed Ratnani

1 Introduction

The IsoGeometric Analysis (IgA), introduced by Hughes et al. in [4], is a compu-
tational method that provides a general framework for the design and analysis of
numerical approximation of partial differential equations (PDEs). The IgA is based
on the Galerkin formulation followed by the construction of a finite-dimensional
subspace, which approximates the solution space, determined by a finite set of basis
functions. These functions are adopted from the geometry description of the PDE
domain which usually employs 𝐵-spline functions, as done by computer-aided de-
sign algorithms [6]. As a consequence, the geometry is maintained exactly and the
use of high-regularity functions is settled by simply increasing or decreasing the
multiplicities of knots.
The discrete problems produced by isogeometric methods are usually very hard

to solve by the standard methods; they are ill-conditioned and the development of
a preconditioning strategy is not straightforward, specially in the case of problems
characterized by the presence of a large kernel of the PDE operator (like e.g themodel
problem considered in the present paper). In this case a natural way of constructing
the preconditioner is the Auxiliary Space Preconditioning (ASP) method introduced
by Xu in [9], see also [3]. The latter is a preconditioning technique based on a simple
smoothing scheme (e.g Jacobi or Gauss-Seidel method) and an auxiliary space. The
method has the main advantage of linking the solution space directly with functions
in the potential space, whichmakes it possible to control the drawback of the presence
of a large null space.

Abdeladim El Akri, Nouredine Ouhaddou, Ahmed Ratnani
Lab. MSDA, Mohammed VI Polytechnic University, Green City, Morocco e-mail:
abdeladim.elakri@um6p.ma, nouredine.ouhaddou@um6p.ma, ahmed.ratnani@um6p.ma

Khalide Jbilou
Lab. MSDA, Mohammed VI Polytechnic University, Green City, Morocco and Lab. LMPA, Uni-
versity of Littoral Côte d’Opale, Calais cedex, France e-mail: khalide.jbilou@univ-littoral.fr

471

472 Abdeladim El Akri et al.

Due to page limitation, in the present work we consider only one model problem
(even if the results are valid for a variety of 𝑯(curl) and 𝑯(div) problems)

curl curl 𝒖 + 𝜏𝒖 = 𝒇 in Ω, 𝒖 × 𝒏 = 0 on 𝜕Ω, (1)

where the vector function 𝒇 ∈ (𝐿2 (Ω))3, 𝜏 is a positive constant andΩ = (0, 1)3. We
develop a fast preconditioned iterative linear solver for (1). The resulting algorithm
relies on a symmetric Gauss-Seidel smoothing scheme, Poisson problem solvers, and
a GLT-based smoother to remove the dependence on the degree 𝑝 . For the former we
provide a new algorithm which exploits the block representation of the matrix of the
resulting discrete system through sum of Kronecker products. For the isogeometric
discretization of the Poisson problems, we adopt the fast diagonalization method
developed in [8]. The GLT smoother is taken from [5].
The rest of the paper is organized as follows. Section 2 presents the IgA finite

element discretization of the model (1). In Section 3, we propose a new algorithm for
the symmetric Gauss-Seidel method that utilizes the block structure of the matrix-
based discretization of (1). Next, in Section 4, we introduce the auxiliary space
preconditioner, and in Section 5, we combine it with aGLT-based smoother to control
the 𝑝-dependency of the solver. Finally, in Section 6, we illustrate the performance
of our preconditioner with several numerical tests.

2 Isogeometric discretization

For the sake of simplicity, we shall consider only non-periodic and uniform knot
vectors of the form

𝑇 = (0, . . . , 0︸ ︷︷ ︸
𝑝+1

, 𝑡𝑝+2 < 𝑡𝑝+3 < . . . 𝑡𝑛−1 < 𝑡𝑛, 1, . . . , 1︸ ︷︷ ︸
𝑝+1

),

where 𝑡𝑖 is the 𝑖-th knot, 𝑛 is the number of basis functions and 𝑝 is the polynomial
order. 𝐵-spline basis functions are defined recursively and they begin with order
𝑝 = 0 such as

