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Preface

This volume presents a selection of 62 peer-reviewed papers that were submitted
to the proceedings of the 27th International Conference on Domain Decomposition
Methods held in Prague, Czech Republic, from July 25 to 29, 2022.

Background of the Conference Series

With its first meeting in Paris in 1987, the International Conferences on Domain
Decomposition Methods have been held in 16 countries in Asia, Europe, and North
America, and now for the first time in the Czech Republic. The conference is held at
roughly 18-month intervals. A complete list of the 27 meetings appears below.

Domain decomposition is often seen as a form of the divide-and-conquer approach
for mathematical problems posed over a physical domain, reducing a large problem
into a collection of smaller problems, each of which is much easier to solve compu-
tationally than the undecomposed problem, and most or all of which can be solved
independently and concurrently, and then solved iteratively in a consistent way. A lot
of the theoretical interest in domain decomposition algorithms lies in ensuring that
the number of iterations required to converge is very small. Domain decomposition
algorithms can be tailored to the properties of the physical system, as reflected in the
mathematical operators, to the number of processors available, and even to specific
architectural parameters, such as cache size and the ratio of memory bandwidth to
floating point processing rate. Consequently, domain decomposition methods prove
to be an ideal paradigm for large-scale simulation on advanced parallel computers
and supercomputers.

While the technical content of the conference revolves mainly around mathe-
matics, its underlying motivation lies in enabling efficient utilization of distributed
memory computers for complex scientific and engineering applications. Although
research on domain decomposition methods is presented at various events, the In-
ternational Conference on Domain Decomposition Methods stands as the singular
recurring international forum dedicated to fostering interdisciplinary interactions
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between theoreticians and practitioners. These interactions span the development,
analysis, software implementation, and applications of domain decomposition meth-
ods.

As we are entering the era of exascale computing, with the most powerful su-
percomputers now capable of sustaining 10'® floating-point operations per second,
the need for efficient and mathematically sound methods for solving large-scale sys-
tems becomes increasingly vital. Furthermore, these methods must align well with
the modern high-performance computing (HPC) architectures. The massive paral-
lelism inherent in exascale computing necessitates the development of new solution
methods that effectively leverage the abundance of computing cores and hierarchical
memory access patterns. Ongoing advancements, such as parallelization in time,
asynchronous iterative methods and nonlinear domain decomposition methods show
that this massive parallelism not only calls for novel solution and discretization
approaches but also facilitates their further development.

Here is a list of the 27 conferences on Domain Decomposition Methods:

1. Paris, France, January 7-9, 1987
2. Los Angeles, USA, January 14-16, 1988
3. Houston, USA, March 20-22, 1989
4. Moscow, USSR, May 21-25, 1990
5. Norfolk, USA, May 6-8, 1991
6. Como, Italy, June 15-19, 1992
7. University Park, Pennsylvania, USA, October 27-30, 1993
8. Beijing, China, May 16-19, 1995
9. Ullensvang, Norway, June 3-8, 1996
10. Boulder, USA, August 10-14, 1997
11. Greenwich, UK, July 20-24, 1998
12. Chiba, Japan, October 25-20, 1999
13. Lyon, France, October 9-12, 2000
14. Cocoyoc, Mexico, January 6-11, 2002
15. Berlin, Germany, July 21-25, 2003
16. New York, USA, January 12-15, 2005
17. St. Wolfgang—Strobl, Austria, July 3—7, 2006
18. Jerusalem, Israel, January 12—-17, 2008
19. Zhangjiajie, China, August 17-22, 2009
20. San Diego, California, USA, February 7-11, 2011
21. Rennes, France, June 25-29, 2012
22. Lugano, Switzerland, September 16-20, 2013
23. Jeju Island, Korea, July 6-10, 2015
24. Spitsbergen, Svalbard, Norway, February 6-10, 2017
25. St. John’s, Newfoundland, Canada, July 23-27, 2018
26. Hong Kong SAR (virtual format), China, December 7-12, 2020
27. Prague, Czech Republic, July 25-29, 2022
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International Scientific Committee on Domain Decomposition Methods

 Petter Bjgrstad, University of Bergen, Norway

* Susanne Brenner, Louisiana State University, USA
¢ Xiao-Chuan Cai, CU Boulder, USA

e Martin Gander, University of Geneva, Switzerland
* Laurence Halpern, University Paris 13, France

* David Keyes, KAUST, Saudi Arabia

* Hyea Hyun Kim, Kyung Hee University, Korea

¢ Axel Klawonn, Universitit zu Koln, Germany

* Ralf Kornhuber, Freie Universitit Berlin, Germany
e Ulrich Langer, University of Linz, Austria

¢ Luca F. Pavarino, University of Pavia, Italy

¢ Olof B. Widlund, Courant Institute, USA

¢ Jinchao Xu, Penn State, USA

* Jun Zou, Chinese University of Hong Kong, Hong Kong

About the 27th Conference

The twenty-seventh International Conference on Domain Decomposition Methods
had 200 participants (187 onsite and 13 online) from 25 different countries. The
conference featured 11 invited presentations selected by the International Scien-
tific Committee with both experienced and younger speakers, 17 minisymposia on
specific topics and 6 contributed paper sessions. The present proceedings contain
a selection of 62 papers, grouped into three separate groups: 4 papers by plenary
speakers, 48 minisymposium papers, and 10 contributed papers.

Organizers

e VSB — Technical University of Ostrava
* Institute of Mathematics of the Czech Academy of Sciences
* Czech Technical University in Prague

Sponsoring organizations

» Hewlett Packard Enterprise (gold partner)
e Atos

* M Computers

¢ RSJ Foundation

¢ Research Center for Informatics
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Local Organizing/Program Committee Members

e Zdenék Dostél, VSB — Technical University of Ostrava, Czech Republic (Chair)

* Axel Klawonn, University of Cologne, Germany

* Tomds Kozubek, IT4Innovations & VSB — Technical University of Ostrava, Czech
Republic

» Jaroslav Kruis, Czech Technical University in Prague, Czech Republic

e Ulrich Langer, Johannes Kepler University Linz, Austria

* Daniel Langr, Czech Technical University in Prague, Czech Republic

o TJakub Sistek, Institute of Mathematics of the Czech Academy of Sciences, Prague,
Czech Republic

Plenary Presentations

 Silvia Bertoluzza (CNR — Istituto di Matematica Applicata e Tecnologie Infor-
matiche “Enrico Magenes")
Domain decomposition for the Virtual Element Method

* Xiao-Chuan Cai (Department of Mathematics, University of Macau)
Schwarz for complex fluid and solid problems in biomechanics

¢ Alexander Heinlein (Delft University of Technology)
Robust, algebraic, and scalable Schwarz preconditioners with extension-based
coarse spaces

* Florence Hubert (Institut de Mathematiques de Marseille, Aix-Marseille Univer-
sité, France)
On discrete optimized Schwarz algorithms for elliptic problems

* Hyea Hyun Kim (Kyung Hee University, Korea)
Domain decomposition algorithms for neural network approximation of partial
differential equations

* Maksymilijan Dryja (the winner of the Olof Widlund Prize), a talk presented by
Marcus Sarkis (University of Warsaw / Worcester Polytechnic Institute)
NOSAS and RAS/ASH

* Robert Scheichl (Heidelberg University, Germany)
Multiscale Generalised Finite Element Methods

» Jonathan W. Siegel (Pennsylvania State University/Texas A&M University)
Approximation Properties of Neural Networks and Applications to Numerical
PDEs

+ Jakub Sistek (Institute of Mathematics of the Czech Academy of Sciences)
Applications of multilevel BDDC to problems of incompressible flows

» Barbara Wohlmuth (Technical University of Munich)
Multi-physics models with mixed dimensions: Bio-medical and seismic applica-
tions

e Stefano Zampini (King Abdullah University of Science and Technology, Saudi
Arabia)
Device Accelerated solvers with PETSc: current status, future perspectives, and
applications
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A Short Note on Solving Partial Differential
Equations Using Convolutional Neural Networks

Viktor Grimm, Alexander Heinlein, and Axel Klawonn

1 Introduction

Solving partial differential equations (PDEs) is a common task in numerical math-
ematics and scientific computing. Typical discretization schemes, for example, fi-
nite element (FE), finite volume (FV), or finite difference (FD) methods, have the
disadvantage that the computations have to be repeated once the boundary condi-
tions (BCs) or the geometry change slightly; typical examples requiring the solution
of many similar problems are time-dependent and inverse problems or uncertainty
quantification. Every single computation, however, can be very time consuming,
motivating the development of surrogate models that can be evaluated quickly.
There exist some possible surrogate models, including linear reduced order mod-
els [9, 21, 26, 29] and neural network-based models [6, 7, 8, 14, 19, 22, 24, 25].

In this work, we will discuss an approach for predicting the solution of bound-
ary value problems using convolutional neural networks (CNNs). This approach is
particularly interesting in the context of surrogate models which predict the solution
based on a parametrization of the model problem, for instance, with respect to vari-
ations in the geometry or BCs; cf. Fig. 1 for a sketch of the CNN-based surrogate
modeling approach. If the parametrization is high-dimensional, that is, if it consists
of a large number of parameters, neural network-based approaches are particularly
well-suited since they are know to be able to overcome the curse of dimensional-
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Fig. 1 Exemplary CNN-based surrogate model. The first block transforms the problem parametriza-
tion into a low-dimensional representation (latent representation) of the solution, and the right part
of the model decodes the corresponding image of the solution field.

ity [4, 17]. In [5, 6, 15], a CNN model has been trained to predict stationary flow
inside a channel with an obstacle of varying geometry; the model is trained in a purely
data-based way using high-fidelity simulation data.

Here, we use a physics-based loss function in the CNN approach, that is, we
optimize the network with respect to the residual of the partial differential equation
(PDE) as well as the BCs of the BVP; this is also denoted as physics-informed or
physics-aware machine learning (ML). Therefore, our approach is related to physics-
informed neural networks (PINNs), which have been introduced in [28] and are
an extension of the pioneering work [20]. However, different from [20, 28], we
employ a finite difference-based discretization inside the loss function and predict
the coeflicients using a CNN. In the classical PINN approach, however a dense neural
network (DNN) is employed as the discretization, and the derivatives are computed
exactly via the backpropagation algorithm.

Physics-informed CNN approaches have already been considered. In particular,
in [31], a model for predicting the solutions of the stationary diffusion equation for
a single fixed geometry but varying BCs, encoded as an input image, is proposed.
In [10], the authors employ a physics-based CNN model for predicting incompress-
ible Navier—Stokes flow in parameterized geometries that is, the exact placement of
the boundaries of the geometries depend on a parameter. More recently, the authors of
this work have extended the previous approaches to a physics-aware CNN for predict-
ing incompressible Navier—Stokes flow in more general geometries and also varying
boundary conditions; cf. [13]. For further works on CNN-based surrogate models
for the approximating the solutions of PDE, see, for instance, [7, 8, 11, 22, 25]. Fur-
thermore, for scientific machine learning (SciML) overview papers with a broader
scope and additional references on related approaches, we refer to [3, 35].

In this paper, we will compare the accuracy and convergence of a CNN model,
optimized using a (stochastic) gradient descent-type method using a physics-based
loss function, with a classical FD discretization, solving the resulting discrete linear
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system of equations using an (unpreconditioned) conjugate gradient (CG) method,
for a simple stationary diffusion problem. In order to focus on these aspects and
remove any other complexities, we focus on a single problem configuration, that is,
we neglect the encoder part in Fig. 1 and focus on training the decoder path. The paper
is organized as follows: In Section 2, we introduce our stationary diffusion model
problem and the simple difference discretization employed. Then, in Section 3, we
briefly discuss how to solve the resulting discrete system of equations using the CG
method as well as how to optimize a CNN model for predicting the same solution.
Finally, we compare the performance of both solution frameworks with respect to
accuracy and convergence in Section 5.

2 Model problem and discretization
Finite difference discretization

Let us consider a simple stationary diffusion problem on computational domain
Q := [0, 1]%: find a function u, such that

~Au=f inQ

1
u=0 on 0Q, M

where f is some right hand side function. We discretize (1) using FDs. In particular,
we consider a uniform grid Qj = {(xi,yj)l-,j} with x; ;= ih and y; := jh, the step
size h = 1/n, and u; j := u(x;, y;). Using a central difference scheme, we obtain the
following approximation of the Laplacian:

Wird,j = 2ij +Uict,j  Wije = 2Wij + Ui

Au(x;) = 2 2

2
Hence, the discrete form of (1) corresponds to the sparse system of linear equations
Au=f. 3

with a symmetric positive definite (SPD) matrix. Here, for simplicity, we use the
same symbol for the solution and right hand side as in (1).

Reformulation of the finite difference problem via the cross-correlation

Before we explain our physics-based network model, let us discuss how (3) can be
written equivalently using the cross-correlation operation

(I=K);; = Z Z Liom, j-nKmn,
m n
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where I and K are two matrices. For simplicity, we omit the the range of the sums,
and regard each matrix coefficient as zero which is outside the range of indices.
Note that the discrete convolution and cross-correlation operations are related in the
sense that one can be obtained from the other by transposition. Moreover, the cross
corelation is actually implemented as the operation of convolutional layers in NN
libraries; cf. [12, Section 9.1].

Now, let U = (Misj)i,j and F = (f(x,-,y.,-))l.’]. be n X n matrices resulting from
re-arranging the solution and right hand side vectors in (3). Then, we obtain

Au=f & U=xK-=F, 4)
where * is the cross-correlation operation and K is given by

| (K- KooKy (010
K = ﬁ K(),—l K(),(] K(),l = ﬁ 1 _4 1 , (5)
Ki-1 Kio Kin 010

which is also denoted as the kernel matrix or filter. This can be easily seen by
comparing the coefficients in (2), (5). Only for enforcing the boundary conditions
for certain coefficients or pixels, respectively, the kernel K has to be modified,
as is standard in the implementation of boundary conditions in finite difference
discretizations.

3 Solving the finite difference problem using classical methods
versus using convolutional neural networks

Efficient classical numerical solvers

Since our model problem, that is, stationary diffusion on the unit square, is arguably
one of the most investigated problems for the development of solvers, there is a wide
range of efficient solvers for (3). Hence, we keep this discussion rather short. A stan-
dard solver for systems with an SPD matrix is the conjugate gradient (CG) method.
The convergence of the CG method is determined by the spectrum of the matrix,
and in particular, it can be bounded in terms of the condition number of the system
matrix A, which scales with hlz for our model problem. The & dependence of the
convergence of the CG method can be fixed by acceleration using preconditioners,
such as domain decomposition [32] and multigrid [33] methods, to name just two
popular classes of efficient and scalable preconditioners for (3).

For the purpose of comparing numerical solvers against a closely related ML
approach for solving a stationary problem, we will use the CG method without
preconditioning as the prototypical solver. It would be interesting to include state-
of-the-art preconditioners in our study and discuss if and how preconditioning could
be applied in the optimization of the CNNs. However, this is out of the scope of this
short paper, and therefore, we will leave this to future research.
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A finite difference solver based on convolutional neural networks

Solving (3) corresponds to finding the coefficients u; ;, which are structured based
on the uniform grid Q;, = {(xi, yii, j}. We can simply interpret the discrete solution
as a pixel image, with each pixel corresponding to one coefficient in the solution
vector u. Hence, in several works, CNNs, which are very effective in image process-
ing, have been trained to learn the discrete solution of a partial differential equation;
cf. Fig.1 for a sketch of this approach and the discussion below. In practice, as we
will also see in Section 5, this approach is not competitive for solving a single BVP.
However, when used as a reduced order model for a parametrized model problem
(e.g., with respect to the geometry), the higher computing costs for the training can
be justified if the solutions of multiple BVPs can be predicted using a single model.

Here, we focus on training a neural network using a physics-informed, sometimes
also referred to as physics-aware or physics-constraint, approach. Then, a neural
network NN is trained to minimize the norm of the residual of the differential
equation, i.e.,

IANN + flig + INN]5q — min,

where ||-||q and ||-|| 5o are some norms defined based on collocation points inside the
domain Q and on the boundary 0Q; as mentioned in Section 1, this corresponds to
the classical PINN approach if a dense NN is used as the discretization. If the output
of the neural network corresponds to an image, that is, if the output data is a discrete
vector on the uniform grid Q; = {(xi, yii, j}, we can employ an FD scheme to
formulate the residual of the PDE, resulting in

lb—A-NN|5 — min, (6)

where the term corresponding to the boundary conditions vanishes since they are
hard-coded within the matrix A. Note that this can be efficiently implemented in
state-of-the-art ML libraries, such as Tensorflow: the matrix A does not have to be
assembled, but it can be applied in a matrix-free fashion by using the FD stencil (2)
as a fixed kernel in a convolutional layer and applying it to the output of the network;
cf. the discussion in Section 2.

We note that solving (6) directly for u is equivalent to solving the least-squares
problem corresponding to (3), which amounts to solving the normal equations

ATAu=ATb. (M

The system matrix AT A is still SPD, so (7) can also be solved using the CG method.
However, the convergence will be much slower, as the condition number

K (ATA) =k (A)?.

The situation is changed further once u is replaced by a neural network NN.
Hence, minimizing the loss function with respect to the network parameters 6 does
not correspond to solving a linear system anymore. Moreover, the loss function is, in
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Fig. 2 Exemplary model
architecture with a depth of
four levels, resulting in 8 X 8
feature maps on the deepest
level. Each level is composed
of convolutions (orange),
strided convolution (red),
upsampling (blue) and/or
concatenation (grey) layers. In
total, this model has 834 627
parameters.

Skip Connections

general, not even a convex function with respect to the network parameters anymore.
Thus, in addition to solving a problem (6) that has a significantly worse conditioning
than the original problem (3), we cannot use the CG method let alone another Krylov
subspace method anymore.

Minimizing (6) with respect to the network parameters, which is also denoted as
training the neural network, is usually performed using either a variant of stochastic
gradient descent (SGD), such as the Adam (adaptive moments) optimizer [18], or
a second order quasi-Newton method, such as L-BFGS [23]. Those optimizers and
their parameters are typically chosen based on heuristics, which clearly shows that,
at this point, we have lost most of the properties of the original problem (3) beneficial
for a numerical solver.

Extension to more complex problems

Even though, in this paper, we focus on a linear problem on a simple square domain,
our approach can be extended to nonlinear problems on more general geometries
in a straight-forward way. In particular, the linear operator A in (6) can be easily
replaced by a nonlinear operator F, which yields the minimization problem

b~ F (NN)||3 — min. (8)

In particular, in the CNN approach for a nonlinear PDE, the operator F' corresponds
to the finite difference discretization of the nonlinear differential operator of the PDE;
cf. [13] for the application to the Navier—Stokes equations. Even though it cannot be
directly implemented using a simple cross-correlation anymore, it can typically be
written as a composition of cross-correlations and element-wise tensor-operations.
Hence, it can still be easily and efficiently implemented using optimized functions
from state-of-the-art deep learning libraries. To extend the approach to more complex
geometries, boundary conditions have to be implemented for the corresponding
output coefficients or pixels, respectively. A parametrization of the problem, for
instance, with the respect to the geometry, can be incorporated via the input of
the CNN; cf. Figs. 1 and 2. For more details, we refer to [13].
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4 Network architecture and hyper parameters

As is usual in the context of NN, the training performance and prediction accuracy
of model strongly depend on the choice of the hyperparameters, which include
the specific network architecture and parameters of the optimizer. In advance of our
numerical study, we have carried out a detailed hyperparameter optimization to obtain
a good performance of the CNN models. In particular, we used the optimized model
for more complex computational fluid dynamics problems with varying geometries;
cf. [13]. Similar to [5, 6, 15], in [13], the CNN model is employed as a reduced
order surrogate model for varying geometries. As a result of the hyper parameter
optimization, we ended up using an architecture which is inspired by the U-Net [30];
cf. Fig. 2. The model is composed of an encoder and a decoder part, each consisting
of several levels. The corresponding levels of the encoder and decoder are connected
with skip connections. Here, each level of the encoder part consists of a convolutional
layer with an increasing number of 3 X 3 filters and a downsizing convolutional layer
with 2 x 2 filters and stride of 2. In the decoder part, each level consists of a normal
3 x 3 convolutional layer, a concatenation layer for the skip connections and an
up-sampling through nearest-neighbor interpolation layer.

In the hyper parameter optimization, we varied the activation function, the number
of filters in the convolutional layers as well as the number of levels of the U-Net type
architecture. Moreover, we performed numerical experiments for different learning
rates, indicating the best performance for GD with a learning rate of 10~ and for
Adam with a learning rate of 5.0 - 107, For more details on the hyper parameter
optimization, we refer to [13].

In this paper, we focus on the effect of different solvers rather than the effect of
different choices of the neural network architecture. In this sense, our major concern
was to obtain a model architecture which is sufficient for approximating the solu-
tion of our the considered model problem. As we can observe based on the results
in Section 5, this is the case for our model. In fact, the number of parameters and
the model capacity could probably be reduced significantly for this model problem,
at the cost of an additional hyper parameter optimization. Of course, a variation of
the hyperparameters could have some impact on the convergence results in Section 5
but it is not obvious how to take the hyperparameter optimization into account in
the comparison in a fair way. Moreover, we do not expect a major difference in the
performance of the different approaches when varying the hyper parameters.

5 Numerical results

In this section, we compare different solution methods for an FD discretization of (1).
In particular, we employ the gradient descent (GD) and conjugate gradient (CG)
methods for the original equations (3) as well as the normal equations (7) arising
from a least-squares formulation of the problem. We compare those results against
training a CNN to predict the coefficient vector using the GD and Adam [18] meth-
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Fig. 3 Convergence of the GD, CG and Adam methods for the original linear equation system (3)
and the least-squares problem eq. (6) for the FD discretization u and the CNN u . Comparison
of the absolute and relative residuum ||r¢ ||> / ||ro||> where re = b — Aug, and the relative error
oo = w™ Il / Mo I

ods for the physics-informed loss function, which corresponds to the least-squares
formulation (6). All CNN computations were performed on NVIDIA V100-GPUs
with CUDA 10.1 using python 3.6 and tensorflow-gpu 2.4 [1].

For our experiments, we choose f = 27% sin(7x) sin(ry) as the right hand side.
The resulting BVP has the analytical solution u* = sin(zx) sin(xry), which we use
as the reference. In this work, we exlusively consider an FD discrezation of the
computational domain Q with N = 128 grid nodes in each direction; this results in
a total problem size of 16384 nodes or degrees of freedom, respectively. For the
classical methods, we use a fixed but random initial guess, the parameters of the
CNNs are randomly initialized using the He normal initialization [16]. We compare
the convergence of the methods via the squared relative residual |7 ||/ ||7o]|?, which
corresponds to a relative mean squared error (MSE). For the classical numerical
methods, we stop the iteration once a tolerance of 1072 for the relative residual or
an iteration count of 250k iterations is reached. The CNNs are always trained for
250k iterations or epochs.

We compare the relative residuals for the various methods applied to the standard
and normal equations in Fig. 3. As expected, the CG method applied to the standard
equation (CG-SE) converges the fastest after 221 iterations; note again that the con-
vergence could be significantly improved using preconditioning techniques. The CG
method applied to the normals equation (CG-NE) converges within 7 737 iterations,
the GD method on the original equation (GD-SE) in 15811 iterations. The GD
method on the normal equations (GD-NE) does not converge within 250k iterations
and reaches a relative residual of 5.2 - 1077 at termination of the iteration.

As can be seen in Fig. 4d, the GD-NE solution, which has not converged within
250k iterations, has a large relative Lj-error of 34 % compared with the analytical
solution. For CG-SE, CG-NE, and GD-SE, we obtain errors of 0.008 %, 0.02 %,
and 0.15 %, respectively, at convergence. In terms of convergence with respect to the
relative squared residual norm, the ML approaches perform worse. Both ML-GD
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Fig. 4 The solutions (top row) achieved with the various methods and the corresponding erorrs
(u* — u) (bottom row) w.r.t the analytical solution at the grid nodes.

and ML-Adam do not achieve a relative tolerance of 10~!2 and the training is stopped
after 250k iterations/epochs with a final relative residual of 1.5 - 1077 for ML-GD
and 3.1- 1078 for ML-Adam. Nonetheless, we achieve relative L,-errors of 0.7 % for
ML-GD and 0.02 % for ML-Adam. These are significantly lower than for GD-NE,
even though the methods terminate at a similar relative residual. In fact, the accuracy
is within one order of magnitude of the CG solutions and even better than the GD-SE
solution; cf. also Fig, 4.

Spectral bias in the CNN training

Let us discuss why, in comparison, the error may be much lower for the CNN
compared to the classical numerical solvers for a residual in the same order of
magnitude. In particular, for the error e and the residual r, we have

Ae=AW" —u)=b—-Au=r

Hence, of course, the relation of ||e|| and ||7|| depends on how the error decomposes
into eigenfunctions of high/low eigenvalues. Since the CNNs were able to achieve
comparatively low error while exhibiting higher absolute and relative residual, es-
pecially compared to the CG solutions, this suggests that the corresponding error is
mainly composed of eigenfunctions corresponding to high eigenvalues. In particular,
this implies that the CNNs exhibit some form of spectral bias, i.e., that they tend to
learn eigenfunctions corresponding to low eigenvalues. Note that the spectral bias
has been previously studied for DNNs [2, 27] and for PINNs [34]. However, to the
best of the authors’ knowledge, it has not been studied for the physics-informed CNN
approach considered here. A more detailed study is out of the scope of this paper
but will be discussed in future research.
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6 Conclusion

In this work, we have compared physics-informed CNNs with classical methods for
solvinge PDEs on the example of the stationary diffusion problem. We have shown
that solution methods that take advantage of properties of the problem, such as the
CG method, outperform the ML approach both in the accuracy achieved and in
the speed of convergence. Yet, the ML solutions learned were within an order of
magnitude of the CG solutions, i.e., they were not infeasible. But the much slower
convergence coupled with the need for hyperparameter optimization as well as the
heuristic nature of the choice of method parameters argue for the use of classical
methods. Nonetheless, with an ML approach it is possible to include parameters,
such as boundary conditions, geometry, etc., as input. In such cases, ML approaches
are superior to classical methods and thus there is a sound reason again to use
them. The extension of this study to more complex problems, the incorporation of
preconditioning, as well as a more detailed discussed of the spectral bias will be the
subject of future research.
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Optimized Robin Transmission Conditions
for Anisotropic Diffusion on Arbitrary Meshes

Martin J. Gander, Laurence Halpern, Florence Hubert, and Stella Krell

1 Introduction

We are interested in solving in parallel anisotropic diffusion problems of the form
Lu:=—div(AVu) +nqu =g inQ c R, u=0 ondQ, )
where A is a symmetric positive definite matrix with W' coefficients,

Axx A
Xy)eQm— Alx,y) =",
(.9) o= (3247

and (x,y) € Q — n(x,y) = 0is in L*(Q). Schwarz algorithms for such problems
are naturally formulated and studied at the continuous level. For a decomposition
of the domain € into possibly non-overlapping subdomains Q;, j = 1,2,...,J, the
parallel optimized Schwarz algorithm with Robin transmission conditions for the
anisotropic diffusion problem (1) computes for iteration index £ = 1,2, ...

Luf. =g in Q;,
ut =0 on dQ; N 082, 2)
¢

AVui ‘nj +pu’ = —AVuf_l -1y +puf‘1 onl';,
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Fig.1 Three typical discretizations for two subdomain decompositions: square-square (ss), triangle-
square (ts) and triangle-quadrangle (tq).

where n; denotes the unit outer normal on the boundary of Q;, and I'j; denotes the
portion of the interface where ; takes data from Q;. The efficiency of the algorithm
is known to depend on the choice of the parameter p, which is usually optimized
for a simple two subdomain decomposition, see [3] for the Laplace case. In [5],
we showed at the continuous level for a general constant diffusion matrix A that
for Q := (—a, a) X (0, b) decomposed into two non-overlapping subdomains Q| :=
(—a,0)x (0,b) and Q, := (0, a) X (0, b) with the interface 'y = I := dQ; NIQ,,
the optimized parameters and associated convergence factors are of the form

2" = F ki) F k), " = V7 Ckmax) = V/F (Kmin) )

\/f(kmax) + \/f(kmin)
where for a general constant diffusion matrix A
. , 1 k)’
flk):= f(r(k)) with r(k):= NAxx +|— | detA, 4)
Axx b

with the function f defined for unbounded and bounded domains by

Joo(F) i= Axxr a = oo,

1= {fam = fu(r) coth(ar) a < )

For both cases, the smallest frequency is kpin = 1 and the largest frequency can
be estimated by kpyax = h% for cell centered (cc) discretization, and kpyax = h% -1
for vertex centered (vc) discretizations, which are almost the same for small mesh
size hy in the y direction, see below for more information.

We show for the three example meshes in Figure 1 the numerically computed
convergence factors g in Table 1 when running the optimized Schwarz algorithm dis-
cretized by Discrete Duality Finite Volumes (DDFV, see [5] for the DDFV Schwarz
algorithm, and [7, 2, 1] for DDFV discretizations in general) for the Laplace problem,
A(x,y) = I, and four anisotropic diffusion matrices, and characteristic mesh size
hy=hy=1h= %, i.e the meshes in Figure 1 twice refined. We used the theoretically

optimized value p* from (3) with kpax = % — 1 corresponding to the vc

=D >;o,cvc
scheme (index cvc for continuous vertex centered), see the comment at the end of
section 3, and then also determined the numerically best working parameter p* and

associated convergence factor ¢*, which we computed (throughout the paper) per-
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Table 1 Numerically measured convergence factors p of the optimized Schwarz algorithm for the
three example meshes square-square (ss), triangle-square (ts) and triangle-quadrangle (tq) for the
Laplace problem and four anisotropic diffusion problems with the theoretical parameter p;, .. and
the numerically best working one p*.

