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1 Introduction

Since the pioneering work of Lelarasme et al. [9] that analyze in time domain large-
scale problems arising from the modeling of integrated circuits, waveform relaxation
methods (WR) [10] also known as dynamic iteration methods, a term first introduced
byMiekkala and Nevanlinna [13, Eq. (2.2)], arouses more and more interest with the
development of parallel computers. Let us recall the method of dynamic iteration as
it was described by Miekkala[12] for ODE systems and adapted by Jiang & Wing
for DAE systems [7]: Let 𝑀 ∈ C𝑛1×𝑛1 , 𝐴 ∈ C𝑛1×𝑛1 , 𝐵 ∈ C𝑛1×𝑛𝑎 , 𝐶 ∈ C𝑛𝑎×𝑛1 ,
𝐷 ∈ C𝑛𝑎×𝑛𝑎 matrices and 𝑓1 : ]0, 𝑇] → C𝑛1 , 𝑓2 : ]0, 𝑇] → C𝑛𝑎 functions, 𝑥0 ∈ C𝑛1
initial state value. We define the DAE system in its state-space form:

𝑀 ¤𝑥(𝑡) + 𝐴𝑥(𝑡) + 𝐵𝑦(𝑡) = 𝑓1 (𝑡), 𝑡 ∈ [0, 𝑇],
𝐶𝑥(𝑡) + 𝐷𝑦(𝑡) = 𝑓2 (𝑡), 𝑡 ∈ [0, 𝑇],

𝑥(0) = 𝑥0,
(1)

where 𝑥 : ]0, 𝑇] → C𝑛1 are the 𝑛1 searched state solutions and 𝑦 : ]0, 𝑇] → C𝑛𝑎 are
the 𝑛𝑎 searched algebrical solutions.

Definition 1 (Dynamic Iteration for linear DAE) The Dynamic Iteration scheme
for (1) considers the splitting ofmatrices𝑀, 𝐴, 𝐵, 𝐶, 𝐷 as𝑀 = 𝑀1−𝑀2, 𝐴 = 𝐴1−𝐴2,
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𝐵 = 𝐵1 − 𝐵2, 𝐶 = 𝐶1 − 𝐶2, 𝐷 = 𝐷1 − 𝐷2, where matrices 𝑀1 and 𝐷1 are assumed
non-singular (which implies that the DAE system has index one)

𝑀1 ¤𝑥 (𝑘) (𝑡) + 𝐴1𝑥
(𝑘) (𝑡) + 𝐵1𝑦

(𝑘) (𝑡) = 𝑀2 ¤𝑥 (𝑘−1) (𝑡) + 𝐴2𝑥
(𝑘−1) (𝑡) + 𝐵2𝑦

(𝑘−1) (𝑡)
+ 𝑓1 (𝑡), 𝑡 ∈ [0, 𝑇]

𝐶1𝑥
(𝑘) (𝑡) + 𝐷1𝑦

(𝑘) (𝑡) = 𝐶2𝑥
(𝑘−1) (𝑡) + 𝐷2𝑦

(𝑘−1) (𝑡)
+ 𝑓2 (𝑡), 𝑡 ∈ [0, 𝑇],

𝑥 (𝑘) (0) = 𝑥0,

(2)

This fixed-point process must be contracting to converge. We propose to combine
the DI method with the Restricted Additive Schwarz splitting and the Aitken’s
acceleration of the convergence technique to obtain a DI method less sensitive to
the contracting property even with applying it on a pipeline of several time step
or on a nonlinear problem. Related works on improvement of DI are that follow.
Arnold & Gunther [1] proposed several techniques for preconditioning the fixed-
point problem. Some waveform successive overrelaxation (SOR) techniques have
been proposed by Janssen and Vandewalle [6] to accelerate the standard waveform
method. Leimkuhler proposed to accelerate the WR by solving the defect equations
with a larger timestep, or by using a recursive procedure based on a succession
of increasing timesteps [8]. Lumdaisne & Wu proposed to accelerate the WR by
Krylov subspace techniques (WGMRES) [11] to solve time-dependent problems.
Gausling & al [5] analyzed the contraction and the rate of convergence of the co-
simulation process for a test circuit subjected to uncertainties on the parameters
of its components. In section 2, we consider the Restrictive Additive Schwarz [3]
for the Eq. (1) with 𝑀 = 𝐼 and we show that is a DI scheme with a specific
splitting. Then we can apply the Aitken’s acceleration of the convergence technique
to obtain the true solution whether the DI is contracting or not (it must not stagnate).
Section 3 considers advantages and drawbacks of the sequential (time step after
time step) and the pipelined (several time steps at once) implementations of DI and
their acceleration of convergence. Section 4 gives some numerical results of the
pipelined DI accelerated by the Aitken’s technique while section 5 concludes.