𝐵𝑖,0 (𝑡) =
{
1 if 𝑡𝑖 ≤ 𝑡 < 𝑡𝑖+1,

0 otherwise

and for higher order 𝑝 ≥ 1 as follows

𝐵𝑖, 𝑝 (𝑡) =
𝑡 − 𝑡𝑖

𝑡𝑖+𝑝 − 𝑡𝑖
𝐵𝑖, 𝑝−1 (𝑡) +

𝑡𝑖+𝑝+1 − 𝑡
𝑡𝑖+𝑝+1 − 𝑡𝑖+1

𝐵𝑖+1, 𝑝−1 (𝑡),

in which a fraction with zero denominator is assumed to be zero. We let

S𝑝 = span
{
𝐵𝑖, 𝑝 : 𝑖 = 1, . . . , 𝑛

}
, S𝑝

0 = span
{
𝐵𝑖, 𝑝 : 𝑖 = 2, . . . , 𝑛 − 1

}
,

Auxiliary Space Preconditioning with a Symmetric Gauss-Seide Smoothing Scheme 473

theuni-variate spline spaces spanned by the 𝐵-spline functions. For three-dimensional
vector field structures, we specify a tridirectional knot vector 𝑻 = 𝑇1×𝑇2×𝑇3, where
each 𝑇𝑖 is an open and uniform univariate knot vector related to a 𝐵-spline degree 𝑝𝑖 .
We let then

𝑽ℎ,0 (curl) =
(
S𝑝1−1 ⊗ S𝑝2

0 ⊗ S
𝑝3
0

)
×
(
S𝑝1
0 ⊗ S

𝑝2−1 ⊗ S𝑝3
0

)
×
(
S𝑝1
0 ⊗ S

𝑝2
0 ⊗ S

𝑝3−1
)
,

the three-dimensional isogeometric approximation of 𝑯0 (curl) (see [1]). However,
we shall need also the following discrete counterpart of space 𝐻10 (Ω)

𝑉ℎ,0 (grad) = S𝑝1
0 ⊗ S

𝑝2
0 ⊗ S

𝑝3
0 .

Among the important properties, spaces 𝑉ℎ,0 (grad) and 𝑽ℎ,0 (curl) feature quasi
interpolation operatorsΠgrad

ℎ,0 andΠ
curl
ℎ,0 (see [1], for instance) thatmake the (DeRham)

diagram

𝐻10
grad

−−−−−−−−→ 𝑯0 (curl)

Π
grad
ℎ,0

y Πcurl
ℎ,0

y
𝑽ℎ,0 (grad)

grad
−−−−−−−−→ 𝑽ℎ,0 (curl)

commutes and exact.
Our discrete solution 𝒖ℎ ∈ 𝑽ℎ,0 (curl) satisfies the weak formulation

(curl 𝒖ℎ , curl 𝒗ℎ) + 𝜏(𝒖ℎ , 𝒗ℎ) = (𝒇 , 𝒗ℎ), ∀𝒗ℎ ∈ 𝑽ℎ,0 (curl), (2)

where (·, ·) refers to the (𝐿2 (Ω))3 inner-product. With the standard basis for
𝑽ℎ,0 (curl) (see [7]), we can write (2) as a linear system 𝑨𝒙 = 𝒃, where 𝑨 is
a (symmetric) 3 × 3 block matrix of the form

𝑨 =
©«
𝐴11 𝐴12 𝐴13
𝐴21 𝐴22 𝐴23
𝐴31 𝐴32 𝐴33

ª®¬ , (3)

where each diagonal block matrix 𝐴𝑖𝑖 is a sum of Kronecker products of 3 matrices
while the non-diagonal matrices 𝐴𝑖 𝑗 (𝑖 ≠ 𝑗) are Kronecker products of 3 matrices.
Algorithms presented in the next section exploit this (tensor-product) structure.

3 Block fast Gauss-Seidel method for sum of Kronecker products

In this section we present an efficient implementation of the block Gauss-Seidel
method that is specifically designed for solving systems of equations involving
a sum of Kronecker product matrices. This implementation is a key contribution of
our paper and is used in the Gauss-Seidel smoothing step of the optimal ASP-based
algorithm presented in Section 5.

474 Abdeladim El Akri et al.

To begin, we recall the symmetric Gauss-Seidel method in Algorithm 1. Our
implementation uses the spsolve driver, which has different implementations de-
pending on the type of the matrix 𝑨 (lower or upper triangular matrix). These
implementations are given in algorithms 2–3.