Problem ss ts tq ss ts tq
~ ~ ~ Nk Nk ~ ok ok Nk ok

Axx|Ayy||Poevel P | P | P pT P pT P pT P
1 | 1 [[12.870.592[0.592[0.593([11.89]0.567|]10.87[0.566||11.63|0.559

16 | 1 ||51.50]0.452{0.521]0.602({49.84]|0.439(|46.29|0.475(|44.79|0.556
L 1] 16.01]0.351]0.343]0.586][23.50[0.174[[19.88]0.254][ 11.07|0.487
50.3510.821{0.744)0.687((75.14|0.732{|57.22|0.712{|57.61|0.647
16 |[12.59]0.949(0.919(0.891|26.84|0.884(|22.46(0.841{(21.52{0.842

;|_.>—A ;
—_
(@)}

forming each time 100 iterations and using the last 40 to fit the linear convergence,
to avoid initial fluctuations due to starting with a random initial guess.

We see from this experiment that for the Laplace problem the theoretically de-
termined best parameter at the continuous level pg, ... performs very well on all
meshes, and is close to the numerically best working one p*, with ¢ =~ p*. For
anisotropic diffusion however this is not the case: the performance now depends
on the mesh structure, and the numerically optimized parameter p* can be rather
different from the theoretical parameter py, ... It is this difference we want to better
understand, in particular for DDFV discretizations, which are highly accurate for
anisotropic diffusion.

To start with our investigation, we plot in Figure 2 an example subdomain solution
on the right subdomain €, with interface value equal to 1 and vanishing source term
for the Laplace case and two anisotropic diffusion cases. We see that the anisotropy
deforms the solution quite a bit, and for A, large, the subdomain clearly sees the
boundary conditions at the outer boundary 9 (Figure 2 middle), whereas for A,
large a boundary layer is forming close to the interface I'5; (Figure 2 right). This
indicates that both the subdomain size, as well as the discretization, i.e. the mesh
size, should influence the behavior of the optimized Schwarz method for anisotropic
diffusion, and thus the best value of the parameter p.

Fig. 2 Solutions for Axx = 1, Ay, =1 (left), for Axx = 16, Ay, = 1 (middle) for Axx =1,
Ayy =16 (right), on an isotropic mesh.
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2 Optimized parameters at the discrete level

For rectangular meshes and for a diagonal anisotropy (Ay, = 0), it is easy to
see (see e.g. [4]) that the DDFV scheme leads to two decoupled classical finite
difference schemes, a cell centered (cc) scheme with unknowns at the cell centers,
and a vertex centered (vc) scheme with unknowns at the vertices. In [4], we performed
the optimization analysis in the same rectangular domain configuration as above, for
a discretization associated to the step sizes &, and /., for both the cc and vc schemes
for unbounded (a = o0) and bounded (a < o0) domains. The optimized parameters
and associated convergence factors are again of form (3), with

Fk) == f(v(k)), v(k) = —hln(/l(f?), ./l(zk)k;:h.l + 0 \u(k) + %k)z ©)
u(k) = yy- (4}%3y sin ( 2b’)+n) ,

and the function f is defined for the cc and vc schemes on unbounded and bounded
domains by

foo,cc(y) = 2Ah—xx"tanh (%) s a= oo,
fa,cc(V) = fm,cC(V)COth (Z—:) ,  a<oo,
f(V) = foo’VC(V) = Ah_);XSinh (V) , a=co, @)

fare(¥) = fspe(v)coth (£, a < e,

Again the smallest frequency ki, = 1, and the maximum frequencies can be esti-
mated by kmax = % for the cc scheme and kp,x = h% — 1 for the vc scheme.

3 Asymptotic analysis

In order to understand the difference in the performance of the optimized Schwarz
method in the anisotropic case, we now present a new asymptotic analysis of the
optimized parameters and associated convergence factors. We look at the asymptotic
behavior as A, and Ay tend to zero, their ratio being constant.

We start with the asymptotic analysis of the optimization results (4)—(5) at the
continuous level. When inserting the smallest frequency k = kp, into (4)—(5), we
get in the unbounded domain case

T

foo(kmin) = \/UAxx + (b)zdetA,

and in the bounded domain case
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fu(kmin) = \/nAxx + (%)zdetA coth (Aa \/T]Axx + (%)ZdetA

XX

At the largest frequency k = knax, We obtain the same asymptotics, namely

nVdet A

" +0(1). (8)

fw(kmax) = fa(kmax) =

Now when £, tends to zero, we see from (4) that ar(kmax) tends to infinity, and
therefore coth(ar(kmax)) = 1 + 0(hy). We thus obtain for the unbounded domain
case a = oo for the optimized parameter and associated convergence factor

1
1

o (s (5) deea)” (evaeta) it

1

1
2 7 -1
pzo~l—2(r]Axx+(;—r) detA) (n\/detA) " s,

where f(hy) ~ g(hy) means limp,, o % =1, and when a < oo, we get

(ST

P~ (nAXX + (%)ZdetA)j‘(ﬂ\/M)é (coth (Aa \/nAxx + (%)ZdetA)) h;%,

XX

a mT\2
th A (—) det A
co (A \/n +(3) de

1
2
h;.

2

o5~ 1—2(77Axx+ (%)ﬁet A)i(HX/M)

XX

We see that the asymptotic behavior in the mesh size is the same, but the constants
differ between the bounded and unbounded domain case, clearly indicating that the
continuous analysis on the bounded domain can take into account the anisotropy
observed in Figure 2.

We next perform an asymptotic analysis of the optimization results (6) and (7)
at the discrete level. For a diagonal diffusion matrix A, at the minimum frequency,
k = kmin, we obtain from (6)

H(kmin) = A_X 4% sin’ (2_;) +n|= ATX (77Axx + (E) AxxAyy + O(hi) .
XX y XX

Hence p(kmin) — 0 when the mesh is refined, and because A(kmin) ~ 1 — vV (kmin)
and f(Kmin) ~ 5=/t (kmin), We obtain

~ - 2
fOO,cc(kmin) ~ foo,vc(kmin) ~ \/nAxx + (%) AxxAyy- )

At the highest frequency, k = knax, We obtain for the cc scheme
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o[ A n 2 AxxA
Kma) = —2 4ﬂsin2(—)+ = x| pA, 4RI 4p

#CC( max) Axx hg] 2 77 A%x 77 hg] ﬂ
where 3 := % =, and similarly for the vc scheme,

(kmax) = U ity sinz(fu—h ))+ _ M yAeAyy +0(1)| ~4p
Myc(Kmax) = Acx h%, 5 y n|= Aix h%, .
Note that the case of a Laplacian with an isotropic square mesh corresponds to the

. . . A VAxxAyy
parameter value § = 1. By hyperbolic trigonometric calculus, and = = VB

we obtain the alternative formula fo cc(v(k)) =2 A” ! +’1(k) which ylelds

— Axx B+ ﬁ+B2 AxxAyy —B+W
Foosce (k) = v >
o0,cc \ Kmax hyx 1+6- \//34./32 hy\//? 145- ,_/3+,15’2

AxxA 2 AXXA
N >y2 VB+B - yy Ve (B),

148

with e (B) = \/%_B. Similarly, since foove(v(k)) = %lgf,’j)

trigonometric calculus, we obtain

s 2T 1T

ha 1+28-2\B+B2

= Vot (g4 B ) (14 8- VB B2 (1428 + 2B+ )
= Voot B B = Yoty (),

y

fm,vc(kmax)

with ¢/, (B) = 2+/1 + B. Note that in the special case B = 1, we get Y. (8) = V2 and

Uve(B) = 2v/2, a factor 2 difference. For the unbounded domain case, a = oo, we
then obtain for the optimized parameters and associated convergence factors of the
cc and vc schemes

* 1 n
Poo,cc ™~ WCc(ﬂ)z AxxAyy (A—
yy
* 1 n
Poove ~ Yve (B)? AxxAyy A_ +
Yy

Ploce ~ 1= 2Wec(B) S (A—yy oy

Poove ~ 1= 24y (B)” : (A_yy + (3)2
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In the bounded domain case, a < oo, we see that coth (%) ~ 1 and when

U(kmin) — 0, we have v(kmin) ~ =V (kmin), which implies
—av(hkxmi“) ~ —Ti‘“ n+ (%)2 Ayy = coth (—av(hli’“i“)) ~ coth( %XX n+ (%)2 Ayy) .

(10)
We therefore get for the optimized parameters and associated convergence factors
for the cc and vc schemes in the bounded domain case

1 3 ’

* 1 2\ 4% 2 _1
Pace ~ Vee(B)24AxxAyy (A'% + (%) ) coth (\/X? n+ (%) Ayy) hy?,
* i n T % a 7\2 % —%
Pave ™~ Yve(B)2 AxxAyy (A” +(5 ) coth v n+ (F) Ay hy s

1
Prce ~ 1= 2B (75 + (£)7) coth(\jﬁx n+(g)2Ayy) hy,

Pine ~ 1= 200 (B (= + (£))

These formulas take both the domain size and the mesh resolution into account, also
when the mesh is not chosen appropriately for the anisotropy under consideration.

If one can not use separate parameters for the cc and vc components in a DDFV
implementation, it was shown in [4] that the optimized choice for one parameter is
of the form

p:,ddfv = \/fa,cc (v(kmin)) fa,ve (V(Kmax))

and since asymptotically we have f; cc(V(kmin)) ~ fa.ve(V(kmin)) from (9) and (10),
one should use the optimized parameter p; ,. ~ PZ, dafy 10 that case.

The continuous and discrete asymptotic results lead to the following general
theorem.

Theorem 1 (Optimized Robin parameter for diagonal anisotropic diffusion)

The optimized Schwarz method (2) for the anisotropic diffusion problem (1)
with diagonal diffusion matrix A and a subdomain decomposition of the rectangle
Q = (—a,a) X (0, b) into two non-overlapping subdomains Q| = (—a,0) x (0, b)
and €, := (0,a) x (0, b) has for small mesh size h,, the asymptotically optimized
parameter and associated convergence factor

1
* 1 2\4 1. -5
P~ 0 AAy (2 + (5)) ehny, (1)
1
s

P~ 127 (5 + (5)) chnl, (12)

where in the unbounded domain case, a = oo, we have ¢ = 1, whereas in the bounded
domain case, a < oo, we have
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Fig. 3 Graph of the functions . (8) and . (B) for the discrete analysis, compared to ¢ (8) =
(dotted) from the continuous analysis for small and large 8 range.

) a m\2
€= 0l v Ayyo) = coth | n+(5) Ayl (13)

Furthermore, in the continuous case ¥ = nt, and in the discrete case we have

2
=Y = —_— =Yy = 24/1 14
Y = Yee(B) T+3 or Y =yvw(B) Vi+p (14)

for the cell centered or vertex centered discretizations, with

Ayy h?
=X 15
i A (1

Plotting the (B) functions in Figure 3, we see that if 8 = 1 then the continuous

and discrete analyses give about the same optimized parameter p* and associated
. . Ayy W2 .
convergence factor, especially for the vc scheme. Since § = th’ :XXX , this can be

achieved by having equal mesh sizes hy = h, and isotropic diffusion A,y = Ay,

or by adapting the mesh sizes to the anisotropy, h§ = %hi. Such an adaptation is
y
also recommended for accuracy, since a Taylor expansion gives

Axxu(X+hx,y)—2u(h)§,y)—u(x—hx,y) + Ay, u(x,y+hy)—2u(h);,y)—u(x,y—hﬂ
x v (16)
= (AxxOxx + AyyOyy)u(x,y) + ﬁ(AxxhiB;‘ + Ayyhiaﬁ)u(x, V+...,

_kn [Ayy |
and from the separation of variables solution u(x,y) = e~ » VAxx™ s1n(kb—’r y) we see
A,
A%x
not scale in these entries, and hence to balance the error term, we should choose

that the fourth derivative in x scales like , while the fourth derivative in y does
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A hzizA h? :ﬁﬂzﬁzl (17)
AL UV A 3 '

Hence for 8 ~ 1, we can use the continuous analysis results and expect good perfor-
mance, also in highly anisotropic cases, provided the mesh is adapted accordingly.
If B is very different from one, we should use the parameters from the discrete
analysis to get good performance. We also see from Figure 3 (right) that for large g
the optimized parameters for the cc and vc schemes are becoming more and more
different, and (12) together with (14) indicates that the cc scheme is converging
much faster than the vc scheme in these not well resolved mesh situations. In the
DDFYV case with general meshes, where both cc and vc discretizations are involved,
the importance will then lie on a good optimization of the vc parameter, the cc
parameter playing only a secondary role in these not well resolved cases.

Next, we see from Theorem 1 that if ¢ ~ 1, then we can use the unbounded
domain analysis, since the only term depending on the domain bound a on the left
and right is c¢. Now ¢ =~ 1 if the argument of the coth is large, i.e. either the domains
and thus 7 is large, or 7 is large, or Ai i is large, which is illustrated in Figure 1 on
the right, where we see that the outer boundary on the right does not play a major
role any more’. If none of these hold, then the bounded domain analysis needs to be
used to obtain good performance.

Finally, from p* in Theorem 1, we see the algorithm will converge very fast with
the well chosen p*, provided A, is small or 7 large, or () is small. Having y (8)
small is however not advisable, because the discretization accuracy is only good for
B =1,see (17).

4 Numerical experiments

We can now explain the discrepancies we observed in Table 1 as soon as we solve
anisotropic diffusion problems. There are two reasons: the first one is that when using
the optimized parameter p?, from the continuous, unbounded domain analysis, the
fact that the subdomains are actually bounded in a concrete computation becomes
important as soon as the diffusion in the orthogonal direction to the interface is
large, and the cross diffusion tangential to the interface is small. This is visible also
in Figure 1 showing a corresponding solution in the middle, where we can clearly
see that the boundary on the right makes the solution decay linearly in the direction
orthogonal to the interface, in stark contrast to the Laplace case on the left in Figure 1,
where the decay is exponential. The second reason for discrepancies is the uniform
discretization, which can not resolve well the boundary layers close to the top and
bottom boundaries in Figure 1 (middle), and close to the interface in Figure 1 (right)
which also influence the convergence of the Schwarz method.

! For example, in the case A, = 1 and Ay, = 16, the difference is of order 1071,
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Table 2 Results corresponding to Table 1 but now using the theoretical parameter p; .. from the
bounded domain analysis.

Problem ss ts tq ss ts tq
< < < 5 <5 e <5 =5 <5

Axx|Ayy||Pacve]l P | P | P pr P p P plp
1 [[12.48]0.582[0.581]0.583[11.89[0.567|[10.87]0.566|[11.63[0.559

1

16 | 1 |/60.59(0.514/0.578|0.651||49.84|0.439((46.29(0.475||44.79|0.556
16 | -+ [[28.04]0.258]0.436(0.741([23.50[0.174([ 19.88(0.254[ 11.07[0.487
1

T

16

16 ({48.75]0.826|0.751]0.695||75.14{0.732||57.22{0.712||57.61{0.647
16 ||12.19{0.950(0.9210.894||26.84|0.884((22.46|0.841|(21.52|0.842

Table 3 Results corresponding to Table 2 but now using the discrete theoretical parameters p; .
and p; .., and the numerically best working ones p;. and py.

Problem ss | ts | tq ss ts tq
Axx Ayy p;cc p;vc ﬁ ﬁ ﬁ ﬁ;c ﬁ\tc ﬁ* ﬁ:c ﬁ:c ﬁ* ﬁ:c ﬁ\tc ﬁ*

1| 1 |8.62]12.22|0.573|0.572/0.574]| 8.62 {11.93]0.566|| 7.73 |11.38]0.533||10.49|10.49/0.527
16 | 1 |[|49.16/50.56]0.444(0.509]0.592|49.5949.87(0.439|(45.87|45.89|0.468||39.61{40.13|0.514
— 1123.48(23.48|0.174(0.347|0.698|(23.50|23.44(0.173|(19.75[20.24(0.242||11.42(11.65|0.466
16 {[19.07(84.09|0.723]0.728|0.733||20.01|80.71|0.714[44.46(66.21(0.653|(13.78|58.50]0.621

16 || 1.84 |54.59/0.806|0.834/0.861|| 1.13 [51.09]0.796{| 1.90 [36.72|0.756|| 0.69 (30.80/0.733

|._-»—'a
=

=

As a first remedy, we use the optimized parameter p;, from the continuous,
bounded domain analysis to take into account the boundedness of the domains.
From Table 2 we see that this already improves the performance of the method
when the diffusion is large in the orthogonal direction to the interface and small
tangentially. However for the other cases using the bounded domain analysis is not
sufficient due to the bad mesh resolution in the anisotropic case.

We therefore now use the discrete optimized formulas p;, ,. and p; .. in our DDFV
Schwarz code, which are perfectly adapted to the anisotropy of the problem we are
solving on bounded subdomains, and truly optimize both the vc and cc scheme
component convergence also for the not well chosen mesh resolution. We show the
corresponding results in Table 3. We see that now our parameters predicted by the
discrete analysis for the cc and vc schemes give performance close to the truly best
possible ones for rectangular meshes, and still work well on general meshes for which
our analysis is not valid any more. Furthermore, the performance still follows our
asymptotic analysis, as the plots of the convergence factors under mesh refinement
in Figure 4 indicate.

We finally show numerical results using an anisotropic mesh which gives better
approximate discrete solutions, see the truncation error analysis in (16). We show
the corresponding results for such meshes in Table 4, and in Figure 5. We see that the
continuous analysis gives now very good predictions for the optimized parameters
for the vc scheme, while for the cc scheme their value is still a bit overestimated.
This does however not influence the performance very much.
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Fig. 4 Asymptotic dependence of 1 — p on the mesh size for isotropic meshes and the anisotropic
diffusion problems in Table 3, with & = h, = hy. From top left to bottom right: (Axx, Ayy) =

(16, 1), (16, &), (1,16), (¢, 16).

5 Conclusions

Using asymptotic analysis, we explained rigorously numerical observations on the
performance of DDFV optimized Schwarz methods applied to anisotropic diffusion.
We showed that for strong anisotropic diffusion solved on uniform, non-adapted
meshes, one needs optimized parameters from a more subtle discrete analysis, con-
tinuous optimization does not suffice. When using suitably adapted, anisotropic
meshes such that the discrete solution is a good approximation of the continuous
one, optimized parameters from a continuous analysis perform however well. We
also showed numerically that this remains true if one uses meshes for which a de-
tailed asymptotic analysis as ours on Cartesian meshes can not be performed. For
extensions of the DDFV Schwarz algorithm to Navier-Stokes problems, see [6].

Table 4 Results obtained using the discrete optimized parameters for adapted anisotropic meshes.

Problem SS aniso

Axx|Ayy || Pacee | Paeve | Pe Pacc | Pave P Péc Due o
16 | 1 ||125.13[124.15|0.730(|83.94|118.73|0.718(|82.30|111.96{0.705
16 % 115.321115.09|0.7491|77.371109.43]0.7371|77.37{102.45|0.724
1 16 || 50.35 | 48.75 [0.601([{33.67| 47.67 |0.581|33.37| 46.43 |0.573
T

e | 16 || 12.59 | 12.19 |0.601]| 8.42 | 11.92 |0.580|| 8.42 | 11.63 |0.574
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Fig. 5 Asymptotic dependence of 1 — ¢ on the mesh size for anisotropic meshes and the
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Domain Decomposition Algorithms
for Neural Network Approximation
of Partial Differential Equations

Hyea Hyun Kim and Hee Jun Yang

1 Introduction

With the success of deep learning technology in many application areas, there have
been pioneering approaches to approximate solutions of partial differential equations
by neural network functions [2, 10, 12, 13]. Such approaches have advantages over
the classical approximation methods in that they can be used without generating
meshes adaptive to problem domains or developing equation dependent numerical
schemes. However, its accuracy, stability, and efficiency questions have not yet been
fully answered. In addition, long training time makes the neural network solution
very expensive.

To enhance the neural network solution accuracy, large or deep neural network
functions are usually employed. When training parameters in such large or deep
neural networks, the optimization error becomes problematic to pollute the resulting
computed solution accuracy. To address this issue in the neural network approxima-
tion, we approximate the solution by using partitioned local neural network functions.
For that we first form an iterative scheme based on domain decomposition methods
and we then find local neural network functions that approximate the local problem
solutions at each iteration. Contrary to the single large or deep neural network case,
the local neural network parameter training can be done more efficiently with less
optimization errors.

There have been previous studies that utilize domain decomposition algo-
rithms [14] to enhance the neural network efficiency and accuracy. In [8, 9], al-
ternating Schwarz algorithms were developed to second order elliptic problems and
in the author’s previous study [6], additive Schwarz algorithms were proposed to
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the same model problems, where the neural network functions are formed based on
overlapping subdomain partitions. In both approaches, the proposed methods showed
promising results but concrete convergence study has not been fully considered.
In [4, 5], partitioned neural network functions are formed based on a non-overlapping
subdomain partition and the global cost function is formed to train the parameters in
the partitioned neural network functions. In their approach, the communication cost
between local neural networks becomes enormous, since the number of epochs in the
parameter training easily becomes more than several tens of thousands in practice.

In the author’s recent work [7], a concrete convergence analysis on one-level
and two-level additive Schwarz algorithms was provided with an assumption on the
approximation error in the local and coarse neural network solutions. The numerical
results on the one-level method are consistent with the convergence analysis. How-
ever, those on the two-level methods show that the coarse problem does not help to
accelerate the convergence and it even pollutes the solution accuracy. By the NTK
(Neural Tangent Kernel) theory [3, 15], when training the parameters in the neural
network approximation, the smooth part of solutions is well approximated and the
residual loss for the differential equation is well trained than that for the bound-
ary condition. The local neural network solution errors in our proposed method thus
showed high contrast errors near the subdomain boundary that resulted a less smooth
global error during the iteration. The proposed coarse problem in [7] was not suitable
to correct such a non-smooth global error.

In this work, we propose a partitioned neural network by utilizing a partition
of unity functions and we then apply the additive Schwarz algorithm to propose
an iterative solution procedure on the partitioned neural network functions, where
local neural network parameters are trained to approximate local problem solutions
at each iteration. When training the local parameters, only the residual loss for the
differential equation in each subdomain problem comes in the cost function, and the
boundary condition is enforced directly by multiplying the partition of unity function
as an ansatz to the local neural network function. With this idea, the optimization
error can be reduced when training the local parameters at each iteration compared to
the approaches in [7]. As reported in our previous work [7], the coarse problem in the
two-level method did not work due to the high contrast optimization errors observed
near the boundary of subdomain overlapping region. By utilizing the partition of
unity functions in forming the partitioned neural network approximation, we can
remove such error problems and the coarse problem in the two-level method is thus
expected to work more effectively. Such a partitioned neural network function using
ansatz was first proposed in [11] with the aim of obtaining a more accurate neural
network approximation to highly oscillatory solutions.

This paper is organized as follows. In Section 2, we introduce neural network
approximation methods for solving partial differential equations and in Section 3
we propose one-level and two-level additive Schwarz algorithms for the partitioned
neural network functions, where we present the two methods in our previous work [7]
and extend those methods to the partitioned neural network functions. In Section 4,
numerical results are presented for model elliptic problems and conclusions are
given.
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2 Neural network approximation for partial differential
equations

Among several neural network approaches to solutions of partial differential equa-
tions, we will consider the PINN (Physics Informed Neural Network) method by [12].
Our domain decomposition approach can be applied to other neural network ap-
proximation methods by [2, 10, 13] as well. In the PINN methods, the solution is
approximated with a neural network function U(x;6) and the parameters 6 in the
neural network function are trained to solve supervised learning tasks in order to
satisfy any given laws of physics described by partial differential equations,

L(w)=f, inQ, B(u)=g, ondQ, (1

where £ denotes a differential operator defined for a function u# and 8B describes
a given boundary condition on u, and f, g are given functions.

We assume that the model problem in (1) is well-posed and the solution u exists.
We then approximate the solution u in (1) by a neural network, U(x; #), where the
parameters 6 are trained to minimize the cost function

J(Q) = jXQ(Q) + JX@Q(Q)s

where

Tea(0) = —— S LU 0) - FRP,

(Xol &
1
0) = —— B(U(x;0)) - g(x)|*.
Txza(0) lXaszIXEZXm' (U(x:0)) - gW)|

In the above, X, denotes the collection of points chosen from the region D and |Xp |
denotes the number of points in the set Xp. The cost function Jx,, (6) and Jx,, (6)
are designed so that the optimized neural network U (x;0) satisfies the equations
in (1) derived from physics laws. When training the parameters 6, the following
gradient based method is used,

g+ — g(n) _ Eng(Q(n))

for a given initial (%) and with a suitable learning rate €. Each gradient update step
is called an epoch and usually more than several hundreds of thousand epochs are
needed in such neural network approximation methods. Overall computation cost in
the PINN is thus very expensive compared to the classical approximation methods.

The error between the exact solution u(x) and the computed neural network solu-
tion U (x; §) can be analyzed as follows. Letting U (x; 8*) be the optimal approximate
solution, we obtain

u(x) = U(x;0) = (u(x) - U(x;6")) + (U(x;0%) - U(x36)),
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where the first term in the right hand side is called the approximation error and
the second is the optimization error. The approximation error can be controlled by
enlarging the network size, while the optimization error is difficult to deal with. The
optimization error depends on how to choose the training data set, how to form the
loss functions, and how to perform the gradient based method.

In [11], it was numerically verified that for highly oscillatory model solutions
PINN requires larger neural network functions and larger training epochs to increase
the approximation solution accuracy. Such approximation property in the PINN was
also analyzed by the NTK (Neural Tangent Kernel) theory, see [15]. To enhance
the training efficiency and accuracy, in [11], the approximate solution is formed by
using partitioned neural network functions with a much lesser number of parameters
in each local neural network function than those in the single large neural network
function. When a highly oscillatory solution is localized to a small subdomain, it
becomes less oscillatory and thus it can be well approximated with a smaller neural
network function. The parameter training cost in a smaller neural network function
also becomes much smaller than that in the single larger neural network function. By
utilizing the partitioned neural network functions, we thus expect that for difficult
model problems we can reduce both the approximation error and the optimization
error more effectively than just using a single large neural network function. In
addition, utilizing the parallel computing resources, we can even make our one-level
and two-level methods much more efficient than the single neural network case.

3 Additive Schwarz algorithms for neural network
approximation

In this section, we first review the one-level and two-level additive Schwarz algo-
rithms that were proposed in our previous work [7] and their convergence results
under the approximation error assumption on each local and coarse neural network
solutions. We then introduce a partitioned neural network function to approximate
the solution and propose iterative methods on the partitioned neural network function
to find the convergent iterates to the solution. The iteration methods can be analyzed
as the same way in our previous study [7] to give the same convergence result. As we
will see in the numerical results later, the partitioned neural network function gives
less optimization errors and thus it gives faster convergence than in the previous
work [7].

Our method is developed for the following model elliptic problem in a bounded
domain Q, i.e., to find u in the Hilbert space H'(Q) satisfying

—Au=finQ, u=gonQ, 2)

where H' (Q) denotes the space of square integrable functions up to the first deriva-
tives. In the one-level additive Schwarz method, for a given overlapping subdomain
partition,{Q;}; of the domain Q, with an overlapping width §, the following iterative
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scheme is proposed to find its solution . For a given "™, the following problem in
each subdomain Q; is solved to find u}"“),

D) — (M ih Q\ Q. 3)

L

"™V = finQ, u

Using u§"+l), the next iterate is then formed to give

N
u™ = (1 - Ntyu™ +TZM§"+1),

i=1

where N is the number of subdomains in the partition and 7 is a relaxation parameter.
Let N, be the maximum number of subdomains sharing the same geometric position
in Q. With 7 < 1/N., u'™ converges to the solution u of (2) under a suitably
chosen space of functions, see [14, 16]. The algorithm can be further extended into
a two-level method by introducing the coarse problem,

(n+1) _

—Awo =

fau™inQ, w{™ =0o0naQ,
and by including the coarse problem solution to the iteration formula,
N
u™D = (1= Noyu™ + 7 ((Z u}"“)) + w(()"“)) :
i=1

In [7], following similarly as in the analysis for the variational inequalities [1],
under the assumptions on the stable decomposition property and the strengthened
Cauchy-Schwarz inequality, see [14, Section 2.3], the iterates u("™) converge to the
exact solution u with the convergence rate R(7),

a(u—u™Y y—u™Dy < R(D)a(u —u™,u—u™), 4)

where a(u,v) = fg Vu - Vodx, and R(7) is

R(t)=1- 74+2(N*+1)7?

2
‘r+NgT2 and R(t) =1- 5

2+ Cy +Co

in the one-level case and two-level case, respectively. In the above, the constant Cy is
that appears in the stable decomposition property. In a more detail, in the one-level
case, the constant Cy follows the growth of N.NH/§ and in the two-level case,
the constant Cy follows the growth of N.H /&, under the approximation property
assumption on the coarse Hilbert subspace, see [14, Sections 3.5 and 3.6]. Combining
our convergence analysis in (4) with the bound for Cy, we can thus conclude that for
a suitable choice of 7, the iterates u™ converge to u in the Hilbert space Hé (Q),

D —ufy < Clu™ —ul,,
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with the constant C < 1 increasing to 1 as N increasing in the one-level case,
while with the constant C being robust as N increasing in the two-level case. The
convergent rate C in the one-level method deteriorates as the more subdomains in
the partition while it is robust to the increase of the number of subdomains in the
two-level method, that have been also observed in additive Schwarz preconditioners
to algebraic systems in classical numerical methods.

