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1 Introduction

The FETI-method is well known for its scalability and applicability to nonlinear
structural dynamics [3, 4]. In case of models with different fast dynamics, the
classical FETI-method with common time-discretizations can become inefficient,
as the subdomain with slow dynamics has to be solved more often, than necessary.
The PH-method [8] and BGC-macro-method [1] enable subcycling of a macro-
time-discretization, but suffer from spurious oscillations and are not variational
methods. In literature, a variational framework for multiple time-discretizations has
been introduced [7]. In this work, we further extend this approach to a micro-
discretization. In section 2, the FETI-method and nonlinear BGC-macro method are
introduced. In section 3, the variational-based multirate method is derived with its
modifications and in section 4 both methods are compared in numerical experiments.

2 Nonlinear BGC-macro method for the FETI-method

2.1 Model problem and FETI-method

The dynamic behavior over time of a solid elastic body with nonlinear material can
be modeled by a nonlinear hyperbolic partial differential equation (PDE). For the
solution of such a hyperbolic PDE, consider a geometrical discretization with the
Finite Element method and the Finite Element Tearing and Interconnecting (FETI)
for the spacial non-overlapping domain decomposition into 𝑁𝑠 subdomains. Hence,
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the spacially discretized, time-continuous differential equation of motion of a sub-
domain 𝑠 and the compatibility condition for velocities are

M(𝑠) ¥q(𝑠) + f𝑖𝑛𝑡 (q(𝑠) ) + B(𝑠)𝑇 𝝀 − f (𝑠)𝑒𝑥𝑡 (𝑡) = 0,
𝑁𝑠∑︁
𝑠=1

B(𝑠) ¤q(𝑠) = 0.

Here, q(𝑠) describes the nodal displacements and its time-derivatives ¤q(𝑠) and ¥q(𝑠)

are the velocities and accelerations. M(𝑠) is the mass-matrix, f𝑖𝑛𝑡 are the nonlin-
ear internal forces and f (𝑠)𝑒𝑥𝑡 are the external forces of the subdomain. The dual
quantity or interface-force is described by 𝝀 and B(𝑠) is a signed boolean matrix
mapping the subdomain’s geometrical degrees of freedom (dof) to interface-dofs.
The unknowns q(𝑠) , its derivatives and 𝝀 are discretized in time, with a common
time-step-size Δ𝑡 and to time-nodal values q̂(𝑠)

𝑚 and �̂�𝑚 at a time-step 𝑚, as depicted
in Fig. 1a. For the time-stepping from time-step𝑚 to𝑚+1, a time-integration scheme
is applied, such as the Newmark-𝛽 scheme.
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(a) Time-discretization in nodal values at time-
steps 𝑚.
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(b) Subcycling of the time-discretization of two
subdomains.

Fig. 1 Time-discretizations for two exemplary subdomains 1 and 2 and the Lagrange-multipliers.

2.2 Multirate with nonlinear BGC-macro method

Having different time-step-sizes in the FETI-method can be achieved by the BGC-
macro method [1], later adapted for nonlinear problems and FETI [9]. The time-
discretization on the subdomain with the smaller time-step-size, also referred to
as the micro-discretization, subcycles subdomains with a larger time-step-size, the
macro-discretization, as depicted in Fig. 1b. The Lagrange-multipliers are discretized
with the macro-discretization and interpolated linearly on the micro-discretized
subdomain. Hence, the dynamic equation of motion and the compatibility condition,
which is enforced at the macro-discretization, follow as

M(𝑠) ¥̂q(𝑠)
𝑚 + f𝑖𝑛𝑡 (q̂(𝑠)

𝑚 ) + B(𝑠)𝑇 𝝀𝑚 − f (𝑠)𝑒𝑥𝑡 (𝑡𝑚) = 0
𝑁𝑠∑︁
𝑠=1

B ¤̂q𝑠
𝑛 = 0
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with the interpolated Lagrange-multiplier

𝝀𝑚 =
𝑡𝑛+1 − 𝑡𝑚

𝑡𝑛+1 − 𝑡𝑛
𝝀𝑛 +

𝑡𝑚 − 𝑡𝑛

𝑡𝑛+1 − 𝑡𝑛
𝝀𝑛+1.

