Auxiliary Space Preconditioning with a Symmetric Gauss-Seidel Smoothing Scheme for IsoGeometric Discretization of $\mathbf{H}_{\mathbf{0}}$ (curl)-elliptic Problem

Abdeladim El Akri, Khalide Jbilou, Nouredine Ouhaddou, and Ahmed Ratnani

1 Introduction

The IsoGeometric Analysis (IgA), introduced by Hughes et al. in [4], is a computational method that provides a general framework for the design and analysis of numerical approximation of partial differential equations (PDEs). The IgA is based on the Galerkin formulation followed by the construction of a finite-dimensional subspace, which approximates the solution space, determined by a finite set of basis functions. These functions are adopted from the geometry description of the PDE domain which usually employs B-spline functions, as done by computer-aided design algorithms [6]. As a consequence, the geometry is maintained exactly and the use of high-regularity functions is settled by simply increasing or decreasing the multiplicities of knots.

The discrete problems produced by isogeometric methods are usually very hard to solve by the standard methods; they are ill-conditioned and the development of a preconditioning strategy is not straightforward, specially in the case of problems characterized by the presence of a large kernel of the PDE operator (like e.g the model problem considered in the present paper). In this case a natural way of constructing the preconditioner is the Auxiliary Space Preconditioning (ASP) method introduced by Xu in [9], see also [3]. The latter is a preconditioning technique based on a simple smoothing scheme (e.g Jacobi or Gauss-Seidel method) and an auxiliary space. The method has the main advantage of linking the solution space directly with functions in the potential space, which makes it possible to control the drawback of the presence of a large null space.

[^0]Due to page limitation, in the present work we consider only one model problem (even if the results are valid for a variety of \boldsymbol{H} (curl) and \boldsymbol{H} (div) problems)

$$
\begin{equation*}
\operatorname{curl} \operatorname{curl} \boldsymbol{u}+\tau \boldsymbol{u}=\boldsymbol{f} \text { in } \Omega, \quad \boldsymbol{u} \times \boldsymbol{n}=0 \text { on } \partial \Omega, \tag{1}
\end{equation*}
$$

where the vector function $f \in\left(L^{2}(\Omega)\right)^{3}, \tau$ is a positive constant and $\Omega=(0,1)^{3}$. We develop a fast preconditioned iterative linear solver for (1). The resulting algorithm relies on a symmetric Gauss-Seidel smoothing scheme, Poisson problem solvers, and a GLT-based smoother to remove the dependence on the degree p. For the former we provide a new algorithm which exploits the block representation of the matrix of the resulting discrete system through sum of Kronecker products. For the isogeometric discretization of the Poisson problems, we adopt the fast diagonalization method developed in [8]. The GLT smoother is taken from [5].

The rest of the paper is organized as follows. Section 2 presents the IgA finite element discretization of the model (1). In Section 3, we propose a new algorithm for the symmetric Gauss-Seidel method that utilizes the block structure of the matrixbased discretization of (1). Next, in Section 4, we introduce the auxiliary space preconditioner, and in Section 5, we combine it with a GLT-based smoother to control the p-dependency of the solver. Finally, in Section 6, we illustrate the performance of our preconditioner with several numerical tests.

2 Isogeometric discretization

For the sake of simplicity, we shall consider only non-periodic and uniform knot vectors of the form

$$
T=(\underbrace{0, \ldots, 0}_{p+1}, t_{p+2}<t_{p+3}<\ldots t_{n-1}<t_{n}, \underbrace{1, \ldots, 1}_{p+1}),
$$

where t_{i} is the i-th knot, n is the number of basis functions and p is the polynomial order. B-spline basis functions are defined recursively and they begin with order $p=0$ such as

$$
B_{i, 0}(t)= \begin{cases}1 & \text { if } t_{i} \leq t<t_{i+1} \\ 0 & \text { otherwise }\end{cases}
$$

and for higher order $p \geq 1$ as follows

$$
B_{i, p}(t)=\frac{t-t_{i}}{t_{i+p}-t_{i}} B_{i, p-1}(t)+\frac{t_{i+p+1}-t}{t_{i+p+1}-t_{i+1}} B_{i+1, p-1}(t)
$$