2 DI with RAS splitting

Let us consider Eq. (1) resulting from themodeling of an electrical networkwhere we
choose 𝑀 = 𝐼, this choice corresponds to a change of variables on the voltage terms
in the Kirchhoff’s law. According to the RAS method notation of Cai & Sarkis [3]

applied to the graph of the operator
(
𝐼 0
0 0

)
+

(
𝜖 𝐴 𝐵

𝐶 𝐷

)
, where the 𝜖 is chosen in order

to keep all data dependencies, we define the associated restriction operators 𝑅𝑝

𝑖

and 𝑅̃0
𝑖
. Then, the 𝑘 𝑡ℎ RAS iteration can be written as:
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¤𝑥 (𝑘)
𝑖

(𝑡) + 𝐴𝑖𝑥
(𝑘)
𝑖

(𝑡) + 𝐵𝑖𝑦
(𝑘)
𝑖

(𝑡) = 𝑏𝑏
𝑖
(𝑡) − 𝐸𝑑

𝑖,𝑑
𝑥
(𝑘−1)
𝑖𝑒

(𝑡) − 𝐸𝑎
𝑖,𝑑

𝑦
(𝑘−1)
𝑖𝑒

(𝑡),
𝐶𝑖𝑥

(𝑘)
𝑖

(𝑡) + 𝐷𝑖𝑦
(𝑘)
𝑖

(𝑡) = 𝑏𝑎
𝑖
(𝑡) − 𝐸𝑑

𝑖,𝑎
𝑥
(𝑘−1)
𝑖𝑒

(𝑡) − 𝐸𝑎
𝑖,𝑎

𝑦
(𝑘−1)
𝑖𝑒

(𝑡),
𝑥
(𝑘)
𝑖

(0) = 𝑅
𝑝,𝑑

𝑖
𝑥0, 𝑡 ∈ [0, 𝑇] .

(3)

With 𝐴𝑖 = 𝑅
𝑝,𝑑

𝑖
𝐴(𝑅𝑝,𝑑

𝑖
)𝑇 , 𝐵𝑖 = 𝑅

𝑝,𝑑

𝑖
𝐵(𝑅𝑝,𝑎

𝑖
)𝑇 , 𝐶𝑖 = 𝑅

𝑝,𝑎

𝑖
𝐶 (𝑅𝑝,𝑑

𝑖
)𝑇 , 𝐷𝑖 =

𝑅
𝑝,𝑎

𝑖
𝐷 (𝑅𝑝,𝑎

𝑖
)𝑇 , 𝐸𝑑

𝑖,𝑑
=𝑅

𝑝,𝑑

𝑖
𝐴(𝑅𝑝,𝑑

𝑖,𝑒
)𝑇 , 𝐸𝑎

𝑖,𝑑
=𝑅

𝑝,𝑑

𝑖
𝐵(𝑅𝑝,𝑎

𝑖,𝑒
)𝑇 , 𝐸𝑑

𝑖,𝑎
=𝑅

𝑝,𝑎

𝑖
𝐶 (𝑅𝑝,𝑑

𝑖,𝑒
)𝑇

and 𝐸𝑎
𝑖,𝑎

= 𝑅
𝑝,𝑎

𝑖
𝐷 (𝑅𝑝,𝑎

𝑖,𝑒
)𝑇 . The operator 𝑅𝑝,𝑑

𝑖
(respectively 𝑅𝑝,𝑎

𝑖
) is the restriction

to the differential variables (respectively algebraical variables) of 𝑅𝑝

𝑖
. We also define

𝑅̃
0,𝑑
𝑖
and 𝑅̃0,𝑎

𝑖
such that 𝑅̃0

𝑖
=

(
𝑅̃
0,𝑑
𝑖

0𝑛𝑖1×𝑛2
0𝑛𝑖2×𝑛1 𝑅̃

0,𝑎
𝑖

)
as we have chosen to separate the

differential and algebraic parts.

