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1 Introduction

In many physical or engineering practical applications, we see a heterogeneity of
coefficients; e.g., in ground flow problems in heterogeneous media. We also see
that many models of those phenomena are differential ones, i.e. the physical
phenomenon is modeled by partial differential equations. Then, if those PDEs
models are discretized by a finite element method, one gets the discrete system
which is quite often very hard to solve by standard iterative methods without
a proper precondition; see, e.g., [21].
The Domain Decomposition Methods (DDMs) approach, in particular, Schwarz

methods; see, e.g., [24], allow us to construct a large class of parallel and effective
preconditioners. A very important role in such construction is taken by a carefully
defined coarse space. The classical DDMs constructed in the 1990s and 2000s
are well suited only for problems with coefficients that are constant or slightly
varying in subdomains. However, those ’classical’ methods are not effectivewhen the
coefficients may be highly varying and discontinuous almost everywhere. Since the
classical coarse spaces of Schwarzmethods do not give us efficient and robust solvers
for multiscale problems with heterogeneous coefficients we will propose a way of
enrichment of the coarse spaces which made DDMs effective for heterogeneous
problems. That gives us new adaptive coarse spaces which are independent or robust
for the jumps of the coefficients, i.e., the convergence of the constructed DDM is
independent of the distribution and the magnitude of the coefficients of the original
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problem. We refer to [9], [23] and the references therein for similar earlier works on
domain decomposition methods used adaptively in the construction of coarse spaces.
In recent years there appeared many new research results on this topic; see,

e.g., [3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20] and many others.
In our paper, we consider a minimal overlap Schwarz method for the

nonconforming Crouzeix-Raviart (CR) element discretization, also called the
nonconforming 𝑃1 element discretization; see, e.g., [1]. We extend the results
from [10] where the conforming 𝑃1 element is considered to the case of the CR
non-conforming discretization applied to highly heterogeneous coefficients.
The remainder of the paper is organized as follows: in Section 2 we introduce our

differential problem and its CR discretization. In Section 3 a classical overlapping
Additive Schwarz method is presented and the theoretical bound for the condition
number of the resulting system is given.

2 Discrete problem

Our model differential problem is the following elliptic second order boundary value
problem: Find 𝑢∗ ∈ 𝐻10 (Ω) such that∫

Ω

𝛼(𝑥)∇𝑢∗∇𝑣 𝑑𝑥 =

∫
Ω

𝑓 𝑣 𝑑𝑥, ∀𝑣 ∈ 𝐻10 (Ω),

where Ω is a polygon in R2, 0 < 𝛼0 ≤ 𝛼(𝑥) ≤ 𝛼1 is a coefficient, 𝛼0, 𝛼1 are positive
constant, and 𝑓 ∈ 𝐿2 (Ω).
We need a quasi-uniform triangulationTℎ = {𝐾} ofΩ consisting of open triangles

such that Ω =
⋃
𝐾 ∈Tℎ 𝐾 . Let further, ℎ𝐾 be the diameter of 𝐾 ∈ Tℎ , and we define

ℎ = max𝐾 ∈Tℎ ℎ𝐾 as the triangulation diameter.
We also introduce a coarse non-overlapping partitioning of Ω (see, Fig. 1) into

open, connected Lipschitz polygonal subdomains (substructures) Ω𝑖 such that

Ω =

𝑁⋃
𝑖=1

Ω𝑖 ,

which are aligned to the fine triangulation, i.e. we have that any fine triangle 𝐾 ∈
Tℎ is contained in a coarse substructure Ω𝑘 . Thus each substructure Ω 𝑗 has its
local triangulation Tℎ (Ω 𝑗 ) of triangles from Tℎ which are contained in Ω 𝑗 . For
the simplicity of presentation, we further assume that these substructures form a
coarse triangulation of the domain which is shape-regular in the sense of [2] and let
𝐻 = max 𝑗 diam(Ω 𝑗 ) be its coarse parameter. Let Γ𝑖 𝑗 denote the open edge common
to subdomains Ω𝑖 and Ω 𝑗 not in 𝜕Ω and let Γ be the union of all 𝜕Ω𝑘 \ 𝜕Ω.
However, it is good to note that the theory of this paper holds also for the case

when the coarse partition is obtained by a mesh partitioner. Then naturally an edge
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Fig. 1 An example of a coarse partition of Ω, where Γ𝑖 𝑗 is an edge on the interface.