Algorithm 1: Symmetric Gauss Seidel solver
Input : 𝑨: A given matrix, 𝒃: A given vector, 𝒙: A starting point, a1: The number of iterations
Output
:

𝒙: The approximate solution of 𝑨𝒙 = 𝒃

1 for 𝑖 ← 1 to a1 do
2 𝒙 ← 𝒙 + spsolve(𝑨, 𝒃 − 𝑨𝒙, lower = True)
3 end
4 for 𝑖 ← 1 to a1 do
5 𝒙 ← 𝒙 + spsolve(𝑨, 𝒃 − 𝑨𝒙, lower = False)
6 end

Algorithm 2: spsolve: Lower
triangular solver for 3×3 block
matrix

Input : 𝑨: Lower triangular matrix, 𝒃: A
given vector

Output
:

𝒙: Solution of 𝑨𝒙 = 𝒃

1 𝑏1 , 𝑏2 , 𝑏3 ← unfold(𝒃)
2 𝑥1 ← spsolve(𝐴11 , 𝑏1 , lower = True)
3 �̃�2 ← 𝑏2 − 𝐴21𝑥1
4 𝑥2 ← spsolve(𝐴22 , �̃�2 , lower = True)
5 �̃�3 ← 𝑏3 − 𝐴31𝑥1 − 𝐴32𝑥2
6 𝑥3 ← spsolve(𝐴33 , �̃�3 , lower = True)
7 𝒙 ← fold(𝑥1 , 𝑥2 , 𝑥3)

Algorithm 3: spsolve: Upper
triangular solver for 3×3 block
matrix

Input : 𝑨: Upper triangular matrix, 𝒃: A
given vector

Output
:

𝒙: Solution of 𝑨𝒙 = 𝒃

1 𝑏1 , 𝑏2 , 𝑏3 ← unfold(𝒃)
2 𝑥3 ← spsolve(𝐴33 , 𝑏3 , lower = False)
3 �̃�2 ← 𝑏2 − 𝐴23𝑥3
4 𝑥2 ← spsolve(𝐴22 , �̃�2 , lower = False)
5 �̃�1 ← 𝑏1 − 𝐴12𝑥2 − 𝐴13𝑥3
6 𝑥1 ← spsolve(𝐴11 , �̃�1 , lower = False)
7 𝒙 ← fold(𝑥1 , 𝑥2 , 𝑥3)

Next, we provide a new implementation for the lower triangular solver that is used in
Algorithm 2 (the upper solver used in Algorithm 3 follows the same rationals). We
refer to our driver as spsolve. Since the diagonal block matrices in (3) are sums of
Kronecker products of 3matrices, we can derive efficientmatrix-free implementation
as described in Algorithm 4 (in the case of a sparse matrix (CSR)).

4 Auxiliary space preconditioner

In this section, we present the auxiliary space preconditioning strategy for system (2).
To keep the presentation focused, we only introduce the ASP preconditioner (we refer
to [2] for more detailed analysis and further discussion of the preconditioner). For
this purpose, we introduce the following matrices

- 𝑯 defines the matrix related to the restriction of (𝐻10 (Ω))
3 inner product to

(𝑉ℎ,0 (grad))3, and 𝑴 is the matrix representation related to the restriction of the
(𝐿2 (Ω))3 inner product to (𝑉ℎ,0 (grad,Ω))3.

Auxiliary Space Preconditioning with a Symmetric Gauss-Seide Smoothing Scheme 475

Algorithm 4: spsolve: Lower triangular solver for sum of Kronecker
product [CSR] matrices.

Input : 𝑨: Lower triangular matrix of the form
𝛼𝐴1 ⊗ 𝐴2 ⊗ 𝐴3 + 𝛽𝐵1 ⊗ 𝐵2 ⊗ 𝐵3 + 𝛾𝐶1 ⊗ 𝐶2 ⊗ 𝐶3, 𝒃: A given vector

Output
:

𝒙: Solution of 𝑨𝒙 = 𝒃

// 𝑛𝑙 is the number of rows of matrices 𝐴𝑙, 𝐵𝑙, 𝐶𝑙, 𝑙 = 1, 2, 3.
1 for 𝑖1 ← 1 to 𝑛1 do
2 for 𝑖2 ← 1 to 𝑛2 do
3 for 𝑖3 ← 1 to 𝑛3 do
4 𝒊 ← multi_index(𝑖1 , 𝑖2 , 𝑖3)
5 𝑦𝒊 ← 0
6 𝑎𝑑 ← 1
7 for 𝑘1 ← 𝐴1.indptr[𝑖1] to 𝐴1.indptr[𝑖1 + 1] − 1 do
8 𝑗1 ← 𝐴1.indices[𝑘1]
9 𝑎1 ← 𝐴1.data[𝑘1]