3 Variational multirate method with micro discretization of the
dual field

The equation of motion (1) and the well-knownNewmark-𝛽 time-integration scheme
can also be derived from the variational principle for 𝛾 = 0.5 and 𝛽 = 0.25, as
shown by Kane e.a. [5]. We define the time-continuous kinetic energy of a sub-
domain as T = 1

2 ¤q
(𝑠)𝑇 M ¤q(𝑠) , the nonlinear potential energy V(q(𝑠) ) and the

interface-energy G = g(q(1) , . . . , q(𝑁𝑠) )𝑇 𝝀 with the gap on interface g, corre-
sponding to the Lagrange-multipliers 𝝀. In case of the FETI-method this gap is
g(q(1) , . . . , q(𝑁𝑠) ) = ∑𝑁𝑠

𝑠=1 B(𝑠)q(𝑠) , which has not been explicitly specified in liter-
ature [7]. The Lagrangian then follows as

L( ¤q(1) , q(1) , . . . , ¤q(𝑁𝑠) , q(𝑁𝑠) , 𝝀) =
𝑁𝑠∑︁
𝑠=1

(
T ( ¤q(𝑠) ) − V(q(𝑠) )

)
+ G. (1)

According to Hamilton’s principle, the mechanical system will move such that the
action integral of this Lagrangian is stationary. Hence, we first discretize the La-
grangian in time with time-shape-functions Φ(𝑠) (𝑡) and Θ(𝑡), that fulfill partition of
unity, we can approximate displacements, velocities and Lagrange-multipliers as

q(𝑠) (𝑡) ≈
𝑁

(𝑠)
𝑚∑︁

𝑚=0
Φ

(𝑠)
𝑚 (𝑡)q̂(𝑠)

𝑚 , ¤q(𝑠) (𝑡) ≈
𝑁

(𝑠)
𝑚∑︁

𝑚=0

𝑑Φ
(𝑠)
𝑚 (𝑡)
𝑑𝑡

q̂(𝑠)
𝑚 , 𝝀(𝑡) ≈

𝑁 𝑗∑︁
𝑗=0

Θ 𝑗 �̂� 𝑗 .

Throughout this paper, we assume linear time-shape-functions. This results in the
discrete Lagrangian

L𝑑 (q̂(𝑠)
0 , . . . , q̂(𝑠)

𝑁𝑚
, �̂�0, . . . , �̂�𝑁 𝑗

, 𝑡) =
𝑁𝑠∑︁
𝑠=1

(
T (q̂(𝑠) , 𝑡) − V(q̂(𝑠) , 𝑡)

)
+ G(𝑡) (2)

which is then integrated with a numerical quadrature rule, such as the generalized
midpoint-rule, to the discrete action integral

S𝑑 =

𝑁𝑘∑︁
𝑘=0

Δ𝑡𝑘L𝑑 (𝑡𝑘+𝛼), (3)

where we have 𝑁𝑘 common integration-segments and L𝑑 is evaluated at a general-
ized mid-point of these segments 𝑡𝑘+𝛼. This discrete action integral has to remain
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stationary
∑𝑁𝑠

𝑠=1
∑𝑁

(𝑠)
𝑚

𝑚=0
𝜕S𝑑

𝜕q̂(𝑠)
𝑚

𝛿q̂(𝑠)
𝑚 +∑𝑁 𝑗

𝑗=0
𝜕S𝑑

𝜕�̂� 𝑗
𝛿�̂� 𝑗 = 0 for arbitrary variations of time-

nodal quantities, while the endpoints 𝛿q̂(𝑠)
0 and 𝛿q̂(𝑠)

𝑁𝑚
remain fixed. This way, we also

obtain a local variational integration scheme, such as the non-dissipative Newmark-𝛽
method and a variational coupling condition. A variational method comes with some
beneficial properties by design, such as symplecticity, conservation of momentum
and energy-oscillations remain bounded [6]. We could now solve this problem with
a Newton-Raphson scheme and solve the Lagrange-multipliers at each Newton-
iteration with a FETI-solver. However, in general, all equations have to be solved
at once and a more memory-efficient time-stepping can only be applied on the
subdomain-level [9]. The constraint equation for Lagrange-multiplier 𝑗

𝜕S𝑑

𝜕�̂� 𝑗

=

𝑁𝑘∑︁
𝑘=0

Δ𝑡𝑘Θ 𝑗 (𝑡𝑘+𝛼)
𝑁𝑠∑︁
𝑠=1

B(𝑠)
𝑁

(𝑠)
𝑚∑︁

𝑚=0
Φ

(𝑠)
𝑚 (𝑡𝑘+𝛼)q̂(𝑠)

𝑚 = 0,

is a constraint for several time-nodal displacements q̂(𝑠)
𝑚 . Hence, In the following

sections 3.1 and 3.2, we introduce special cases and some modifications to this
variational method, to still enable time-stepping.