in which a fraction with zero denominator is assumed to be zero. We let

$$
\mathcal{S}^{p}=\operatorname{span}\left\{B_{i, p}: i=1, \ldots, n\right\}, \quad \mathcal{S}_{0}^{p}=\operatorname{span}\left\{B_{i, p}: i=2, \ldots, n-1\right\},
$$

the uni-variate spline spaces spanned by the B-spline functions. For three-dimensional vector field structures, we specify a tridirectional knot vector $\boldsymbol{T}=T_{1} \times T_{2} \times T_{3}$, where each T_{i} is an open and uniform univariate knot vector related to a B-spline degree p_{i}. We let then
$\boldsymbol{V}_{h, 0}($ curl $)=\left(\mathcal{S}^{p_{1}-1} \otimes \mathcal{S}_{0}^{p_{2}} \otimes \mathcal{S}_{0}^{p_{3}}\right) \times\left(\mathcal{S}_{0}^{p_{1}} \otimes \mathcal{S}^{p_{2}-1} \otimes \mathcal{S}_{0}^{p_{3}}\right) \times\left(\mathcal{S}_{0}^{p_{1}} \otimes \mathcal{S}_{0}^{p_{2}} \otimes \mathcal{S}^{p_{3}-1}\right)$,
the three-dimensional isogeometric approximation of $\boldsymbol{H}_{0}(\mathbf{c u r l})$ (see [1]). However, we shall need also the following discrete counterpart of space $H_{0}^{1}(\Omega)$

$$
V_{h, 0}(\mathbf{g r a d})=\mathcal{S}_{0}^{p_{1}} \otimes \mathcal{S}_{0}^{p_{2}} \otimes \mathcal{S}_{0}^{p_{3}}
$$

Among the important properties, spaces $V_{h, 0}(\mathbf{g r a d})$ and $V_{h, 0}($ curl $)$ feature quasi interpolation operators $\Pi_{h, 0}^{\text {grad }}$ and $\Pi_{h, 0}^{\text {curl }}$ (see [1], for instance) that make the (DeRham) diagram

commutes and exact.
Our discrete solution $\boldsymbol{u}_{h} \in \boldsymbol{V}_{h, 0}$ (curl) satisfies the weak formulation

$$
\begin{equation*}
\left(\operatorname{curl} u_{h}, \operatorname{curl} v_{h}\right)+\tau\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right), \quad \forall v_{h} \in V_{h, 0}(\operatorname{curl}) \tag{2}
\end{equation*}
$$

where (\cdot, \cdot) refers to the $\left(L^{2}(\Omega)\right)^{3}$ inner-product. With the standard basis for $\boldsymbol{V}_{h, 0}($ curl) (see [7]), we can write (2) as a linear system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, where \boldsymbol{A} is a (symmetric) 3×3 block matrix of the form

$$
\boldsymbol{A}=\left(\begin{array}{lll}
A_{11} & A_{12} & A_{13} \tag{3}\\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right)
$$

where each diagonal block matrix $A_{i i}$ is a sum of Kronecker products of 3 matrices while the non-diagonal matrices $A_{i j}(i \neq j)$ are Kronecker products of 3 matrices. Algorithms presented in the next section exploit this (tensor-product) structure.

3 Block fast Gauss-Seidel method for sum of Kronecker products

In this section we present an efficient implementation of the block Gauss-Seidel method that is specifically designed for solving systems of equations involving a sum of Kronecker product matrices. This implementation is a key contribution of our paper and is used in the Gauss-Seidel smoothing step of the optimal ASP-based algorithm presented in Section 5.