10 for 𝑘2 ← 𝐴2.indptr[𝑖2] to 𝐴2.indptr[𝑖2 + 1] − 1 do
11 𝑗2 ← 𝐴2.indices[𝑘2]
12 𝑎2 ← 𝐴2.data[𝑘2]
13 for 𝑘3 ← 𝐴3.indptr[𝑖3] to 𝐴3.indptr[𝑖3 + 1] − 1 do
14 𝑗3 ← 𝐴3.indices[𝑘3]
15 𝑎3 ← 𝐴3.data[𝑘3]
16 𝒋 ← multi_index(𝑗1 , 𝑗2 , 𝑗3)
17 if 𝒊 < 𝒋 then
18 𝑦𝒊 ← 𝑦𝒊 + 𝑎1𝑎2𝑎3𝒙 [𝒋]
19 else
20 𝑎𝑑 ← 𝑎1𝑎2𝑎3
21 end
22 end
23 end
24 end
25 𝑧𝒊 ← 0
26 𝑏𝑑 ← 1
27 for 𝑘1 ← 𝐵1.indptr[𝑖1] to 𝐵1.indptr[𝑖1 + 1] − 1 do
28 𝑗1 ← 𝐵1.indices[𝑘1]
29 𝑎1 ← 𝐵1.data[𝑘1]
30 for 𝑘2 ← 𝐵2.indptr[𝑖2] to 𝐵2.indptr[𝑖2 + 1] − 1 do
31 𝑗2 ← 𝐵2.indices[𝑘2]
32 𝑎2 ← 𝐵2.data[𝑘2]
33 for 𝑘3 ← 𝐵3.indptr[𝑖3] to 𝐵3.indptr[𝑖3 + 1] − 1 do
34 𝑗3 ← 𝐵3.indices[𝑘3]
35 𝑎3 ← 𝐵3.data[𝑘3]
36 𝒋 ← multi_index(𝑗1 , 𝑗2 , 𝑗3)
37 if 𝒊 < 𝒋 then
38 𝑧𝒊 ← 𝑧𝒊 + 𝑎1𝑎2𝑎3𝒙 [𝒋]
39 else
40 𝑏𝑑 ← 𝑎1𝑎2𝑎3
41 end
42 end
43 end
44 end
45 𝑤𝒊 ← 0
46 𝑐𝑑 ← 1
47 for 𝑘1 ← 𝐶1.indptr[𝑖1] to 𝐶1.indptr[𝑖1 + 1] − 1 do
48 𝑗1 ← 𝐶1.indices[𝑘1]
49 𝑎1 ← 𝐶1.data[𝑘1]
50 for 𝑘2 ← 𝐶2.indptr[𝑖2] to 𝐶2.indptr[𝑖2 + 1] − 1 do
51 𝑗2 ← 𝐶2.indices[𝑘2]
52 𝑎2 ← 𝐶2.data[𝑘2]
53 for 𝑘3 ← 𝐶3.indptr[𝑖3] to 𝐶3.indptr[𝑖3 + 1] − 1 do
54 𝑗3 ← 𝐶3.indices[𝑘3]
55 𝑎3 ← 𝐶3.data[𝑘3]
56 𝒋 ← multi_index(𝑗1 , 𝑗2 , 𝑗3)
57 if 𝒊 < 𝒋 then
58 𝑤𝒊 ← 𝑤𝒊 + 𝑎1𝑎2𝑎3𝒙 [𝒋]
59 else
60 𝑐𝑑 ← 𝑎1𝑎2𝑎3
61 end
62 end
63 end
64 end
65 𝒙 [𝒊] ← 1

𝛼𝑎𝑑+𝛽𝑏𝑑+𝛾𝑐𝑑
(𝒃 [𝒊] − 𝛼𝑦𝒊 − 𝛽𝑧𝒊 − 𝛾𝑤𝒊)

66 end
67 end
68 end

476 Abdeladim El Akri et al.

- Wewrite 𝑷 and𝑮 for matrices related to the transform operatorsΠcurl
ℎ,0 | (𝑉ℎ,0 (grad))3

and grad|𝑉ℎ,0 (grad) , respectively.
- Let 𝑳 be the matrix related to the mapping

(𝝓ℎ , 𝝓ℎ) ∈ 𝑉ℎ,0 (grad) ×𝑉ℎ,0 (grad) ↦−→
(
grad 𝝓ℎ , grad 𝝓ℎ

)
.