(interface) Γ𝑖 𝑗 is not a straight segment but a 1D curve made of respective edges of
some fine triangles.
Let Ω𝐶𝑅

ℎ
, 𝜕Ω𝐶𝑅

ℎ
, Ω𝐶𝑅

𝑖,ℎ
, 𝜕Ω𝐶𝑅

𝑖,ℎ
, and Γ𝐶𝑅

𝑖 𝑗,ℎ
be defined as the sets of midpoints of

fine edges of the elements of Tℎ , contained in Ω, 𝜕Ω, Ω𝑖 , 𝜕Ω𝑖 , and Γ𝑖 𝑗 , respectively.
We call those sets the CR nodal points of the respective sets.
The discrete solution space is the Crouzeix-Raviart finite element space, (see,

e.g., [1]), or nonconforming 𝑃1 element space defined as:

𝑉ℎ (Ω) = 𝑉ℎ = {𝑣 ∈ 𝐿2 (Ω) : 𝑣 |𝐾 ∈ 𝑃1 (𝐾), 𝑣 continuous at Ω𝐶𝑅ℎ ,

𝑣(𝑚) = 0 𝑚 ∈ 𝜕Ω𝐶𝑅ℎ },

where 𝑃1 (𝐾) is the space of linear polynomials defined on 𝐾 .

Fig. 2 The CR nodal points, i.e., the degrees of freedom of the Crouzeix-Raviart finite element
space on a fine triangle.

The degrees of freedom of a CR finite element function 𝑢 on a triangle 𝐾 with
the three edges 𝑒𝑘 𝑘 = 1, 2, 3, are: {𝑢(𝑚𝑒𝑘 )}𝑘=1,2,3, where 𝑚𝑒𝑘 is the midpoint of
the fine edge 𝑒𝑘 ; see, Fig. 2. Note that a function in𝑉ℎ is multivalued on boundaries
of all fine triangles of Tℎ except the midpoints of the edges (CR nodal points). Thus
𝑉ℎ ⊄ 𝐻10 (Ω) is a space of discontinuous functions. 𝑉ℎ is only a subspace of 𝐿

2 (Ω),
and in this lies the non-conformity of this discretization.
We introduce the following Crouzeix-Raviart discrete problems: find 𝑢∗

ℎ
∈ 𝑉ℎ

such that :
𝑎ℎ (𝑢∗ℎ .𝑣) = 𝑓 (𝑣) ∀𝑣 ∈ 𝑉ℎ , (1)

where the broken bilinear form 𝑎ℎ : (𝑉ℎ ∪ 𝐻10 (Ω)) × (𝑉ℎ ∪ 𝐻10 (Ω)) → R is defined
as 𝑎ℎ (𝑢, 𝑣) =

∑
𝐾 ∈Tℎ

∫
𝐾
𝛼 |𝐾 (𝑥)∇𝑢∇𝑣 𝑑𝑥. It is easy to see that the broken form is 𝑉ℎ

elliptic; see, e.g., [1], and we see that our discrete problem has a unique solution.
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We see that ∇𝑢ℎ for 𝑢ℎ ∈ 𝑉ℎ is constant over any fine triangle 𝐾 ∈ Tℎ , thus∫
𝐾

𝛼∇𝑢∇𝑣 𝑑𝑥 = (∇𝑢) |𝐾 (∇𝑣) |𝐾
∫
𝐾

𝛼(𝑥) 𝑑𝑥.

Hence, we can further assume that 𝛼 is piecewise constant function over the elements
of Tℎ .