To begin, we recall the symmetric Gauss-Seidel method in Algorithm 1. Our implementation uses the spsolve driver, which has different implementations depending on the type of the matrix \boldsymbol{A} (lower or upper triangular matrix). These implementations are given in algorithms 2-3.

```
Algorithm 1: Symmetric Gauss Seidel solver
    Input : A: A given matrix, \(\boldsymbol{b}\) : A given vector, \(\boldsymbol{x}\) : A starting point, \(\boldsymbol{v}_{1}\) : The number of iterations
    Output \(\boldsymbol{x}\) : The approximate solution of \(\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\)
    :
    for \(i \leftarrow 1\) to \(v_{1}\) do
        \(\boldsymbol{x} \leftarrow \boldsymbol{x}+\operatorname{spsolve}(\boldsymbol{A}, \boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\), lower \(=\) True \()\)
    end
    for \(i \leftarrow 1\) to \(v_{1}\) do
        \(\boldsymbol{x} \leftarrow \boldsymbol{x}+\operatorname{spsolve}(\boldsymbol{A}, \boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\), lower \(=\) False \()\)
    end
```

```
Algorithm 2: spsolve: Lower
triangular solver for \(3 \times 3\) block
matrix
    Input : \(\boldsymbol{A}\) : Lower triangular matrix, \(\boldsymbol{b}\) : A
    given vector
Output \(\boldsymbol{x}:\) Solution of \(\boldsymbol{A x}=\boldsymbol{b}\)
    Output \(\boldsymbol{x}\) : Solution of \(\boldsymbol{A x}=\boldsymbol{b}\)
    :
    \({ }_{1} b_{1}, b_{2}, b_{3} \leftarrow \operatorname{unfold}(\boldsymbol{b})\)
\(x_{1} \leftarrow \operatorname{spsolve}\left(A_{11}, b_{1}\right.\), lower \(=\) True \()\)
3 \(\tilde{b}_{2} \leftarrow b_{2}-A_{21} x_{1}\)
\(4 x_{2} \leftarrow \operatorname{spsolve}\left(A_{22}, \tilde{b}_{2}\right.\), lower \(=\) True \()\)
\(5 \tilde{b}_{3} \leftarrow b_{3}-A_{31} x_{1}-A_{32} x_{2}\)
\(x_{3} \leftarrow \operatorname{spsolve}\left(A_{33}, \tilde{b}_{3}\right.\), lower \(=\) True \()\)
\(7 \boldsymbol{x} \leftarrow \operatorname{fold}\left(x_{1}, x_{2}, x_{3}\right)\)
```

| Algorithm 3: spsolve: Upper |
| :--- | :--- |
| triangular solver for 3×3 block |
| matrix |

Algorithm 3: spsolve: Upper
triangular solver for 3×3 block
matrix
Input : \boldsymbol{A} : Upper triangular matrix, \boldsymbol{b} : A
given vector
Output \boldsymbol{x} : Solution of $\boldsymbol{A x}=\boldsymbol{b}$
:
$2 x_{3} \leftarrow \operatorname{spsolve}\left(A_{33}, b_{3}\right.$, lower $=$ False $)$
$3 \tilde{b}_{2} \leftarrow b_{2}-A_{23} x_{3}$
$4 \quad x_{2} \leftarrow \operatorname{spsolve}\left(A_{22}, \tilde{b}_{2}\right.$, lower $=$ False $)$
$5 \tilde{b}_{1} \leftarrow b_{1}-A_{12} x_{2}-A_{13} x_{3}$
$x_{1} \leftarrow \operatorname{spsolve}\left(A_{11}, \tilde{b}_{1}\right.$, lower $=$ False $)$
$\boldsymbol{x} \leftarrow \operatorname{fold}\left(x_{1}, x_{2}, x_{3}\right)$

Next, we provide a new implementation for the lower triangular solver that is used in Algorithm 2 (the upper solver used in Algorithm 3 follows the same rationals). We refer to our driver as spsolve. Since the diagonal block matrices in (3) are sums of Kronecker products of 3 matrices, we can derive efficient matrix-free implementation as described in Algorithm 4 (in the case of a sparse matrix (CSR)).

4 Auxiliary space preconditioner

In this section, we present the auxiliary space preconditioning strategy for system (2). To keep the presentation focused, we only introduce the ASP preconditioner (we refer to [2] for more detailed analysis and further discussion of the preconditioner). For this purpose, we introduce the following matrices

