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Preface

This volume presents a selection of 62 peer-reviewed papers that were submitted
to the proceedings of the 27th International Conference on Domain Decomposition
Methods held in Prague, Czech Republic, from July 25 to 29, 2022.

Background of the Conference Series

With its first meeting in Paris in 1987, the International Conferences on Domain
Decomposition Methods have been held in 16 countries in Asia, Europe, and North
America, and now for the first time in the Czech Republic. The conference is held at
roughly 18-month intervals. A complete list of the 27 meetings appears below.
Domain decomposition is often seen as a formof the divide-and-conquer approach

for mathematical problems posed over a physical domain, reducing a large problem
into a collection of smaller problems, each of which is much easier to solve compu-
tationally than the undecomposed problem, and most or all of which can be solved
independently and concurrently, and then solved iteratively in a consistent way. A lot
of the theoretical interest in domain decomposition algorithms lies in ensuring that
the number of iterations required to converge is very small. Domain decomposition
algorithms can be tailored to the properties of the physical system, as reflected in the
mathematical operators, to the number of processors available, and even to specific
architectural parameters, such as cache size and the ratio of memory bandwidth to
floating point processing rate. Consequently, domain decomposition methods prove
to be an ideal paradigm for large-scale simulation on advanced parallel computers
and supercomputers.
While the technical content of the conference revolves mainly around mathe-

matics, its underlying motivation lies in enabling efficient utilization of distributed
memory computers for complex scientific and engineering applications. Although
research on domain decomposition methods is presented at various events, the In-
ternational Conference on Domain Decomposition Methods stands as the singular
recurring international forum dedicated to fostering interdisciplinary interactions
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between theoreticians and practitioners. These interactions span the development,
analysis, software implementation, and applications of domain decomposition meth-
ods.
As we are entering the era of exascale computing, with the most powerful su-

percomputers now capable of sustaining 1018 floating-point operations per second,
the need for efficient and mathematically sound methods for solving large-scale sys-
tems becomes increasingly vital. Furthermore, these methods must align well with
the modern high-performance computing (HPC) architectures. The massive paral-
lelism inherent in exascale computing necessitates the development of new solution
methods that effectively leverage the abundance of computing cores and hierarchical
memory access patterns. Ongoing advancements, such as parallelization in time,
asynchronous iterative methods and nonlinear domain decomposition methods show
that this massive parallelism not only calls for novel solution and discretization
approaches but also facilitates their further development.

Here is a list of the 27 conferences on Domain Decomposition Methods:

1. Paris, France, January 7–9, 1987
2. Los Angeles, USA, January 14–16, 1988
3. Houston, USA, March 20–22, 1989
4. Moscow, USSR, May 21–25, 1990
5. Norfolk, USA, May 6–8, 1991
6. Como, Italy, June 15–19, 1992
7. University Park, Pennsylvania, USA, October 27–30, 1993
8. Beijing, China, May 16–19, 1995
9. Ullensvang, Norway, June 3–8, 1996
10. Boulder, USA, August 10–14, 1997
11. Greenwich, UK, July 20–24, 1998
12. Chiba, Japan, October 25–20, 1999
13. Lyon, France, October 9–12, 2000
14. Cocoyoc, Mexico, January 6–11, 2002
15. Berlin, Germany, July 21–25, 2003
16. New York, USA, January 12–15, 2005
17. St. Wolfgang–Strobl, Austria, July 3–7, 2006
18. Jerusalem, Israel, January 12–17, 2008
19. Zhangjiajie, China, August 17–22, 2009
20. San Diego, California, USA, February 7–11, 2011
21. Rennes, France, June 25–29, 2012
22. Lugano, Switzerland, September 16–20, 2013
23. Jeju Island, Korea, July 6–10, 2015
24. Spitsbergen, Svalbard, Norway, February 6–10, 2017
25. St. John’s, Newfoundland, Canada, July 23–27, 2018
26. Hong Kong SAR (virtual format), China, December 7–12, 2020
27. Prague, Czech Republic, July 25–29, 2022
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International Scientific Committee on Domain Decomposition Methods

• Petter Bjørstad, University of Bergen, Norway
• Susanne Brenner, Louisiana State University, USA
• Xiao-Chuan Cai, CU Boulder, USA
• Martin Gander, University of Geneva, Switzerland
• Laurence Halpern, University Paris 13, France
• David Keyes, KAUST, Saudi Arabia
• Hyea Hyun Kim, Kyung Hee University, Korea
• Axel Klawonn, Universität zu Köln, Germany
• Ralf Kornhuber, Freie Universität Berlin, Germany
• Ulrich Langer, University of Linz, Austria
• Luca F. Pavarino, University of Pavia, Italy
• Olof B. Widlund, Courant Institute, USA
• Jinchao Xu, Penn State, USA
• Jun Zou, Chinese University of Hong Kong, Hong Kong

About the 27th Conference

The twenty-seventh International Conference on Domain Decomposition Methods
had 200 participants (187 onsite and 13 online) from 25 different countries. The
conference featured 11 invited presentations selected by the International Scien-
tific Committee with both experienced and younger speakers, 17 minisymposia on
specific topics and 6 contributed paper sessions. The present proceedings contain
a selection of 62 papers, grouped into three separate groups: 4 papers by plenary
speakers, 48 minisymposium papers, and 10 contributed papers.