To find a neural network approximate solution, at each iteration in the additive
Schwarz methods, we approximate the local problem solution and the coarse problem
solution with neural network functions U; (x; 91.("“)) and Wy (x; 9(()””)) and train the
parameters GE"J']) and 9(()"+1) to minimize the cost functions related to each local
problem and the coarse problem, respectively. The neural network iterates U"*+!)
are then defined as

N
1 1 1
U = (1= NDU™ | S0 w6 |

i=1

where Ul.("H) (x) are U; (x; 95'”1)) in ©Q; and U™ (x) in the rest part, i.e., Q \ Q;. In
the iteration method, we should store all the previous step parameters to obtain the
resulting final step solution as a function of x, which is not desirable in the practical
calculation.

To obtain a more practical method, we rewrite the above iteration formula as
follows: for any x in Q

U (x) = (-[s@ DU o+t Y Ui, 0y + Wi (0 |, 9)

ies(x)

where s(x) denotes the set of subdomain indices sharing x and |s(x)| denotes the
number of elements in the set s(x). We introduce

1

T = iy

Z U,-(x, Hi(n+1)) + Wén+1) (x, 0(()n+1)) (6)

ies(x)
and rewrite the above iteration formula into
U () = (1= s U™ (6) + 150D ().

For the iterates U (n+1) (x), they also converge to u(x) in the L?-norm, see [7], and
the following practical one-level (without the term W(g"”) in the iteration formula
in (5) and (6)) and two-level additive Schwarz algorithms are finally obtained:
Algorithm 1: One-level method (input: U®, output: J"*)

Step 0: Let U”) (x) be given and 1 = 0.
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L (n+l) . p(n+)
Step 1: Find 0, inU;(x;6,7"") for
—Au=finQ;, u=U™ ondQ;.
Step 2: Update U (n+1) gt each data set Xpgq, as, see (6),
U (x) = (1= 7s(x0) U™ (x) + 7]s(x)| 0D,

Step 3: Go to Step 1 with n = n + 1 or set the output as U*D if the stopping
condition is met.

Algorithm 2: Two-level method (input: U®, output: U"*1)
Step 0: Let U”) (x) be given and 1 = 0.
Step 1-1: Find 95"”) in U; (x; Gf"H)) for

—Au=finQ;, u=U" ondQ;.
CFind ot _g(n+1)
Step 1-2: Find 6, " in Wo(x; 6, ) for
—Aw=f+AU™ inQ, w=0ondQ.
Step 2: Update U (n+1) at each data set Xs0, as, see (6),
UMD (x) = (1 = 7]s(x) U™ (x) + 7s(x)|T "D,

Step 3: Go to Step 1-1 with n = n + 1 or set the output as U+ if the stopping
condition is met.

For the neural network iterates U™ and U™, the following convergence results
are shown

WY —uly < u™ — )y +

€,

1-C

— C
1T —ullo < == (1" —uly + 1™ —ul; + €|,
-

1-C

where € denotes the approximation error in the local and coarse neural network
solutions, 1™ are the iterates in the Hilbert space, C denotes the convergence rate
in the Hilbert space iterates u™, || - ||o denotes the L>-norm, and C p is the constant
in the Poincare inequality, see [7].

As reported in numerical results in [7], the optimization errors also appear in the
computed neural network solutions and they resulted in less accurate approximate
solutions at each iteration. The resulting errors are observed to have high contrast
near the boundary of the overlapping region, that is harder to be approximated by
the coarse neural network function. Such optimization error behaviors in the neural
network approximation have been analyzed by NTK theory [3, 15]. Regarding the
local problems in our iteration method, the parameters in the local neural network
function are trained to minimize the cost function, consisting of the residual loss
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to the differential equation, and the residual loss to the boundary condition. The
residual loss to the boundary condition is harder to optimize and such optimization
behavior remains as the high contrast error near the overlapping region boundary.

To address such a drawback in our previous method, we form a partitioned neural
network function to approximate the solution u(x),

N
U(x;01,---,0N) = Z¢i(x)Ui(X;9i)v

i=1

where ¢;(x) are a partition of unity functions for the given overlapping subdomain
partition,

N
D) =1,0<¢:(0) <1, ¢i(x) =0,Yx € Q\ Q.
i=1

We note that in [11] the parameters 6; are trained to minimize the following global
cost function without utilizing the partitioned neural network structure for parallel
computing algorithms,

1
L(01,+++,08) = = > |8U(x; 01, ,0n) + F()
(Xol &

1
+— U(x;6y,---,0N) — 2,
oo 2 U601 00) — ()]

xeXpo

In our work, we propose an iteration method where each local parameters 6; can be
trained in parallel for a localized problem at each iteration. Such an iterative solution
procedure is more desirable for the partitioned neural networks.

Our new iteration method is as follows:

Algorithm 3: PNN One-level method (input: U?, output: U"*+1)

Step 0: Set the initial iterate U©) = U(x; Hio), e ,05\(,))).

Step 1: Find 95'”]) in ¢; (x)U;(x; 6;) to approximate the local problem solution;
—au = f+a((1-¢;(x)U™) inQ,

u=00n0Q;NQ, u=gonadQ;NIQ.
Step 2: Set the next iterate;
N
U = (1= U™ +a )’ gi(x)Us(x;0"")
i=1

Step 3: If the stoping condition is met then set the output U (x) = Zi]\i 1 0 () U; (x; 91.("“)),
otherwise continue the iteration to go back to Step 1.
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In Algorithm 3, for the case of floating subdomains, the zero boundary condition
is already enforced in ¢;(x)U; (x; 9;'”1)) by the partition of unity function ¢;(x)
and only the differential equation comes in the loss function. We can thus expect
that the parameter optimization for such a local problem has less optimization errors
than those in Algorithms 1 and 2. Its two-level version can be derived by adding the

. (n+1) .
coarse correction term Wo to the iterates

N
U = (1= U™ +a | Y (Ui 0") + Wolx: 65 |

i=1

where Wy (x; 9(()"“)) is the neural network approximation to the global coarse prob-
lem, i.e., to find w in a coarse subspace V of H; () such that

—Aw=f+aU™, inQ, w=0, ondQ.

For the Algorithm 3 and its two-level version, their convergence can be shown by
following similarly as in our previous work [7]. More rigorous convergence analysis
will be provided in a complete version of the proceeding paper. We note that at each
iteration the local parameters are fully trained for the given differential equation.
Even the case, local parameter training cost per each iteration is much smaller than
the training cost in the single large neural network. The number of training epochs
is much smaller and the gradient update per epoch is also much cheaper for the
smaller local neural network functions. The trade-off is that the total training cost in
our proposed method also depends on the number of outer iterations. As the more
subdomains in the partition, the more outer iterations are needed. It is thus important
to include the coarse component to speed up the outer iterations.

4 Numerical results

For the proposed iterative methods, we consider the following simple one-dimensional
model problem to compare their convergence behavior,

—u" = f(x)in(-11), u(x)=0atx=-1, 1,

where f(x) is chosen to give the exact solution u(x) = sin(7x).

For the domain (-1 1) we introduce an overlapping subdomain partition
with 10 subdomains. We then consider a partitioned neural network with 10 lo-
cal neural network functions, that are defined on each subdomains in the overlapping
subdomain partition. For all the local neural network functions, the number of pa-
rameters is set as 106. We also use the same size of the coarse neural network
function with 106 parameters in the two-level method. When training the parameters
in the local and coarse neural network functions, we use 10000 training epochs in
the gradient method, where we use the Adam optimizer with the learning rate 0.001.
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Fig. 1 Error decay history: Left figure (Error plots for U )y, Right figure (Error plots for U (),
ASM One level (Algorithm 1), ASM Two level (Algorithm 2), PUASM One level (Algorithm 3),
PUASM Two level (Algorithm 3 with the coarse correction term).

We use randomly selected 100 training data points in each local and coarse problem
parameter training.

In Fig. 1, the convergence history in the proposed methods is presented up to
100 outer iterations. The relative L2-errors in the neural network approximate so-
lutions at each outer iteration are plotted and compared. In the left figure, the
errors for the neural network iterates U™ to the exact solution are plotted for the
four proposed methods. In the right figure, the errors for the practical neural net-
work iterates U™ are plotted, see (6) for the ASM Two level (Algorithm 2) and
U™ = (2N, ¢:(x)U;i (x;6"™)) + Wo(x; 6]) for PUASM Two level (Algorithm 3
with the coarse correction term). The error plots in both figures show that the coarse
correction term in the ASM Two level method does not help to speed up the conver-
gence of the ASM One level. The convergence rate is even larger than the ASM One
level method. As discussed earlier, this is related to the optimization error behaviors
in the local neural network parameter training, that produce high contrast errors near
the boundary of the overlapping region.

In the case of the PUASM Two level method, the coarse problem accelerates the
convergence greatly at the early outer iterations. The local problem in the PUASM
case has only the residual loss for the differential equation and the high contrast
optimization error problems are alleviated in this case with the help of the partition
of unity functions. However, at the later outer iterations, the errors can not be
further reduced due to the practical implementation issue in the partition of unity
functions. The practical implementation issue with the partition of unity functions
needs a further investigation and our future research will be focused on proposing
some new idea in forming and implementing the partition of unity functions that are
suitable for neural network approximation.
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Convergence Bounds for
One-Dimensional ASH and RAS

Marcus Sarkis and Maksymilian Dryja

1 Introduction

The ASH and RAS methods were introduced in [2] and rate of convergence theory is
still missing; apparently it does not fall into the abstract theory of Schwarz methods
since the nonsymmetric terms are no compact perturbations of H'-norms. As far as
we know, the algebraic convergence theory using weighted max norms introduced
in [3] is the only theoretical work which establishes convergence however no rate
of convergence. Here, we introduce new techniques to analyze RAS and ASH for
the one-dimensional case. Some of these techniques can be used to establish rate of
convergence in higher dimensions and they will be discussed elsewhere.
Let

Au=f ey
be a system of linear algebraic equations corresponding to the finite difference
approximations of the Poisson problem —u%, = f on the interval Q = (0, 1) with
homogeneous Dirichlet boundary conditions on a uniform mesh in ﬁh =Q, UxoU
Xn+1, Where Qp = {x j};.‘zl is the set of interior nodes of the mesh, and xo = 0 and

Xn+1 = 1 are the boundary nodes. Denote 2 = 1/(n + 1) as the mesh size. The
discretization is obtained by setting u(xg) = u(x,+1) = 0 and

(=Anu) (xj) = W72 (=u(xjo) + 2u(x)) —u(xje))  j=1,---.n

Denote the inner product in Li (0, 1) (which we denote by V) by

(u,v) = (u,v), = hZu(xj) v(x;) and denote lv]1? = (v, v).
j=1

Marcus Sarkis
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We introduce the matrix A
(v, Au) = (v, —Apu).

also as an operator defined on Li (0, 1) with inner product (-, -) and zero Dirichlet
data at xop = 0 and x,,4; = 1. Here the matrix and the operator A will be denoted by
the same letter. It is known that (Av,v) = (VI,v, VIL0) 12 (9 1) for v € Vi, where 10
is the piecewise linear and continuous function with given v(x;) for0 < j < n+ 1.

In order to avoid proliferation of constants, we will often use the notation A < B
(A = B) torepresent A < ¢B (A > ¢B) where the positive constant c is independent
of h, H, 6, and r.

2 ASM, RAS, ASH and RASH methods

Let us decompose the nodes of Q;, into N subdomains and without loss of generality
assume that m = n/N is an integer; see Fig. 1 with n = 28, N = 4 and £ = 2. Define
the nonoverlapping subdomains nodes of Q;,

Qin ={xjs1, %32, "+ ,Xjsm}, where j=({-1)m, 1 <i<N.

Let £ > 0 be an integer and let § = (1 + £)h. We note that £ = 0 is related a block
diagonal preconditioner. Let the extended subdomain nodes of ;s be obtained by
extending by £ nodes to each side of Q;;, inside €, that is,

Qis = {Xju1-6,Xjs2—¢5 " s Xjumse} N Qp, where j=({—-1)m, 1<i<N.
X0 X1 X3 X4 X5
®OOOOOO®OOOOOO®OOOOOO®OOOOOIO®
X X X X ‘ X
0 Q1h 7 QZh 14 Q3h 21 Q4h 29
Qa5
: Q26h ﬁ/gh Q£6h ;
®OOOOé o 0 0 0 0O 0 @® O 00 0 ® 0 0O 0 0 0 0 @
Qay,
(s

© Nodes of fine mesh
= Nodes of coarse mesh
* Nodes of overlap

Fig. 1 (top) Q;, with n = 28 nodes decomposed into four subdomains ;5 with Vol coarse nodes.

(below) The visualization of Q;y,, ﬁih, Qis, 555, and Q;5p = Q; 5, U Q;féh wheni =2and € = 2.
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The mathematical analysis introduced below can also be extended easily for
the case the domain decomposition is obtained by nonoverlapping subdomains el-
ements. We also use the notation Q;5 = {Xjoes Xju1-e, X jameear} 0 Q,, and
ﬁ,-h ={Xj, Xj41, X jema1 } N ﬁh to include their boundary nodes 9€; s and 9Q;,,
respectively. Note that here and below j is a function of i given by j = (i — 1)m for
1<j<N.

Associated to each Q;s, we introduce the restriction operator R;s. In matrix
terms, R;s is an m; X n matrix such that (R;sv)(x;) = v(x;) for x; € &;5, Vv € V},.
Here, mi = m+4¢€, m; = m+2ffor2 <i < N-1and my = m + {. Define
Ais = RisAR];. i

Associated to each Q;s and Q;, we introduce the restriction operator R;j. In
matrix terms, R;;, is an m; X n matrix such that (Iéihv)(xj) = v(x;) for x; € Qi
and (R;jv) (xj) = 0 for x; € ;5\Qin, Yv € Vj,. The superscript tilde notation is
used to recall R;j, maps to €;s rather than Q;;,. For analysis, we will also consider
Risn = Ris — Rij, and denote Q; 55, = Qi s\ Qin.

We will also consider preconditioners with a coarse problem. In order to mimic
the 2D and 3D difficulties, we consider two cases of coarse spaces, the VO1 and the Vg
coarse spaces.

VO1 case: The coarse nodes are given by Qf = {X,v}f.\:ll_1 and Qy = {Xi}f\io where
X; =imh for 0 < i < N and with a zero Dirichlet data at X, = xo and X = x,41. In
other words, the coarse node X; is the rightmost node of Q;, for 1 <i < N —-1.1In
this case, the coarse nodes belong to the overlapping region (if £ > 1).

V2 case: The coarse nodes are given by Qp = {X;}¥ and Qy = {X;}IV! where
the coarse nodes are X; = (i — )mh + |[m/2]hfor 1 <i < N, and Xy = x¢ and
XN+1 = Xp4+1. Here, | m/2] is the integer part of m /2. In other words, the coarse node
X; is about the mid node of €;j,. This is the case the coarse nodes belong to just one
extended subdomain when ¢ is not too large.

In both cases, zero Dirichlet data is imposed at the end nodes. The extrapolation
operator Rg from Qg to Qj is the embedding piecewise linear and continuous
coarse functions on the coarse triangulation ﬁH to the fine mesh Qj,. Define the
coarse matrix by Ag = ROAROT.

The Additive Schwarz Method—ASM preconditioner is defined by

N

Tasm = By A = (Z RISA7 R s + RY A" Ry

i=1

A.

The Restricted Additive Schwarz Method—RAS preconditioner is defined by

Tras = BtA =

ras

N
D RLARs + RgAalRO) A.
i=1
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The Additive Schwarz with Harmonic Overlap Method—ASH preconditioner is
given by

N
Tosh = Bk A = (Z R AT R + ROTAalRO) A.
i=1

The symmetrized RAS method, denoted by RASH, is defined by

N
Tosh = BZL A = (Z RL A Rin + RgA(;lRo) A.

rash
i=1

By construction, the matrices B:l B!

asm®> “ras>
well known that B is symmetric positive definite. The contributions of this paper
proceedings are: 1) to show that B! and B;slh are nonsymmetric and positive definite
on subspaces of V}, and, 2) to establish their lower and upper bounds for exact local
solvers. Lower and upper bounds for Br‘alSh are also established.

The original system (1) is solved by Richardson iterative methods with an optimal
relaxation parameter (or GMRES) with a B! left preconditioner, where B~ will
be By, Brs. By or Bl . We discuss two interpretations (residual and solution
vectors) of the methods. Then the analysis of convergence of the discussed method
is given. The Richardson iterative method for the solution vector is given by

-1 —1 .
Bash and Brash are well defined. It is

W = yk — BN Ak - ), )

where 7 > 0 is a relaxation parameter. By multiplying (2) by A and setting the
residual vector r* = Auk — f we get

Pk =k _zABTIK, (3)

We recall that (u,v) = hX,;_y,u(x;)v(x;) and denote ||u||%: = (u,Cu) for any
symmetric positive definite matrix C. The convergence analysis of ||u — u* || -norm
follows from the convergence analysis of (3) with the ||7¥|| ,-1-norm, and vice-versa,
since r* = A(u* — u). A bound for the convergence rate for (3) with the optimal
parameter 7%, or for the GMRES on the A-norm, is given by the following well
known lemma, for example, see Lemma C.11 of [4].

Lemma 1. Assume that for any r € R"
y1(A7!rr) < (B7'rr) “

and
(AB™'r, B7'r) < y2(A7'r ). )
Then the iterative method (3) converges with rate

1P lar < pE K4 with optimal - 7. = y1/y2 and  p.=(1=7;/y2)".
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3 Reduction of the iterative scheme to a subspace

3.1 ASH inital correction

We first discuss B;slh without the coarse problem. Let u” be determined by

u’ =B Au=Bf.

ash

The problem (1) now reduces to solving Aii = f where f = f — Au® and 72 = u — u®.

Denote R" as the Euclidean space, and denote R:sh c R™ as the set of residual
vectors which are zero at all nodes except at the nodes of Ui’\i 1591'5 N Q. Itis easy
to see, by using that 3| RT,Ry, = I, that f € R . Let VA = A~IR" be the
space of discrete harmonic vectors on € except at the nodes of U{‘:' 10Qis N Q.
Note that i € sth. We also note that the subspace R, is a natural choice since
A(u* —u*=1) e R for the preconditioned Richardson with T = 1 without the initial
correction. From now on, we assume this initial correction was performed and the
superscript hat is dropped. Consider the Richardson method, with u° = 0,

W =uk — B (AuF - f) k=01, (©6)
It is not hard to see, by recursion, that rk e Rg’sh and u* € Va’;h fork=0,1,2,---.

Lemma 2. [1] Foru e V"

Bl Au= Bl Au.

ash asm

Proof. 1t follows from RinAu = RisAuforu e V:sh. a

As consequence, the upper and lower bounds for B, on the space Vg, are also
the upper and lower bounds for B;SIh. We note Lemma 2 also holds for the strip case
in 2D and 3D since no more than two extended subdomains overlap the same node.

We now consider the ASH method with a coarse space. First note that the image
of ARg vanishes at all nodes except the coarse nodes. Therefore if there are no coarse
nodes in any of the €;sj, then Lemma 2 holds and this is the VO2 case. Therefore,
we consider coarse spaces where the coarse nodes are in the overlapping regions,
which is the VO1 coarse space case. It is easy to see after the initial correction u?,
R}, € R" is now the set of residual vectors which are zero at all nodes except
for the nodes of Ul].\:’ 1691-5 N Qj and at the coarse nodes. It easy to see that all
the u* € Vi = A‘lRZQh and that Lemma 2 does not hold. New techniques are

introduced below to treated this case.
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3.2 RAS and RASH initial corrections

After an initial correction 2° = Bl f, R%. c R" is now the set of RAS residual

vectors which are zero at all nodes except for the nodes on Uf\:’ | 0Q;, N Qy, and at the
s 0 20 _ p-l ~0 _ p-1 _
coarse nodes. After a correction &i” = By, f orii” = B, f, Rl = Rpq.

4 Lower and upper bounds for ASH, RAS and RASH methods

Note that Byl > y;A~! is equivalent to B;SIh > y1A~! on the space R" since

(Blr,r) = (r,B;slhr) = (B;:hr, r)y reR" @)

ras

We note however that the lower bound for B;SIh for r € R}, is not necessarily

equivalent to the lower bound for B! for r € R, therefore, separate analyses are

done for the ASH and RAS methods. In order to establish the lower bounds for the
ASH and RAS, we introduce the following interesting result:

Lemma 3. For any r € R",

N
2By ) = 2(Br, 1) = (Bagro 1) + (Bohrr) = Y (AidRisnr, Rignr).  (8)

i=1
Proof. First we add and subtract R;sn to obtain

N N
(B;;hr, r) = Z(A;g Risr, I?ihr)+(A61R0r, Ror) = (Bgslmr, r)—Z(AlT&l Risr, Risnr),

i=1 i=1
and using R;s = Risn + R;j, we have

N N

(B 7 1) =(Baor's 1) — Z(Afg Rinr, Risnr) — Z(A;(;Riéhra Risnr), hence,
i=1 i=1
N N

(Ba_slhr, r) :(B;;mr, r)— Z(Ai_él Rinr, Risr) + Z(A{;Rihr, Rinr)

i=1 i=1

N
— Y (A7aRisnr, Risnr)
py

and the lemma follows by adding and subtracting (A 'Ror, Ror). O

In order to use equation (8) to establish the lower bound of RAS and ASH, we
need to understand the lower bound for RASH, which is treated at the end of this
section.
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We assume from now on that Q ;1) s N ;15 = 0, thatis, the overlap 6 = (1+£)h
is not too large. We recall that £ = 0 is the block Jacobi preconditioner and that ASH,
RAS and RASH are all equal to the ASM.

We first consider the ASH lower bound with B~! = B;SIh. Since the coarse
space Vg has already been treated in the previous section, in the next lemma we
consider only the V(} case.

Lemma 4. For any r € R}, there exists y1 = O(1 + %)‘1 for which (4) holds.

Proof. The strategy of the proof is the following: Consider the equality (8) and use
the following three steps:

Step 1: Consider the equality (8)

Step 2: Find a positive number ¢ such that

(A7 Risnr, Risnr) < c1h?||Risnr||* 1<i<N.

Step 3: Find positive numbers ¢, and ¢3 and let 0 < y < 1 such that

N N
Z |Risnr|l* < h™2 Z (ch(AE,;Riar, Risr) + (1 - V)CS(A,'_(;Rihr,Rihr)) :
[ i=1

i=1
Then using Steps 1 and 2 we obtain

N
Z(A;(;Riéhr,Riéhr)l < yeica(Bomr,r) + (1 = y)eies(BLL 7).

i=1

Step 3: Choose a vy such that max{ycicy, (1 — y)cic3} < 1, independent of H, h
and . Then use equality (8), and the RASH lower bound (see Lemma 8) and the
ASM lower bound [4] to obtain the lower bound O(1 + H/6)!.

Step 1 Assume that r € R7; and let u; sy := Ai_(Sl R;snr. The Q; is given by (see
Fig. 1)

Qis ={xjs1-6,"  Xjamre} N, j=j@)=(G-1)m, 1<i<N

see Fig. 1, and let o o
Qis = (xj_¢ UQis UXjpmeer1) N Q.

Remember that Q; 55, = Q;5\Q;,. Decompose Q;sj, = Qs UQ where

+
oh ioh’

Qisn=Xjme. - x;}NQ, and Q) = {Xjumets Xjamee ) O Q.

Note that Q7 ;, and Q7 o, are empty sets and Q;, C Q(;_1), for2 < i < N, and
Qfsp € Quynppforl <i <N -1

The only node where R; 5,7 is not necessarily zero is at x; € Q. since for the
coarse nodes of Vol, it has no coarse nodes in 975 ne We have

(A7aRionts Risnr) = (isn, Risnr) = huisn (x;)r(x;) = | Rignr ||k luisn (x)].
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Note that u; 51, = Ai_él R;spr vanishes at x;_, (the node on the boundary of ﬁ,-(; inside
Q;_1)n), and it is linear (harmonic) from x;_, to x;. We can relate |u;sp, (x;)| with
its energy on the interval (x;_¢, x;) since u;s54(xj—¢) = 0 and

uish(xj) —uisn(xj_¢)

2 2
hily, (x;) = Ch> ( =

)2Ch = Ch*|uisnl3,,

(xj-£,x;)°

and
2 -1
Wisnlg(x,, x;) < (Aistisn wisn) = (AjsRisnr, Rignr)-

Hence, we obtain ¢ = ¢.
Step 2 Denote R(’ D= = R(i—1)s6R]sR:sn. Easy to see that

IRisnr|I? =r(x)®

=—(R(l Hsr R,éh ')+ —(R st Risnr) + (1 =) (Riiyar, R Ur).

Let us first bound (R(;—_1)s7, Rf:;ll)r). Denote u(;—1)s =_A(_i1,1)5R(i—1)5r~ First see
that u(;_1)s vanishes at x;,1,¢ (the rightmost node of Q(;_1ys), is linear from x;
(a coarse node) to X j414¢, and is linear from x;_, (the leftmost node of ﬁi(;) to x;.
Hence, we obtain u(;_1)s = A(‘il_l)éR(l-,l)(;r,
i—1
(R(i-1)s7 R r) = (AG-nst-1)8> R; 'r) = (A(i—1)5u(i—1)5,E(R§f;h )}

where E(R(l 1)r) € Vi(Q(i-1)5) is an extension of r(x;), where (E(R(’ 1)r)(xj) =
r(x;), Vamshes at xj414¢ and x;_, and is linear in the subintervals (x j-¢,x;) and
(xj,%j114¢). We have

(Rii=nors Rig, 1) < lu-nslm (eproxsorao E R, P ey yanse)

And using the same arguments as above, we have

(i l) 1 1 1 2
|E(Rl§h )|H1(x, ( x7+l+f) h2 (f n )hr (.Xj)

Hence,

! 12
(R(i-1)67> R r) <h (Z+m) lw(i-1) 611 (xj-p xjerae) 1 RisnT Il

Now let us bound (R;_1),7, Rl.(g_hl)r). Define u(;_1y, = A(il_l)aﬁ(i_l)hr and see
that u(;_1), is also harmonic on the subintevals (x;_¢,x;) and (x;,x;j+14¢). Using

the same arguments as above we obtain

1

12
7 €+1) |t (i—1yn 11 (xj g x i) | RiSRT |-

(R<i71)hr,Ri( r)<h” (
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Now let us bound (R;s7, R;s,r and let u; s = Ai‘; R;sr). Using similar arguments

12
(1
(Risr, Rignr) < b (z + m) i 51 b1 (xj-p xjeree) 1 RisHT -

Hence, we obtain 2¢; = ¢3 = (% + f—}rl)

Step 3 A proper choice is y = 2/3 which gives ycico = (1 = A)cie3 <2/3. O

We now consider the RAS lower bound for B™' = B! for both V} and V7.
Independently if we use VO1 or Vg, we have nonzero residuals at x;, Xj41, Xj4m
and X 41 If Vo2 is used, a nonzero residuals will show up also at x ;2]
Lemma 5. For any r € R}, there exists y1 = O(1 + %)’1 for which (4) holds.
Proof. We follow the same strategy as in the proof of the previous lemma.

Step 1 Assume 2 <i < N — 1. Decompose

_ p- +
Rish = R; s, + Risp»

where R 5,7 and R:F(S wt vanish on €; 5 except at the nodes x; and x 4,41, respectively.
We have

(A5 Risnr, Risnr) = huisn (x;)r(x;) + hitg sp (X jema) )7 (X jme1)

and the |u;sn(x;)| and |u;sp(Xj4m+1)| are now controlled by the energy on the
intervals (x;_¢,x;) and (X j4m+1, X j+m+14+¢), respectively. Using the same arguments
as above we obtain

(ArgRisnrs Risnr) < W€ (IR 72+ IR Y7 I12)
Step 3 Assume 2 <i < N — 1. Denote leg*hl)* = R(i_1)s R Risp. We have

_ i—1)— ~ i—1)—
IR 57112 = r(x))? = Y (Ri—tysrs RV ™) + (1= ) (Riimiynr, R 7).

The R}, case can be treated similarly. A difference now with respect to the
ASH analysis is also that u;s now is not discrete harmonic at x;.i, therefore,
E(Rf;_hl)_r) can be extended from r(x;) linearly on the interval (x;_¢,x;) how-
ever with just a zero extension on (xj,x j+1). Another difference is that we cannot
include the term (R;sr, R, r) because the estimates would overlap with estimates

ioh

for (R;sr, REz)j) s hr) on the interval (x;, x41). Fortunately, the region where u;_1)p,
and u(;_1)s now are harmonic in the larger region from x; 4| 2 (the midpoint

of Q;p,) to x;. Denote L7 = (X4 m/2]> Xj+1+¢). We obtain



48 Marcus Sarkis and Maksymilian Dryja

1
2 o= 2 IR 2
hNIR; sur Sv(m_ imjz) * 1) il

i I
1- —Ohl -
+{1=7) (m— lm2] 1+£’) -nle i)

Gathering Steps 1 and 2 together we obtain

N
Z(Ai_glRi&hr»Ri&hr) <y (1 +
im1

¢ -1
o7y B

(Br_alshr, r).

£
0 (757 )

Step 3 Let us choose y = 1/(2 + ¢), that is, when y¢£ = (1 — y)rgt,. We obtain
(1+¢/2+0(1))(Beir,r) = (Bywr,r) + (Bl 7. 7).

where o(1) is a tiny positive number when m is large compared to €. The result follows
from the lower bounds for ASM and RASH since O(1+ H/6) « (1+6/h+o0(1)) =
O(1+H/h). O

We now consider the ASH upper bound.
Lemma 6. For all r € R, there exists y1 = O(1) for which (5) holds.