By summing up the contribution of each RAS partition, we can show that
the 𝑘 𝑡ℎ RAS iteration for solving (1) (with 𝑀 = 𝐼) is a DI as defined in (2) as-
sociated to the following splitting of the operators 𝐴 = 𝐴𝑑

1 − 𝐴𝑑
2 , 𝐵 = 𝐵𝑑

1 − 𝐵𝑑
2 ,

𝐶 = 𝐶𝑎
1 − 𝐶𝑎

2 , 𝐷 = 𝐷𝑎
1 − 𝐷𝑎

2 :
¤𝑥 (𝑘) (𝑡) + 𝐴𝑑

1 𝑥
(𝑘) (𝑡) + 𝐵𝑑

1 𝑦
(𝑘) (𝑡) = 𝑏𝑑 (𝑡) + 𝐴𝑑

2 𝑥
(𝑘−1) (𝑡) + 𝐵𝑑

2 𝑦
(𝑘−1) (𝑡),

𝐶𝑎
1 𝑥

(𝑘) (𝑡) + 𝐷𝑎
1 𝑦

(𝑘) (𝑡) = 𝑏𝑎 (𝑡) + 𝐶𝑎
2 𝑥

(𝑘−1) (𝑡) + 𝐷𝑎
2 𝑦

(𝑘−1) (𝑡),
𝑥 (𝑘) (0) = 𝑥0, 𝑡 ∈ [0, 𝑇] .

(4)

with

𝐴𝑑
1 =

𝑁−1∑︁
𝑖=0

𝑅̃
0,𝑑
𝑖

𝐴𝑖𝑅
𝑝,𝑑

𝑖
, 𝐴𝑑

2 =−
𝑁−1∑︁
𝑖=0

𝑅̃
0,𝑑
𝑖

𝐸𝑑
𝑖,𝑑𝑅

𝑝,𝑑

𝑖𝑒
, 𝑏𝑑 (𝑡) =

𝑁−1∑︁
𝑖=0

𝑅̃
0,𝑑
𝑖

𝑅
𝑝,𝑑

𝑖
𝑏𝑑 (𝑡),

𝐵𝑑
1 =

𝑁−1∑︁
𝑖=0

𝑅̃
0,𝑑
𝑖

𝐵𝑖𝑅
𝑝,𝑎

𝑖
, 𝐵𝑑
2 = −

𝑁−1∑︁
𝑖=0

𝑅̃
0,𝑑
𝑖

𝐸𝑎
𝑖,𝑑𝑅

𝑝,𝑎

𝑖𝑒
,

𝐶𝑎
1 =

𝑁−1∑︁
𝑖=0

𝑅̃
0,𝑎
𝑖

𝐶𝑖𝑅
𝑝,𝑑

𝑖
, 𝐶𝑎
2 = −

𝑁−1∑︁
𝑖=0

𝑅̃
0,𝑎
𝑖

𝐸𝑑
𝑖,𝑎𝑅

𝑝,𝑑

𝑖𝑒
,

𝐷𝑎
1 =

𝑁−1∑︁
𝑖=0

𝑅̃
0,𝑎
𝑖

𝐷𝑖𝑅
𝑝,𝑎

𝑖
, 𝐷𝑎

2 =−
𝑁−1∑︁
𝑖=0

𝑅̃
0,𝑎
𝑖

𝐸𝑎
𝑖,𝑎𝑅

𝑝,𝑎

𝑖𝑒
, 𝑏𝑎 (𝑡) =

𝑁−1∑︁
𝑖=0

𝑅̃
0,𝑑
𝑖

𝑅
𝑝,𝑎

𝑖
𝑏𝑎 (𝑡).

Thus, the RAS method applied to DAE system belongs to the DI methods with
a specific splitting of the operators. Then we can reduce this specific DI method
to an interface problem and we can accelerate its convergence to the true solu-
tion with the Aitken’s acceleration of the convergence technique as in [4]. Denot-
ing 𝑊 𝑝,𝑑