Organizers

• VSB – Technical University of Ostrava
• Institute of Mathematics of the Czech Academy of Sciences
• Czech Technical University in Prague

Sponsoring organizations

• Hewlett Packard Enterprise (gold partner)
• Atos
• M Computers
• RSJ Foundation
• Research Center for Informatics
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Local Organizing/Program Committee Members

• Zdeněk Dostál, VSB – Technical University of Ostrava, Czech Republic (Chair)
• Axel Klawonn, University of Cologne, Germany
• TomášKozubek, IT4Innovations&VSB –Technical University of Ostrava, Czech
Republic

• Jaroslav Kruis, Czech Technical University in Prague, Czech Republic
• Ulrich Langer, Johannes Kepler University Linz, Austria
• Daniel Langr, Czech Technical University in Prague, Czech Republic
• Jakub Šístek, Institute ofMathematics of the CzechAcademy of Sciences, Prague,
Czech Republic

Plenary Presentations

• Silvia Bertoluzza (CNR — Istituto di Matematica Applicata e Tecnologie Infor-
matiche “Enrico Magenes")
Domain decomposition for the Virtual Element Method

• Xiao-Chuan Cai (Department of Mathematics, University of Macau)
Schwarz for complex fluid and solid problems in biomechanics

• Alexander Heinlein (Delft University of Technology)
Robust, algebraic, and scalable Schwarz preconditioners with extension-based
coarse spaces

• Florence Hubert (Institut de Mathematiques de Marseille, Aix-Marseille Univer-
sité, France)
On discrete optimized Schwarz algorithms for elliptic problems

• Hyea Hyun Kim (Kyung Hee University, Korea)
Domain decomposition algorithms for neural network approximation of partial
differential equations

• Maksymilijan Dryja (the winner of the Olof Widlund Prize), a talk presented by
Marcus Sarkis (University of Warsaw / Worcester Polytechnic Institute)
NOSAS and RAS/ASH

• Robert Scheichl (Heidelberg University, Germany)
Multiscale Generalised Finite Element Methods

• Jonathan W. Siegel (Pennsylvania State University/Texas A&M University)
Approximation Properties of Neural Networks and Applications to Numerical
PDEs

• Jakub Šístek (Institute of Mathematics of the Czech Academy of Sciences)
Applications of multilevel BDDC to problems of incompressible flows

• Barbara Wohlmuth (Technical University of Munich)
Multi-physics models with mixed dimensions: Bio-medical and seismic applica-
tions

• Stefano Zampini (King Abdullah University of Science and Technology, Saudi
Arabia)
Device Accelerated solvers with PETSc: current status, future perspectives, and
applications
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A Short Note on Solving Partial Differential
Equations Using Convolutional Neural Networks

Viktor Grimm, Alexander Heinlein, and Axel Klawonn

1 Introduction

Solving partial differential equations (PDEs) is a common task in numerical math-
ematics and scientific computing. Typical discretization schemes, for example, fi-
nite element (FE), finite volume (FV), or finite difference (FD) methods, have the
disadvantage that the computations have to be repeated once the boundary condi-
tions (BCs) or the geometry change slightly; typical examples requiring the solution
of many similar problems are time-dependent and inverse problems or uncertainty
quantification. Every single computation, however, can be very time consuming,
motivating the development of surrogate models that can be evaluated quickly.
There exist some possible surrogate models, including linear reduced order mod-
els [9, 21, 26, 29] and neural network-based models [6, 7, 8, 14, 19, 22, 24, 25].
In this work, we will discuss an approach for predicting the solution of bound-

ary value problems using convolutional neural networks (CNNs). This approach is
particularly interesting in the context of surrogate models which predict the solution
based on a parametrization of the model problem, for instance, with respect to vari-
ations in the geometry or BCs; cf. Fig. 1 for a sketch of the CNN-based surrogate
modeling approach. If the parametrization is high-dimensional, that is, if it consists
of a large number of parameters, neural network-based approaches are particularly
well-suited since they are know to be able to overcome the curse of dimensional-
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Fig. 1 Exemplary CNN-based surrogate model. The first block transforms the problem parametriza-
tion into a low-dimensional representation (latent representation) of the solution, and the right part
of the model decodes the corresponding image of the solution field.