- \boldsymbol{H} defines the matrix related to the restriction of $\left(H_{0}^{1}(\Omega)\right)^{3}$ inner product to $\left(V_{h, 0}(\mathbf{g r a d})\right)^{3}$, and \boldsymbol{M} is the matrix representation related to the restriction of the $\left(L^{2}(\Omega)\right)^{3}$ inner product to $\left(V_{h, 0}(\operatorname{grad}, \Omega)\right)^{3}$.

```
Algorithm 4: spsolve: Lower triangular solver for sum of Kronecker
product [CSR] matrices.
    Input : \(\boldsymbol{A}\) : Lower triangular matrix of the form
            \(\alpha A_{1} \otimes A_{2} \otimes A_{3}+\beta B_{1} \otimes B_{2} \otimes B_{3}+\gamma C_{1} \otimes C_{2} \otimes C_{3}, \boldsymbol{b}:\) A given vector
    Output \(\boldsymbol{x}\) : Solution of \(\boldsymbol{A x}=\boldsymbol{b}\)
    :
    // \(n_{l}\) is the number of rows of matrices \(A_{l}, B_{l}, C_{l}, l=1,2,3\).
    for \(i_{1} \leftarrow 1\) to \(n_{1}\) do
        for \(i_{2} \leftarrow 1\) to \(n_{2}\) do
        for \(i_{3} \leftarrow 1\) to \(n_{3}\) do
            \(\boldsymbol{i} \leftarrow\) multi_index \(\left(i_{1}, i_{2}, i_{3}\right)\)
            \(y_{i} \leftarrow 0\)
            \(a_{d} \leftarrow 1\)
            for \(k_{1} \leftarrow A_{1}\).indptr \(\left[i_{1}\right]\) to \(A_{1}\).indptr \(\left[i_{1}+1\right]-1\) do
                    \(j_{1} \leftarrow A_{1}\). indices \(\left[k_{1}\right]\)
                \(a_{1} \leftarrow A_{1}\).data[ \(\left.k_{1}\right]\)
                for \(k_{2} \leftarrow A_{2}\).indptr \(\left[i_{2}\right]\) to \(A_{2}\).indptr \(\left[i_{2}+1\right]-1\) do
                    \(j_{2} \leftarrow A_{2}\). indices[ \(k_{2}\) ]
                    \(a_{2} \leftarrow A_{2}\).data [ \(k_{2}\) ]
                    for \(k_{3} \leftarrow A_{3}\).indptr \(\left[i_{3}\right]\) to \(A_{3}\).indptr \(\left[i_{3}+1\right]-1\) do
                    \(j_{3} \leftarrow A_{3}\).indices \(\left[k_{3}\right]\)
                            \(a_{3} \leftarrow A_{3}\).data \(\left[k_{3}\right]\)
                    \(\boldsymbol{j} \leftarrow\) multi_index \(\left(j_{1}, j_{2}, j_{3}\right)\)
                    if \(\boldsymbol{i}<\boldsymbol{j}\) then
                        \(y_{i} \leftarrow y_{i}+a_{1} a_{2} a_{3} x[\boldsymbol{j}]\)
                    else
                        \(a_{d} \leftarrow a_{1} a_{2} a_{3}\)
                end
                    end
                    end
            end
            \(z_{i} \leftarrow 0\)
            \(b_{d} \leftarrow 1\)
            for \(k_{1} \leftarrow B_{1}\).indptr \(\left[i_{1}\right]\) to \(B_{1}\).indptr \(\left[i_{1}+1\right]-1\) do
            \(j_{1} \leftarrow B_{1}\). indices[ \(k_{1}\) ]
            \(a_{1} \leftarrow B_{1} \cdot \operatorname{data}\left[k_{1}\right]\)
            for \(k_{2} \leftarrow B_{2}\).indptr \(\left[i_{2}\right]\) to \(B_{2}\).indptr \(\left[i_{2}+1\right]-1\) do
                    \(j_{2} \leftarrow B_{2}\).indices \(\left[k_{2}\right]\)
                    \(a_{2} \leftarrow B_{2}\). data[k \(\left.k_{2}\right]\)
                    for \(k_{3} \leftarrow B_{3}\).indptr \(\left[i_{3}\right]\) to \(B_{3}\).indptr \(\left[i_{3}+1\right]-1\) do
                    \(j_{3} \leftarrow B_{3}\).indices \(\left[k_{3}\right]\)
                    \(a_{3} \leftarrow B_{3}\).data \(\left[k_{3}\right]\)
                    \(\underset{\text { if } \boldsymbol{i}<\boldsymbol{j} \text { then }}{\boldsymbol{j}} \leftarrow\) multindex \(\left(j_{1}, j_{2}, j_{3}\right)\)
                    if \(\boldsymbol{i}<\boldsymbol{j}\) then
                        \(z_{\boldsymbol{i}} \leftarrow z_{\boldsymbol{i}}+a_{1} a_{2} a_{3} \boldsymbol{x}[\boldsymbol{j}]\)
                    else
                        \(b_{d} \leftarrow a_{1} a_{2} a_{3}\)
                    end
                    end
                    end
            end
            \(w_{i} \leftarrow 0\)
            \(c_{d} \leftarrow 1\)
            for \(k_{1} \leftarrow C_{1}\).indptr \(\left[i_{1}\right]\) to \(C_{1}\).indptr \(\left[i_{1}+1\right]-1\) do
            \(j_{1} \leftarrow C_{1}\).indices[ \(k_{1}\) ]
            \(a_{1} \leftarrow C_{1}\).data \(\left[k_{1}\right]\)
            for \(k_{2} \leftarrow C_{2}\).indptr \(\left[i_{2}\right]\) to \(C_{2}\).indptr \(\left[i_{2}+1\right]-1\) do
                \(j_{2} \leftarrow C_{2}\).indices[ \(k_{2}\) ]
                    \(a_{2} \leftarrow C_{2} \cdot \operatorname{data}\left[k_{2}\right]\)
for \(k_{3} \leftarrow C_{3}\).indptr \(\left[i_{3}\right]\) to \(C_{3} \cdot \operatorname{indptr}\left[i_{3}+1\right]-1\) do
                    \(j_{3} \leftarrow C_{3}\).indices[ \(k_{3}\) ]
                    \(a_{3} \leftarrow C_{3}\).data \(\left[k_{3}\right]\)
                    \(\boldsymbol{j} \leftarrow\) multi_index \(\left(j_{1}, j_{2}, j_{3}\right)\)
                    if \(\boldsymbol{i}<\boldsymbol{j}\) then
                        \(w_{\boldsymbol{i}} \leftarrow w_{\boldsymbol{i}}+a_{1} a_{2} a_{3} \boldsymbol{x}[\boldsymbol{j}]\)
                    else
                    \(c_{d} \leftarrow a_{1} a_{2} a_{3}\)
                    end
                    end
                    end
            end
            \(\boldsymbol{x}[\boldsymbol{i}] \leftarrow \frac{1}{\alpha a_{d}+\beta b_{d}+\gamma c_{d}}\left(\boldsymbol{b}[\boldsymbol{i}]-\alpha y_{\boldsymbol{i}}-\beta z_{\boldsymbol{i}}-\gamma w_{\boldsymbol{i}}\right)\)
        end
    end
    end
```