Proof. Since a node does not belong to more than two extended subdomains, we
have

N
(ABr Bahr) <3 ) (ARTGA7 Rpr, R A7) Rinr |3 (ARD AG' Ror, RY A5 Ror )
i=1

and see that
(ARS A5 Ror, RY A5' Ror) =(Ror, Ag' Ror),
T 415 T 415 a1 B . B
(ARiéAiaRihr» RiaAiaRihr) =(A;sRinr, Rinr)

and using the same analysis of Step 2 of Lemma 4 with y = 1, and the classical ASM
upper bounds

(A7s Rinr, Rinr) <2(A7ARisr, Ris)r +2(A;5 Risnt, Risnr)

11 _
<2+ f(z + m))(Ai;Rmr, Risr).

We now consider the RAS upper bound.
Lemma 7. For all v € R]}, there exists yo = O(1 + {) for which (5) holds.
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Proof. Following the initial steps of the proof of Lemma 6, we now need to estimate
(R, AraRisr, ARG, A7l Rior) = (Rluis, ARG uis)  where uis = A7) Risr.
We have

- . 1 1
T T 2 2 2
(R,‘h”iéy ARihui(S) :|Mi5|H‘(x,~+1,xj+m) + Zuié(xjﬂ) + E“id(xj+m)

<A+ O)(ujs, Aistis).

The result follows from the classical ASM upper bound [4]. O

Due to space limitations and since the analysis for RASH follows the classical
abstract Schwarz theory for positive symmetric definite operators, the proofs for the
RASH lower and upper bounds are ommited.

Lemma 8. For any r € R", there exists y; = O(1 + %)‘1 for which (4) holds.
Lemma 9. For all r € R%, there exists y, = O(1 + £)* for which (5) holds.

Final Remark: The techniques used in the proofs for the two-level ASH and RAS
hold also for their one-level versions, where in Step 3 we replace the lower bounds
for the ASM and RASH from O(1 + H/6) by O(1 + 1/H$).

5 Numerical section and conclusions and future directions

We consider Q = (0, 1) and fix H/h = 64 and 1/H = 8 and vary £. We now test
numerically the optimal lower and upper bounds of Lemma 1 by finding the smallest
eigenvalue of %(B‘1 +BT)r = 1A7" and the largest eigenvalue of BT AB™'v =
A2A~". Here BT stands for the transpose of B~'. The convergence rate of GMRES

or the Richardson with optimal parameter is related to /1 — (y1/+/¥2)?, hence, we
provide numerically y; and /y2.

In Table 1, y; and 4/y; (in parenthesis) are provided for ASH, RAS, RASH and
ASM with no coarse space. The generalized eigenvalue problems described above
are solved on reduced spaces, that is, on the subspace R:sh for ASH and ASM
methods, and on the subspace R/}, for RAS and RASH. As predicted by Lemma 2,
ASH and ASM methods are the same method and satisfy the O (1+1/(H¢))™! (since
we have no coarse space) for the lower bound and the O(1) for the upper bound. The
theory for the RASH method is also sharp by Lemmas 8 and 9. Clearly, RASH is
not a good method due to mostly the upper bound. We were successful in showing
that B,. is positive on the subspace R’ however we can see from the Table 1 that
the theoretical upper and lower bounds are not sharp by a O(1 + ¢) factor. It is an
open problem to improve both bounds.

In Table 2, we run the previous test except that we add the coarse space VOZ. The

conclusions are similar except that the lower bounds are related to O (1 + H/5)™!.
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The techniques introduced here allowed us to obtain the first results on conver-
gence rate and positiveness of Br_alS and B;SIh. We also understand why Br_aih is not
a good method. Some open problems are:

1) Is it possible to improve the lower and upper bounds for B;,1?

2) Is it possible to extend the new theory to the space R” rather than for the reduced
spaces, and also for inexact local solvers?, and

3) The extension of the new theory to the two-dimensional case, with and without a

coarse space, and with or without cross points.

Table 1 No coarse space. The reduced systems: min A; and in parenthesis max v

prec =0 =1 =2 =3

ASH

0.0012(1.9988)

0.0035(1.9965)

0.0059(1.9941)

0.0083(1.9917)

RAS

0.0012(1.9988)

0.0035(1.9965)

0.0059(1.9941)

0.0083(1.9919)

RASH

0.0012(1.9988)

0.0024(3.9931)

0.0035(5.9830)

0.0047(7.9690)

ASM

0.0012(1.9988)

0.1058(1.9965)

0.1594(1.9941)

0.0083(1.9917)

Table 2 Coarse space Vo2 The reduced systems: min A and in parenthesis max v,

prec

=0

=1

=2

=3

ASH

0.0491(2.1180)

0.1058(2.2045)

0.1594(2.2638)

0.2100(2.3119)

RAS

0.0491(2.1180)

0.1058(2.2412)

0.1592(2.3730)

0.2097(2.5122)

RASH

0.0491(2.1180)

0.0767(4.0147)

0.1028(6.0013)

0.1274(7.9861)

ASM

0.0491(2.1180)

0.1058(2.2045)

0.1594(2.2638)

0.2100(2.3119)
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Weak Scalability of Domain Decomposition
Methods for Discrete Fracture Networks

Stefano Berrone and Tommaso Vanzan

1 Introduction

Discrete Fracture Networks (DFNs) are complex three-dimensional structures char-
acterized by the intersections of planar polygonal fractures, and are used to model
flows in fractured media. Despite being suitable for Domain Decomposition (DD)
techniques, there are relatively few works on the application of DD methods to DFN,
see, e.g., [1, 7] and references therein.

In this manuscript, we present a theoretical study of Optimized Schwarz Methods
(OSMs) applied to DFNS. Interestingly, we prove that the OSMs can be weakly scal-
able (that is, they converge to a given tolerance in a number of iterations independent
of the number of fractures) under suitable assumptions on the domain decomposi-
tion. This contribution fits in the renewed interest on the weak scalability of DD
methods after the works [2, 4, 3], which showed weak scalability of DD methods for
specific geometric configurations, even without coarse spaces.

Despite simplifying assumptions which may be violated in practice, our analysis
provides heuristics to minimize the computational efforts in realistic settings. Finally,
we emphasize that the methodology proposed can be straightforwardly generalized
to study other classical DD methods applied to DFNSs (see, e.g., [3]).

2 Scalability analysis for one-dimensional DFNs

We start considering a simplified DFN made of one-dimensional fractures F;, i =
1,..., N arranged in a staircase fashion depicted in Fig 1. The DFN is Q := Uf\ilFl-.

Stefano Berrone
Politecnico di Torino, Italy, e-mail: stefano.berrone @polito.it

Tommaso Vanzan
Ecole Polytecnique Fédérale de Lausanne, Switzerland, e-mail: tommaso.vanzan @epfl.ch
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The boundary of the fractures is denoted with 0 F; and it holds 9Q = Uf.\i |OF;. Further,
0Q can be decomposed into a Dirichlet boundary I'p and a Neumann boundary I'y,
so that dQ = I'p U I'y. The intersections between fractures are called traces and
are denoted by S,,, m = 1,...,N — 1 =: M. We assume that both the vertical and

Fg o Y2 L
F L —t— 0
F4 — y J Y1
X

P AY) S3
Y2
L

Fs —

Fig. 1 Geometry of the simplified DFN and of its one-dimensional fractures.

horizontal fractures have two traces located at 7 = y; and 7 = y, with y; < y»,
(7 being the local coordinate), except the first and last fracture. The mathematical
DFN model consists in the coupled system of partial differential equations for the
hydraulic heads u,

—VjaTj-rjujZf iIle, 8j(u)=0 OllaFj, j:1,...,N, (1)
U, =ujF, onS;,i=1,...,M, 2)
Ou; Oui
— ||+
ot 0Tt
where B; represent boundary conditions (b.c.) (specified later), v; is the local
diffusion coefficient, and [[v]] is the jump of v across the intersection of fractures.
The local solutions u; are coupled through (2)—(3) which enforce continuity of the
hydraulic heads, and balance between the jumps of the co-normal derivatives across
the traces.
System (1)—(3) is clearly prone to a DD approach. We consider a nonoverlap-
ping DD in which each subdomain corresponds to a single fracture, and the opti-
0

mized Schwarz method (OSM) that, starting from an initial guess u ; computes for
n=1,2,... until convergence

=0 onS;,i=1,...,M, 3)

—Vja-rojM;! Zf]' in Fj Bj(u;’) =0 on 6F,»,

6“7 + @u;lzll + 1
n_ _ n— .
FEs +SG_ Uy = Fra +s5_u;2; on Si-1, 4)
n "l
6& +s7ut = — 0 ALy on S
67,- e (9Tj+1 VANAS J

forj=2,...,N—1,whilefor j =1, N,
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_VlaT]Tlu? =fl inFla Bl(u'il) =0’ _VNaTNTNu;’l\] =,fN inFNa BN(”’]{]) =07

ou” oul!
1 + - n 2 + - n-—1 S (5)
_6‘1'1 syul = sjuy " on Sy,
ou” ou”>!
N + n _ N-1 + n—1
[[(9‘1']\/ +SN_1MN—— aT—Nl +SN_1MN_1 OIlSN_l.

The functions f; are the restrictions of the force term on the fracture F; and s;f’_,
j=1,..., M are positive parameters.
To carry out the scalability analysis, we assume for the sake of simplicity that

s;’_ = p € R" and v; = 1 for all j. We study later how to optimize the choice

for %'~ We first discuss the case in which every B; represents a Dirichlet boundary
condition, and then we treat the case in which Neumann b.c. are imposed everywhere,
except at the left boundary of F; (source fracture) and at the right boundary of Fy .
More general configurations can be included straightforwardly in our analysis.

Due to the linearity of the problem, we define the errors e’} := u—u;f and study their
convergence to zero. The errors e; satisfy an error system obtained setting f; = 0
in (4)—(5). Inside each fracture, e is harmonic and has the analytical expression

n é?Tl é?(L—Tl) (6)
el = —X[0y1t ————X(nL
1 2 [0,72] L-7 [72,L]
Al, Al, A2, A2,
e" eJnTjX +ej"()/2_.,..l,)+€j"(r.,~—71)/\/ +ejn(L_Tj))(
P = 0, N -5 ,L]»
J " [0,71] P [71,72] L—7 [y2,L]
éen ™ éen (L - TN)
N N
ex = X0yt ——F———X[n.L]
N i [0,71] L-n [y1,L]
, . . an aln 2, N
J =2,...,N.Unknown coefficients are collected into €” := (¢7, ¢, n et

eRN,N = 2(N —2)+2, and represent the values of the error functions at the traces,
while y[4,p] are characteristic functions which satisfy y (1) = 1if r € [a, b] and zero
otherwise. Inserting these expressions into the transmission conditions (2)-(3), we
aim to express é;.’" in terms of the coeflicients of the errors in fractures j —1 and j +1
atiteration n — 1. A direct calculation, which we omit due to space limitation (see [8]

for more details) leads to the recurrence relation e” = T]e el =M ;,1 Nye*™ ! where

Mpy,Nn € Rﬁ N have the block structure

ab
d
Fy ab
F2 bc
F, ..
My = . , Ny = IR @)

F ..
Fy .. .ab
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with blocks
2 __1_
Fl=p+ L Fy = Pty (172*71) 72[7%/ Fy=p+ L
: , : , , : ,
(L -7) o PrYT5omeon (L =v1)
Y2 . 1 L-y _ L
a _tn

=p-———————,bi=——,ci=p- ,dj=p—- ———.
71 (v2=y1) Y2 -7 (L-v)(y2=-y)" "’ Yi(L=vj)

The next theorem shows that the spectral radius of TI{? is bounded strictly below 1
for every N if the Dirichlet b.c. are imposed on each fracture. Thus, the number
of iterations to reach a given tolerance is independent of N, and OSM is weakly
scalable.

Theorem 1 Let y, + y, = L and s~ = p, Vj. Then, OSM is weakly scalable
for the solution of problem (1) with Dirichlet b.c. on each F;, in the sense that
p(TIf,’) < C < 1, independently of N for every p > 0.

Proof Notice that p(T5) = p(My'Ny) = p(NNMR') < [INyMy!|lw. Direct
calculations show that

py2(L =) = L| 2p(L = y2)? +|L+ (L = 2y2)(L — 2)*p?|
pr2(L=y2) +L|"(p(L=y2) + D)(p(L=y2)(2y2 - L)+ L) |’

INy M3 ||m=max{‘

The first term is clearly less than 1 for every p > 0. For the second term, we
distinguish two cases: if L + (L — 2y2)(L — ¥2)?p?> < 0, then it simplifies to

T2 which strictly less than 1. Similarly, if L + (L = 2y2) (L = y2)2p? 2 0,
2p (L—y2)2+|L+(L-2y2) (L=v2)*p*| _ | p(L—y2) (2y2-L)-L .
then T (T2 G-} = | p(L=v)2ys-Lyar| < 1 being 2y2 > L. Thus,

3C < 1 independent on N such that ||NNM;,1 ||l < C forevery p > 0. O

The hypothesis y; + v, = L is used to simplify the otherwise cumbersome calcula-
tions, but it has not been observed in numerical experiments.

We emphasize that OSMs are not scalable for one-dimensional chains of fixed
size-subdomains [3]. In our setting, the scalability is due to the geometrical config-
uration typical for DFNs, which permits to impose Dirichlet b.c. on each fracture,
being the transmission conditions imposed in the interior. Thus, we observe error
contraction before information is propagated through the iterations across the sub-
domains (see [3, Section 3]). With a similar argument, we expect OSM not to be
scalable if Neumann b.c. are applied on each fracture, as the errors in the middle
fractures would require about N /2 to start contracting. To verify this, we can perform
the same analysis by replacing (6) with appropriate subdomains solutions. We then
obtain the recurrence relation e = T/VV el = 1\7;,1 N ~e' ! where M N N n have the
same structure of (7), but with blocks

B . - | _ 1 1

Fii=p+—, Fs:=p+ ) F2Z=(p CRe R ),
Y2 L~ RZEeT P

—~ 1 ~ 1 - -~ 1

a:=p— b= c=a, dj=p——

v2vi© vy (L=yj)
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Fig. 2 Left and center panel: spectral radii of TI\? and T]\I,V as the number of fractures increases.
Right panel: spectral radius of TND as p varies. Parameters: L =1, y; = 0.2, y, = 0.6, v = 1.

The first two panels of Fig. 2 show the dependence of the spectral radii of Tle and TII\Y
as N increases. While p(Tﬁ ) remains bounded below one, p(TIIVV ) tends rapidly to
one as N grows, thus OSMs are not weakly scalable if the Neumann b.c. are used.

We remark that in applications it is quite common to impose homogeneous Neu-
mann b.c. in internal fractures because at the tip of the fracture the flow exchange
with the surrounding matrix is negligible. In such cases, the analysis suggests two
possible heuristics to improve the convergence of DD solvers. The first one is to stress
the importance of an efficient partition of the fractures into subdomains (each sub-
domain generally contains more than one fracture). Such partition should minimize
the maximum, over floating subdomains, of the distance of each subdomain from
the Dirichlet boundary I'y (see [8] for numerical experiments). Recall that a subdo-
main Q; is called “floating subdomain” if 9Q; N I'p = 0. The second heuristic is
to replace the Neumann b.c. with Robin ones (which would also model the realistic
case of a flux across 0F;). Ref [5] suggest that Robin b.c. would permit to recover
scalability of OSMs for DFN as in the Dirichlet case.

Notice that the rate of convergence of OSMs, which may be independent of N (see
discussion above), still depends on the transmission conditions, hence it is important
to have good estimates of the parameters s;’_. To estimate them, we consider two
fractures F; and F;, which are coupled across a single trace. The general solutions
are given by
el éq‘(L - 1) ég‘rl ég(L -7

X[0] ¥ ————X[pL]l> € =—X[og]+
2 [0,72] L-—v [72,L] 2 1 [0,71] J

e} = Xyi,L]>

where the unknowns are two coeflicients é7 and €7. Inserting these solutions in the
transmission conditions we obtain the scalar recurrence relation for j = 1,2,

vy L R viL ot
(YI(L_YI) sl)()’z(L—yz) Sl)

N s An—2 e
€% =pip(s7,s7,v1,v2)€7™", pip(sy,s7,vi,2) = :
SRV RS (Y PR
Y2(L—v2) L) \7i(L-y) 1
- _ Joopt vaL + _ JHopt | _ viL
If we chose s = s, = S and s7 = 5, = Sy We would have

p(sl‘, ST, v1,v2) = 0, that is, OSM is nilpotent. The right panel of Fig. 2 verifies that
two fracture analysis provides very good estimates for the optimal Robin parameters
in the many-fractures case.
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3 Scalability analysis for two-dimensional DFNs

In this section we consider two dimensional extension of Fig. 2. Each fracture F;
is a two dimensional polygon, see Fig. 3, and the traces, denoted by S, are straight
segments crossing the whole fracture. On each fracture, the local reference system
has coordinates {7}, 7,}. Due to the geometrical configuration, the error can be

Bj(uj) =0
38 =0 e
Vi giﬁ =0 Vi ?ﬁi =0
728 (u;) =0 Sj-1 S; 1Bj(u) =0 Sj
3 Y1 ¥ Y2 l_’TZ
VgL =0 Bi(u) =0 "

Fig. 3 Geometry of a two dimensional fracture.

expanded in Fourier series in each fracture, i.e. e; = 3\ €; (71, k) cos kT”‘rz). The
Fourier coefficients é;(71, k) are obtained imposing the b.c. and the transmission
conditions. The long expressions are omitted due to space limitation (see for complete
expressions [8]). We only report the expressions for the first subdomain

"7y, k) = A"(k)—smh(k_ﬂn) + 80 (k )Smh(k”@ =) i k>0,
et (r, k) = >
1 (k” )/\/072] (kﬂ(L ))X[Yz,
- et (0)y et (0)(L-m11)
_ SRem k = 0.
é1(71,0) vy X0l Tz vy XLl 0

Al}’l

The unknowns é';" (k) are the values attained by the k-th mode of the Fourier ex-
pansions at each trace In numerical computations, k € [kmpin, kmax| for the Dirichlet
b.c., while k € [0, kpax] for the Neumann b.c., kmax = 7 being the maximum fre-
quency supported by the numerical grid and ki, = 7. Similarly to the 1D case, one
can obtain recurrence relations which link the Fourier coefficients of one fracture at
iteration n as functions of the Fourier coefficients of the neighbouring fractures at

T

iteration n — 1. In particular for k = 0, efj := (A" (0), 6 ;"(0),¢é o 5"(0),..., ey (0))

satisfies €} = Tx e~ where T is the matrix of the 1D system with the Dirichlet
b.c.. For k > 0, we obtaln 1nstead e} = TP (k)el!, where Tx” = M3\ Nap has the
same block structure of the 1D case but w1th blocks defined as

_ coth(¥Z (y2-71))

F =
: L preoth(X2 (L—yz ) coth (K2 (y2-y1))

pteoth(EZyy )+coth(5Z (y,-1)) —— )
~sinh(BZ (32-91))
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Fy := p + coth(¥ Tya) + coth(k”(L v2)) and Fy = p + coth(kT”(L -v1)) +
coth(kT” (y1)). On the other hand, the coefficients of N,p are

1
~ sinh(EZ (2 - y1))

¢ = p —coth (k—”(L - 72)) - coth (kfﬂ(yz - 71)) ,

kn km
a := p —coth (Tyl) — coth (T(yz - yl)) s

dj = —coth(—(L y,))—coth (kfﬂyj).

Fig 4 shows numerically that OSM is scalable also for a 2D DFN with the Dirich-
let b.c. Observing that the frequency k& = 0 behaves according to the 1D analysis,
we expect OSM with the Neumann b.c. on each fracture except on the first and last
ones not to be weakly scalable. Repeating the calculations one finds an iteration
matrix TI%,D and Fig. 4 confirms this conclusion.

0.8802966006135 1
20

0.88029660061345

0.8802966006134

0.88029660061335

0.8802966006133 0.965
50 100 0 20 40 60 80 100

N N
Fig. 4 Left and center panel: spectral radii of max e, kmo ] Ty 2D (k) and maxge|o, km] (k)
as N grows. Parameters: L = 1, vy = 0.2, y» = O 6 and p = 20. Right panel

2D .
MAXke [kpin k] Ly~ (K) @8 p varies.

We now derive the optimized parameters by analyzing the coupling of two frac-
tures. Inserting the Fourier expansions into the transmission conditions and defining

]‘](k)—v3j ( th(k y])woth(Z(L—yj))), j=12,

we obtain e"(k) = p(k,s],s +) o"=2(k), for k > 0,j = 1,2, where p(k, 57,87) =

filk)-sy fz(k) st _
20 +s_ ) +S1+' On the other hand, for the constant mode k = 0 we recover the

1D result: é;?(O) = plD(s;,sT)é;?’z(O). To derive optimized parameters, we set
s7 = fi(p), s7 = fa(p) for some p € R*, and we study

min max ., max k, . 8
min, {pm(p) ke[%’km]p( p)} 3

Despite p(k, p) is not defined at k = 0 since coth(+) has a singularity, we observe
that limy 0 o (k, p) = p1p(p). Thus, we introduce the function p(k, p) = p(k, p)
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for k > 0 and p(0, p) = p1p(p), and further simplify the min-max problem to

min max p(k,p). 9
pewke[o’kmax]p( p) ©)

The next theorem can be proved using the same steps of [6, Theorem 2.3]. Fig. 4
confirms that effectiveness of the analysis even in the many-fractures case.

Theorem 2 The solution of the min-max problem (9) is given by the unique p* which
satisfies p(0, p*) = p(kmax, p*).

Future works will focus on testing the results of the analysis presented on more
realistic DFN configurations.
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How Does the Partition of Unity Influence
SORAS Preconditioner?

Marcella Bonazzoli, Xavier Claeys, Frédéric Nataf, and Pierre-Henri Tournier

1 Introduction

The Symmetrized Optimized Restricted Additive Schwarz (SORAS) preconditioner,
first introduced in [8] for the Helmholtz equation and called OBDD-H, was later
studied in [6] for generic symmetric positive definite problems and viewed as a sym-
metric variant of ORAS preconditioner. Its convergence was rigorously analyzed
in [5] for the Helmholtz equation, and in [1] we generalized this theory to generic
non self-adjoint or indefinite problems. Moreover, as an illustration of our theory, we
proved new estimates for the specific case of the heterogeneous reaction-convection-
diffusion equation. In the numerical experiments in [1], we noticed that the number
of iterations for convergence of preconditioned GMRES appears not to vary signifi-
cantly when increasing the overlap width. In the present paper, we show that actually
this is due to the particular choice of the partition of unity for the preconditioner. The
influence of five different kinds of partition of unity on SORAS solver and precon-
ditioner for the Laplace equation has been briefly studied in the conclusion of [4],
where the method is named ORASH. Here, for the reaction-convection-diffusion
equation, we focus on two kinds of partitions of unity, and study the dependence on
the overlap and on the number of subdomains.
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2 SORAS preconditioner and two kinds of partition of unity

Let A denote the n X n matrix, not necessarily positive definite nor self-adjoint,
arising from the discretization of the problem to be solved, posed in an open do-
main Q ¢ R¥. Given a set of overlapping open subdomains Q;,j=1,...,N,such
that Q = Uj\’: . Q; and each Q; is a union of elements of the mesh 7" of Q, we
consider the set N of the unknowns on the whole domain, so #N = n, and its
decomposition N = Uj.vz | Nj into the non-disjoint subsets corresponding to the

different overlapping subdomains Q ; N Q, with #N; = n;. Denote by ¢ the width
of the overlap between subdomains. The following matrices are then the classical
ingredients to define overlapping Schwarz domain decomposition preconditioners
(see e.g. [2, §1.3]):

* restriction matrices R; from Q to ﬁj N , which are n; X n Boolean matrices
whose (i,i) entry equals 1 if the i-th unknown in N; is the i’-th one in A and
vanishes otherwise;

e extension by zero matrices RT from Q i NQto Q;

* partition of unity matrices D 2('-], which are n; X n; diagonal matrices with real non-
negative entries such that »; =1 RJT. D;R; = I and which can be seen as matrices
that properly weight the unknowns belonging to the overlap between subdomains;

* local matrices B}, of size n; X nj, which arise from the discretization of subprob-
lems posed in Q 7 N Q, with for instance Robin-type or more general absorbing
transmission conditions on the interfaces 0Q2; \ 0Q.

Then the one-level Symmetrized Optimized Restricted Additive Schwarz (SORAS)
preconditioner is defined as

N
-1. T -1
M= § R;D;B;'D;R;. ey
J=1

Note that M~! is not self-adjoint when B ; is not self-adjoint, even if we maintain
the SORAS name, where S stands for ‘Symmetrized’. In fact, this denomination was
introduced in [6] for symmetric positive definite problems, since in that case SORAS
preconditioner is a symmetric variant of ORAS preconditioner Zj.vz | RJT. D‘,-BJ‘.IR‘,-.
Thus, the adjective ‘Symmetrized’ stands for the presence of the rightmost partition
of unity D ;. Werecall that ‘Restricted’ indicates the presence of the leftmost partition
of unity D ; and that ‘Optimized’ refers to the choice of transmission conditions other
than standard Dirichlet conditions in the local matrices B;.

Here we focus on the influence exerted by the choice of partition of unity matri-
ces D ; on the convergence of GMRES preconditioned by (1). Indeed, several defini-
tions of the diagonal matrices D ; are possible to ensure property Zj.\’: 1 R]T. DiR;=1.
In general, the diagonals of the D ; can be constructed by the interpolation of contin-

uous partition of unity functions y;: Q — [0,1], j =1,...,N: Z}Vl/\/j =1inQ,

and supp(x;) C Q;, soin particular y is zero on the subdomain interfaces 0Q; \ 0Q.
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X1 X2 X1 X2

o

(a) PUL, 6 =2h (b) PU2, 6§ =2h
X1 X2 X1 X2
, 2 , 2
(c) PUL, 6 =4h (d)PU2, 6 =4h
X1 X2 X1 X2
a Q a, Q
(e) PUL, 6 = 6h (f) PU2, 6 = 6h

Fig. 1 Illustration in a one-dimensional two-subdomain case of the two kinds of partition of unity
functions y;: & — [0, 1] (PU1 on the left and PU2 on the right), with increasing width of the
overlap ¢ from top to bottom.

In addition, in the case of ORAS fixed-point iterative solver, also the first deriva-
tives of y; are required to be equal to zero on 9Q ; \ 02, because this property ensures
that the continuous version of ORAS solver is equivalent to Lions’ algorithm, see
e.g. [2, §2.3.2] for a particular model problem. An instructive calculation for a sim-
ple one- (and two-) dimensional problem, which shows an analogous equivalence
property for RAS solver, is given in [3]; a more general equivalence result for ORAS
solver is proved in [10, Theorem 3.4]. This first choice of Partition of Unity (PU1),
where the gradient of y; is zero on the subdomain interfaces 92 \ 9€, is illustrated
in a one-dimensional two-subdomain case in Figure 1, left, and starting from an
overlap 6 = 4h. Note that PU1 in Figure 1 is actually different from the original
RAS/ORAS partition of unity, which is defined for any overlap size ¢ multiple of A,
but essentially just at the discrete level, and takes only the values O or 1; in the orig-
inal RAS/ORAS articles, the D are indeed hidden inside the definition of special
extension matrices ]}’]r related to an auxiliary non-overlapping partition of the do-
main (see e.g. [3, 10] and references therein). However, since the PU1 functions
in Figure 1 are symmetrical to each other, defining the D ; by interpolation of the y;
is more practical for a parallel implementation.

A second kind of Partition of Unity (PU2) is illustrated in Figure 1, right, where
the y; functions are different from zero in the interior of the whole overlapping
region. This choice is motivated by the fact that using PU1 for SORAS preconditioner
can hinder the communication of information between subdomains since in (1) the
matrix D is also applied before BJ‘.1 , that is before the local problem solve. Indeed,
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the numerical experiments performed in [1], where PU1 was used, show that the
number of iterations for convergence of preconditioned GMRES does not vary
significantly when increasing the overlap size (see also Tables 1,2,3 in Section 4).

3 Definition of the model problem

As in the second part of [1], we consider the heterogeneous reaction-convection-
diffusion problem in conservative form:

(@)

cou +div(au) —div(vVu) = f inQ,
u=0 onl,

where Q c R4 is an open bounded polyhedral domain, I' = dQ, n is the outward-
pointing unit normal vector to I', ¢g € L®(Q), a € L¥(Q)4, diva € L*(Q),
v € L®(Q), f € L*(Q) and all quantities are real-valued. We denote & := co+diva/2,
and suppose that there exist - > 0, ¢4 > 0 such that

¢_ <¢é(x) <¢,ae. inQ, 3)

and that there exist v_ > 0, v, > 0 such that v_ < v(x) < v, ae.inQ. The

variational formulation of problem (2) is (see e.g. [1, §4]): find u € H(l)(Q) such that

a(u,v) = F(v), forallve H(')(Q), )

1 1
a(u,v) ::/(Euv+—a~Vuv——ua-Vv+vVu~Vv), F(v) ::/fv.
Q 2 2 Q

On each subdomain we consider the local problem with bilinear form

1 1
aj(u,v) :=/ (Euv+§a~Vuv—Eua-Vu+vVu-Vv)+/ auv,
Q; 8Q;\T

where we impose an absorbing transmission condition on the subdomain interface

0Q; \ 0Q given by (x) = v/(a-n)? +4cov/2 (see e.g. [7]).

4 Numerical experiments

We simulate problem (4) with Q a rectangle [0, N - 0.2] x [0,0.2], where N is the
number of subdomains. In Tables 1,2,3 we take N = 5 and

f =100exp{-10((x = 0.5)> + (y = 0.1)®)}.
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In Table 4, we test weak scaling by varying N, with
f =100exp{-10((x = 0.1)> + (y = 0.1)®)}.