ity [4, 17]. In [5, 6, 15], a CNN model has been trained to predict stationary flow
inside a channel with an obstacle of varying geometry; themodel is trained in a purely
data-based way using high-fidelity simulation data.
Here, we use a physics-based loss function in the CNN approach, that is, we

optimize the network with respect to the residual of the partial differential equation
(PDE) as well as the BCs of the BVP; this is also denoted as physics-informed or
physics-aware machine learning (ML). Therefore, our approach is related to physics-
informed neural networks (PINNs), which have been introduced in [28] and are
an extension of the pioneering work [20]. However, different from [20, 28], we
employ a finite difference-based discretization inside the loss function and predict
the coefficients using a CNN. In the classical PINN approach, however a dense neural
network (DNN) is employed as the discretization, and the derivatives are computed
exactly via the backpropagation algorithm.
Physics-informed CNN approaches have already been considered. In particular,

in [31], a model for predicting the solutions of the stationary diffusion equation for
a single fixed geometry but varying BCs, encoded as an input image, is proposed.
In [10], the authors employ a physics-based CNN model for predicting incompress-
ible Navier–Stokes flow in parameterized geometries that is, the exact placement of
the boundaries of the geometries depend on a parameter.More recently, the authors of
this work have extended the previous approaches to a physics-aware CNN for predict-
ing incompressible Navier–Stokes flow in more general geometries and also varying
boundary conditions; cf. [13]. For further works on CNN-based surrogate models
for the approximating the solutions of PDE, see, for instance, [7, 8, 11, 22, 25]. Fur-
thermore, for scientific machine learning (SciML) overview papers with a broader
scope and additional references on related approaches, we refer to [3, 35].
In this paper, we will compare the accuracy and convergence of a CNN model,

optimized using a (stochastic) gradient descent-type method using a physics-based
loss function, with a classical FD discretization, solving the resulting discrete linear
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system of equations using an (unpreconditioned) conjugate gradient (CG) method,
for a simple stationary diffusion problem. In order to focus on these aspects and
remove any other complexities, we focus on a single problem configuration, that is,
we neglect the encoder part in Fig. 1 and focus on training the decoder path. The paper
is organized as follows: In Section 2, we introduce our stationary diffusion model
problem and the simple difference discretization employed. Then, in Section 3, we
briefly discuss how to solve the resulting discrete system of equations using the CG
method as well as how to optimize a CNN model for predicting the same solution.
Finally, we compare the performance of both solution frameworks with respect to
accuracy and convergence in Section 5.

2 Model problem and discretization

Finite difference discretization

Let us consider a simple stationary diffusion problem on computational domain
Ω := [0, 1]2: find a function 𝑢, such that

−Δ𝑢 = 𝑓 in Ω,
𝑢 = 0 on 𝜕Ω,

(1)

where 𝑓 is some right hand side function. We discretize (1) using FDs. In particular,
we consider a uniform grid Ωℎ =

{
(𝑥𝑖 , 𝑦 𝑗 )𝑖, 𝑗

}
with 𝑥𝑖 := 𝑖ℎ and 𝑦 𝑗 := 𝑗 ℎ, the step

size ℎ = 1/𝑛, and 𝑢𝑖, 𝑗 := 𝑢(𝑥𝑖 , 𝑦 𝑗 ). Using a central difference scheme, we obtain the
following approximation of the Laplacian:

Δ𝑢(𝑥𝑖) ≈
𝑢𝑖+1, 𝑗 − 2𝑢𝑖, 𝑗 + 𝑢𝑖−1, 𝑗

ℎ2
+
𝑢𝑖, 𝑗+1 − 2𝑢𝑖, 𝑗 + 𝑢𝑖, 𝑗−1

ℎ2
. (2)

Hence, the discrete form of (1) corresponds to the sparse system of linear equations

𝐴𝑢 = 𝑓 . (3)

with a symmetric positive definite (SPD) matrix. Here, for simplicity, we use the
same symbol for the solution and right hand side as in (1).

Reformulation of the finite difference problem via the cross-correlation

Before we explain our physics-based network model, let us discuss how (3) can be
written equivalently using the cross-correlation operation

(𝐼 ∗ 𝐾)𝑖 𝑗 =
∑︁
𝑚

∑︁
𝑛

𝐼𝑖−𝑚, 𝑗−𝑛𝐾𝑚,𝑛,
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where 𝐼 and 𝐾 are two matrices. For simplicity, we omit the the range of the sums,
and regard each matrix coefficient as zero which is outside the range of indices.
Note that the discrete convolution and cross-correlation operations are related in the
sense that one can be obtained from the other by transposition. Moreover, the cross
corelation is actually implemented as the operation of convolutional layers in NN
libraries; cf. [12, Section 9.1].
Now, let 𝑈 =