- We write \boldsymbol{P} and \boldsymbol{G} for matrices related to the transform operators $\left.\Pi_{h, 0}^{\text {curl }}\right|_{\left(V_{h, 0}(\mathbf{g r a d})\right)^{3}}$ and $\left.\operatorname{grad}\right|_{V_{h, 0}(\mathbf{g r a d})}$, respectively.
- Let \boldsymbol{L} be the matrix related to the mapping

$$
\left(\phi_{h}, \widetilde{\phi_{h}}\right) \in V_{h, 0}(\operatorname{grad}) \times V_{h, 0}(\operatorname{grad}) \longmapsto\left(\operatorname{grad} \phi_{h}, \operatorname{grad} \widetilde{\phi_{h}}\right) .
$$

- $\quad S$ stands for the matrix related to the smoother.

With these notations, ASP preconditioner for problem (2) is given by

$$
\begin{equation*}
\boldsymbol{B}=\boldsymbol{S}+\boldsymbol{K}, \quad \boldsymbol{K}:=\boldsymbol{P}(\boldsymbol{H}+\tau \boldsymbol{M})^{-1} \boldsymbol{P}^{T}+\tau^{-1} \boldsymbol{G} \boldsymbol{L}^{-1} \boldsymbol{G}^{T} \tag{4}
\end{equation*}
$$

The smoother \boldsymbol{S} can be chosen by a simple relaxation scheme such as the Jacobi and symmetric Gauss-Seidel (GS) method. In this case, it has been proved in [2] that the spectral condition number $\kappa(\boldsymbol{B} \boldsymbol{A})$ is bounded, with respect to discretization parameter h. However, the numerical tests developed in the aforementioned paper show that the overall performance obtained with Gauss-Seidel smoother is better than that obtained with Jacobi. That's why in the present paper we focus on the symmetric Gauss-Seidel method.