The problem is discretized by piece-wise linear Lagrange finite elements on a uniform
triangular mesh with 60 nodes on the vertical side of the rectangle and N - 60 nodes
on the horizontal one, resulting in 18361 degrees of freedom for N = 5, and 7381,

Table 1 Iteration numbers for SORAS preconditioner (N = 5).

#PU1(PU2)
a=2n[-(y-0.1),(x-05)]T 6=2h 6=4h S5=6h &=8h

co=1,v=1 2121)  20(17)  20(15)  19(14)
co=1, v=0.001 14(14) 1311 12(11)  12(10)
co=0.001, v=1 2121)  20(18) 20(15)  19(14)
co = 0.001, v = 0.001 15(15)  14(12)  13(11)  13(11)

Table 2 Repeat of Table 1 but with a = [—x, —y]7. In this case diva = -2 is negative and
¢ = cp — 1 does not verify condition (3).

#PU1(PU2)
a=[-x,—y]" §=2h 6=4h 6=6h &6=8h
co=1,v=1 2121)  21(19)  20(17)  20(15)
co=1, v =0.001 16(16) 16(14) 16(13)  16(13)
co=0.001, v =1 22(22)  22(19) 22(17)  21(16)
co =0.001, v = 0.001 17(17)  16(15)  16(14)  16(13)

Table 3 Repeat of Table 1 but with a = [1,0]7 and with Streamline Upwind Petrov-Galerkin
stabilization for the Galerkin approximation.

#PU1(PU2)

a=[1,0]" 6§=2h 6=4h &6=6h &6=8h

co=1,v=1 20(20) 20(18) 20(16) 20(15)

co=1, v=0.001 11(11)  11(12)  11(12)  11(12)

cp=0.001, v=1 20(20) 20(18) 20(16) 20(15)

co =0.001, v =0.001 12(12)  12(12)  12(13)  12(12)

Table 4 Iteration numbers in a weak scaling test (& = 4h).
#PU1(PU2)

a=[1,0]" N=2 N=4 N=8 N=16 N=32 N =64
co=1,v=1 18(15) 23(20) 28(24) 35(28) 36(29) 36(29)
co=1, v=0.001 8(8) 10(12) 16(16) 23(24) 37(37) 63(61)
co=0.001, v=1 18(15)  23(20) 29(25) 35(29) 36(29) 36(29)

co =0.001, v =0.001 8(8) 1012)  16(17)  24(25) 40(40) 71(71)
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14701,29341, 58621, 117181, 234301 degrees of freedom for N = 2,4, 8, 16,32, 64
respectively. The domain is partitioned into N vertical strips, then each subdomain is
augmented with mesh elements layers of size §/2 to obtain the overlapping decompo-
sition: the total width of the overlap between two subdomains is then 6. In particular,
for 6 = 2h,4h, 6h, 8h the ratio between the subdomain width (604) and § is equal to
30, 15, 10, 7.5. We use GMRES with right preconditioning, with a zero initial guess
in Tables 1,2,3 and a random initial guess in Table 4. The stopping criterion is based
on the relative residual, with a tolerance of 107, To apply the preconditioner, the
local problems in each subdomain are solved with the direct solver MUMPS!. All
the computations are done in the ffddm framework [11] of FreeFEM?2.

We compare the number of iterations for convergence (denoted by # in the tables)
using the two kinds of partition of unity: the results for PUI were also included
in [1] and the results for PU2 are reported inside brackets in Tables 1-4. In £fddm
framework, the first partition of unity is selected by the flag -raspart, while the
second partition of unity is the one used by default.

As in [1], we examine several configurations for the coefficients in (2). First, in
Table 1 we consider a rotating convection field a = 27[—(y — 0.1), (x — 0.5)]7 and
small/large values for the reaction coeflicient c( and the viscosity v. We can see that
a larger overlap helps the convergence of the preconditioner, especially with PU2,
while with PU1 the number of iterations does not vary significantly. Moreover, with
both kinds of partition of unity, the number of iterations appears not very sensitive
to the reaction coefficient ¢, while it increases when the viscosity v is larger.

Then, in Table 2 we take a = [—x,-y]”, which has negative divergence
diva = -2, to test the robustness of the method when condition (3) on the positiveness
of ¢ is violated: in this case, ¢ = cog—1,s0¢ =0, ¢ = —0.999 for ¢y = 1, ¢y = 0.001
respectively. We can still observe a convergence behavior similar to the one of Table 1.

Finally, in Table 3 we consider a horizontal convection field a = [1, 0]", which
is normal to the interfaces between subdomains. Since in this case non-physical
numerical instabilities appear in the solution, we stabilize the discrete variational
formulation using the Streamline Upwind Petrov-Galerkin (SUPG) method (see for
instance [9, §11.8.6]). In this configuration for the convection field, for low viscosity
v = 0.001 the dependence of the iteration number on the overlap size ¢ appears to
be not significant, even with PU2.

Again in this third configuration with a = [1,0]” and SUPG stabilization, we
perform a weak scaling test by taking Q = [0, N - 0.2] x [0,0.2] for increasing
number of subdomains N, and § = 4h. We can see that especially in the cases with
low viscosity v = 0.001, convergence deteriorates with N, as expected since we are
testing a one-level preconditioner.

In summary, our numerical investigation shows that, for the considered SORAS
preconditioner, PU2 generally improves the iteration counts obtained with PUI.
Moreover, the first kind of partition of unity (PU1), which would be the natural
choice for ORAS solver instead, yields for SORAS preconditioner iterations counts

Thttp://mumps.enseeiht. fr/
2https://freefem.org/
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Table 5 Minimum and maximum eigenvalues of the preconditioned operator.

PUI(PU2)
a=[0,0T &6=2h 6 =4h 6 =6h 6 =8h
Ain 050 (0.50)  0.50(0.50)  0.50(0.50)  0.50 (0.50)
Amax 11.25(11.25) 10.61 (5.98) 10.07 (4.01)  9.60 (3.02)

05t

\ // 4051

™~ ~
\\\\ i —

(a) PUL (b) PU2

Fig. 2 Numerical range of the preconditioned operator (a = [-x, —y]7).

that do not vary significantly when increasing the overlap width, whereas using the
second kind of partition of unity (PU2) a larger overlap gives faster convergence.

To conclude, we wish to provide a deeper explanation of the observed effects.
First, we examine the symmetric positive definite case, with a = [0, O]T, co =1,
v =1(so ¢ = co > 0), and report in Table 5 the largest and smallest eigenvalues
of the preconditioned operator. We take N = 2 and 40 nodes on the vertical side of
the rectangle, 2 - 40 nodes on the horizontal one. Note that SORAS preconditioner
for generic symmetric positive definite problems was analyzed in [6], but no explicit
discussion about the influence of the partition of unity was included there. On the
one hand, the largest eigenvalue of the preconditioned operator is controlled by the
modes of the local generalized eigenvalue problems defined in [6, Definition 3.1],
where the partition of unity matrices appear in the local operator on the left-hand
side: Table 5 shows that indeed A« is smaller for PU2, which is less steep than PU1,
especially when increasing the overlap width ¢ (see Fig. 1). Moreover, with PU1,
the dependence of A« on ¢ is much less significant than with PU2. On the other
hand, the smallest eigenvalue of the preconditioned operator is controlled by the
modes of the local generalized eigenvalue problems defined in [6, Definition 3.2],
where the partition of unity is not involved: in Table 5 we can see that indeed Apiy
is independent of the partition of unity.
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For the non-symmetric case, with a = [—x, —y]T, co = 0.001, v = 0.001 (so
¢ = co—1 < 0), we plot in Fig. 2 the contour of the numerical range of the
preconditioned operator for overlap widths that range from 6 = 2/ to ¢ = 8h, for the
two types of partition of unity. We can remark that for PU1 (Fig. 2, left) the numerical
ranges practically coincide for the different overlap widths, whereas for PU2 (Fig. 2,
right) the numerical range gets smaller for larger overlap width. This explains the
more favorable convergence properties of preconditioned GMRES with PU2 when
increasing the overlap width, and the much less significant influence of the overlap
in the case of PU1.
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Convergence of the Micro-Macro Parareal
Method for a Linear Scale-Separated
Ornstein-Uhlenbeck SDE

Ignace Bossuyt, Stefan Vandewalle, and Giovanni Samaey

1 Model problem and motivation

In this work, we consider a two-dimensional slow-fast Ornstein-Uhlenbeck (OU)

stochastic differential equation (SDE) [9], modelling the coupled evolution of

a slowly evolving variable x € R and a variable y € R that quickly reaches its
_|a B

equilibrium distribution:
dx] [ [x 1 0 ]
dy| ~|v/el/e] |y 01/Ve

where dW € R? is a two-dimensional Brownian motion and € € R is a (small) time
scale separation parameter € < 1. The initial condition has a distribution with mean
2.0 Z”’O], and time t € [0, T].
ny,O Z'y,O

Model problem (1) mimics the general situation where x is a low-dimensional
quantity of interest whose evolution is influenced by a quickly evolving, high-
dimensional variable y, all described by SDEs. The joint probability density of x
and y obeys a Fokker-Planck equation (see, e.g. [3]). Instead of directly solving
this partial differential equation using classical deterministic techniques, which suf-
fer from the curse of dimensionality, the corresponding SDE can be solved using
a Monte Carlo method. In this paper, our aim is to obtain insight in the conver-
gence of a parallel-in-time (PinT) method applied to the low-dimensional linear
OU model problem (1). In our method, the fine propagator of the SDE is based on
a high-dimensional slow-fast microscopic model; the coarse propagator is based on
a model-reduced version of the latter, that captures the low-dimensional, effective
dynamics at the slow time scales. This problem allows for an analytic treatment, if

dt +o dw. (1)

[m x,0 M y,O] and covariance matrix

Ignace Bossuyt, Stefan Vandewalle, Giovanni Samaey
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e-mail: ignace.bossuytl @kuleuven.be, stefan.vandewalle @kuleuven.be,
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the quantities of interest are the mean and the (co)variance of x and y. We expect
that this convergence analysis can be useful as a stepping stone for analysing PinT
methods for higher-dimensional (nonlinear) SDEs.

1.1 Derivation of a reduced model

The averaging technique from [7, chapter 10, see, e.g., Remark 10.2] allows to define
the reduced dynamics variable X, that approximates the slow variable x in (1). This
technique exploits time-scale separation in order to integrate out the fast variable
with respect to p™ (y|x), the invariant distribution of the fast variable y conditioned
on a fixed slow variable x.

The reduced model reads as follows (Ay and Xy are defined implicitly):

dX = A(X)dt + S(X)dW 2)
with

A(X) = /ya(X,y)p“’(yIX)dy =AsX = (a— ﬁ%)x

SX)S(X)T = /y S(Xoy)s(Xo )T p= (51 X)dy = B3 = o,

where Y denotes the domain of y. It can be shown that for the OU system (1), the

conditional distribution p*(y|x) = N (’z—x, g’—;) (see [7, Example 6.19]).

The reduced model (2), while it is only an approximation to the slow dynamics,
offers two computational advantages w.r.t. the full, scale-separated system (1): (i) it
contains fewer degrees of freedom, and (ii) it is less stiff with a computational cost
that is independent of €. As € approaches zero, the multiscale model (1) gets more

stiff, while the (cheaper) reduced model becomes a more accurate approximation.

1.2 Moment system for the Ornstein-Uhlenbeck process

The evolution of mean and variance of a linear SDE can be described exactly using

the moment models from [1]. Thus, for the linear Ornstein-Uhlenbeck SDE model

problem, we can use these linear ODEs instead of using a Monte Carlo simulation.
Moments for reduced model. The evolution of the mean of X in (2) is given by

de _ _,8_’)/
7 = (a )mx. (3)

The evolution of the variance of the reduced system is given by the ODE

dXx

I :AZZX+Z2:2(Q—%)Z)(+O'2. 4)
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Moments for multiscale model. The evolution of the mean of the multiscale
SDE (1) is described by the following linear ODE:

d |my| [a B||mx
dt [my} - [7/6 {/6] [my] ®

The evolution of the covariance of (1) is given by the linear ODE 3 = BsY + by:

T 20| 286 0 )M o?

di Sey| =|v/Ela+ /e B Zep|+] O (6)
! 2y 0| 2y/e 2/e| | Zy o?/e

where we define X, = [ny Zy]T, and where the blocks of By are named as
Be = [ 2a | plL a+l/e B

=7 [ax/el-Ax/e 2y/e 20/e
fast dynamics, we assume that the parameters in (1) are chosen such that the real part
of the eigenvalues of the matrix Ay are all positive us ; > p— > 0. This condition is
satisfied for instance for any «, 8 € R if { and y are sufficiently small.

, where Ay = — . To ensure stability of the

2 The Micro-Macro Parareal algorithm

The Micro-Macro Parareal (mM-Parareal) for scale-separated ODEs [5] and for
SDEs [4], is a generalisation of the Parareal algorithm [6]. It combines two levels
of description: (i) the micro variable u, with corresponding fine propagator ¥, and
(ii) the macro variable p, which is lower-dimensional, with coarse propagator C.
These levels are related through coupling operators: the restriction operator R ex-
tracts macro information from a micro state, the lifting operator £ produces a micro
state that is consistent with a given macro state, and finally the matching operator M
produces a micro state that is consistent with a given macro state, based on prior
information of the micro state. Examples of these operators are given in the sequel.
The mM-Parareal algorithm iterate at iteration k and time step n is given next. For
k = 0 (initialization), we have

p2+1 = C(pg) u(r)wl = L(pgﬂ)’ (7)
and for k > 1,

Pt = Clpy™) +R(F (uy)) - Cph)

Mk+1 :M(pk+l T(Uﬁ))

n+l n+l?

®)

If the coupling operators are chosen such that M(Ru, u) = u, then at each iteration it
holds that pX = Ruk. Classical Parareal [6] corresponds to the case R = £ = M = T.

Convergence of Micro-Macro Parareal for linear scale-separated ODEs.
In [5], the convergence of mM-Parareal for a linear scale-separated ODE is studied.
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We briefly review the main ingredients of the theory, because we will use them
further on to study the convergence for our model problem (1).

The test system in [5], modelling the coupled evolution of a slow variable r € R
and a fast variable v € R?, p > 1, has the following structure:

Fl | a pT r
|~ |g/e —AJe| |v
where A € 1 X1 has positive eigenvalues: the fast component v is dissipative. The

model for the approximate slow variable U, and the parameter A, are defined as
follows:

(€))

U=AU= (a+pTA_1q) U, (10)

with U(0) = Uy = rg. In [5, equations (2.8), (2.13) and (2.14)] the following
properties of the multiscale system (9) and its reduced model (10) are proven (the
subscript - denotes the initial condition):

sup |r(#) = Upexp(Ar)| < Ce(|rol + [log = A groll), (1D
t€[0,T]
sup [r(1)] < C(lrol + €lluol]), 12)
t€l0,T]
sup lo()l < C(lrol + €llvoll), 13)
tE[tBL,T]

where the constant C only depends only on A, p, g, a and T (see (9)).

Using the properties (11)—(13), in [5], the convergence of mM-Parareal for the lin-
ear test problem (9) with coarse model (10) is analysed, using the restriction operator
R( [r, U]T) = r (with R*( [r, v]T) = v), the lifting operator L(U) = [U, A‘qu]T

. T .
and the matching operator M(U,u) = [U , RLu] . We now present two minor
extensions to existing Micro-Macro Parareal convergence lemmas for later use.

Lemma 1 (Convergence of mM-Parareal for nonhomogenous linear ODEs) The
mM-Parareal solution of the system tt = Au + b equals the mM-Parareal solution of
the system v = Av, withv = u = A™'b, if v(0) is chosen v(0) = u(0) — A~'b, with A
and b constant. Assume that the (numerical) fine propagator satisfies the following
property when it is applied on a linear system: ¥ (u) = (I + Ag)u + B with B# =0
for the homogeneous system. (This assumption is not restrictive, e.g., it is satisfied by
any Runge Kutta method.) Futher assume that M(p,u)—M(o,v) = M(p—0o,u—v)
and that the coarse propagator is linear. Then, the mM-Parareal iterates satisfy

uk =k 4+ A7'B (14)

The proof of Lemma 1 can be constructed by induction on n.
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Lemma 2 (Convergence of mM-Parareal without lifting in the zeroth iteration
for linear scale-separated ODEs)

Using trivial lifting, that is L(X) = [X vo], and using mM-Parareal, defined
in (7)—(8), with the specific choice of operators (9)—(10), let EX = uft — Ruy, be

Zx,n

the macro error and X = uk — u,, be the micro error. Then, there exists € € (0, 1),
that only depends on a, p, q, A and T, such that, for all € < €y and all At > th,
there exists a constant Cy, independent of €, such that for all k > 0:
sup |EX| < Cre LD/ (15)
0<n<N
sup |lek|| < Crelk+D/21, (16)
0<n<N

The proof of Lemma 2 closely follows [5, proof of Theorem 13].

3 Convergence of Micro-Macro Parareal for model problem:
theoretical analysis

The model problem is the multiscale Ornstein-Uhlenbeck process (1). We de-
fine the micro variable, describing the first two moments of its solution as
uft = [m)C my Xy Zyy Zy]. The macro variable is defined as pﬁ = [mx ZX].

For the fine propagator ¥, we use the SDE (1), which we model via its mo-
ment models (5) and (6). The coarse propagator C simulates the reduced sys-
tem (2), or equivalently the scalar ODEs (6) and (4). The restriction opera-
tor is defined as R ([myx my Ex Ey Tyy|) = [my ], the lifting operator as:

L ([Mx SX]T) = [MX my o Sx Zyo ny,o]T, and the matching operator as

M ([MX Sx|", [ mg =1 5y zxy]T) = [Mx my Sx £, ,,]" . Thelifting op-
erator thus initializes the moments of the fast variable to its initial value.

Convergence of first moment. The moment equations (5) and (3), describing
the evolution of the first moment obey the structure of the multiscale system (9), and
therefore we can, after using Lemma 1, apply Lemma 2.

Converence of covariance. The evolution of the multiscale covariance (6) does
not satisfy the same property as the model in equation (9) because (i) the subma-
trix Ay contains the parameter €, and (ii) the reduced model is not defined using (10).
Next we will prove that, although the models (6) and (9) are different, they both satisfy
some key theoretical properties that were used in [5].

Lemma 3 (An equivalent of (11) for model (6) instead of model (9)) For system (6)
and its reduced model (4), it holds true that

sup [Ex(1) = Zxoexp(Ast)| < Ce([Zx0l + 1250 - AF'gsZrol). (A7)
t€l0,T]
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Proof From (11), (6) and (19), we have

sup [Zx (1) = Xy 0 exp(Azt)| < Ce(|Zx 0 + IZ2,01D- (13)
t€[0,T]
If we define
As = 2a + pL As'gs, (19)
we can interpret the averaged model (4) as a limit of the reduced model (10)

for the system (6): Ay = lin}) As =2a — 2'[%. Now we define AAy = Ay — Ay

(see (4) and (19)) and we observe that AAy = O(e). It then holds that exp (Axt) =
exp ((As + AAx)t) = exp (Ast) [1 +O(e)]. From the triangle inequality and the
inequality (11) we have that

sup |Zx(2) — Zx0exp(Ast)| < sup [Zx(2) — Zx 0 exp(Axt) (1 +O(e))|
te[0,T] t€[0,T]
(20)
< Ce(|Zyx 0l + 122011 + [Zx0[1O(€)|
< Ke(|Zx 0l + 122,011,

where K > C. This proves equation (17). O

Lemma 4 (An equivalent of (12) and (13) for model (6) instead of model (9))
Assuming that that the eigenvalues s ; of the matrix Ay, (see (6)) are all positive,
the properties in equation (12) and (13) hold true for the system (6):

sup |2, (1)] < C(|2x,0| + E”Zq,()”),
t€[0,T]
sup  IZ5(D)l < C(|Zx0l + €llZg.0lD-

teltp,T]

2

Proof The proof is similar to [5, Proof of Corollary 3]. In [5], the assumption that
the eigenvalues of Ay are all positive is important. The structure of Ax (or Ax) does
not further influence the proof. O

The preceding lemmas allow us to formulate our main result.

Lemma 5 (Convergence of mM-Parareal for evolution of covariance) Consider
mM-Parareal, defined in (7)—(8), with fine and coarse propagators the full system (6)
and the reduced system (4), respectively. Let E'Z‘X’n = p* — Ru,, be the macro error
and ek = uk —u,, be the micro error. Then there exists € € (0, 1), that only depends
on a, ps, qz, Ay and T, such that, for all € < €y and all At > tfl‘, there exists

a constant Cy, independent of €, such that for all k > 0:

sup |EX| < CreltlkeD/2) (22)
0<n<N

sup [lek|l < CrelF+D/2] (23)
0<n<N

Proof Using Lemmas 1, 2, 3, and 4 the proof follows from [5, Proof of Theorem 2].0
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4 Numerical experiments

The test parameters for the numerical experiments are chosen to be:

@ Bl _|-1. -1 B
[7/6 {le _[O.l/e —1,/6]’ oc=05 (24)

The time interval is chosen as [0, 10], the number of time intervals N = 10, and
the initial value [m.0 M40 Zx0 g0 Zxg0]” = [100 100 100 0 0]". Tn the ex-
periments, which are shown in Figure 1, it is seen that the micro and macro errors
in the mean follow the behaviour given by Lemma 2; those in the variance follow
the behaviour as given by Lemma 5. Observe that mM-Parareal converges faster for
computationally more expensive models (with small €).

:
:

LI 1 T 1 A
NoubwNR

NOoOUThA WN =
micro error (mean)

5, 5

0 ,

ARNARKARX

macro error mean)
IARRRRAI

]
:

10710

macro error (variance)
micro error (variance)

16710

ARRARRAARRARN
NOUAWN R
ARAARAARRN
LU T 1
NOoOU A WNE

bipitd

107" 1072 10 1072
€ €

Fig. 1 Error as function of time-scale separation parameter €. We used co-norm over time (only
considering coarse discretisation points) and the 2-norm for the micro error. Top left: macro error
on mean, Top right: micro error on mean, Bottom left: macro error on variance, Bottom right;

micro error on variance. We used a numerical solver to discretise the moment equations (3)—(6)
with a very stringent tolerance, so that the effect of numerical discretisation errors can be neglected.
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5 Discussion and conclusion

Summary. We presented a convergence analysis of the Micro-Macro Parareal al-
gorithm on scale-separated Ornstein-Uhlenbeck SDEs. We analysed its convergence
behaviour w.r.t. the time scale separation parameter €, using moment models. The
convergence of the first moment is closely related to the analysis in [5]. For the
covariance we presented some extensions to this theory.

Limitations. While the analysis using moment models quantifies the error on
the mean and variance of the SDE solution, we cannot say anything about other
quantities of interest, such as higher moments of the SDE solutions.

Also, by using the moment model (an ODE that we solved using very stringent
tolerances), we exclusively looked at the model error, neglecting the discretisation
errors and statistical errors (in e.g. Monte Carlo simulations) that arise in the dis-
cretisation of an SDE.

Open questions. It remains to be studied how the analysis generalises to higher
dimensions, for instance when the slow variable is multi-dimensional. Also, an
extension of the convergence analysis could cover nonlinear SDEs, or linear SDEs
for which there is a coupling between mean and variance in the moment model
ODEs. Another open problem is an analysis of convergence of the method w.r.t. the
iteration number, in contrast to convergence w.r.t. the parameter €. This would be
more useful in practice.

Software. The code that is used for the numerical experiments, is available!. We
used the Julia language [2] and the DifferentialEquations.jl package [8].
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A Trefftz-Like Coarse Space for the Two-Level
Schwarz Method on Perforated Domains

Miranda Boutilier, Konstantin Brenner, and Victorita Dolean

1 Introduction and model problem

Numerical modeling of overland flows plays an increasingly important role in pre-
dicting, anticipating and controlling floods, helping to size and position protective
systems including dams, dikes or rainwater drainage networks. One of the chal-
lenges of the numerical modeling of urban floods is that the small structural features
(buildings, walls, etc.) may significantly affect the flow. Luckily, modern terrain
survey techniques including photogrammetry and Laser Imaging, Detection, and
Ranging (LIDAR) allow to acquire high-resolution topographic data for urban areas
as well as for natural (highly vegetated) media. For example, the data set used in this
article has been provided by Métropole Nice Cote d’Azur (MNCA) and allows for
the infra-metric description of the urban geometries [3].

From the hydraulic perspective, these structural features can be assumed to be es-
sentially impervious, and therefore represented as perforations (holes) in the model
domain. Our long term modelling strategy is based on the Diffusive Wave equa-
tion [2]. However, understanding linear problems posed on perforated domains is
a crucial preliminary step and the object of this contribution.

Let D be an open simply connected polygonal domain in R?, we denote by (Qs k) k
afinite family of perforations in D such that each Qg  is an open connected polygonal
subdomain of D. The perforations are mutually disjoint, thatis Qg x ﬂ@ = ( for any
k # 1. We denote Qg = |, Qs.x and Q = D \ Qg, assuming that the family (Qs.),
is such that € is connected. Note that the latter assumption implies that Qg ; are
simply connected.
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Let f € L?(Q), in this article we are interested in the boundary value problem

-Au=f inQ,
ou

-—— =0 ondQnoQg, (1)
on

u=0 on 0Q \ 0Qs.

Depending on the geometrical complexity of the computational domain, the
numerical resolution of (1) may become challenging. A typical data set that we
are interested in, illustrated by Figure 3, may contain numerous perforations that
are described on different scales. In this regard, our strategy relies on the use of
a Krylov solver combined with domain decomposition (DD) methods. Generally,
to achieve scalability with respect to the number of subdomains in overlapping
Schwarz methods, coarse spaces/components are needed. Including a coarse space
in a Schwarz preconditioner results in what is referred to as a two-level Schwarz
preconditioner.

The model problem can be thought of as the extreme limit case of the elliptic
model containing highly contrasting coefficients. Two-level domain decomposition
methods have been extensively studied for such heterogeneous problems. There
are many classical results for coarse spaces that are contructed so as to resolve
the jumps of the coefficients; see [6, 7, 12] for further details. Approaches to obtain
arobust coarse space without careful partitioning of the subdomains include spectral
coarse spaces such as those given in [8, 13, 15]. Additionally, the family of GDSW
(Generalized Dryja, Smith, Widlund) methods [5] employ energy-minimizing coarse
spaces and can be used to solve heterogeneous problems on less regular domains.
These spaces are discrete in nature and involve both edge and nodal basis functions.

Alternatively, robust coarse spaces can be constructed using the ideas from multi-
scale finite elements methods (MSFEM) [1, 10]. The combination of spectral and
MSsFEM methods can be found in [9]. Outside of the DD framework, specifically on
domains with small and numerous perforations, the authors of [4, 11] also introduced
an enriched MsFEM-like method.

Here, we present an efficient and novel coarse space in the overlapping Schwarz
framework inspired by the Boundary Element based Finite Element (BEM-FEM)
method [16]. In contrast with the classical BEM-FEM approach, the local multiscale
basis functions are computed numerically such as in MSFEM methods. This approach
is motivated by our interest in nonlinear time dependent models for which the
analytical expression of the fundamental solutions may not be easily available.

2 Discretization and preliminary notations

We introduce a coarse discretization of 2 which involves a family of polygonal cells
(Q f)j:l,‘.. N the so-called coarse skeleton I', and the set of coarse grid nodes that
will be referred to by V.
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The construction is as follows. Consider a finite nonoverlapping polygonal parti-
tioning of D denoted by (D ) =1y and an induced nonoverlapping partitioning

of Q denoted by (Q;),_; n such that Q; = D; N Q. We will refer to (Q;) .,y
as the coarse mesh over Q. Additionally, we denote by I' the skeleton of the coarse
mesh, thatis I' = Ujeqr, . vy 095 \ 0Qs.

Let vert(€2;) denote the set of vertices of the polygonal domain Q;. The set
of coarse grid nodes is given as V = {J;cq1,.. ) vert(;) N T. The total number of
coarse grid nodes is denoted by Nq,.We refer to Figure 1 for the illustration of the
coarse mesh entities.

Fig. 1 Coarse grid cell Q;,
nonoverlapping skeleton I
(blue lines), and coarse grid
nodes x; € V (red dots).
Coarse grid nodes are located
atT N o6Qs.

We discretize the model problem (1) with piecewise linear continuous finite
elements on a triangular mesh of Q. This mesh is conforming to the coarse polygonal
(Q i )J ...~ an example of the triangulation for various numbers of coarse cells N
is given in Figure 2. The finite element discretization of (1) results in the linear
system Au = f.

(a) 2x2 subdomains (b) 8x8 subdomains

Fig. 2 Conforming triangulation for the same domain Q with different numbers of coarse cells N.
The coarse skeleton I" is shown by the blue lines.
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j=1,..., N
each Q; is constructed by propagating €2; by a few layers of triangles. Consider

Let (Q}) denote the set of overlapping subdomains of Q. In practice,

classical boolean restriction matrices R; and corresponding extension matrices RJT.

associated to the family of overlapping subdomains (Q;) N With a coarse
j=l...,

restriction matrix Ry that will be specified later, the two-level discrete Additive
Schwarz (ASM) preconditioner is given by

N
M50 5 = RE (RoARY) 'Ry +ZRJT-£RJ~ARJT-)_1RJ~. )
=1

3 Description of the Trefftz-like coarse space

Here we introduce the Trefftz-like coarse space spanned by the functions that are
piecewise linear on the skeleton I" and discrete harmonic inside the nonoverlapping
subdomains ;. For any node x; € V, we introduce the function g: I — R, which
is continuous on I and linear on each edge of I. It is clear that g is fully defined by
its values at the nodes x; € V, for which we set

1, s=i,
X;) =
8s (%) {O, NERR

To illustrate the construction of the nodal basis of the coarse space, we consider the
following set of boundary value problems. For all Q; and forall s =1, ..., N, find

¢4 € H'(Q;) such that ¢/ is the weak solution to the following problem

~A$l =0 inQ;j,
J
9% 20 onag;nags, 3)

&l = g5 on 0Q; \ 0Qs.