𝑖,𝑒
and 𝑊 𝑝,𝑎

𝑖,𝑒
the differential and algebraical components of 𝑊 𝑝

𝑖,𝑒
, we define

Γ𝑑 = {𝑊 𝑝,𝑑

0,𝑒 , . . . ,𝑊
𝑝,𝑑

𝑁−1,𝑒}, Γ
𝑎 = {𝑊 𝑝,𝑎

0,𝑒 , . . . ,𝑊
𝑝,𝑎

𝑁−1,𝑒} and Γ = {Γ𝑑 , Γ𝑎} and 𝑅Γ the

restriction to the global interface 𝑅Γ =

(
𝑅𝑑
Γ
0

0 𝑅𝑎
Γ

)
with 𝑅𝑑

Γ
= (𝑅𝑝,𝑑

0,𝑖𝑒, . . . , 𝑅
𝑝,𝑑

𝑁−1,𝑖𝑒)
𝑇 ,

𝑅𝑎
Γ
= (𝑅𝑝,𝑎

0,𝑖𝑒, . . . , 𝑅
𝑝,𝑎

𝑁−1,𝑖𝑒)
𝑇 and finally 𝑧 (𝑘) = (𝑥 (𝑘)𝑇 , 𝑦 (𝑘)𝑇 )𝑇 and 𝑧 (𝑘)

Γ
= 𝑅Γ𝑧

(𝑘) .
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The DI with RAS splitting defined by Eq. (4) applied to a linear DAE system
with 𝐷𝑎

1 invertible has an error operator 𝑃𝑡 ,Γ, 𝑡 ∈]0, 𝑇] for the problem interface
that does not depend on the iteration number, such that the restriction of the iteration
to the global interface satisfies: 𝑧 (𝑘)

Γ
= 𝑃𝑡 ,Γ𝑧

(𝑘−1)
Γ

+ 𝑐. Therefore, the convergence
of the DI to the true solution 𝑧 (∞) can be performed using the Aitken’s technique
for accelerating the convergence, if 1 does not belong to the spectrum of 𝑃𝑡 ,Γ, as
follows:

𝑧
(∞)
Γ

= (𝐼 − 𝑃𝑡 ,Γ)−1 (𝑧 (1)Γ
+ 𝑃𝑡 ,Γ𝑧

(0)
Γ

) (5)

Numerically, the time derivative in Eq. (4) must be discretized using backward
Euler scheme with a regular time step Δ𝑡 for example. We write the DI with RAS
splitting on the discretized system as:

𝐴̃𝑑
1 𝑥

𝑛+1, (𝑘+1) + 𝐵̃𝑑
1 𝑦

𝑛+1, (𝑘+1) = 𝑏̃𝑛+1,𝑑 + 𝐴̃𝑑
2 𝑥

𝑛+1, (𝑘) + 𝐵̃𝑑
2 𝑦

𝑛+1, (𝑘) ,
𝐶𝑎
1 𝑥

𝑛+1, (𝑘+1) + 𝐷𝑎
1 𝑦

𝑛+1, (𝑘+1) = 𝑏𝑛+1,𝑎 + 𝐶𝑎
2 𝑥

𝑛+1, (𝑘) + 𝐷𝑎
2 𝑦

𝑛+1, (𝑘) ,
𝑥0, (𝑘+1) = 𝑥0.

(6)

with 𝐴̃𝑑
1 = 𝐼𝑑

𝑛,1+Δ𝑡𝐴
𝑑
1 , 𝐵̃

𝑑
1 = Δ𝑡𝐵𝑑

1 , 𝐴̃
𝑑
2 = Δ𝑡𝐴𝑑

2 , 𝐵̃
𝑑
2 = Δ𝑡𝐵𝑑

2 , 𝑏̃
𝑛+1,𝑑 = 𝑥𝑛,∗+Δ𝑡𝑏𝑛+1,𝑑

where 𝑥𝑛,∗ = 𝑥𝑛, (𝑘+1) or 𝑥𝑛,∗ = 𝑥𝑛, (∞) leading to the sequential DI or pipelined DI
strategies. Locally, it is written, with 𝑥0, (𝑘+1)

𝑖
= 𝑅

𝑝,𝑑

𝑖
𝑥0:(

𝑥
𝑛+1, (𝑘+1)
𝑖

𝑦
𝑛+1, (𝑘+1)
𝑖

)
︸          ︷︷          ︸

𝑧
𝑛+1, (𝑘+1)
𝑖

=

(
𝐴̃𝑖 𝐵̃𝑖

𝐶𝑖 𝐷𝑖

)−1
︸       ︷︷       ︸

Ã−1
𝑖

((
𝑏̃𝑛+1
𝑖,𝑑

𝑏𝑛+1
𝑖,𝑎

)
︸    ︷︷    ︸

𝑏̃𝑛+1
𝑖

−
(
𝐸̃𝑑
𝑖,𝑑

𝐸̃𝑎
𝑖,𝑑

𝐸𝑑
𝑖,𝑎

𝐸𝑎
𝑖,𝑎

)
︸         ︷︷         ︸

Ẽ𝑖

(
𝑥
𝑛+1, (𝑘)
𝑖,𝑒

𝑦
𝑛+1, (𝑘)
𝑖,𝑒

))
︸         ︷︷         ︸

𝑧
𝑛+1, (𝑘)
𝑖,𝑒

(7)