$5 \boldsymbol{h p}$-Robust preconditioning algorithm

In this section, we introduce the ASP-GS-GLT algorithm, which is based on the ASP method and addresses the problem related to the B-Spline degree. Indeed, the ASP approach can be extended to construct a p-stable preconditioner by incorporating an extra smoother that controls the p-dependency of the preconditioner. To derive the smoother, we use the theory of Generalized Locally Toeplitz (GLT) sequences (see [5]).

The ASP-GS-GLT algorithm is formulated using the decomposition (4) as follows:

```
Algorithm 5: ASP-GS-GLT preconditioning for \(\boldsymbol{V}_{h, 0}(\mathbf{c u r l})\)
    Input : A: The matrix given in (3), \(\boldsymbol{b}\) : A given vector, \(\boldsymbol{x}\) : A starting point, \(v_{1}\) : The number of GS iterations,
        \(v_{2}\) : The number of GLT iterations, \(v_{A S P}\) : The number of ASP iterations
    Output \(\boldsymbol{x}\) : The approximate solution of \(\boldsymbol{A x}=\boldsymbol{b}\)
    \(\dot{k} \leftarrow 0\)
    while \(k \leq v_{A S P}\) and not convergence do
        \(\boldsymbol{x} \leftarrow \operatorname{smoother}_{1}\left(\boldsymbol{A}, \boldsymbol{b}, \boldsymbol{x}, v_{1}\right) \quad / /\) Apply Symmetric GS smoother
        \(\boldsymbol{x} \leftarrow\) smoother \(_{2}\left(\boldsymbol{A}, \boldsymbol{b}, \boldsymbol{x}, v_{2}\right) \quad / /\) Apply GLT smoother
        \(\boldsymbol{d} \leftarrow \boldsymbol{b}-\boldsymbol{A x}\)
        \(\boldsymbol{x}_{c} \leftarrow \boldsymbol{K} \boldsymbol{d}\)
        \(k \leftarrow k+1\)
    end
```

Algorithm 5 is built upon three building blocks: a symmetric Gauss-Seidel smoothing, a GLT-based smoother, and an ASP correction. To implement the Gauss-Seidel smoothing, we employ the block fast Gauss-Seidel method described in Section 3.

Our GLT-smoothing strategy is adapted from the work of [5]. Additionally, the ASP correction utilizes solvers for Poisson problems to compute solutions for systems with matrices $\boldsymbol{H}+\boldsymbol{\tau} \boldsymbol{M}$ and \boldsymbol{L}. For this purpose, we rely on the fast diagonalization method introduced in [8].

6 Numerical results

In this section, we present some numerical experiments to test the strategy proposed in this paper in view of further applications. In all these tests, we consider the model problem (1) in the computational domain $\Omega=(0,1)^{3}$ subdivided into $2^{k} \times 2^{k} \times 2^{k}$ sub-domains $(k \geq 1)$. As a right-hand side function we chose $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})=(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$. The IgA discrete system (2) is solved by the Conjugate Gradient (CG) method in the case of the un-preconditioned and preconditioned systems. The stopping criteria is $\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\| /\|\boldsymbol{b}\| \leq 10^{-6}$ and the initial guess is chosen to be the zero vector.

Table 1 Un-preconditioned (NP) and ASP preconditioner (ASP): CG iterations counts for different values of $h=1 / 2^{k}$ and p. '-' means that CG reaches the maximum number of iterations (set to 3000) without convergence. Parameter values $\tau=10^{-4}, v_{1}=1, v_{2}=p+1$ and $v_{\text {asp }}=3$.

$h=1 / 8$			$h=1 / 16 \quad h=1 / 32$				$h=1 / 64$		p	$h=1 / 8$		$h=1 / 16$		$h=1 / 32$		$h=1 / 64$	
p	NP	ASP	NP	ASP	NP	ASP	NP	ASP		NP	ASP		ASP		ASP		ASP
1	151	3	328	4	511	6	879	6	6	-	4	-	4	-	4	-	4
2	520	2	975	4	1313	5	1962	6	7	-	4	-	4	-	4	-	4
3	-	2	-	3	-	4	-	6	8	-	4	-	4	-	4	-	4
4	-	3	-	3	-	4	-	5	9	-	5	-	4	-	4	-	5
5	-	3	-	3	-	4	-	5	10	-	5	-	5	-	5	-	5

Table 2 ASP preconditioner: CG iterations counts for different values of τ and p. '-' means that CG reaches the maximum number of iterations (set to 3000) without convergence. Parameter values $h=1 / 64, v_{1}=1, v_{2}=p+1$ and $v_{\text {asp }}=3$.