The finite element discretization of (3) results in the system of the form A;. ¢f = b{: ,
where A;. is the local stiffness matrix and b{: accounts for the Dirichlet boundary

data in (3). Let R; denote the restriction matrices corresponding to Q, and let ¢ be

a vector such that ﬁjgbs = ¢£ forall j = 1,...,N. The coarse space is then defined
as the span of the basis functions ¢5,s = 1,..., N, while the kth row of Ry is
given by ¢£ fork=1,...,Nq.
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4 Numerical results

We present below the numerical experiments concerning the performance of the
conjugate gradient (CG) method using two-level preconditioner (2) and the Trefftz-
like coarse space introduced in Section 3. For the sake of comparison we also report
the numerical results obtained using a more standard Nicolaides coarse space which
is going to be detailed later.

The data sets used in this experiment have been kindly provided by Métropole
Nice Cote d’Azur and reflect the structural topography of the city of Nice. Although
this type of data is available for the whole city [3], we focus here on a relatively small
special frame (see Figure 3). In this numerical experiment we consider two kinds
of structural elements - buildings (and assimilated small elevated structures) and
walls. We note that the perforations resulting from the data sets we use (especially
the wall data) can span across multiple coarse cells, which is a challenging situation
for traditional coarse spaces.

(a) Without walls (b) With walls

Fig. 3 Approximate solution over a computational domain divided in N = 8 x 8 nonoverlapping
subdomains.

In this numerical experiment we consider the problem (1) with the-right-hand
side given by f = 1. Figure 3 reports the finite element solution obtained for the
data excluding and including walls. The figure also reflects the nonoverlapping
partitioning into N = 8 X 8 subdomains.

Figure 4 and Table 1 report the performance of the two-level preconditioner
used in the PCG method, for varying number of subdomains N and two relative
overlap sizes. As the computational domain Q remains fixed independently of N,
the results of this experiment could be interpreted in terms of a strong scalability.
However, we wish to stress that the fine-scale triangulation is obtained based on the
nonoverlapping partitioning (Q;);-1,... v . Consquentially, the linear system Au = f
changes from one coarse partitioning to another. Nevertheless we ensure that the
dimension of the system is roughly constant throughout the experiment. Depending
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on the chosen N, the linear system involves about 60k (buildings alone) and 180k
(buildings and walls) nodal unknowns.

For the sake of comparison, we also provide numerical results for the well-known
Nicolaides coarse space [14], made of flat-top partition of unity functions associated
with the overlapping partitioning. As the scalability provided by the Nicolaides space
relies on the Poincaré inequality over the subdomains, we further partition (Q}) j
into a family of connected regions for this space. In other words, let m; denote the
number of disconnected components for each overlapping subdomain Q’; and let

Q; l,l = 1,...,m; denote the corresponding disconnected component. Then our

new overlapping partioning contains m = Zj.vz | m; total subdomains and is given by

(Quket,.my = () Dreqtmi}) jeqr vy

Then, the Nicolaides coarse space is as follows. The kth row of Ry and therefore
the kth column of Rg is given by (ROT)k = ﬁ{ﬁkﬁkl fork =1,...,m, where iik
and Dy are the restriction and partition of unity matrices corresponding to Q; and 1
is a vector full of ones. The partition of unity matrices are constructed such that
1= 3" RID.R,.

Figure 4 reports convergence histories of the preconditioned CG method using
the Nicolaides and Trefftz-like coarse spaces for the data set including both walls and
buildings. Table 1 summarizes the numerical performance for data sets including
or excluding walls. In particular, for both preconditioners, it reports the dimensions
of the coarse spaces, as well as the number of CG iterations required to achieve
a relative /% error of 1078,

The performance of the Trefftz-like coarse space appears to be very robust with
respect to both N and the complexity of the computational domain. The improvement
with respect to the alternative Nicolaides approach is quite striking, especially in
the case of the minimal geometric overlap. As expected, increased overlap in the
first level of the Schwarz preconditioner provides additional acceleration in terms
of iteration count. However, for the Trefftz-like space, the results with minimal
geometric overlap appear to already be quite reasonable.

The dimensions and the relative dimensions of the two coarse spaces are reported
in Table 1. Relative dimension refers to the would-be dimension of the coarse space
in the case of a homogeneous domain with Qg = 0, that is, the relative dimensions

dim(R()) 1 dim(R()) . .
are computed as N2 for the Trefftz-like space and as =~ for the Nicolaides

space. We observe that the Trefftz-like coarse space requires a much larger number
of degrees of freedom, which naturally leads to a large coarse system to solve. We
note that the contrast between the dimensions of two spaces reduces as N grows. In
general, the dimension of the Trefftz-like coarse space seems reasonable given the
geometrical complexity of the computational domain.
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Table 1 PCG iterations, condition number, dimension, and relative dimension for the Trefftz-like
and Nicolaides coarse spaces. Results are shown for minimal geometric overlap and %H , where
H = max; diam(€2;). As the dimension of the Nicolaides space will change with respect to the
overlap, its dimension is given as the average dimension over the two overlap values.

Nicolaides Trefftz
it. cond. dim. (rel) it. cond. dim. (rel)
N min. & | min. ped min £ | min. &

20 20 20
16 nowalls | 149 51 | 581 82 21(1.3) | 52 28| 59 11| 170(6.8)
walls | 348 70 | 6826 133 | 96(6.0) | 56 22| 136 7 | 400 (16.0)

64 nowalls | 164 78 | 567 119 | 85(1.3) | 50 28| 50 12| 433(5.3)

walls | 359 1325902 297 | 256(4.0) | 56 26| 57 9 | 880(10.9)

256 nowalls | 136 81 | 273 89 | 312(1.2) | 56 27| 54 10| 1010 (3.5)
walls | 317 1594575 12 | 719(2.8) | 59 30| 60 13 | 1912 (6.6)

1024 nowalls | 120 83 | 341 149 | 1204(1.2) | 56 28| 76 13| 2500 (2.3)
walls | 362 174 | 3895 1310 | 2044 (2.0) | 61 28| 97 13 |4253(3.9)

100 === Enh. Nic. 100 —=—= Enh. Nic.
— Trefftz — Trefftz
NG
= 1072 = 10-2 SIS
5 10 5 10 AN —_—\Q
I ] \ S
) o \ NN
2 107 N ¢ 10 \ NN
=1 \ 5 \ S N
o NS o A So N,
[0} NS [0} \ ~ Y
< 107 SN Z 107° N\ AN
g NS~ 2 \ \\\ SN
— SR ‘\ RN
1078 NS 108 \ S
-10 10710
10 0 100 200 300 0 50 100 150
iterations iterations
.. . 1
(a) Minimal geometric overlap (b) Overlap 55 L

Fig. 4 Convergence curves for the Trefftz-like (solid lines) and Nicolaides (dashed lines) coarse
spaces for the data set involving both buildings and walls and two overlap sizes. Colors correspond
to the number of subdomains as follows: N = 16 (blue), N = 64 (orange), N = 256 (green),
N = 1024 (red).

5 Conclusions

In this work we presented a novel Trefftz-like coarse space for the two-level ASM
preconditioner, specifically designed for problems resulting from elliptic PDEs in
perforated domains. This coarse space is robust with respect to data complexity
and number of subdomains on a fixed total domain size, and provides significant
acceleration in terms of Krylov iteration counts when compared to a more standard
Nicolaides coarse space. This improvement comes at the price of a somewhat larger
coarse problem. Current work in progress involves coarse approximation error and
stable decomposition estimates and is left to a future article by the same authors.
We are also planning to extend the presented two-level preconditioning strategy to
nonlinear PDEs that model free-surface flows.
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On Global and Monotone Convergence of the
Preconditioned Newton’s Method for Some
Mildly Nonlinear Systems

Konstantin Brenner

1 Introduction

Let S be a diagonal mapping from R¥ to itself and let A be an N x N real matrix.
Given some r € RN, we are interested in solving numerically the flowing system of
nonlinear equations

Bu)+Au=r. (1)

Such mildly nonlinear systems with only a diagonal nonlinearity are commonly
found in the context of geophysical flow and transport modeling, where they result
from the discretization of nonlinear evolutionary PDEs. They arise, for example,
from Richards’ and porous medium equations, or, alternatively, from the models of
reactive transport involving equilibrium adsorption.

This contribution is concerned with the global convergence analysis of precondi-
tioned Newton’s methods applied to (1). Nonlinear preconditioning is an increasingly
popular technique that may drastically improve the robustness and convergence rate
of linearization schemes such as Newton’s method. As in the case of linear problems,
the nonlinear preconditioning consists in replacing the original system by an equiva-
lent one that can be solved more efficiently. Since more than twenty years variety of
nonlinear preconditioning methods has been proposed, including Schwarz-inspired
methods ASPIN [4], MSPIN [9], [13] and RASPEN [6], as well as the nonlinear
versions of FETI-DP [10] and BDDC [11].

Nonlinear preconditioning appears to be particularly efficient in the application
to models of subsurface flow and reactive transport [9], [12], where the failures and
lack of robustness of nonlinear solvers is one the major factors limiting the reliability
of the simulation codes. In those applications, the major benefit seems to result in the
form of an extended convergence region, which, in case of time-dependent problems,
allows for larger time steps [12].

Konstantin Brenner
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The present work aims to contribute to the theoretical analysis of nonlinear pre-
conditioning methods, which remains relatively unexplored. We extend the previous
work [2], concerned with the Jacobi-Newton method, and cover the nonlinear coun-
terparts of some popular linear preconditioners based on multi-splitting of the system.
Our analysis includes, in particular, nonlinear preconditioning by block Jacobi or
RAS methods. We prove that, under appropriate assumptions discussed below, the
one-level RAS-Newton method (or RASPEN [6]) applied to (1) exhibits global and
essentially monotone convergence. The analysis of this method is carried out in the
framework on nonlinear multi-splitting methods [7, 8], and extends to other methods
such as, for example, block Gauss-Seidel.

As an alternative to nonlinear preconditioning, we study a simpler two-step
scheme alternating the nonlinear multi-splitting and the standard Newton lineariza-
tion steps. The two-step multi-splitting/Newton scheme enjoys the same global and
monotone convergence properties as the full preconditioned method. We note that
in the context of the RAS approach, such scheme has been proposed in [5] under
the name of NKS-RAS method. It turns out that for simple splitting methods, like
(block) Jacobi or Gauss-Seidel, the preconditioned Newton’s method is equivalent
to the former two-step approach.

Our convergence analysis relies on the Monotone Newton Theorem [1, 14]; and
requires two major assumptions on the system (1), namely the concavity of the
nonlinear map involved in (1) and the assumption that the Jacobian of the system
has a nonnegative inverse. More specifically, we will assume the following

(Ay) Foreach 0 < i < N, the functions 3; € C'(R) are monotone and concave.
(A;) For any u € RV, the matrix 8’ (u) + A is an M-matrix.

We wish to stress that the assumptions (A1) and (A;) are quite sub-optimal and
aim to improve reader’s experience at the expense of sharpness. For example, the
generalizations of (A;) can be performed along the following lines. First, one can
relax the regularity assumption; clearly piecewise regular functions g8; would do.
Secondly, the derivative of 3; need not to be bounded, or alternatively 3; need not be
defined over R, such case has been treated in [2]. As a matter of fact, we believe that
the analysis presented here can be extended to 8; being merely maximal monotone
and concave (in some appropriate sense). We also note that the analysis presented
below applies to 8 convex instead on concave. The explicit concavity assumption is
motivated the the applications to porous media flow models that we have in mind.
Similarly, the assumption (A;) can be relaxed by allowing positive off-diagonal
elements in the Jacobian, assuming, for example, that A is nonsingular and A"l >0.

Before moving any further, let us recall some basic properties of the system (1):

Proposition 1 (Existence and uniqueness of solution)

Let F(u) = B(u) + Au. Under the assumptions (A1) and (A,), the mapping F~!
is well defined on RN and is convex.

Next, we state the global version of the Monotone Newton Theorem, for which
we refer to [14].
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Theorem 1 (Global monotone Newton theorem)

Let 7: RN — RN be continuous, Gateaux differentiable and concave. Suppose
that F'(u) has a nonnegative inverse for all u € RN, and assume that F (u) = 0 has
a solution. Then, for any ug € RN, the sequence

Upt+] = Up — 7_-/(“")—17_-(””), n>0

satisfies F(u,) < 0 and u, < tny1 < F1(0) for all n > 1. If. in addition, there
exists an invertible P € M(N) such that ¥'(u)™" > P > 0 for all u € RV, then the
sequence u, converges to ¥ (0).

In view of Theorem 1 and Proposition 1 one can deduce that Newton’s method
applied to the system (1) converges regardless of the initial guess. Unfortunately,
depending on the stiffness of the function S, this convergence may become arbitrarily
slow as pointed out in [3] and [2]. While the lack of robustness with respect to the
shape of 8 can be addressed by diagonal Jacobi preconditioning [2], the efficiency of
the Jacobi-Newton method for systems resulting from the discretization of degenerate
PDEs is still controlled by the mesh size, which motivates the use of nonlinear
preconditioning of domain decomposition type.

Having in mind the application to the overlapping domain decomposition, we
introduce in Section 2 the preconditioning technique based on the nonlinear multi-
splitting of (1). We prove that the preconditioned system satisfies Theorem 1 and,
therefore, Newton’s method is unconditionally convergent. In Section 3 we present
the numerical results based on a discretized porous media equation [16] and using
some variants of nonlinear RAS method including RASPEN and RAS/Newton two-
step methods (NKS-RAS method from [5]).

2 Nonlinear multi-splitting method

In this section we present the nonlinear preconditioning procedure inspired by the
linear multi-splitting methods [7], [15].

Let (P;,Q;)i=1....x be a finite of family matrices such that A = P; — Q;. We
denote M;(u) = B(u) + P;u and N;(u) = Q;u +r. If M;(u) admits an inverse defined
on R, then one can reformulate the original problem (1) as

Fi(u) :=u— M7 (N;(u)) = 0. )

Let (E;);=1.... xk be afamily of nonnegative diagonal matrices such that Zl.li (Ei=1.

,,,,,

Multiplying (2) by E; and summing over i we obtain the system

K K
Fu) = ) EFiw) =u= ) E:M; (Ni(w)) =0. 3)
i=1 i=1



88 On Global and Monotone Convergence of the Preconditioned Newton’s Method

Clearly, the solution of the original system satisfies (3). The proposition below states
that ¥ is concave and that ¥’ (u) has nonnegative inverse for all u, which implies,
in particular, that # is inverse isotone, and, therefore, the solution to (3) is unique.

Proposition 2 Assume that for all u € RN and all i, the splitting
F'(u) = M{(u) - Q;

is weakly regular and that M (u) is an M-matrix. Then, the mapping F (u) from (3)
is a concave bijection from RN to RN, and, for all u € RN, the matrix F'(u) is an
M-matrix satisfying F'(u)~' > I

Proof In view of Proposition 1 the mappings M; ! are well defined on RV and are
convex, which implies that ¥ is concave since E; > 0. Let us show that for all
u € RN, the matrix ¥’(u) is an M-matrix satisfying 7’ (u)~' > I. We begin with
the following spectral bound, which is the founding stone for the analysis of the
multi-splitting methods (see [15])

p (D EMiw0i) < 1. )
Let ; = M;'(N:(u)), we have F'(u) = I — 3, E;M/(4;)"'Q;. Let w € RN
be a component-wise maximum of the vectors u;; that is (w), = max; (#;)g.

Since u = M/ (u) is antitone and M/ (u) has nonnegative inverse, we deduce that
M) (u;)"'M](w) < 1, and, since M/ (u;)"'Q; > 0 and M;(w)~'Q; > 0, we obtain

M @) Qi = M (w) ™ Qi+ (M7 @)™ M (w) = 1) M ()™ Qi < M ()™

and 0 < }; E,-Ml.’(ﬁi)‘lQi <> E,-Ml.’(w)‘lQi. It follows from (4) that

P (Z EiM,f(m)*Qi) <p

which implies in turn that 7/ (u)~' > 0. Clearly the off-diagonal part of ' (u) is
nonpositive, implying that it is M-matrix; moreover, since #'(u) < I, we deduce
that F/(u)~! > I. O

ZE,-M;(w)‘IQi) <1,

Based on Proposition 2 one shows that the mapping ¥ satisfies the assumptions of
Theorem 1. In addition, we consider the following multi-splitting/Newton two-step
scheme: Given ug € RV, compute for alln > 0

Ty = ) EM (Ni () &

and
Unst = Uy — F' ()™ (F () — 7). (6)
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We note that (5) can be interpreted as a step of a quasi-Newton method applied to (3),
where the matrix # (x)~! has been replaced by its subinverse /. It can be shown
that (5)—(6) leads again to a globally convergent scheme. Remarkably enough, in the
case of a simple splitting, like (block) Jacobi or Gauss-Seidel, the two-step scheme
is equivalent to the preconditioned Newton’s method.

Proposition 3 Let A = P—Q be some splitting such that the inverse of M = B(u)+Pu
is well defined and M’ (u) is non-singular for all u € RN . Then, the two-step scheme
and the preconditioned Newton’s generate the same iterates.

Proof Let © = M~ (N(u)), we remark that F(u) = u — u and F'(u) =
I - M'(@)"'Q = M’(w)~'F’(u). Therefore, the update generated by the precon-
ditioned Newton’s method starting from u is given by

bee(u) = (M@ P @) ). @)

Now, let us consider the update generated by the two-step method (5)-(6). We have
Suwo—step(U) = @ — u — F'(w)"'F (). We remark that F(u) = M(u) - N(u) =
N(u) — N(u), and using linearity of N, we deduce that F(u) = Q(u — u). Therefore,

Sto-sep = (I+ F'(@7'0) (@ - w) = F'(@ ' M'(@) (@ - ),

which, in view of (7), provides Siwo-step(4) = Sprec (1). |

3 Numerical experiment

We now proceed with the numerical experiment that illustrates the performance of
block Jacobi-Newton, RASPEN and the two-step RAS/Newton methods applied to
the system resulting from the discretization of a degenerate parabolic equation. The
(block) Jacobi-Newton consists of applying Newton’s method to the system of the
form (2) obtained from a simple splitting A = P — Q, where P is a (block) diagonal
part of A. On the other hand, RASPEN can be expressed as Newton’s method applied
to the system (3) resulting from a particular multi-splitting (wee refer to [8] for further
details). Using same multi-splitting, the RAS/Newton method is given by (5)—(6).

The test case considered here is similar to the one presented in [2] to which we
refer for more detailed discussion. In brief, we are interested in the algebraic system
resulting from the implicit in time discretization of the porous media equation [16].
More specifically, focusing on a single step (of length 7) of the backward Euler time
integration scheme, we consider the system of the form (1) resulting from the finite
difference discretization of the following boundary value problem

B(u) — B(uini) = T@%xu x € (0,1), 3
0.u(0) = —q, du(l) =0, ®)
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Fig. 1 Left: the solution for N = 100 (black) and the iterates 8 (u;,) of the Jacobi-Newton method
for n = 10, 20, . . . 70. Right: convergence history of the Jacobi-Newton method for N = 100 (blue)
and 400 (red), the iteration count is scaled by the size of the discrete system; the error is measured
in I, norm. The vertical black line positioned at V¢ /N indicate the location of the solution front.

where B(u) = u'/™ with m > 1. We consider the following set of parameters:
m=10,¢ = 1,7 = 0.5, and B(u;n;) = 107°. The problem (8) is discretized using
N =100 or 400 degrees of freedom, and the vector u;;,; is used as the initial guess
by the iterative methods under consideration.

We note that, since the derivative of 8 is unbounded at the origin, one may consider
the change of variable in (8). For example, using S(u) as the new unknown will
improve the performance of the straightforward Newton’s method [3]. Unfortunately,
the modified system is no longer concave and, therefore, the monotone convergence
is lost; moreover, compared to the splitting-based preconditioning, the convergence
of Newton’s method applied to the modified system turns out to be slower [2].

The solutions of the porous media equation are characterized by the finite speed
of propagation of the support. Qualitatively this behavior persists even for strictly
positive but small initial data. For the discrete counterpart of the elliptic problem (8)
the latter property is reflected in the performance of Newton’s method. Typically,
and unless some Schwarz-type preconditioning is performed, the solution fronts
resulting from Newton’s method can cross at most one degree of freedom at time.
For the Jacobi-Newton method, this behavior is illustrated by Figure 1. The left
sub-figure exhibits the final position of the solution front and some iterates of the
method. The right sub-figure reports the convergence history of the method for two
values of the mesh size. The numerical performance is characterized by two very
distinct regimes: a very fast near-solution convergence is preceded by a long period
of a slow error decrease. As a matter of fact, the length of the convergence plateau is
proportional to the number of the degrees of freedom Ny that has to be crossed by
the solution front, and can be expressed as o N ¢, where o is the cost of propagating
the front trough one degree of freedom. As shown in [3] and [2], the parameter o
of the standard Newton’s method can become arbitrarily large depending on the
coefficient m and the initial data. In contrast, the Jacobi-Newton method [2] appears
to be virtually independent of m and can handle general nonnegative initial data.
Nevertheless, the efficiency of the latter method is still dependent on Ny and thus on
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Fig. 2 Convergence history of preconditioned Newton’s method for N = 100 (blue) and 400 (red);
the error is measured in [, norm.

the discretization. More precisely, the right side of Figure 1 reflects the convergence
of the Jacobi-Newton for N = 100 and 400 degrees of freedom. By scaling the
iteration count by N we observe that the performance of the method is essentially
controlled by Ny. The vertical black line positioned at Ny /N reflects the final
location of the front. The scaled convergence curves are almost identical, while the
total iteration count measured for the Jacobi-Newton method is of 71 for N = 100
and 271 for N = 400.

The dependency of the mesh size can be removed by means of the nonlinear
domain decomposition. We report on Figure 2 the convergence history of RASPEN
and RAS/Newton (RAS/N) methods for 5 equally sized sub-domain with the relative
overlap of 0.1. In addition, we consider the case of the minimal algebraic overlap,
denoted RASPEN(0), corresponding to preconditioning based on the block Jacobi
method. In this numerical experiment none of the considered methods appear to
exhibit any substantial dependency on the mesh size. Unsurprisingly, the overlap
seems to be beneficial for the convergence of both RASPEN and RAS/N. While
being slightly less efficient than RASPEN, the two-step RAS/N method still appears
as a competitive alternative. The convergence of the nonlinear RAS method, applied
as a solver instead of being used as a preconditioner, is not reported here, but roughly
speaking, the nonlinear RAS method is as inefficient as the linear one.

4 Conclusion

We have analyzed a family of preconditioned Newton methods based on the nonlinear
multi-splitting approach in application to mildly nonlinear systems resulting from
the discretization of some degenerate evolutionary PDEs such as porous media
or Richards’ equation. Based on the Monotone Newton Theorem we show that
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the preconditioned method is globally convergent. The current result extends our
previous analysis [2] to the one-level RASPEN method [6]. In addition, for the
preconditioning based on a single nonlinear splitting, including the method presented
in [2], the preconditioned Newton’s method is equivalent to a simpler to implement
predictor-corrector scheme. The numerical experiment based on discrete porous
media equation shows that the performance of block Jacobi-Newton, RASPEN and
RAS/Newton methods is essentially independent of the mesh size.
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Optimized Schwarz Method in Time
for Transport Control

Duc-Quang Bui, Bérangere Delourme, Laurence Halpern, and Felix Kwok

1 Introduction

Parallel-in-time methods for solving optimal control problems under time-dependent
PDE constraints have gained much interest in the past decade (see, e.g., ParaOpt [5]).
Among all the possible approaches, it is natural to consider Schwarz time domain
decomposition techniques when one deals with transport equations, since the original
control problem is equivalent to an elliptic problem in which the initial and target
conditions play the role of boundary conditions (see e.g. [1]).

In this paper, we consider the following one-dimensional transport control prob-
lem. Let T > 0, and let yjp; and y be two periodic functions in € LIZOC(R) with
period one. We want to find a control v € leoc(R %X (0,T)), periodic in space of
period one, such that the function y defined by
{6;y+6xy:1) inR x (0,7), o

y(-50) = Yini,

verifies the exact constraint
)’(-’ T) = yiar- 2)

Over all the possible controls v, we shall seek the one with minimal L?-norm, namely,
we minimize the functional

1t
10 =5 [ Wl )

Duc Quang Bui, Bérangere Delourme, Laurence Halpern
Université Sorbonne Paris Nord, Villetaneuse, France, e-mail: bui@math.univ-paris13.fr,
delourme @math.univ-paris13.r, halpern @math.univ-paris13.fr

Felix Kwok
Université Laval, Québec, Canada, e-mail: felix.kwok @mat.ulaval.ca

93



94 Duc-Quang Bui et al.

The optimization problem (1)-(2)-(3) admits a unique solution v, that can be deduced
from the following optimality system: find (y, 4), 1-periodic in space, such that

Oy+0xy =4 inRx(0,7),
A +3,A=0 inR x (0,7),
¥(,0) = Yini
y(~’T) = Yiar»

v = A )

2 Domain decomposition in time for the continuous problem

We apply Schwarz-in-time domain decomposition methods to (4). To do so, we
decompose the time interval (0,7) into two subdomains (0,77) and (77,7T) with

T, = AT = 5 To start with, we solve the system (4) using the optimized Schwarz

method with Robin transmission conditions on the interface r = AT, with a single
parameter p. More specifically, at iteration &, the functions y¥ and A% (resp. y5 and
/112‘) are solutions to (4) on (0, T1) (resp (71, T)) together with the following boundary
condition:

pyy Y =Py T ey A5 = ey Al 5)

1
Theorem 1 Let p = AT Then the Schwarz iterative algorithm based on (5) and

applied to the system (4) converges after 1 iteration.

The theorem is proven by calculating explicitly the solutions of the sub-domain
problems. We point out that in [6], a convergence proof using energy estimates has
been given for all p > 0. On the other hand, to our knowledge, there has not been
a detailed analysis of the convergence factor on the corresponding discrete systems
(see [4, 7] for a convergence proof for semi-discrete schemes in the parabolic case).
Understanding the behaviour of the discrete systems is the subject of the next sections.

3 Time-domain decomposition for a discrete problem
3.1 Discrete control problem

To discretize our problem, we consider a spatial discretization based on the up-
wind scheme with N uniform nodes and a mesh size of Ax = 1/N. We denote by
Arx € My (R) the corresponding matrix: its diagonal terms are Ax~1, its lower
sub-diagonal ones are equal to —Ax~!, and [Apy] IN = —Ax~! (to take into account
the periodicity), and zero coefficients elsewhere. The time discretization is made
using the semi-implicit Euler scheme (explicit in y and implicit in v), using M + 1
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uniform nodes on [0, T'] and a mesh size of At = % We denote by Yini, Yiar (vectors
of RN), the discretization of Vini and Y. We mimic the continuous minimization
problem (1)-(2)-(3) by considering the following discrete one:

1
min J(V) = =AtAx ||v 2, 6
L in T = 280 Ax V] ©)
where the control v = (v!,...,vM) is such that y = (y°,...,y™) € (RN)M~*!
satisfies
ym _ ym—l mel _ om B
Ar + Apxy =v" m=1,....M, %)
" = Vini,
as well as the target constraint
yM = Ytar- (¥
In the problem (6), || - || denotes the usual Euclidean norm on RV*M | As in the

continuous case, Problem (6)-(7)-(8) admits a unique solution v?* = A", where
(y™, ™) is the solution of the following optimality system (see [3]):

Y= (I = At Ap)y" ' = A" m=1,... .M,
-1 _ —

,1;" ~I-AMA)A"=0 m=1,....M,
y :yini,

yM:ymr'

€))

In the sequel, in order to guarantee the convergence of the scheme, we shall consider
the standard relation between Ar and Ax given by
At

ik (10)

where r is a given real parameter in (0, 1).

3.2 Schwarz domain decomposition

We apply the Schwarz method strategy (5) to the system (9). For the sake of simplicity,
let us consider M = 2L, so that the interface 7'/2 corresponds exactly to the node L.
The algorithm then reads: starting from an initial guess (50,.5‘2)) € R?V, at each

iteration k > 1, we construct (y’f’m,/l’f’m) (respectively (y’z‘ ’m,/llzc ")) solution to (9)
form=1,...,L(resp.m = L+1,..., M) together with the transmission conditions
pyit APl =gk oyt b A = gk (11)

Then, we update & ’f by taking

A e ) A L (12)
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Remark 1 The local subdomain problems are indeed optimality systems associated
with local control problems (see [6]).