3.1 Downsampling of Lagrange-multipliers

The quadrature (3) suggests the evaluation of the discrete Lagrangian is performed
at each time-step 𝑡𝑘+𝛼 regardless of each subdomain’s time-discretization and there-
fore the evaluation of the nonlinear potential energy derivative 𝜕V

𝜕q . Hence, in
terms of computational efficiency, one could as well choose a micro-discretization
in all subdomains. In the following, we consider a subcycled time-discretization
on all subdomains and Lagrange-multipliers. If the macro-discretization is cho-
sen for the Lagrange-multiplier, one can just evaluate at the local time-step’s mid-
point, as depicted in Fig. 2b to properly integrate the Lagrangian. This high num-
ber of evaluations is especially needed if the time-discretization of the Lagrange-
multiplier is chosen as a micro-discretization, as shown in Fig. 2a. For such cases,
we introduce a downsampling of the Lagrange-multiplier by inserting an addi-
tional local Lagrange-multiplier field �̄� (𝑠) , as depicted in Fig. 3. With an artificial

q2 (𝑡)

𝝀 (𝑡) 𝑡

q1 (𝑡)

𝑚2 = 0 𝑚2 = 𝑁 2𝑚

𝑚1 = 0 𝑚1 = 𝑁 1𝑚

_-micro
𝑓𝑖𝑛𝑡 (q(𝑡)) evaluation

(a) Evaluation-points for micro-discretization of
the Lagrange-multiplier.

q2 (𝑡)

𝝀 (𝑡) 𝑡

q1 (𝑡)

𝑚2 = 0 𝑚2 = 𝑁 2𝑚

𝑚1 = 0 𝑚1 = 𝑁 1𝑚

_-macro

(b) Evaluation-points for macro-discretization of
the Lagrange-multiplier.

Fig. 2 Subcycling time-discretization of two subdomains and evaluation-points for quadrature.
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q2 (𝑡)

𝝀 (𝑡) 𝑡

q1 (𝑡)

𝑚2 = 0 𝑚2 = 𝑁 2𝑚

𝑚1 = 0 𝑚1 = 𝑁 1𝑚

_-micro

�̄�
1 (𝑡)

�̄�
2 (𝑡)

time-stepping with single-step-formulation

time-stepping with single-step-formulation

fourth field of intermediate displacements

𝝀 (𝑡)

�̄�
1 (𝑡)

ū1 (𝑡) 𝑡

Fig. 3 Additional local Lagrange-multiplier-field and artificial displacement-field for local down-
sampling.

displacement-field ū(𝑠) , connecting both Lagrange-multiplier fields, we can refor-

mulate the constraint-energy G =

(∑𝑁𝑠

𝑠=1 B(𝑠) ∑𝑁
(𝑠)
𝑚

𝑚=0 Φ
(𝑠)
𝑚 (𝑡)ū(𝑠)

𝑚

)𝑇 ∑𝑁 𝑗

𝑗=0 Θ 𝑗 (𝑡)�̂� 𝑗 +∑𝑁𝑠

𝑠=1

((∑𝑁
(𝑠)
𝑚

𝑚=0 Φ
(𝑠)
𝑚 (𝑡)q̂(𝑠)

𝑚 −∑𝑁
(𝑠)
𝑚

𝑚=0 Φ
(𝑠)
𝑚 (𝑡)ū(𝑠)

𝑚

)𝑇 ∑𝑁
(𝑠)
𝑚

𝑚=0 Φ
(𝑠)
𝑚 (𝑡)�̄� (𝑠)

𝑚

)
and apply the

generalized midpoint-rule and variational calculus to obtain constraints 𝜕G
𝜕�̂� 𝑗

= 0

and 𝜕G
𝜕�̄�

(𝑠)
𝑚

= 0, that are fulfilled in a weak sense. With the variation for ū(𝑠)
𝑚 follows

the downsampling-equation

𝑁𝑘∑︁
𝑘=0

Δ𝑡𝑘
©«B(𝑠)𝑇 Φ(𝑠)

𝑚 (𝑡𝑘+𝛼)
𝑁 𝑗∑︁
𝑗=0

Θ 𝑗 (𝑡𝑘+𝛼)�̂� 𝑗 −Φ
(𝑠)
𝑚 (𝑡𝑘+𝛼)

𝑁
(𝑠)
𝑚∑︁

𝑚=0
Φ

(𝑠)
𝑚 (𝑡𝑘+𝛼)�̄�

(𝑠)
𝑚

ª®¬ = 0

and from
∑𝑁

(𝑠)
𝑚

𝑚=0 Δ𝑡𝑚Φ
(𝑠)
𝑚 (𝑡𝑚+𝛼)

∑𝑁
(𝑠)
𝑚

𝑚=0 Φ
(𝑠)
𝑚 (𝑡𝑚+𝛼)�̄�

(𝑠)
𝑚 follows together with the ki-

netic and potential part of the discrete Lagrangian the local equation of motion
and the time-stepping-scheme. All these equations can now be solved by a Newton-
Raphson scheme. Due to �̂� at the macro-discretization influencing both sides, the
left and the right, the interface-problem still has to be solved all at once.