3 Additive Schwarz method (ASM)

In this section, we present our Schwarz method for solving (1) which is based on
the abstract Additive Schwarz Method framework; see, e.g., [24]. Our method is of
minimal overlap, however, the same estimates hold if we introduce a more generous
overlap. In the abstract scheme of ASM one has to introduce a decomposition of
the discrete space into subspaces, usually, a coarse space and local subspaces. We
also need local bilinear forms defined on those subspaces respectively. In our case
for simplicity of presentation, all bilinear forms are taken as equal to the original
broken-form 𝑎ℎ (𝑢, 𝑣).
The local spaces are defined as:

𝑉𝑖 = {𝑣 ∈ 𝑉ℎ : 𝑣(𝑚) = 0 𝑚 ∉ Ω
𝐶𝑅

𝑖,ℎ },

i.e.𝑉𝑖 is formed by all discrete CR FEM functions which are zero at all CR nodes not
in Ω𝑖 . Thus, it is a minimal overlap subspace since a function 𝑢 ∈ 𝑉𝑖 can be nonzero
on Ω𝑖 and the fine triangles which have an edge on the boundary of Ω𝑖 . We see that
𝑉ℎ =

∑𝑁
𝑖=1𝑉𝑖 .

In our case, the coarse space will be a harmonically enriched CR version of
the multiscale coarse space introduced in [11] for standard conforming linear finite
element space. Let Tℎ (Ω𝑘 ) be a local triangulation ofΩ𝑘 inherited from Tℎ . We now

Ω5
Ω6

Ω2

Ω4

Ω3Ω1

Ω9Ω7 Ω8

Γ
56

δ

Fig. 3 An edge patch.
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introduce a patch around a coarse interface Γ𝑘𝑙 the common edge of Ω𝑘 ,Ω𝑙 . We
define Γ𝛿𝑘𝑙 as the closure of the boundary patch around Γ𝑘𝑙 the union of all closed
fine triangles, such that each fine triangle of the patch has a vertex on Γ𝑘𝑙 . The open
patch Γ𝛿

𝑘𝑙
is then defined as the interior of Γ𝛿𝑘𝑙; see, Fig. 3.

For simplicity of presentation, we assume that if two edges Γ𝑘𝑙 , Γ𝑘 𝑗 which have
a common vertex (crosspoint - a common vertex of Ω𝑘 ,Ω 𝑗 ,Ω𝑙) then the
patches Γ𝛿

𝑘𝑙
, Γ𝛿
𝑘 𝑗
are disjoint. Each patch Γ𝛿

𝑘𝑙
can be split into two subpatches – the

respective subsets contained in one of two subdomains:

Γ
𝛿,𝑖

𝑘𝑙
= Γ𝛿𝑘𝑙 ∩Ω𝑖 , 𝑖 = 𝑘, 𝑙.

Naturally,we have thatΓ𝛿
𝑘𝑙

= Γ
𝛿,𝑙

𝑘𝑙
∪ Γ

𝛿,𝑘

𝑘𝑙
.Wenext introduce the interior boundary

layer of Ω𝑘 :
Ω
𝑖𝑛, 𝛿

𝑘
=

⋃
Γ𝑘𝑙⊂𝜕Ω𝑘∩Γ

Γ
𝛿,𝑘

𝑘𝑙
.

We also define the local subspaces: let 𝑉ℎ,𝑘 be formed by the restrictions to Ω𝑘 of
the functions from 𝑉ℎ , i.e.

𝑉ℎ,𝑘 = {𝑣 ∈ 𝐿2 (Ω𝑘 ) : 𝑣 |𝐾 ∈ 𝑃1 (𝐾), 𝐾 ∈ Tℎ (Ω𝑘 ),
𝑣 − continuous at CR nodes, 𝑣 |𝜕Ω𝐶𝑅

ℎ
= 0}

Let 𝑉0
ℎ,𝑘

⊂ 𝑉ℎ,𝑘 be space of functions that are zero at 𝜕Ω𝐶𝑅𝑘,ℎ and at the CR nodes
in the interior Ω𝑖𝑛, 𝛿

𝑘
. Any 𝑢 ∈ 𝑉0

ℎ,𝑘
can be extended by zero to the whole Ω and we

will further identify 𝑉0
ℎ,𝑘
with the subspace of 𝑉ℎ formed by such zero extensions of

functions in this local space.
Let P𝑘 : 𝑉ℎ → 𝑉0

ℎ,𝑘
be the orthogonal projection:

𝑎𝑘,ℎ (P𝑘𝑢, 𝑣) = 𝑎ℎ (P𝑘𝑢, 𝑣) = 𝑎ℎ (𝑢, 𝑣) ∀𝑣 ∈ 𝑉0ℎ,𝑘 , (2)

where 𝑎𝑘,ℎ (𝑢, 𝑣) is the local bilinear form defined as the restriction of the broken
form to Ω𝑘 . Let P𝑢 =

∑𝑁
𝑘=1 P𝑘𝑢, (P𝑘𝑢 extended by zero to Ω). Then the discrete

harmonic operator is set asH = 𝐼−P and we say that 𝑢 ∈ 𝑉ℎ is discrete harmonic if:

𝑢 = H𝑢. (3)

Next, we need to set a local edge related space 𝑉𝑘𝑙 ⊂ 𝑉ℎ:

𝑉𝑘𝑙 = {𝑣 ∈ 𝑉ℎ : 𝑣(𝑚) = 0 𝑚 ∉ Γ
𝛿,𝐶𝑅

𝑘𝑙,ℎ }.

The support of any function 𝑢 ∈ 𝑉𝑘𝑙 is not contained in the patch Γ𝛿𝑘𝑙 .
We also need a subspace of 𝑉 𝑣

𝑘𝑙
defined as:

𝑉 𝑣𝑘𝑙 = {𝑣 ∈ 𝑉𝑘𝑙 : 𝑣(𝑚) = 0 𝑚 ∈ V(Γ𝑘𝑙)},
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whereV(Γ𝑘𝑙) ⊂ Γ𝐶𝑅
𝑘𝑙,ℎ
comprise the two CR nodes of the edge which are next to the

ends of this edge.
Let 𝑉𝑚𝑠𝑐0 ⊂ 𝑉ℎ be the multiscale part of the coarse space (analogous to the one

in [11]), i.e., the space of discrete harmonic functions; see, (3), which satisfy

𝑎𝑘𝑙,ℎ (𝑢, 𝑣) = 0 ∀𝑣 ∈ 𝑉 𝑣𝑘𝑙 , (4)

where 𝑎𝑘𝑙,ℎ (𝑢, 𝑣) =
∑
𝐾 ⊂Γ𝛿

𝑘𝑙

∫
𝐾
𝛼 |𝐾∇𝑢∇𝑣 𝑑𝑥 for any edge Γ𝑘𝑙 ⊂ Γ.

Let us introduce the local generalized eigenvalue problem, which is to find all
eigenpairs: (𝜆𝑘𝑙

𝑖
, 𝜓𝑘𝑙
𝑖
) ∈ R+ ×𝑉 𝑣𝑘𝑙 such that

𝑎𝑘𝑙,ℎ (𝜓𝑘𝑙𝑖 , 𝑣) = 𝜆𝑘𝑙𝑖 𝑏𝑘𝑙 (𝜓𝑘𝑙𝑖 , 𝑣), ∀𝑣 ∈ 𝑉 𝑣𝑘𝑙 , (5)

where 𝑏𝑘𝑙 (𝑢, 𝑣) = ℎ−2
∫
Γ𝛿
𝑘𝑙

𝛼𝑢𝑣 𝑑𝑥.

Any eigenfunction 𝜓𝑘𝑙
𝑗
can be extended further onto other patches as zero and

then, further to the interiors of all subdomains as a discrete harmonic function. Then,
we will further denote it by Ψ𝑘𝑙

𝑗
. We can number the eigenvalues in increasing order:

0 < 𝜆𝑘𝑙1 ≤ 𝜆𝑘𝑙2 ≤ . . . ≤ 𝜆𝑘𝑙
𝑀𝑘𝑙
for 𝑀𝑘𝑙 = dim(𝑉 𝑣𝑘𝑙). Next, we introduce the local

spectral component of the coarse space for all Ω 𝑗 :

𝑉
𝑒𝑖𝑔

𝑘𝑙
= Span(Ψ𝑘𝑙𝑖 )𝑛𝑘𝑙

𝑖=1 , (6)

where 0 ≤ 𝑛𝑘𝑙 ≤ 𝑀𝑘𝑙 can be pre-selected by the user. It can be decided using the
experience or by some rule; e.g., one can include all eigenfunctions for which related
eigenvalues are below a certain threshold. The coarse space 𝑉0 is introduced as:

𝑉0 = 𝑉
𝑚𝑠𝑐
0 +

𝑁∑︁
Γ𝑘𝑙⊂Γ

𝑉
𝑒𝑖𝑔

𝑘𝑙
.