- 𝑺 stands for the matrix related to the smoother.

With these notations, ASP preconditioner for problem (2) is given by

𝑩 = 𝑺 + 𝑲, 𝑲 := 𝑷 (𝑯 + 𝜏𝑴)−1 𝑷𝑇 + 𝜏−1𝑮𝑳−1𝑮𝑇 . (4)

The smoother 𝑺 can be chosen by a simple relaxation scheme such as the Jacobi
and symmetric Gauss-Seidel (GS) method. In this case, it has been proved in [2]
that the spectral condition number ^(𝑩𝑨) is bounded, with respect to discretization
parameter ℎ. However, the numerical tests developed in the aforementioned paper
show that the overall performance obtained with Gauss-Seidel smoother is better
than that obtained with Jacobi. That’s why in the present paper we focus on the
symmetric Gauss-Seidel method.

5 𝒉 𝒑-Robust preconditioning algorithm

In this section, we introduce the ASP-GS-GLT algorithm, which is based on the ASP
method and addresses the problem related to the 𝐵-Spline degree. Indeed, the ASP
approach can be extended to construct a 𝑝-stable preconditioner by incorporating
an extra smoother that controls the 𝑝-dependency of the preconditioner. To derive
the smoother, we use the theory of Generalized Locally Toeplitz (GLT) sequences
(see [5]).
TheASP-GS-GLTalgorithm is formulated using the decomposition (4) as follows:

Algorithm 5: ASP-GS-GLT preconditioning for 𝑽ℎ,0 (curl)
Input : 𝑨: The matrix given in (3), 𝒃: A given vector, 𝒙: A starting point, a1: The number of GS iterations ,

a2: The number of GLT iterations , a𝐴𝑆𝑃 : The number of ASP iterations
Output
:

𝒙: The approximate solution of 𝑨𝒙 = 𝒃

1 𝑘 ← 0
2 while 𝑘 ≤ a𝐴𝑆𝑃 and not convergence do
3 𝒙 ← smoother1 (𝑨, 𝒃, 𝒙, a1) // Apply Symmetric GS smoother
4 𝒙 ← smoother2 (𝑨, 𝒃, 𝒙, a2) // Apply GLT smoother
5 𝒅 ← 𝒃 − 𝑨𝒙 // Compute the defect
6 𝒙𝑐 ← 𝑲 𝒅 // ASP correction
7 𝒙 ← 𝒙 + 𝒙𝑐 // Update the solution
8 𝑘 ← 𝑘 + 1
9 end

Algorithm 5 is built upon three building blocks: a symmetric Gauss-Seidel smooth-
ing, a GLT-based smoother, and an ASP correction. To implement the Gauss-Seidel
smoothing, we employ the block fast Gauss-Seidel method described in Section 3.

Auxiliary Space Preconditioning with a Symmetric Gauss-Seide Smoothing Scheme 477

Our GLT-smoothing strategy is adapted from the work of [5]. Additionally, the ASP
correction utilizes solvers for Poisson problems to compute solutions for systems
with matrices 𝑯 + 𝜏𝑴 and 𝑳. For this purpose, we rely on the fast diagonalization
method introduced in [8].

6 Numerical results

In this section, we present some numerical experiments to test the strategy proposed
in this paper in view of further applications. In all these tests, we consider the model
problem (1) in the computational domain Ω = (0, 1)3 subdivided into 2𝑘 × 2𝑘 × 2𝑘
sub-domains (𝑘 ≥ 1). As a right-hand side function we chose 𝒇 (𝒙, 𝒚, 𝒛) = (𝒙, 𝒚, 𝒛).
The IgA discrete system (2) is solved by the Conjugate Gradient (CG) method in the
case of the un-preconditioned and preconditioned systems. The stopping criteria is
‖𝑨𝒙 − 𝒃‖/‖𝒃‖ ≤ 10−6 and the initial guess is chosen to be the zero vector.

Table 1 Un-preconditioned (NP) and ASP preconditioner (ASP): CG iterations counts for different
values of ℎ = 1/2𝑘 and 𝑝. ’−’ means that CG reaches the maximum number of iterations (set
to 3000) without convergence. Parameter values 𝜏 = 10−4, a1 = 1, a2 = 𝑝 + 1 and a𝑎𝑠𝑝 = 3.