The choice for the term 𝑥𝑛,∗ has an impact on the implementation and the Aitken’s
acceleration of convergence technique as described in the next section.

3 Pipelined time stepping strategy for DI

Let’s consider the DI applied over a time interval [𝑡0, 𝑡𝐹 ] with a constant time stepΔ𝑡
satisfying 𝑡𝐹 − 𝑡0 = ΞΔ𝑡 with Ξ ∈ N∗.
The sequential DI strategy consists in iterating the DI method until convergence

on one time step before applying it to the next time step (Algorithm 1, 𝑥𝑛,∗ = 𝑥𝑛, (∞)

in (6)). In the pipelined DI strategy, each DI iteration is performed over several time
steps, these iterations are repeated until convergence (Algorithm 2, 𝑥𝑛,∗ = 𝑥𝑛, (𝑘)

in (6)). The two algorithms differ by the choice of 𝑥𝑛,∗ = 𝑥𝑛, (𝑘) but also by the
inversion of the order of loops 1 and 2.
In the following, we adapt the Aitken’s acceleration of the convergence technique

to accelerate the pipelined DI with RAS splitting.
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Algorithm 1 Sequential DI strategy
1: for 𝑛 = 0 . . .Ξ − 1 do
2: for 𝑘 = 1 . . . until convergence do
3: Solve 𝑧

𝑛+1, (𝑘+1)
𝑖

= Ã−1
𝑖
𝑏̃𝑛+1
𝑖

−
Ẽ𝑖𝑧

𝑛+1, (𝑘)
𝑖,𝑒

.
4: end for
5: end for

Algorithm 2 Pipelined DI strategy
1: for 𝑘 = 1 . . . until convergence do
2: for 𝑛 = 0 . . .Ξ − 1 do
3: Solve 𝑧

𝑛+1, (𝑘+1)
𝑖

= Ã−1
𝑖
𝑏̃𝑛+1
𝑖

−
Ẽ𝑖𝑧

𝑛+1, (𝑘)
𝑖,𝑒

.
4: end for
5: end for

Definition 2 We note 𝑍
(𝑘)
𝑖

∈ CΞ𝑛 the (𝑘)𝑡ℎ DI iteration corresponding to the
concatenation over the Ξ time steps of the 𝑖𝑡ℎ partition 𝑊

𝑝

𝑖
of the (𝑘 + 1)𝑡ℎ

pipelined DI iteration: 𝑍 (𝑘)
𝑖

= ((𝑧1, (𝑘)
𝑖

)𝑇 , . . . , (𝑧Ξ, (𝑘)
𝑖

)𝑇 )𝑇 , and the dependencies
as 𝑍 (𝑘)

𝑖,𝑒
= ((𝑧1, (𝑘)

𝑖,𝑒
)𝑇 , . . . , (𝑧Ξ, (𝑘)

𝑖,𝑒
)𝑇 )𝑇 .

We define the operator I𝑑,𝑖 such that: I𝑑,𝑖𝑧𝑛, (𝑘)𝑖
=

(
Δ𝑡 𝑥

𝑛, (𝑘)
𝑖

0𝑛𝑖,𝑎

)
. We also define

𝑍
(𝑘)
Γ

∈ CΞ𝑛Γ denote the 𝑘 𝑡ℎ pipelined DI iterations of the global interface values of
the Ξ time steps: 𝑍 (𝑘)

Γ
= ((𝑧1, (𝑘)

Γ
)𝑇 , . . . , (𝑧Ξ, (𝑘)

Γ
)𝑇 )𝑇 and let I𝑑 be the operator that

follows: I𝑑 = (I𝑇
𝑑,1, . . . , I

𝑇
𝑑,Ξ

)𝑇 .