Next, we define the projection operators 𝑇𝑖 : 𝑉ℎ → 𝑉𝑖 for 𝑖 = 0, . . . , 𝑁 as

𝑎ℎ (𝑇𝑖𝑢, 𝑣) = 𝑎ℎ (𝑢, 𝑣), ∀𝑣 ∈ 𝑉𝑖;

see, e.g., [22]. Note that to compute the 𝑇𝑖𝑢, 𝑖 = 1, . . . , 𝑁 we have to solve 𝑁
independent local problems.
Let 𝑇 :=

∑𝑁
𝑖=0 𝑇𝑖 , be the additive Schwarz operator; see, e.g., [22]. We further

replace (1) by the following equivalent problem: Find 𝑢∗
ℎ
∈ 𝑉ℎ such that

𝑇𝑢∗ℎ = 𝑔,

where 𝑔 =
∑𝑁
𝑖=0 𝑔𝑖 and 𝑔𝑖 = 𝑇𝑖𝑢

∗
ℎ
. The functions 𝑔𝑖 may be computed without

knowing the solution 𝑢∗
ℎ
of (1); see, e.g., [22].

The following theoretical estimate of the condition number can be obtained:

Theorem 1 For all 𝑢 ∈ 𝑉ℎ , the following holds,
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𝑐

(
1 + max

Γ𝑘𝑙⊂Γ

(
𝜆𝑘𝑙𝑛𝑘𝑙+1

)−1)−1
𝑎ℎ (𝑢, 𝑢) ≤ 𝑎ℎ (𝑇𝑢, 𝑢) ≤ 𝐶 𝑎ℎ (𝑢, 𝑢),

where 𝐶 and 𝑐 are positive constants independent of the coefficient 𝛼, the mesh
parameter ℎ and the subdomain size 𝐻, and 𝜆𝑘𝑙

𝑛𝑘𝑙+1 is defined in (5) for both types of
the coarse space.

Below we give a very brief sketch of the proof, which is based on the standard
abstract ASM Method framework; see, [24]. We have to prove three key
assumptions, the most technical is the stable splitting ass., namely, we show that for
any 𝑢 ∈ 𝑉ℎ there exists: 𝑢 𝑗 ∈ 𝑉 𝑗 𝑗 = 0, . . . , 𝑁 such that∑𝑁
𝑗=0 𝑎ℎ (𝑢 𝑗 , 𝑢 𝑗 ) ≤ 𝑐−1

(
1 +maxΓ𝑘𝑙

(
𝜆𝑘𝑙
𝑛𝑘𝑙+1

)−1)
𝑎(𝑢, 𝑢). The two others

assumptions are easy to verify.

References

1. Brenner, S. C. and Scott, L. R. The mathematical theory of finite element methods, Texts in
Applied Mathematics, vol. 15. Springer, New York, third ed. (2008).

2. Brenner, S. C. and Sung, L.-Y. Balancing domain decomposition for nonconforming plate
elements. Numer. Math. 83(1), 25–52 (1999).

3. Calvo, J. G. and Widlund, O. B. An adaptive choice of primal constraints for BDDC domain
decomposition algorithms. Electron. Trans. Numer. Anal. 45, 524–544 (2016).

4. Chartier, T., Falgout, R. D., Henson, V. E., Jones, J., Manteuffel, T., McCormick, S., Ruge, J.,
and Vassilevski, P. S. Spectral AMGe (𝜌AMGe). SIAM J. Sci. Comput. 25(1), 1–26 (2003).

5. Efendiev, Y., Galvis, J., Lazarov, R., Margenov, S., and Ren, J. Robust two-level domain
decomposition preconditioners for high-contrast anisotropic flows in multiscale media.
Comput. Methods Appl. Math. 12(4), 415–436 (2012).