The convergence analysis of the algorithm (9)-(11)-(12) relies on the Discrete
Fourier transform inspace RN — RN, (uy,...,un_1) = (do, ...ln_1) defined by

e = Z uy, exp(—2nifnAx). Indeed, (9)-(11)-(12) can be transformed as follows:

at 1terat10n k, in subdomain Q;, for any ¢ between 0 and N — 1 (spatial frequency),
Ak m (with m denoting the time step) solves

Y= (1= () Ay 5 = AL 1 — exp(—27itAx)
skom Ak it where o ({) = ,
(1 - o'(f)At)/lH, —-4;, =0, Ax
(13)
together with boundary conditions
ﬁlf,’? = Pini,¢» —pﬁ’g,’f + /i’i’gL =&, (14)
pivy AT =€ 90 = Dane
Then,
=iy + Ay & =—poyp + Ay (1s)

As the problem is linear, the convergence analysis of the algorithm reduces to
investigating the case Jinir = Jur,e = 0, starting from given data f? , and f(z) P

Eliminating j}k 50 and /if.‘ ’[0 by solving explicitly the recurrence equations (13)—(15),

we see that & f*z follows the geometric progression

P)’At(f)) (|ﬁAz(€)|2 —pyar(f)
L+pyar(6) ) \1Bac (0> + pyac (€)

where B, (£) = (1 — o (£)AD)E, and ya, (£) = At TEZ0 11— o (O)At]P™. As in [2],
our objective is to minimize |pa;| uniformly in £, namely, to solve the problem

f,k;z - pAt (ps 5) é‘\[]i[ Wlth pAI (p, f) (

i 4 1
min ({, Jmax loac (P, )I) (16)
To analyse (16), and in view of Theorem 1, we first make the change of variables
p = pAT. Then, under the assumption (10), we see that

At

l-o(O)At]> =1-4-
1= o (£)At] v

At At
(1 - A_x) sin? (m€Ax) = 1 —4r(1 - r) sin (ﬂfT) .
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It motivates us to introduce the new variable
. At
z=4r(1 - r) sin’ (ﬂé’—) ,
’

which varies between 0 and zn.x = 4r(1 — r) (take £ = N/2) as € varies from 0 to
N — 1. For the sake of simplicity, we choose to optimize p, over the whole interval
[0, Zmax | and to study

en(z) —p Ya(2)—p

min | max ,Z )= 17
>0 \0<z <Zmax loar (p )|) pac(p,2) o % p IO Tr a7
with 2
AT 2)|*AT
on(D) = 2L (o) = PaQITAT
Yar(2) Yar(2)

and |Bn (D) = (1 -2)% yar(x) = At TL0(1 - 2)™.

4 Existence, uniqueness and asymptotic study of the optimized
parameter

The following theorem proves the well-posedness of the problem (17) and describes
the asymptotic behaviour of the optimal convergence factor as At goes to 0.

Theorem 2 For any At > 0, Problem (17) has a unique solution p’,,, which is the
unique solution larger than 1 of the following alternation equation

max pAt(p>Z):_0 min pAt(p»Z)- (18)

0<z<Zmax <Z<Zmax

Moreover, as At goes to 0,
P = V2AT Zmax A7V2 4 0 (At"/2), (19)

max Joms (7 2)] = 1 = —22
X Dl =1- ——=
0<2<Zmax PaePa VAT Zmax

Remark 2 In (19)-(20), o (At*) (with s = £1/2) means that the remainder is negligible
relative to Ar®. We also point out that, unless » = 1 (in which case the scheme is
exact), we have limp;_, pzt # 1, meaning we do not recover the optimal parameter
associated with the continuous DD algorithm.

N (Atl/z) . (20)

The remainder of this section is dedicated to the sketch of the proof of Theorem 2.
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Step 1: We prove that the alternation Equation (18) has a unique solution p’,, larger
than 1. Let us introduce

Parmax(P) = o Jax oac(P,2),  parmin(p) = Omin pac(p,2),

<Z<Zmax <Z<Zmax

and the function s(p) = pPar,max (P) + PAr,min(p). We prove that s has a unique zero
larger than one (and, consequently (18) has a unique root). Indeed,

- For p > 1, the function s is a continuous and strictly increasing function of p.
In fact, for p > 1, a direct computation shows that 0, pa,(p, z) > 0. Therefore,
PAt.max> PAt,min, and their sum s are strictly increasing functions of p.

- s(1) <0 (pAt,max(l) <0Oand pAt,min(l) < 0).

- S(SaAt(Zmax)) >0 (pAt,max(‘PAt(Zmax)) > 0 and pAt,min(‘PAt(Zmax)) =0).

Thus, (18) has a unique solution p*At > 1.
Step 2: We show that p},, is the unique solution to Problem (17). First, based on

the properties of ¢a; and ¥ a,, we can prove (by contradiction) that any solution p
of (17) must be in the interval (1, pa; (Zmax))- But,

- For p € (1, p},), a careful investigation leads to

max  |par (P, 2)| = —parmin(P) > —Parmin(Py,) = max  |pa(pa.2)|.
0<z< 0<zZ<Zmax

SZSZmax

- Similarly, for p € (pzt, @At (Zmax)), We obtain

o Jnax lpar (P> 2| = par,max(P) > Parmax(Pp,) = o hax lpar (P, 21

<Z=Zmax SZSZmax
Therefore, p}, is the unique global minimum of (17).
Step 3: Asymptotics of the optimal parameter p),, and its corresponding convergence
factor with respect to At. We first remark that Equation (18) is defined implicitly in p,
so it is a priori difficult to tackle directly. However, we can approximate pas max(p)

by par(p,0): indeed, an attentive analysis shows that there exists Ay > 0 and
a constant C such that for At < Aty,

|oarmax(P) = par(p,0)| < Cp~'At. 1)
Consequently, for small At, it is sufficient to consider the ’approximate’ equation

PAt (p9 0) = —PAt (p, Zmax), (22)

which turns out to be explicitly solvable. Its solution p;q A; 18 given by

1/2 1/2

. P 1 P 1 2
Peg.ar = Sm.Ar — "; t—§+((5m,m— n; I—E) = P,
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where Sm,At =Y (Zmax) + ‘PAt(Zmax) and Pm,At =Y (Zmax)‘ﬁAt(Zmax)- From the
asymptotic behaviour of Y¥as (Zmax) and ¢as (Zmax), we deduce that when At — 0,

Pigar = V2AT zma A7 40 (At—l/z) ,
which implies

* * 2\/5 1/2 1/2
_pAt(peq’At’ZmaX) ZpAl‘(peq,At’O) = 1 — ﬁ . At / + 0 (A[ / ) .

Finally, the asymptotic formulas (19)—(20) result from (21).

5 Numerical illustration

We illustrate the results of Theorem 2 in the case of 7 = 1. In the left panel of
Figure 1, we plot 1 — | pas lmax (P,) With respect to Az (in logarithmic scale) for three
different values of r. In each case, the optimized parameter p},, is computed using
fminsearch in Matlab. As expected, whatever the choice of r € (0, 1), we obtain
straight lines with slope equal to that of the curve y = VAt

10

10 1012
10° 10°® 10 107 10° o
At k

Fig. 1 Left: Asymptotic behaviour of 1 — |oar [max (P},)- Right: performance of pj, for At =
1/160,r = 1/2.

Next, we test the performance of our domain decomposition-in-time algorithm. For
the simulation, we take At = 1/160, r = 1/2, yini = yur = 0, and we start from
a random initial guess .f? (i.e. we compute the zero solution). In the right panel of
Figure 1, we display in blue the evolution of the error with respect to the number
of iterations; in the present case, it just consists of computing the maximum of
the L? norm of £¥ and £5. The performance is as predicted by the theory. On
the other hand, the convergence rate can be drastically improved by using a two-
sided algorithm, where we allow for two different values p and ¢ instead of p
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in the formulas (5). The fminsearch function provides us with two optimized
parameters (p},,q},) = (1.1831,8.5024 x 1072), leading to a convergence factor of
7.0728x 1072, The performance of the two-sided algorithm for this value is displayed
in red, and appears to be much better than the optimized one-sided one. The proof
of that result will be given in a forthcoming publication.
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An Overlapping Preconditioner for 2D Virtual
Problems Posed in H(rot) with Irregular
Subdomains

Juan G. Calvo, César Herrera, and Fildnder A. Sequeira

1 Introduction

Given a bounded polygonal domain Q c R?, we seek u € Hy(rot; Q) such that
a(u,v) = / (arotu rotv + Bu -v) = / f-v Yv e Hy(rot; Q), (1)
Q Q

where rot u = Oy,us — On,u1, f € [L*(Q)]% and @, € L™(Q) are positive
functions that are uniformly bounded from below. The weak form (1) arises from
implicit time integration of the eddy current model of Maxwell’s equation [5] and is
considered in several studies; see, e.g., [1, 13]. We recall that

Ho(rot; Q) := {v € [L*(Q)]* : rotv € L*(Q), v - £ = 00n 0Q},

where ¢ denotes the unit tangential vector on dQ. The bilinear form a(-, -) defined
in (1) is obtained from the differential operator Lu := rot (arot u) + Su, where
rot g := (0y,q, —0x, q)T. The well-posedness of problem (1) can be established by
a straightforward application of the Lax-Milgram lemma; for the sake of brevity we
omit further details and refer to [15].

In this paper, we present a two-level overlapping Schwarz preconditioner for
problem (1) discretized with finite or virtual element methods (FEM or VEM,
respectively) in two dimensions. To the best of our knowledge, there are no theoretical
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results for preconditioning the linear system that arises from (1) when VEM are used.
Our method allows us to handle irregular subdomains and general polygonal meshes,
and applies to a broader range of material properties and subdomain geometries than
previous studies.

First studies for problems posed in H'!(Q) with FEM discretizations and irregular
subdomains include [14, 17, 11], where discrete harmonic extensions are required
for the construction of a coarse component of the preconditioner; for problems
posed in H(rot; Q) see [7, 8]. Such algorithms require us to solve a linear system
on the fine mesh for each coarse function. The ideas introduced in [9, 10] allowed
to extend standard Domain Decomposition Methods (DDM) from FEM to VEM for
problems posed in H!(Q) in a natural way. Hence, we replace harmonic extensions
by projectors onto polynomial spaces of degree at most k. In this variant, we need
to solve a linear system with just O(k?) unknowns in order to construct a coarse
function, reducing the complexity of the construction of coarse functions while
preserving the dimension of the coarse space defined in [7] for FEM, which is
equal to the number of interior subdomain edges. In this paper, we present such
generalization for problems posed in H(rot; Q).

In [7], a theoretical bound for the condition number « of a two-level overlapping
Schwarz preconditioner for FEM, based on discrete harmonic extensions, is given by

<C 1+H 1+1o i
K= 5 €% )

where C only depends on «, 8 and some parameters related to the regularity of
the subdomains. We observe similar results for our preconditioner when VEM and
harmonic extensions are considered.

We remark that there are different DDM such as FETI-DP and BDDC methods;
see [12, 8] for studies related to our problem. Nevertheless, the simplicity of imple-
menting an overlapping additive Schwarz algorithm with competitive results gives
relevance to our work.

The rest of this paper is organized as follows. We briefly describe the VEM for our
model problem (1) in Section 2. We then describe the two-level overlapping additive
Schwarz and the definition of our coarse space with detail in Section 3. Finally, some
numerical results and conclusions are included in Section 4.

2 The virtual element method

We briefly describe a virtual element scheme for problem (1). Given an integer
¢ > 0, let P,(D) denote the space of polynomials defined in D of total degree at
most €. Let {7}, }1>0 be a family of decompositions of Q into polygonal elements.
We assume that there exists a constant C7 > 0 such that for each decomposition 7y,
and for each E € 7, it holds that (see, e.g., [6, Section 3.2] and [4, Section 2]):

1. the ratio between the shortest edge and the diameter /g is bigger than Cq-, and
2. E is star-shaped with respect to a ball of radius Cshg and center xg € E.
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The lowest-order conforming Nédélec first-type local space
E ._ 2. T
N() = {U € [Pl(E)] ‘v = (—be +ai,bx; + az) ,ap,az, b e R}

is typically used for the discretization of (1) with triangular meshes; see [12, 7, 8].
For general polygonal meshes, we replace the Nédélec space N(’f by the lowest-order
local virtual element space WE  defined as

W(',E = {v € [L*(E)])*:v - t]. € Py(e)Ve € IE,rotv,divv € PO(E),/ vV-Xg = 0}
E

where e € OF represents an edge of E, xg = x — bg, and bg is the barycenter
of E; see [4, eq. (28)]. The degrees of freedom of a virtual function v € W(f can

be chosen as the moments 1¢(v) = ﬁ fe v - t for each edge e € OF, similar as
what is done when Nédélec elements are used; see, e.g., [3, eq. (3.13)]. We remark
that rot v = ﬁfE rotv = ﬁ /aE v-t = ﬁ Yecor l€lA¢(v), and therefore we
can compute the rotor of v € W(f from its degrees of freedom. Thus, the term
fE arot urot v of the bilinear form can be computed and we only require to modify
the mass matrix. Given v € [L*(E)]?, let 1€ : [L2(E)]* — [Pi(E)]* be the
orhogonal projector given by

/Eva~p=/Ev~p Vp € [P1(E)]*. )

We remark that Hf is computable for functions in Wf only knowing its degrees of
freedom; we omit details and refer to [2, Remark 3]. For the mass-term, we then
replace v by Hf v in the local bilinear form. Therefore, as it is standard in VEM,
a stabilizing term is required, which is defined as

sg(w,v) = hg Z (w-t)(v-t) Yw,v e V(E);
ecdE V¢

see [4, Theorem A.2] and [3, eq. (4.8)] for further details. We then consider the local
bilinear form

ay (w,v) ::/E(arotwrotv+ﬁH{5w~va)+sE (w—HFw,v—Hfu)

forw,v € WéZ . The global virtual element space V;, € Hy(rot; Q) is then given by
Vi = {v € Hy(rot; Q) : v|g € W) VE € Tp}, (3)

and, as usual, the global bilinear form is obtained by assembling the local bilinear
forms af(~, -). We then define the virtual element scheme associated to (1): find
uy; € Vy such that
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Z aE(uhﬂ)h) = Z /f'vah Yo, € V.
E

EeT, EeT,

This problem is well-posed and standard estimates for the approximated solution can
be obtained; for the sake of brevity we omit such details.

3 Overlapping Schwarz methods

In this section, we briefly describe two-level overlapping methods; see [16, Chap-
ter 3] for further details. We partition the domain € into N non-overlapping subdo-
mains {Qi}f\i 1 of diameter H; which are the union of elements of 7;,. Subdomains
are assumed to satisfy the same assumptions as the elements on the fine mesh; this
implies that they are simply connected and the number of edges of each subdomain
is uniformly bounded. The edges on this decomposition are denoted by ¢, which
correspond to edges of the polygons ;. We then construct overlapping subdomains
Q7 > Q; by adding layers of elements that are external to ;, and we will denote
by 6; the minimum width of the region Q] \ ;.
We consider the usual local virtual spaces V;, 1 <i < N, defined by

V; = {v € Hy(rot; Q) 1 v|g € W(f VE C Ql’}

Thus, the degrees of freedom of a function v; € V; are 1°(v;) at the fine edges e that
are in the interior of Q7. We also consider the natural operators Rl.T : Vi = V), given
by the zero extension from the subdomain Ql’ toQ,1 <i<N.

We can define the coarse space Vj as the virtual element space (3) defined on
the coarse mesh {Qi}f‘:’ . Nevertheless, its dimension can be an inconvenience for
parallel implementations in the presence of irregular subdomains with too many
edges; see Figure 1. Instead, for each subdomain edge &/ (defined as the interior of
QN ﬁj), we define a coarse function ¢g € V| by defining its degrees of freedom
of V. We set e (cg) = dg-t u forevery edge e’ in &, and ae (cg) = Ootherwise.
Here, dg denotes a unit vector in the direction between the endpoints of &, and ¢, #
is the unit tangent vector of . The reduced coarse space V(f is then defined as
the span of these coarse basis functions ¢ g. We remark that the dimension of V(f is
equal to the number of subdomain edges, similar as in [7, 8, 12].

In order to define an operator ROT : V(f € Vo — Vj, that approximates functions in
the coarse space by elements in Vj,, we can consider discrete harmonic extensions as
in [7], for which a generalization for VEM can be established. Nevertheless, we can
avoid discrete harmonic extensions by approximating virtual functions in V(f in the
interior of subdomains by polynomials as follows. Consider the high-order virtual
spaces of order k € N, defined on the coarse mesh, as the set

VE = {v € Ho(rot;Q): vlg, € W Vi € {1,2,...,N}},
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Fig.1 (left) Voronoi mesh and
(right) non-convex mesh with
N = 16 irregular subdomains.
Subdomains have, in average,
45 and 55 edges for the
Voronoi and non-convex
meshes, respectively.

o3

»y)
oy
2
S
¥
Y
)
)

where W,?i is defined as the set
{v e [L2(Q)]*: v tln € Pr(e™)Ve € 0Q;,totv € P(Q), divo € Py ()}

Following [2, Section 3.2], the local degrees of freedom forv € W,?i can be chosen as

m¢ (v) = /H(v-t)q Vg ePr(ef),¥ et €09,

@)= [ Goto)p  VpeR @)\ (1),

Q;

n2 @)= [ @-xa)p VpeBi@).

which are unisolvent; see [2, Proposition 3.3]. It is clear that V(f cV C Vé‘. For
every coarse function cgi; € V(f, we seek the degrees of freedom of the function
Csij € Vé‘, with the same degrees of freedom of ¢ g on the interface, such that

D ap (M Eg), 1M (T Egir) @)
EecQy

is minimum for [ € {i, j}, where w = I"v € V}, is the usual interpolant given by the
condition A¢(v — w) = 0 for all edge e, and H,?’ C[L2(Q)]? = [Pr(€)]? is the
orthogonal projector onto ;; see (2) for the case k = 1. The degrees of freedom
of cg given by mZH (cg) and mﬁfrot (cg) are known and can be computed from cg.
Since /9; (v - xg;) = 0, the remaining degrees of freedom can be obtained just by
solving a linear system with k(k + 1)/2 — 1 equations for each subdomain with &
on its boundary, obtained by directly computing the critical points of (4). For the
sake of brevity we omit details and refer to [9] that includes how to obtain this linear
system. Preserving degrees of freedom on the interface guarantees continuity across
the interface when we interpolate coarse functions to the fine mesh. We then define
R{ cg € Vj by setting:

() /l“’(Rgcg) = 1°(cg) if e is an edge on the interface;
(b)) A°(Rjcg) = A° (Hfl Cg) if e is an interior edge of Q;;
) /l“(Rch) = 0 otherwise;



106 Juan G. Calvo, César Herrera, and Fildnder A. Sequeira

Fig. 2 (left) Rgcs for an
irregular edge &, evalu-
ated in the interior of each
subdomain by interpolating
H?" for i € {1,2}. (right)
A discontinuous coefficient 8
varying from 8 = 103 (red) to
B = 1073 (blue).

see Figure 2 where we show Rg ¢ g for a given subdomain edge €. We finally consider
the two-level additive overlapping Schwarz preconditioner

N N
Paa = ) Pi=AZhA, with Azl = 3" RI (R:ART)'R;, (5)

i=0 i=0

where we consider exact solvers for each subspace for simplicity; see [16, Chap. 2].

4 Numerical results and conclusions

We present numerical results for the two-level additive overlapping Schwarz pre-
conditioner (5). We solve the resulting linear systems using the preconditioned
conjugate gradient method to a relative residual tolerance of 1076, We estimate
the condition number «(P,y4) and compute the number of iterations I, (for spaces
of degree k) and /4 (for the coarse space based on discrete harmonic extensions)

Table 1 Number of iterations I and condition number « (in parenthesis) with Voronoi meshes and
N METIS subdomains. I3, Is and I4 correspond to k = 3, k = 6 and discrete harmonic extensions,
respectively. Ng is the dimension of the coarse space.

p=1073 B=1 p=10
Ne|| (k) Is(k) Ix(k) |k Is(x) Iy (k) |BL(k) Is(x) Iy (k)
N Testl: H/h=8, H/6=2, a=1
82 161||38(47.5) 31(23.9) 21(7.7) |35(38.5) 22(10.5) 20(7.2) |18(7.3) 18(7.3) 18(7.3)
122 389(|58(112) 49(79.0) 24(9.4) [55(95.7) 33(20.3) 21(8.0) |20(8.3) 19(8.2) 19(8.2)
162 709(|73(201) 66(181) 23(9.3) |69(163) 51(51.6) 21(8.0) [20(7.9) 20(7.9) 20(7.9)
202 1128][90(328) 84(289) 25(9.9) |84(262) 68(132) 22(8.4) |20(8.4) 20(8.0) 20(8.0)
H/6S Test2: H/h=32,N =16, a =1
4 33|(33(25.4) 30(24.1) 19(6.1) [31(22.8) 28(19.8) 18(6.0) [16(5.1) 15(5.1) 15(5.1)
8 33|[43(58.3) 39(52.3) 21(7.5) |40(49.5) 37(35.6) 20(7.0) |15(4.8) 15(4.9) 15(5.0)
16 33|[57(136) 56(124) 24(12.7)|53(100) 49(65.7) 23(13.0)|16(6.1) 16(6.1) 16(6.0)
32 33](82(300) 81(300) 35(28.6)[73(166) 62(101) 32(23.0)[20(8.6) 20(8.4) 19(7.8)
H/h Test3: N =16,H/6 =4, a =1
8 33|(32(32.6) 24(12.4) 19(7.2) [30(22.4) 19(6.9) 18(7.0) |14(5.4) 14(5.3) 14(5.3)
16 34(|31(26.8) 29(26.1) 18(6.1) |30(22.9) 27(14.1) 18(5.8) |15(5.1) 15(5.0) 15(5.1)
32 33]({33(25.4) 30(24.1) 19(6.1) [31(22.8) 28(19.8) 18(6.0) [16(5.1) 15(5.1) 15(5.1)
64 33(|34(22.6) 32(22.6) 18(5.5) |32(21.6) 31(19.3) 18(5.5) |14(5.3) 16(5.1) 16(5.1)
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Table 2 Number of iterations / and condition number « (in parenthesis) with non-convex meshes
and N METIS subdomains. I3, I and I4; correspond to k = 3,k = 6 and discrete harmonic
extensions, respectively. Ng is the dimension of the coarse space.

B=1073 B=1 B=10°
Ne||B (k) Is(k) Iy(x) |B(k) Ie(k) Iu(k) |L(x)  Is(x) Iy (k)
N Test: H/h=8 H/6=2, a=1
82 158||38(54.0) 28(17.3) 20(8.0) |36(36.9) 21(7.8) 19(6.7) |20(10.1) 20(10.1) 20(10.1)
122 379(|57(130) 45(66.1) 21(7.4) [53(81.6) 29(13.7) 20(7.1) |23(13.5) 23(13.6) 22(13.5)
162 699(76(261) 61(136) 21(7.7) |69(139) 34(21.2) 20(7.2) |24(16.4) 24(16.1) 24(16.2)
202 1109([93(537) 82(265) 23(8.3) |83(245) 45(38.3) 21(8.5) [27(20.9) 27(20.7) 27(20.9)
H/s Test2: H/h =32, N =16, @ =1
4 331|33(30.7) 30(28.7) 18(6.4) [31(24.0) 29(17.7) 17(5.5) [15(5.1) 15(5.1) 15(5.0)
8 33([43(80.4) 42(73.7) 22(8.2) |42(49.5) 35(29.8) 20(7.9) (17(8.0) 17(8.0) 16(7.9)
16  33(|56(129) 57(139) 26(11.4)[52(70.3) 45(41.4) 24(12.0)|21(12.8) 21(12.8) 20(12.7)
32 33||78(297) 78(304) 34(21.9)|67(112) 55(62.7) 32(20.6){30(28.4) 30(28.4) 29(29.4)
H/h Test3: N =16, H/o =4, a = 1
8  33|[31(29.6) 23(10.7) 18(6.4) |27(19.5) 18(6.4) 17(5.7) |19(11.4) 19(11.3) 19(11.7)
16 31(|31(30.8) 29(27.7) 18(6.0) |29(20.2) 23(10.0) 17(5.8) |16(7.7) 16(7.7) 16(7.7)
32 33((33(30.7) 30(28.7) 18(6.4) [31(24.0) 29(17.7) 17(5.5) |15(5.0) 15(5.1) 15(5.0)
64  33(|38(39.5) 33(29.8) 19(6.1) |35(25.2) 31(20.9) 18(5.7) [16(4.9) 16(5.1) 15(5.0)

Table 3 Number of iterations / and condition number « (in parenthesis) with non-convex meshes
and discontinuous values for 3 as in Figure 2. I and I3 correspond to k = 6 and discrete harmonic
extensions, respectively. Ng is the dimension of the coarse space.

N Nglls (x) Iy (x) H/h Ng|ls (k) I3 (k)

8% 158[20 (10.1) 20 (10.1) 8 33|19 (11.3) 19 (11.7)
122 379(23 (13.6) 22 (13.5) 16 31|16 (1.7) 16 (1.7)
162 699[24 (16.1) 24 (16.2) 32 3315 (5.1) 15 (5.0)
20% 110927 (20.7) 27 (20.9) 64 33|16 (5.1) 15 (5.0)

for each experiment; see results in Tables 1 and 2. We include different values for
B € {1073,1,10%} since previous bounds depend on the parameters « and 3. We
confirm the linear growth in the condition number as we increase H/d and we ob-
serve no significant dependence on the parameter H/h. We observe that the coarse
space based on discrete harmonic extensions is numerically scalable, and for small
values of (8 the scalability is impaired when polynomial spaces are used. We remark
that for the case of triangular meshes and square subdomains, our method recovers
the same spaces as in [7]. We also include numerical results where 3 is piecewise
constant on each subdomain; see Table 3 and Figure 2.

The theoretical bound for the condition number of the preconditioned system is in
progress, where we have been able to obtain certain bounds for the coarse component
of a decomposition for u € V},, without considering Helmholtz decompositions as
in [7]. There is also interest of implementing these ideas in 3D problems, in order
to compare numerical results and running times with previous preconditioners. We
also remark that similar results will hold for two-dimensional problems posed in
H(div; Q), since two-dimensional Raviart-Thomas elements correspond to a 90°
rotation of the elements considered in this paper.
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A Two-Level Restricted Additive Schwarz
Method for Asynchronous Computations

Faycal Chaouqui and Daniel B. Szyld

1 Introduction

In this paper, we investigate the parallel performance of both synchronous and
asynchronous domain decomposition methods (DDMs) for the solution of algebraic
systems coming from the discretization of partial differential equations (PDEs). In
particular, we extend the ideas introduced in [8] for different types of coarse space
corrections. We consider a PDE of the form L(u) = f on {2 C R? such thatu|g = 0.
The operator L after discretization yields a large sparse system of algebraic equations
of the form

Au =f, (1)

where A € R"*™ andf € R". Here, we focus our attention on the Restricted Additive
Schwarz (RAS) domain decomposition solver [2, 4]. For the sake of simplicity,
we assume that L = —A. We assume that the domain {2 is decomposed into p
overlapping subdomains (21, ...,2,. Let R, i = 1,...,p, denotes the boolean
matrix that maps the local degrees of freedom defined in (2; to 2. We define the
local stiffness matrix A; = RT;ARZ-T . Let us also define the diagonal matrices D;,
i = 1,...p, such that we satisfy the partition of unity, i.e., > _; R!D;R; = I,
where I denotes the identity matrix in R”*"™. The RAS iteration is then defined as

p
uk+1 _ uk: + ZRJ—DiAz—lRl(ff Auk) (2)

i=1

We note that in our case, the matrices D; correspond to diagonal boolean matrices
that are 1 in the non-overlapping partition, and O otherwise. We note also that there
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are other ways for choosing those matrices, and we refer the reader to [4, 5]. In the
next section, we will describe briefly the asynchronous RAS method.

2 Asynchronous restricted additive Schwarz

We briefly describe asynchronous iterations (see, e.g., [3]) for fixed point problems
defined on a product space U = U; x - -+ x Up, of the form u = 7Tu with a unique
solution. In other words, we have u = (uy,...,u,) and 7 = (71,72, -, Tp),
with 75: U — Us. We have in mind that the operation in process s, of the form
u; = 75 (uy,...,u,) is performed without synchronization, i.e., without waiting for
other processors to send new information.

For a mathematical model of these asynchronous iterations on p processors,
we follow the model introduced by Bertsekas [1]. To that end, we define a time
stamp k, k € N, and denote by {c(k)}, .y the sequence of non-empty subsets of
{1,...,p}, defining which processes update their components at the time stamp k.
Define also for s,q € {1,...,p}, {T; (k)}keN a sequence of integers, representing
the update number (or time stamp) of the data coming from process ¢ and available
on process s at the time k. Thus, a delay would be k — 7, (k). We begin with an initial
approximation u’ = (uf,...,u)), and define, for each process s, the asynchronous
iterations as follows.

ukl Ts (uzf(k), . 7u;"(k))) if seo(k+1), 3)
° u” if s¢o(k+1).

In this model, one also assumes that the three following natural conditions are
satisfied

Vs,q e {l,...,p},Vk e N, 7/ (k) <k, 4)

Vs e {l,...,p},card{k € N|s € o(k)} =+ o0, Q)

Vs,qg€{l,...,p}, lim 77(k) =+ oc. 6)
k—+o00

Condition (4) represents the fact that data used at the time &£ must have been produced
before time k, i.e., time does not flow backward. Condition (5) indicates that no
process will ever stop updating its components. Condition (6) means that new data
will always be provided to the process. In other words, no process will have a piece
of data that is never updated.

One important theoretical result states that for a fixed point problem, say
T'(u) = u, on a product space, under conditions (4)—(6), if there is a norm such that
the map 7' is contracting, i.e., if the (synchronous) fixed point iteration converges,
then, the corresponding asynchronous iteration converges as well; see, e.g., [3] and
references therein. For the RAS iteration, the map 75 defined in (3) is equivalent to
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Algorithm 1 (Asynchronous RAS)

: Input: u°.
: Output: u =~ u*.
: Setr® = f — Au®, converged = false.
: In parallel, each processor core s:
while converged = false do
Setus = Ts(uy,...,up) > Update subdomain s
Compute || Dsrs||2 > Compute local residual norm
if s ==1 then
Compute [|r||2 = /37, [[Diri]|3
if [|r||2/[|r%||2 < € then > Check global convergence
converged = true
end if
13: end if
14: end while (for processor s)
15: Setu=>*_, R} Dsu, > Assemble global solution

SV RXIDNE LD

—_—
N —

p
7-5(1117112, e 7llp) = Ug +RS ZR:DZA:ll'Z, (7)

i=1

where r; = R;(f — Au) it the local residual for the subdomain (2;,7 = 1,...p. The
implementation of iteration (3) is presented in Algorithm 1.