Proposition 1 The 𝑘 𝑡ℎ pipelined DI iteration applied on to Ξ time steps Δ𝑡 is written
locally on the partition 𝑊

𝑝

𝑖
:

©­­­­«
Ã𝑖

−I𝑑,𝑖 Ã𝑖

. . .
. . .

−I𝑑,𝑖 Ã𝑖

ª®®®®¬
𝑍
(𝑘)
𝑖

=

©­­­­«
𝑏1
𝑖
+ I𝑑,𝑖𝑧0𝑖
𝑏2
𝑖
...

𝑏Ξ
𝑖

ª®®®®¬
−

©­­­­«
Ẽ𝑖
Ẽ𝑖

. . .

Ẽ𝑖

ª®®®®¬
𝑍
(𝑘−1)
𝑖,𝑒

(8)

Equation (8) has the same form (and the same properties) than the sequential DI.
We can then apply the same methodology as in the sequential case. That is to say: as
the convergence is purely linear one can thus build an operator of error PΓ and use the
Aitken acceleration of the convergence method. PΓ can be computed algebraically or
numerically. It will be of size Ξ𝑛Γ ×Ξ𝑛Γ and we will need Ξ𝑛Γ + 1 RAS iterations to
calculate it numerically. Nevertheless, we can take advantage of the structure of PΓ
for linear DAE with regular time stepping as the PΓ operator and the 𝑃Γ operator are
linked as shown below.
By noting𝑀−1

𝑛,𝑅𝐴𝑆
the RAS operator (defined as in [3]) and 𝑃𝑛,Γ the error operator

associated to the 𝑛𝑡ℎ time step. Then, similarly to the sequential DI, we can restrict
the pipelined DI iteration to the global interface of (5) of all the Ξ time steps:

Proposition 2 The 𝑘 𝑡ℎ iteration of the pipelined DI can be written on the global
interface of the Ξ time steps:
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𝑍
(𝑘)
Γ

=
©­­«

𝐼

𝑀−1
2 𝐼

. . .
. . .

𝑀−1
Ξ

𝐼

ª®®¬
−1 ©­­«

𝑃1,Γ
𝑃2,Γ

. . .

𝑃Ξ,Γ

ª®®¬ 𝑍
(𝑘−1)
Γ

+
©­­«
𝑅Γ𝑀

−1
1,𝑅𝐴𝑆

I𝑑 𝑧
0 + 𝑐1

𝑐2
.
.
.

𝑐𝑚

ª®®¬ (9)
where 𝑀−1

𝑖
= 𝑅Γ𝑀

−1
𝑖,𝑅𝐴𝑆

I𝑑𝑅
𝑇
Γ
, 𝑖 = 2 . . .Ξ

The error operator can be calculated in two ways algebraically or numerically.
We recall that the global interface Γ is defined as the concatenation of 𝑊 𝑝

𝑖,𝑒
, that is

Γ =

{
𝑊

𝑝

0,𝑒, . . . ,𝑊
𝑝

𝑁−1,𝑒

}
of size 𝑛Γ =

∑𝑁−1
𝑖=0 𝑛𝑖,𝑒. It is pointed out that to numerically

calculate the error operator, it is necessary to perform one more iteration than the
size of the vector to be accelerated.
In the sequential DI strategy, we can apply the Aitken’s technique for accelerating

convergence, after 𝑛Γ + 1 DI iterations for the first regular time step, in order to
numerically build the 𝑃Γ operator. Then, if we use the same time step size for the
following time steps, and if there is no non-linearity and no change in the topology,we
can perform the Aitken’s convergence acceleration technique after one DI iteration.
However, it is necessary to recalculate the error operator 𝑃Γ at each change of
topology or at each change of time step. Indeed the matrices A and E which have an
impact in the 𝑃Γ are modified by the changes in topology and changes in time step
size (because of the discretization).
Moreover, in the pipelined DI strategy, the interface to be accelerated is the

concatenation of the interfaces over the entire period of interest (ΞΔ𝑡 here). This
interface is of size Ξ × 𝑛Γ, it will therefore take Ξ × 𝑛Γ + 1 DI iterations in order to
compute the error operator PΓ, whether or not there is a change in topology or time
step. On the other hand, changes in the size of the time steps must be planned before
launching the simulation.
Table 1 summarizes the number of iterations needed to simulate the problem on

the period ΞΔ𝑡, depending on the strategy chosen.