6. Efendiev, Y., Galvis, J., Lazarov, R., and Willems, J. Robust domain decomposition
preconditioners for abstract symmetric positive definite bilinear forms. ESAIM Math. Mod.
Num. Anal. 46, 1175–1199 (2012).

7. Eikeland, E., Marcinkowski, L., and Rahman, T. Overlapping Schwarz methods with adaptive
coarse spaces for multiscale problems in 3D. Numer. Math. 142(1), 103–128 (2019).

8. Eikeland, E., Marcinkowski, L., and Rahman, T. An adaptively enriched coarse space for
Schwarz preconditioners for 𝑃1 discontinuous Galerkin multiscale finite element problems.
IMA J. Numer. Anal. 41(4), 2873–2895 (2021).

9. Galvis, J. and Efendiev, Y. Domain decomposition preconditioners for multiscale flows in
high-contrast media. Multiscale Model. Simul. 8(4), 1461–1483 (2010).

10. Gander, M. J., Loneland, A., and Rahman, T. Analysis of a new harmonically enriched
multiscale coarse space for domain decompostion methods. Eprint arXiv:1512.05285 (2015).

11. Graham, I. G., Lechner, P. O., and Scheichl, R. Domain decomposition for multiscale PDEs.
Numer. Math. 106(4), 589–626 (2007).

12. Heinlein, A., Klawonn, A., Knepper, J., and Rheinbach, O. Multiscale coarse spaces for
overlapping Schwarz methods based on the ACMS space in 2D. Electron. Trans. Numer. Anal.
48, 156–182 (2018).

13. Heinlein, A., Klawonn, A., Knepper, J., and Rheinbach, O. Adaptive GDSW coarse spaces for
overlapping Schwarzmethods in three dimensions. SIAM J. Sci. Comput. 41(5), A3045–A3072
(2019).



502 Leszek Marcinkowski and Talal Rahman

14. Heinlein, A., Klawonn, A., Knepper, J., Rheinbach, O., and Widlund, O. B. Adaptive GDSW
coarse spaces of reduced dimension for overlapping Schwarz methods. SIAM J. Sci. Comput.
44(3), A1176–A1204 (2022).

15. Kim, H. H., Chung, E., andWang, J. BDDC and FETI-DP preconditioners with adaptive coarse
spaces for three-dimensional elliptic problems with oscillatory and high contrast coefficients.
J. Comput. Phys. 349, 191–214 (2017).

16. Klawonn, A., Radtke, P., and Rheinbach, O. FETI-DP methods with an adaptive coarse space.
SIAM J. Numer. Anal. 53(1), 297–320 (2015).

17. Klawonn, A., Radtke, P., and Rheinbach, O. A comparison of adaptive coarse spaces for
iterative substructuring in two dimensions. Electronic Transactions on Numerical Analysis 45,
75–106 (2016).

18. Mandel, J. and Sousedík, B. Adaptive selection of face coarse degrees of freedom in the
BDDC and the FETI-DP iterative substructuring methods. Comput. Methods Appl. Mech.
Engrg. 196(8), 1389–1399 (2007).

19. Nataf, F., Xiang, H., and Dolean, V. A two level domain decomposition preconditioner based
on local Dirichlet-to-Neumann maps. C. R. Math. Acad. Sci. Paris 348(21-22), 1163–1167
(2010).

20. Nataf, F., Xiang, H., Dolean, V., and Spillane, N. A coarse space construction based on local
Dirichlet-to-Neumann maps. SIAM J. Sci. Comput. 33(4), 1623–1642 (2011).

21. Saad, Y. Iterative methods for sparse linear systems. Society for Industrial and Applied
Mathematics, Philadelphia, PA, second ed. (2003).

22. Smith, B. F., Bjørstad, P. E., and Gropp, W. D. Domain Decomposition: Parallel Multilevel
Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge
(1996).

23. Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., and Scheichl, R. Abstract robust
coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps. Numer.
Math. 126, 741–770 (2014).

24. Toselli, A. andWidlund, O. Domain decomposition methods—algorithms and theory, Springer
Series in Computational Mathematics, vol. 34. Springer-Verlag, Berlin (2005).