In Algorithm 1 each processor core computes and updates the components of
the local vector as well as the corresponding local residual norms. A processor core
is then in charge of accumulating all the local residuals and computing the global
residual. The algorithm then stops when the global residual is smaller than the toler-
ance. We provide results of numerical examples illustrating the performance of both
synchronous and asynchronous RAS. We consider 2 = [0, 1] x [0, 1] decomposed
into regular squares with a total of p subdomains and a minimal overlap. The source
term f is chosen such that sin(7x) sin(7y) corresponds to the exact monodomain
solution. We partition the domain into p = 4 x 4 subdomains with a total of 10k dis-
cretization points. We note that each processor core was assigned to one subdomain.
All the tests were carried out on a shared memory machine which consists of 88
CPU cores / 176 threads and 1536GB of RAM. The implementation of Algorithm 1
was in C++ and the parallelization uses the OpenMP multithreading directives. We
run two different types of experiments. In the first run, we assume all processors run
at the same speed and compare both the timings required by both synchronous and
asynchronous to reach a specified tolerance. This is illustrated in Figure 1 (left). We
can see that in this case the synchronous is faster than the asynchronous. To show
the advantage of the asynchronous approach, we repeat the experiment but with one
processor core twice as slow. This can be realized by measuring the time needed
for a single update and then forcing the processor to sleep (idle) for that amount of
time. In this manner we mimic heterogeneous architectures, as well as cases where
one subdomain is larger than the others. We can observe from Figure 1 (right) that
the asynchronous is faster than the synchronous in this case.
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0.1

SyncRAS —=— Sync RAS —=—
Async RAS —e— ASync RAS —e—
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Fig. 1 Left: CPU time versus relative residual 2-norm for synchronous and asynchronous RAS
with p = 16. Right: Same but one thread is twice as slow.

3 Two-level asynchronous restricted additive Schwarz

A second level is an essential component to obtain a robust domain decomposition
method. It relies generally on solving a smaller problem on a coarser mesh so that
there is global communication between the subdomains. The coarse space allows
us then to construct the coarse restriction matrix Ry. The two-level RAS is then
defined as

p
uk+1/2 _ uk + Z RIDlAl—lRl(f— Auk) ®
1=1

bt = okt Y2 L RTASIR(f — AufT1/2),

In order to use iteration (8) asynchronously, we need to use the coarse grid in an
additive way. This can be done by using a weighted additive version or multiplica-
tive/additive variant of (8). The corresponding two-level mapping T canbe expressed
in the case of the additive variant as

P P

Ts(ui,ug,. .. u,) = u+R; % Z R;—DiA,L._lri + %RS—AalRO Z R;—Diri
i=1 i=1

©)

For work using a multiplicative additive variant, we mention [7, 9]. To avoid

over-correction from the coarse grid, we have to make sure that no subdomain is

corrected again until all the remaining subdomains have updated at least once [8].

We present in Algorithm 2, the implementation of the asynchronous two-level RAS.

We describe now the coarse correction we use. We would like the coarse grid

to ensure the scalability of the method as a solver. In the same spirit of [6], we use

harmonically extended coarse basis functions. Let n; denotes the number of cross

points for each subdomain £2;,4 = 1,...p. Let ¢}, j = 1,...n; define a piecewise
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Algorithm 2 (Asynchronous two-level RAS)

1: Input: u®.
2: Output: u ~ u*.
3: Setr® = f — Au®, converged = false.
4: Set update[s]=false, and correction[s]=false, s = 1, ..., p.
5: In parallel, each processor s:
6: while converged = false do
7: if s > 0 then
8: if correction[s] then > Check if coarse correction is needed
9: Setus = Ty (ui,...,up) > Update subdomain s
10: Set correction[s]=false
11: else
12: Setus = Ts(uy,...,up) > Update subdomain s
13: Set update[s]=true
14: end if
15: Compute || Dsrs||2 > Compute local residual norm
16: if s == 1 then
17: Compute |[r||2 = /> F_; [|Dirs 2
18: if ||r||2/|Ir%||2 < € then > Check global convergence
19: converged = true
20: end if
21: end if
22: else
23: if update[q], Vg = 1, ..., p then > Check if all subdomains updated
24: Compute the coarse correction.
25: Set correction[i]=true,z = 1,...,p
26: Set update[i]=false,i = 1,...,p
27: end if
28: end if
29: end while (for processor s)
30: Setu = 521 R;'— Dgug > Assemble global solution

linear function on 9f2; that is 1 at one cross point and 0 on the others. We define the
coarse basis functions ¢/, j = 1,...,n;,i = 1,...p, as the solution of

L|g,(¢]) = 0,0n £;

e (10)
¢ =], on 082 .

We define our coarse space Z C R as the span of extended coarse functions ¢f ,i.e.,
zzspan{Rj¢g,j=1,...,nii:1,...,p}. 11

The columns of the matrix R forms a basis of Z . We show in Table 1 the number
of iterations needed to reach a tolerance ¢ = 10~® with this specific coarse space for
(synchronous) RAS as a solver. We can see that the two-level method outperforms the
one-level method and is also scalable, i.e., the number of iterations does not increase
when we grow the number of subdomains. We also report the iterations required
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Table 1 Weak scalability of additive two-level RAS
p n dimZ dim Zp ¢ #iter (RAS) #iter (RAS+2) #iter (RAS+Zy )

16 14400 36 49 630 93 144
25 22500 64 81 953 98 107
36 32400 100 121 1344 99 108
49 44100 144 169 1802 100 99
64 57600 196 225 2325 100 99

for two-level RAS constructed using a multigrid (MG) approach with four levels
of coarsening. We can observe that the coarse grid considered in our simulation is
asymptotically similar to MG for our model problem L. However, it has a smaller
coarse grid size.

Next, we test the performance of the two-level asynchronous Algorithm 2 by
comparing the time needed to reach a specified tolerance. In Figure 2 we plot
the timing versus the residual norm for both synchronous and asynchronous two-
level methods. We can observe that in this case the synchronous is faster than the
asynchronous. We also see that the timing required to converge is faster than for
the one-level method. The introduction of heterogeneity among processors yields
a faster asynchronous two-level method. We note that as is the case for the local
subdomains, the coarse problem was solved exactly since it is small for the coarse
space defined (11). In Table 2, we report the timings required for both synchronous
and asynchronous one and two-level RAS for processors with random time delays.
We realize this by adding a random time delay to each processor core that follows
a uniform density function of the form U/ (0, €T ), where T is the timings required
for the processor s to finish its workload, and ¢ = 0.01,0.1, 1. We can observe from
Table 2 that the introduction of heterogeneities in the computation, even with a small
magnitude reveals the advantages of asynchronous computations.

In Figure 3 we test the weak scalability of both the synchronous and asynchronous
methods. To do so, we fix the tolerance to ¢ = 10~6 and the subdomain’s size to 1600,

01 T T T T 0.1 ] T T T T T
X Sync two-level RAS —=— Sync two'level RAS —=—
‘ Async two-level RAS —e— \ Async two-level RAS —e—
0.01 X 0.01 v
0.001 0.001
< =
£ 0.0001 \ £ 00001
g N 5 \
& &
T 1e0s D 1le0s
2 > 2
g ~ 14 \ \
2 1e06 - & 1e06 X .\
1e-07 « 1e07 N <
1e-08 " 1e-08
1e-09 109
005 01 015 02 025 03 035 04 005 01 015 02 025 03 035 04 045 05
Time (s) Time (s)

Fig. 2 Left: CPU time versus relative residual 2-norm for two-level synchronous and asynchronous
RAS with p = 16. Right: Same but one thread is twice as slow.
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Table 2 Timing required (in sec) of synchronous and asynchronous one- and two-level RAS to
reach a tolerance of 10~® for different levels of heterogeneities.

€ |Sync RAS|Async RAS|Sync two-level RAS|Async two-level RAS

0.01| 2.3173 2.1973 0.4547 0.3539
0.1] 2.4788 2.4051 0.4075 0.3601
1 5.9415 5.7202 1.0837 1.0295

j Sync RAS —=— j Sync RAS |
65 Async RAS —v— 65 Async RAS B
Sync two-level RAS Sync two-level R
60 Async two-level RAS —+— | 60 Async two-level RAS —+— |
55 55

50 50 be
45 45
= 40 =~ 40
g » g
g 3 g 3 /
F 30 F 30 A
25 25
20 T 20 / -~
15 15 —
g™
10 10
g P e
5 i 5 -
i
I Sl B = B e B
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

Fig. 3 Left: The number of subdomains versus the CPU time needed for convergence for one and
two-level synchronous and asynchronous RAS. Right: Same but with a processor core twice as
slow.

then run the two-level algorithms and measure the CPU time required to converge.
We also plot the time required for the synchronous one as well. In Figure 3 (left),
all the processors run at the same speed and there is no load imbalance. We can
observe that in this case, the two-level asynchronous method is the fastest among
all the four methods. The one-level synchronous method is still slightly faster than
the one-level asynchronous (except for p = 64). In Figure 3 (right) we repeat the
same experiment, but with one processor core twice as slow. We can see now that
the asynchronous method outperforms the synchronous method. This is true for both
the one- and two-level methods. Observe also that while the two-level synchronous
method is slightly slower in the simulated heterogeneous architecture (for p = 64,
5.85 sec vs. 2.38 sec), the asynchronous method is faster (2.59 sec vs. 6.17 sec). The
introduction of heterogeneity clearly shows how asynchronous can be effective in
practice.

4 Conclusion

In this paper, we analyzed the performance of one and two-level synchronous and
asynchronous RAS. In particular, we used a specific coarse grid correction for our
asynchronous computations. Our numerical results suggest that the asynchronous
methods exhibit good performance. In particular, we observed that for heterogeneous
hardware, the asynchronous outperforms the synchronous method. This was valid
for both the one and two-level methods.
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Cross-Points in the Neumann-Neumann Method

Bastien Chaudet-Dumas and Martin J. Gander

1 Introduction

The Neumann-Neumann method (NNM), first introduced in [1] in the case of two
subdomains, is among the most popular non-overlapping domain decomposition
methods. However, when used as a stationary solver at the continuous level, it has
been observed that the method faced well-posedness issues in the presence of cross-
points, see [2]. Here, our goal is to analyze in detail the behaviour of the NNM near
cross-points on a simple, but rather instructive, bidimensional configuration.

Let Q c R? be the square (—1,1) x (-1, 1), divided into four non-overlapping
square subdomains Q;, i € I := {1,2,3,4}, see Figure 1. This leads to one interior
cross-point (red dot), and four boundary cross-points (black dots). We denote the
interfaces between adjacent subdomains by I';; := int(d€2; N 0Q;), the skeleton of
the partition by I" := |, ; I_ﬂij , and 69? = 0Q; N 0Q. We consider the Laplace
problem with Dirichlet boundary conditions on €, that is: find u solution to

~Au=finQ, u=g ondQ, (1)

where f € L>(Q) and g € H? (0Q), ensuring that u € H>(Q).

& DD s Q N'N s
D | D N | N
,,,,,,,,,,,
D | D N | N
Q PP g o NN g

Fig. 1 Transmission conditions of the standard NNM for u (left) and ¢ (right).
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Given an initial couple (#°, ), and a relaxation parameter 6 € R, each iteration
k > 1 of the NNM applied to (1) can be split into two steps:

* (Dirichlet step) Solve for all i € T,
—AuX =f inQ;, uf‘ =g onBQ?,

L

L
uf = uf‘l -0 (W“] +(//j?‘1) onlyj, Vjel st.l;j#0.
* (Neumann step) Compute the correction l//k, that is, solve for alli € 7,

~-AyF=0inQ;, yF¥=0o0noQ?,
Bnitﬁf = a,,,,u{f + 8, u* on Iij,Vjel sty #0.

njt;j

For the method to be well defined, it is assumed in the rest of this paper that the
initial couple (x°, ) is compatible with the Dirichlet boundary condition, i.e. it
satisfies: u® € H*(Q), y° € H*(Q) N Hy(Q) and u° |s0nr= g |r-

2 Convergence analysis of the Neumann-Neumann method

Definition 1 A measurable function 4 : Q — R is said to be even symmetric (resp.
odd symmetric)iffora.e. (x,y) € Q, h(—x,—y) = h(x,y) (resp. —h(x, y)). Moreover,
any measurable function / can be uniquely decomposed into & = h, + h, where h,
is even symmetric and A,, is odd symmetric.

Following this notion, as in [3], we introduce the so-called even symmetric and odd
symmetric parts of problem (1): find u, and u,, solutions to

-Au, = f, inQ, u, =g, onoQ, (2a)
—Au, = f, inQ, u, =g, ondQ. (2b)

If u denotes the solution to (1), it is known (see [3]) that the unique solutions u,
and u, to these subproblems are precisely the even symmetric part and the odd
symmetric part of u. In what follows, we will perform the convergence analysis
of the NNM separately for the errors associated with the even and odd symmetric
subproblems, as they lead to completely different behaviours of the method.

Case of the even symmetric part. The next Theorem states that the NNM is
convergent when applied to the even symmetric part of (1).

Theorem 1 Taking (u(e), ng) as initial couple for the NNM applied to (2a) produces
a sequence {u’e‘ } « that converges geometrically to the solution u, with respect to the
L*-norm and the broken H'-norm for any 6 € (0, %) Moreover, the convergence
factor is given by |1 — 40|, which also proves that the method becomes a direct solver
for the specific choice 6 = %.



Cross-Points in the Neumann-Neumann Method 119

Proof As in [3] for the Dirichlet-Neumann method, let us study the first iterations
of the NNM in terms of the local errors e’e‘ = Ul —ul .
o [teration k = 1, Dirichlet step: In each Q;, i € T, the errors satisfy

—-Ae, . =0 in Q;, eé’i=00n6§2?,

1
e,t
1
e,

ebi=el +0(y0+yl,) onTiy Vi€ T stliy#0.

Since (1%, ) is compatible with the even symmetric part of the Dirichlet boundary
condition, e1 exists and is unique in H'(€;). Using the even symmetry properties

of ¢ e, and z//e, one can deduce that the e ;»fori € {2,3,4}, can be expressed in terms
of ee , as follows:

el,z(X,y) = e;,l(—x, y), forae. (x,y) € Q;,
62,3(%)’) = ei,l (=x,=y), for a.e. (x,y) € Qs ,
EiA()C, y) = eé,l('x7 _y) N for a.e. (x, y) (S 94 .

e [teration k = 1, Neumann step: We compute the correction zﬂé ; in each subdo-
main ;. For instance, taking i = 1, we get in Q;

~Ayl,=0inQ;, y.;=0only,
a"llfl’;,] = (anlee 1t anzee 2) Za"lee p onlia,
Ol y == (Ou el s+ Ongely) = =20m el on Ty

Thus, uniqueness of d/l ¥ in H'(Q) yields a,lrl = —261 1 in Q. A similar reasoning
applies to each w , 1 €{2,3,4}, therefore the recombmed correction simply reads:
Wl =-2el inQ\ F.

e [teration k > 2: At iteration k = 2, the transmission condition for the Dirichlet
step in Q; on each I'; is given by, e 2 ;= e ;+0 (zpl +¢/1 ) =(1- 49)6l
Uniqueness of e ;in H'(Q;) enables us to conclude that e =(1- 49)e in Q.
Since this holds 1n each subdomain, the exact same rcasomng as for 1tcrat10n k=1
applies, and we get after the Neumann step ee = (1-460)e! and zﬁe =-2(1-46)e!
in Q \ . By induction, we obtain for any k > 3, eX = (1 —46)k~'el in Q \ I". This
leads to the following estimates for the error on the whole domain Q in the L?-norm
and the broken H'-norm:

k= e llz2@= D Il ek 2y < CIL - 4017,
iel
Dol ul = e i Mo <C'I1 = 4057,
iel

where C, C’ are strictly positive constants depending on the data and the geometry
of the domain decomposition. O
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Case of the odd symmetric part. As for the Dirichlet-Neumann method, the
NNM does not converge in general when applied to the odd symmetric part of (1).

Theorem 2 The NNM applied to (2b) is not well-posed. More specifically, taking
(ug, x//g) as initial couple, there exists an integer ko > 0 such that the solution to
the problem obtained at the ko-th iteration is not unique. In addition, all possible
solutions u],;" are singular at the cross-point, with a leading singularity of type (Inr)>.

Theorem 3 [f we let the NNM go beyond the ill-posed iteration kg from Theorem 2,
we end up with a sequence {uﬁ}kzko of non-unique iterates. Moreover, for each
k > ko, all possible u* are singular at the cross-point, with a leading singularity of
type (Inr)2(k—ko)+2,

Proof The proofs of these results rely on the exact same arguments as those in the
proofs of [3, Theorem 7 and 8]. O

The previous results show that, at some point in the iterative process, the NNM
method will lead to solving an ill-posed problem. This will generate a singular
solution, and the generated singularity will then propagate through the following
iterations.

3 Toward a modified Neumann-Neumann method

The conclusions from the previous section suggest that the transmission conditions
of the standard NNM are naturally well adapted to the even symmetric part of
the problem. Indeed, in this context, one may express at each iteration k all local
errors e](_f’ ; in terms of only one, say ele"l, by symmetry. This motivates the search
for different transmission conditions such that a similar symmetry property holds for

the odd symmetric part of the problem.

Fixing the odd symmetric case. In order to fix the well-posedness issue in the
odd symmetric case, and obtain the symmetry property mentioned above, we propose
a new distribution of Dirichlet and Neumann transmission conditions, as shown in
Figure 2.

2 NIN Qs 2 DD Qs
D | D N | N
LoD b 4 G RN 4
D D N | N
o NN g Q DfD Q

Fig. 2 Transmission conditions of the mixed NNM for u (left) and ¢ (right).
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Let us introduce I'), T'y,, T'5, I'y, the sets containing all parts of the interface I
where transmission conditions of Dirichlet or Neumann type are imposed for u
(superscript 1) and for  (superscript 2), that is :

[h={2, Ty}, Th ={T12, T}, T3 :={T12, s}, T3 = {T3, Ty}
Given an initial couple (u°, ") and relaxation parameter 6, each iteration k > 1 of
the proposed mixed Neumann-Neumann method can be split into two steps:

e (First step) Solve for alli € T
k . k 0
—Au; = f inQ;, u; =g ond;,
uf‘ = ul.cfl -0 (lpkfl +!,l/§7]) on Fij, Vjel st F,‘j € F}) s

L L

i i

Onaf = Ol ™+ (=170 (9w + 9, ph7) on Ty, Vj €T s Ty €T,
* (Second step) Compute the correction /¥, that is, solve for all i € T

-AYF=01inQ;, ¢F=0onaQ’,

(ﬁlk = uf‘ —uf on F,'j, V] e I s.t. Fij € l—% s
Opf = Onuf +0pu onTyy, VjeT st.Tyely .
With this choice of transmission conditions, we are able to prove that the proposed

mixed NNM is convergent when applied to the odd symmetric part of (1).

Theorem 4 Taking (u®,4?0) as initial couple for the mixed NNM applied to (2b)
produces a sequence {u(]ﬁ} i that converges geometrically to the solution u, with
respect to the L*>-norm and the broken H'-norm for any 6 € (0, %). Moreover, the
convergence factor is given by |1 — 40|, which also proves that the method becomes
a direct solver for the specific choice 6 = %.

Proof We follow the same steps as in the proof of Theorem 1.
e [teration k = 1, Dirichlet step: In each Q;, i € I, the odd errors satisfy

—Ael;=0inQ;, e);=00ndQ),
ehi=eb,+0(yS,+yl,) onTy, VjieT stTyer,

o,i

Onieh,i = Onged = (<10 (30,00, + G0 ) onTij, Vj € T stTy el
These problems are well-posed since (9, ) is compatible with the odd symmetric
part of the boundary condition. This time, using the mixed conditions enforced
along T together with the odd symmetry properties of ¢? and ¢/, we can deduce that
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1 1
eoq(x,y) = =€, 1 (=x,y), fora.e. (x,y) € Q,,

elj(x, y) = —e(l)’l(—x, —-y), forae. (x,y) e Q3,

6,1),4()6, y) = eé,l (x,-y), fora.e. (x,y) € Q4.

Indeed, for the first equality, taking (x, y) € Q,, we have on I';3 and I'1

el ,(x,0) = ¢ ,(x,0) +0 (wg,z(x, 0) +ul,(x, 0))
= —e?,,l(—x, 0)-0 (w2’4(—x, 0) + wg’l(—x, 0)) = —e;’l(—x, 0),
(Bl )(0,7) = (8¢5 ) (0,3) = 0 (0.5 ) (0,3) + (D5 )0, )

= ~(0:€,)(0,7) = 0 (00, (0, 7) + (8:05,,)(0,))
= ~(9n¢,1)(0.5) = =(Inep, 1 (= ))(0.) .

Then uniqueness of the solution to the subproblem in €, yields eé )= —e}) (=)
a.e.in Q. The two other equalities are obtained using similar arguments, see Figure 3
for an illustration of this symmetry property.
o [teration k = 1, Neumann step: For i = 1, we get in Q4

Ayl =0inQ;, ¢! =0onTy,

1 1 1 1
Yo1=—€o1 €00 = _290,1 only,,

1 1 1 1
O by == (Onieb + Oneh y) = =20u,¢b o Ty .

Therefore, z//(l) | = —2e3} , in Q1. Extending these arguments to the other subdomains
yields a recombined correction i} = —2el in Q \ T".

e Jteration k > 2: At iteration k = 2, the transmission conditions for the first step
in Q are given by

Fig. 3 Source term f (left), and absolute error at iteration 1 for 6 = 0.25 (right), in Example 2.
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312;,1 = 3(1;,1 +6 (‘//(1;,1 +!,0(1)’4) =(1 _49)‘3(1),1 only,

Ol = Omel +0 (00l + 0,0 5) = (1= 40)3p el on Tz

This implies that €2 | = (1 —46)e] | in Q. Using the same arguments in the
other subdomains and performing the second step leads to ¢2 = (1 — 46)e! and
lﬂ(z) = -2(1 - 40)e. in Q\ T'. As in the proof of Theorem 1, we obtain by induction
that, for any k > 3, ek = (1 — 40)*~'e! in Q \ T'. The desired error estimates are
then deduced from the last relation. O

The new NNM. Here are the different steps of our new NNM to solve (1) starting
from an initial couple (#°,¥") compatible with the Dirichlet boundary condition,
and a relaxation parameter 6 € (0, 1/2).

1. Decompose the data into their even/odd symmetric parts to get (2a) and (2b).
2. Solve in parallel:

* (2a) using the standard NNM starting from (u9, y2),

* (2b) using the mixed NNM starting from (9, y?9).

3. Recompose the solution u = u, + u,.

Remark 1 1t is actually enough to solve for u, and u,, in | U €, and then extend
them to the whole domain Q by symmetry. One iteration of the new NNM thus costs
the same as one iteration of the original NNM.

4 Numerical experiments

In order to test our new NNM, we apply it to two simple benchmarks: one with even
symmetric data (Example 1: g = 0 and f = 1) and one with odd symmetric data
(Example 2: g =0and f =x +y + k where k = sin(2¢) in Q, k = —sin(2¢) in Q3
and k = 0 in Q, U Q4, with ¢ being the angle in polar coordinates, see Figure 3).
The discretization of (1) is performed using a standard five point finite difference
scheme on a cartesian grid of meshsize 4 = 0.01. When two Dirichlet conditions
meet at a corner, the value of g at this node is set to the average of the two values. In
addition, when Dirichlet and Neumann conditions meet at a corner, we choose the
Dirichlet one to be enforced at this node. The results obtained show that the method
behaves as predicted by Theorem 1 and Theorem 4. For 6 = 41'1’ the method converges
after two iterations, see the left column in Figure 4. And for 8 € (0, %), 0 + %, it
converges geometrically to the solution with the expected convergence factor, see
the right column in Figure 4 where 6; = 0.23 and 6, = 0.247. These two graphs also
indicate that the convergence behaviour does not depend on 4 since, in each case,
the error curves for 2 = 0.01 and 4 = 0.005 are almost overlaid on each other.

In this short paper, we gave a complete analysis of the standard NNM in a sim-
ple configuration involving one cross-point. The even/odd decomposition showed
that the NNM was able to treat very efficiently the even symmetric part of the so-
lution, while it faced well-posedness and convergence issues when applied to the
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Fig. 4 Absolute error at iteration 2 for = 0.25 (left column), and error curves for 6 € {0y, 6, }
and h € {0.01,0.005} (right column), in Example 1 (top) and Example 2 (bottom).

odd symmetric part of the solution. Based on this observation, we proposed new
mixed transmission conditions of Dirichlet/Neumann type to treat efficiently the odd
symmetric part. We proved that the newly proposed NNM built upon a combina-
tion between the standard NNM and the new mixed method is convergent, and we
validated this property by some numerical experiments. A natural extension of this
work would be the 3D case of a cube divided into eight subcubes. It would also
be interesting to generalize the notion of even/odd symmetry to the case of more
general cross-points (not necessarily rectilinear, or with N # 4 subdomains).
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A Preconditioner for Free-Surface
Hydrodynamics BEM

Gabriele Ciaramella, Marco Gambarini, and Edie Miglio

1 Introduction

The computation of hydrodynamic loads from sea surface waves on large arrays of
objects is of physical and engineering interest. Typical applications are the simu-
lation of arrays of wave energy converters [3] and the modeling of ice floes in the
marginal ice zone [6]. The interest is in array sizes of the order of tens (for wave
energy converter arrays) to hundreds (for ice floes) of objects. In these scenarios, the
relatively small distances between the floating objects make the correct simulation
of mutual hydrodynamic interactions essential. Under the assumptions of incom-
pressible, irrotational, inviscid flow and small displacements, one can derive a linear
potential model, which is widely used for the considered range of applications. This
model is discretized using the boundary element method [2], resulting in a linear
system characterized by a dense and complex matrix. The dimension of the discrete
problem grows proportionally to the number of simulated objects. In general, itera-
tive solvers are not scalable for the corresponding numerical solution: the number of
iterations needed to achieve a given tolerance grows with the number of objects [5].
To tackle this problem, we propose a preconditioner for the efficient simulation of
large arrays of objects and present its implementation using hierarchical matrices.

Consider an array of n floating objects. To compute all its hydrodynamic proper-
ties, a number of problems equal to the number of its degrees of freedom needs to be
solved. Each problem corresponds to imposing a unit oscillation in one of the degrees
of freedom, while keeping all others fixed. Exploiting linearity, the solution of the
dynamic problem with loads from incident waves and possibly other external forces
can then be written as a linear combination of such unit oscillations. Considering
only vertical oscillations, system (1) needs to be solved fori =1,...,n

Gabriele Ciaramella, Marco Gambarini, Edie Miglio
MOX, Dipartimento di Matematica Politecnico di Milano, Italy, e-mail:
gabriele.ciaramella@polimi.it, marco.gambarini @polimi.it, edie.miglio @polimi.it
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Ap =0 inQ c R3,

0

a_ﬁz 2 only,

09 w

B_z_?¢=0 on T, ey
a—¢=l’l Onroi’

TN |

a—f:O Onro’j, lea’nAJ;tl’

where ¢ is the velocity potential, 2 is the (3D) domain, bounded by the sea bottom I,
the mean free surface I's, and the immersed surfaces of the objects I, ;,i = 1,...,n.
Further, w is the angular frequency of oscillations, g is the gravitational field, and n,
is the vertical component of the normal vector to the surface of objects. The numerical
solution using a source-distribution boundary element method (BEM) is based on
recasting (1) in integral form:

1 0 ifxel,;,
—o(x) +/ oG (eixyaxr = T Lo
2 UTox on 0 ifxel,;, Jj#i,

¢(x) =/ o(x)G(x;x")dx’, Vx e Q. (3)
UkTo

Here, the unknown is the source distribution o~ defined on body surfaces. The kernel
is the Green function G, a complex elementary solution of the Laplace equation
satisfying the boundary conditions on the bottom and free surface [7, Sect. 16]. By
discretizing the surfaces of objects into elements, Eq. (2) can be represented as the
linear algebraic system Ao = b. Once this system has been solved, Eq. (3), in the
discretized form ¢ = Bo, can be used to compute the potential in any point of the
domain.

2 The coarse-corrected block-Jacobi algorithm

The matrix A resulting from the discretization of Eq. (2) is full, because each element
interacts with all others. Moreover, even though the Green function is symmetric
with respect to an exchange of its arguments, matrix A is non-symmetric because
interacting elements have in general different areas and orientations. The problem
has a natural block structure

Ay - A (g b,
A: E .‘, . ) o = E 9 b: : 9 (4)
On b,

Anl o Ann
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where o is a vector containing the unknowns corresponding to the j-th object. The
diagonal block A;; represents the interaction of body i with itself. The off-diagonal
block A;; represents the effect on body i of waves radiated from body j. The structure
of (4) suggests the use of a block-Jacobi algorithm, equivalent to the parallel method
of reflections [5]. This method, together with a coarse correction, has been presented
in [5] for the real Laplace equation in perforated domains. Block-Jacobi is based on
the splitting A = D — N, where D is the block-diagonal part of A. At each iteration,
starting from o¥, it requires solving for o**1/2 in

Do** 1?2 = No* +b. (@)

The solution of (5) can be performed block by block in parallel. After the block-
Jacobi step, a coarse correction is performed by solving the correction problem
Ae = r**1/2 in a low-dimensional (coarse) space C, where r**1/2 = p — Axk+1/2
is the residual. Consider, for simplicity, a problem with n identical bodies, each
one discretized with p elements, so that the full system has dimension np. Define
C = span{