ℎ = 1/8 ℎ = 1/16 ℎ = 1/32 ℎ = 1/64
𝑝 NP ASP NP ASP NP ASP NP ASP
1 151 3 328 4 511 6 879 6
2 520 2 975 4 1313 5 1962 6
3 − 2 − 3 − 4 − 6
4 − 3 − 3 − 4 − 5
5 − 3 − 3 − 4 − 5

ℎ = 1/8 ℎ = 1/16 ℎ = 1/32 ℎ = 1/64
𝑝 NP ASP NP ASP NP ASP NP ASP
6 − 4 − 4 − 4 − 4
7 − 4 − 4 − 4 − 4
8 − 4 − 4 − 4 − 4
9 − 5 − 4 − 4 − 5
10 − 5 − 5 − 5 − 5

Table 2 ASP preconditioner: CG iterations counts for different values of 𝜏 and 𝑝. ’−’ means that
CG reaches the maximum number of iterations (set to 3000) without convergence. Parameter values
ℎ = 1/64, a1 = 1, a2 = 𝑝 + 1 and a𝑎𝑠𝑝 = 3.

𝑝 = 1 𝑝 = 3 𝑝 = 8
𝜏 NP ASP NP ASP NP ASP
10−4 879 6 − 6 − 4
10−3 755 6 − 6 − 4
10−2 610 7 − 6 − 4
10−1 486 7 − 5 − 4
1 295 7 2278 5 − 4

𝑝 = 1 𝑝 = 3 𝑝 = 8
𝜏 NP ASP NP ASP NP ASP
10 244 6 1180 5 − 4
102 131 6 361 4 2227 3
103 41 4 101 2 687 4
104 10 1 39 2 320 3
105 9 1 39 1 318 2

In the first test, we keep following the number of the CG iterations for convergence for
different values of 𝑘 and 𝑝. The results are shown in Table 1. As we can observe from
the table, this example indicates that our ASP preconditioner is robust in the sense
that the number of iterations necessary to achieve the convergence is sufficiently
small and is hardly dependent on the mesh parameter ℎ and the 𝐵-spline degree 𝑝.

478 Abdeladim El Akri et al.

In the second test, we study the dependence of the ASP preconditioner on the
parameter 𝜏. For this objective, in Table 2we provideGC iteration counts for different
values of 𝜏 and 𝑝. The table shows a strong dependence of the un-preconditioned
problem on 𝜏, In contrast, however, the number of CG iterations, in the case of ASP
preconditioner, is independent of 𝜏. This shows that the ASP method is perfectly
able to handle small values of 𝜏.

Acknowledgements This action benefited from the support of the Chair “Multiphysics and HPC”
led by Mohammed VI Polytechnic University, sponsored by OCP.

References

1. Da Veiga, L. B., Buffa, A., Sangalli, G., and Vázquez, R. Mathematical analysis of variational
isogeometric methods. Acta Numerica 23, 157–287 (2014).

2. El Akri, A., Jbilou, K., and Ratnani, A. Auxiliary splines space preconditioning for 𝑏-spline
finite elements: the case of H(curl, 𝜔) and H(div, 𝜔) elliptic probelems. arXiv preprint
arXiv:2303.08375 (2023).

3. Hiptmair, R. and Xu, J. Nodal auxiliary space preconditioning in H(curl, 𝜔) and H(div, 𝜔)
spaces. SIAM Journal on Numerical Analysis 45(6), 2483–2509 (2007).

4. Hughes, T., Cottrell, J., and Bazilevs, Y. Isogeometric analysis: Cad, finite elements, nurbs,
exact geometry and mesh refinement. Computer methods in applied mechanics and engineering
194(39-41), 4135–4195 (2005).

5. Mazza, M., Manni, C., Ratnani, A., Serra-Capizzano, S., and Speleers, H. Isogeometric analysis
for 2d and 3d curl−div problems: Spectral symbols and fast iterative solvers. Computer Methods
in Applied Mechanics and Engineering 344, 970–997 (2019).

6. Piegl, L. and Tiller, W. The NURBS book. Springer Science & Business Media (1996).
7. Ratnani, A. and Sonnendrücker, E. An arbitrary high-order spline finite element solver for the
time domain maxwell equations. Journal of Scientific Computing 51(1), 87–106 (2012).

8. Sangalli, G. and Tani, M. Isogeometric preconditioners based on fast solvers for the sylvester
equation. SIAM Journal on Scientific Computing 38(6), A3644–A3671 (2016).

9. Xu, J. The auxiliary space method and optimal multigrid preconditioning techniques for un-
structured grids. Computing 56(3), 215–235 (1996).