Table 1 Number of iterations needed to performed the simulation using the DI method accelerated
with the Aitken acceleration technique

DI Strategy Sequential First time step sequential,
computation of the error
operator then pipelined

Pipelined

no non-linearity& fixed and equidistant
time steps

Ξ + 𝑛Γ 2(Ξ − 1) + 𝑛Γ + 1 Ξ × 𝑛Γ + 1

fixed variable time step distribution with
𝑗 changes in time step length

Ξ − 𝑗 + 𝑗 × (𝑛Γ + 1) 2(Ξ − 𝑗) + 𝑗 × (𝑛Γ + 1) Ξ × 𝑛Γ + 1

non-fixed variable time step distribution
with 𝑗 changes in time step length

Ξ − 𝑗 + 𝑗 × (𝑛Γ + 1) Strategy non valid Strategy non valid

presence of non-linear components Ξ × (𝑛Γ + 1) Strategy non valid Ξ × 𝑛Γ + 1
𝑗 non-linearity events Ξ − 𝑗 + 𝑗 × (𝑛Γ + 1) 2(Ξ − 𝑗) + 𝑗 × (𝑛Γ + 1) Ξ × 𝑛Γ + 1
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4 Numerical results

The numerical results are performed on the test circuit of Pade and Tischendorf [14],
with the sequential strategy we know from the spectrum of the error operator that the
convergence of the method depends on the value of the components but especially
on the size of the time step Δ𝑡. The size of the problem is 9 and the global interface Γ
size is 3.We refer to [2] for parallel results approximating 𝑃Γ by using singular values
decomposition of the RAS interface solution iterates and the Aitken’s acceleration
for solving large-scale elliptic Darcy flows 3D problems. Figure 1 (left) shows the
evolution of the spectral radius of PΓ computed numerically with respect to the
number of regular time steps in the pipeline. It shows that the convergence of the
pipelined DI with RAS splitting deteriorates with increasing number of pipelined
time steps. This result is corroborated by Figure 1 (middle) which shows the error
of the pipelined DI with RAS splitting between two consecutive iterations, with
respect to the RAS iterations, for each time step in the pipeline. Although the first
few time steps in the pipeline the DI converge, this is not the case for the last few
time steps. This shows the limitation of the pipeline size. Nevertheless, with Aitken’s
convergence acceleration, we can still accelerate the DI for all time steps. We should
note that we also have a limitation on the pipeline size due to numerical problems in
the numerical computation of the error operator if the DI diverges too strongly for
some time steps. Nevertheless, in the pipelined strategy, the numerically calculated
error operator can take into account some changes in the behavior of the electrical
components, which allows us to apply Aitken’s convergence acceleration technique
even in the presence of nonlinear components, as shown in the figure (right) with
a nonlinear resistor in the test circuit [14].
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Fig. 1 (left) Evolution of the spectral radius of the error operator depending on the number of
pipelined regular time steps of size Δ𝑡 = 1.1 10−3 (left, Ξ = 14), (middle) DI with the RAS splitting
convergence behavior ( log10 ( | |𝑧 (2𝑘) − 𝑧ref | |∞) ) on each of the pipelined time steps with respect to
the iterations, (right) Comparison between the DI with the RAS splitting with the Aitken’s technique
for accelerating convergence and the DAE monolithic reference with a non-linear component, with
Δ𝑡 = 1, 1.10−4, Ξ = 100.

5 Conclusion

Starting from the RAS method applied to a state-space DAE system, we show
that this method is a dynamic iteration method with a specific operator splitting.
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Then, the DI with RAS splitting inherits the property of reducing the size of the
error operator to the size of a global interface problem. It also inherits its pure
linear convergence/divergence when applied to a linear problem. We are then able to
accelerate the convergence byAitken acceleration byworking on the global interface,
thus, we get rid of the contracting constraint of the error operator. Writing RAS as
a DI with RAS splitting also makes us consider the implementation of the pipelined
strategy performing iteration over several time steps.We have shown the link between
the error operators of the sequential DI and pipelined DI strategies, which allows
us to apply Aitken’s convergence acceleration technique on the pipelined DI. The
optimal use cases for these strategies were also discussed. Numerical results show
that pipelined DI with RAS splitting successfully applies Aitken acceleration to both
contracting and non-contracting DI. It also opens up the Aitken acceleration of DI
convergence for nonlinear problems (using a different linearization of the nonlinear
problem on the time steps in the pipeline) and for pipelined steps with different sizes.
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