τ	$p=1$		$p=3$		$p=8$		τ	$p=1$		$p=3$		$p=8$	
	NP	ASP	NP	ASP	NP	ASP		NP	ASP	NP	ASP	NP	ASP
10^{-4}	879	6	-	6	-	4	10	244	6	1180	5	-	4
10^{-3}	755	6	-	6	-	4	10^{2}	131	6	361	4	2227	3
10^{-2}	610	7	-	6	-	4	10^{3}	41	4	101	2	687	4
10^{-1}	486	7	-	5		4	10^{4}	10	1	39	2	320	3
1	295	7	2278	5	-	4	10^{5}	9	1	39	1	318	2

In the first test, we keep following the number of the CG iterations for convergence for different values of k and p. The results are shown in Table 1. As we can observe from the table, this example indicates that our ASP preconditioner is robust in the sense that the number of iterations necessary to achieve the convergence is sufficiently small and is hardly dependent on the mesh parameter h and the B-spline degree p.

In the second test, we study the dependence of the ASP preconditioner on the parameter τ. For this objective, in Table 2 we provide GC iteration counts for different values of τ and p. The table shows a strong dependence of the un-preconditioned problem on τ, In contrast, however, the number of CG iterations, in the case of ASP preconditioner, is independent of τ. This shows that the ASP method is perfectly able to handle small values of τ.

Acknowledgements This action benefited from the support of the Chair "Multiphysics and HPC" led by Mohammed VI Polytechnic University, sponsored by OCP.

References

1. Da Veiga, L. B., Buffa, A., Sangalli, G., and Vázquez, R. Mathematical analysis of variational isogeometric methods. Acta Numerica 23, 157-287 (2014).
2. El Akri, A., Jbilou, K., and Ratnani, A. Auxiliary splines space preconditioning for b-spline finite elements: the case of $\mathbf{H}(\mathbf{c u r l}, \omega)$ and $\mathbf{H}(\operatorname{div}, \omega)$ elliptic probelems. arXiv preprint arXiv:2303.08375 (2023).
3. Hiptmair, R. and Xu, J. Nodal auxiliary space preconditioning in $\mathbf{H}(\mathbf{c u r l}, \omega)$ and $\mathbf{H}(\operatorname{div}, \omega)$ spaces. SIAM Journal on Numerical Analysis 45(6), 2483-2509 (2007).
4. Hughes, T., Cottrell, J., and Bazilevs, Y. Isogeometric analysis: Cad, finite elements, nurbs, exact geometry and mesh refinement. Computer methods in applied mechanics and engineering 194(39-41), 4135-4195 (2005).
5. Mazza, M., Manni, C., Ratnani, A., Serra-Capizzano, S., and Speleers, H. Isogeometric analysis for 2 d and 3 d curl-div problems: Spectral symbols and fast iterative solvers. Computer Methods in Applied Mechanics and Engineering 344, 970-997 (2019).
6. Piegl, L. and Tiller, W. The NURBS book. Springer Science \& Business Media (1996).
7. Ratnani, A. and Sonnendrücker, E. An arbitrary high-order spline finite element solver for the time domain maxwell equations. Journal of Scientific Computing 51(1), 87-106 (2012).
8. Sangalli, G. and Tani, M. Isogeometric preconditioners based on fast solvers for the sylvester equation. SIAM Journal on Scientific Computing 38(6), A3644-A3671 (2016).
9. Xu, J. The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids. Computing 56(3), 215-235 (1996).

[^0]: Abdeladim El Akri, Nouredine Ouhaddou, Ahmed Ratnani
 Lab. MSDA, Mohammed VI Polytechnic University, Green City, Morocco e-mail:
 abdeladim.elakri@um6p.ma, nouredine.ouhaddou@um6p.ma, ahmed.ratnani@um6p.ma
 Khalide Jbilou
 Lab. MSDA, Mohammed VI Polytechnic University, Green City, Morocco and Lab. LMPA, University of Littoral Côte d’Opale, Calais cedex, France e-mail: khalide.jbilou@univ-littoral.fr