3.2 Reduce to time-stepping

To enable at least a time-stepping on the interface-problem from onemacro-time-step
to the next and only solve the subcycled Lagrange-multipliers between two macro-
time-steps at once, we have to reduce the global integration and introduce some
errors that way. The integration of the previously introduced equations is no longer
performed from 0 to 𝑁𝑘 , but only from one macro-time-step to the next one, which
is visualized in Fig. 4a. While the global Lagrange-multiplier-field itself stays con-
tinuous, this requires the local Lagrange-multiplier to become discontinuous at the
macro-time-steps, as can be seen in Fig. 4b. Finally, we have to apply some numeri-
cal dissipation or formulate the constraints for velocities, instead of displacements.
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segmented integration

𝝀 𝑡

𝝀 𝑡

(a) Segmentation of integration of global
Lagrange-multipliers.

�̄� 𝑡

�̄� 𝑡

two nodes
(b) Discontinuous local Lagrange-multipliers.

Fig. 4 Segmentation of integration of Lagrange-multipliers according to macro-discretization.

Otherwise, high-frequency instabilities might prevent the solver from converging as
pointed out by Farhat e.a. [2]. Hence, we replace the nodal displacements in the con-
straints with nodal velocities. Of course, with these modifications, our framework is
no longer a variational method, but as shown in section 4, some beneficial properties
of variational methods are still preserved, which is why we call it a variational-based
framework instead.

4 Numerical experiments

In this section, we compare the accuracy of the BGC-macro method with our
variational-based multirate method. To this end, we apply both methods to a non-
linear split Duffing-oscillator, as proposed by Prakash e.a. [8] and depicted in Fig. 5
and solve the interface-problem with a GMRes-method. The velocities from the
BGC-macro in Fig. 6a exhibit the well-known spurious oscillations [8, 9], leading
to rather large incompatibilities in the displacements. These spurious oscillations
are reduced by the micro-discretization of the variational based method in Fig. 6b,
which improves the compatibility of displacements. The solution from the BGC-
macro method shows slightly less phase-error, as the displacement-curve is closer
to the fine-solution, compared to the variational-based method, but the solution still
remains in the margin between the fine and the coarse singlerate Newmark solution.
The energy-behavior of the variational-based method in Fig. 7b is also still better
compared to the BGC-macro method in Fig. 7a, despite the modifications made. The
total energy’s oscillations remain bounded, while we can observe a slight decline in
the BGC-macro’s total energy. Also the amplitude of the interface-energy’s oscilla-
tions is smaller for the variational-based method. However, all this comes at the cost
of a larger interface-problem.

Fig. 5 Split Duffing-oscillator
with stiffnesses 𝑘 (1) (𝑞 (1) ) =
1 𝑁
𝑚

· 𝑞 (1) + 1 𝑁
𝑚

· 𝑞 (1)3 ,
𝑘 (2) (𝑞 (2) ) = 10 𝑁

𝑚
· 𝑞 (2) −

5 𝑁
𝑚

· 𝑞 (2)3 , masses 𝑚(1) =

1𝑘𝑔, 𝑚(2) = 1𝑘𝑔, time-
step-sizes Δ𝑡 (1) = 0.5𝑠,
Δ𝑡 (2) = 0.1𝑠.

𝑘𝐴 (𝑞𝐴)

𝑘𝐵 (𝑞𝐵)

𝑚𝐴

𝑚𝐵

_

𝑞𝐴

𝑞𝐵
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q/
𝑚
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¤ q/
𝑚 𝑠
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(a) BGC-macro.

0 2 4

−2

0

2

𝑡/𝑠 →
Displacement A Velocity A
Displacement B Velocity B
Newmark coarse Newmark fine

(b) Variational-based multirate integrator.

Fig. 6 Displacements and Velocities of the split Duffing-oscillator.

0 2 4

0

2

4

𝑡/𝑠 →

𝐸
/𝑁

𝑚
→

interface-energy total energy
potential energy kinetic energy

(a) BGC-macro.

0 2 4

0

2

4

𝑡/𝑠 →

interface-energy total energy
potential energy kinetic energy

(b) Variational-based multirate integrator.

Fig. 7 Energies of the split Duffing-oscillator.

5 Conclusions

The derived variational-based multirate method and its interface-problem is solved
by a FETI-solver. The method enables a macro-time-stepping and still exhibits
a better accuracy than the BGC-macro method. This comes at the cost of a larger
interface-problem. A suitable preconditioner remains to be constructed.
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