(
𝑢𝑖, 𝑗

)
𝑖, 𝑗
and 𝐹 =

(
𝑓 (𝑥𝑖 , 𝑦 𝑗 )

)
𝑖, 𝑗
be 𝑛 × 𝑛 matrices resulting from

re-arranging the solution and right hand side vectors in (3). Then, we obtain

𝐴𝑢 = 𝑓 ⇔ 𝑈 ∗ 𝐾 = 𝐹, (4)

where ∗ is the cross-correlation operation and 𝐾 is given by

𝐾 =
1
ℎ2

©­«
𝐾−1,−1 𝐾−1,0 𝐾−1,1
𝐾0,−1 𝐾0,0 𝐾0,1
𝐾1,−1 𝐾1,0 𝐾1,1

ª®¬ = 1ℎ2 ©­«
0 1 0
1 −4 1
0 1 0

ª®¬ , (5)

which is also denoted as the kernel matrix or filter. This can be easily seen by
comparing the coefficients in (2), (5). Only for enforcing the boundary conditions
for certain coefficients or pixels, respectively, the kernel 𝐾 has to be modified,
as is standard in the implementation of boundary conditions in finite difference
discretizations.

3 Solving the finite difference problem using classical methods
versus using convolutional neural networks

Efficient classical numerical solvers

Since our model problem, that is, stationary diffusion on the unit square, is arguably
one of the most investigated problems for the development of solvers, there is a wide
range of efficient solvers for (3). Hence, we keep this discussion rather short. A stan-
dard solver for systems with an SPD matrix is the conjugate gradient (CG) method.
The convergence of the CG method is determined by the spectrum of the matrix,
and in particular, it can be bounded in terms of the condition number of the system
matrix 𝐴, which scales with 1

ℎ2
for our model problem. The ℎ dependence of the

convergence of the CG method can be fixed by acceleration using preconditioners,
such as domain decomposition [32] and multigrid [33] methods, to name just two
popular classes of efficient and scalable preconditioners for (3).
For the purpose of comparing numerical solvers against a closely related ML

approach for solving a stationary problem, we will use the CG method without
preconditioning as the prototypical solver. It would be interesting to include state-
of-the-art preconditioners in our study and discuss if and how preconditioning could
be applied in the optimization of the CNNs. However, this is out of the scope of this
short paper, and therefore, we will leave this to future research.
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A finite difference solver based on convolutional neural networks

Solving (3) corresponds to finding the coefficients 𝑢𝑖, 𝑗 , which are structured based
on the uniform gridΩℎ =

{
(𝑥𝑖 , 𝑦 𝑗 )𝑖, 𝑗

}
. We can simply interpret the discrete solution

as a pixel image, with each pixel corresponding to one coefficient in the solution
vector 𝑢. Hence, in several works, CNNs, which are very effective in image process-
ing, have been trained to learn the discrete solution of a partial differential equation;
cf. Fig.1 for a sketch of this approach and the discussion below. In practice, as we
will also see in Section 5, this approach is not competitive for solving a single BVP.
However, when used as a reduced order model for a parametrized model problem
(e.g., with respect to the geometry), the higher computing costs for the training can
be justified if the solutions of multiple BVPs can be predicted using a single model.
Here, we focus on training a neural network using a physics-informed, sometimes

also referred to as physics-aware or physics-constraint, approach. Then, a neural
network NN is trained to minimize the norm of the residual of the differential
equation, i.e.,

‖ΔNN + 𝑓 ‖2Ω + ‖NN‖2𝜕Ω → min,

where ‖·‖Ω and ‖·‖𝜕Ω are some norms defined based on collocation points inside the
domain Ω and on the boundary 𝜕Ω; as mentioned in Section 1, this corresponds to
the classical PINN approach if a dense NN is used as the discretization. If the output
of the neural network corresponds to an image, that is, if the output data is a discrete
vector on the uniform grid Ωℎ =

{
(𝑥𝑖 , 𝑦 𝑗 )𝑖, 𝑗

}
, we can employ an FD scheme to

formulate the residual of the PDE, resulting in

‖𝑏 − 𝐴 · NN‖22 → min, (6)

where the term corresponding to the boundary conditions vanishes since they are
hard-coded within the matrix 𝐴. Note that this can be efficiently implemented in
state-of-the-art ML libraries, such as Tensorflow: the matrix 𝐴 does not have to be
assembled, but it can be applied in a matrix-free fashion by using the FD stencil (2)
as a fixed kernel in a convolutional layer and applying it to the output of the network;
cf. the discussion in Section 2.
We note that solving (6) directly for 𝑢 is equivalent to solving the least-squares

problem corresponding to (3), which amounts to solving the normal equations

𝐴>𝐴𝑢 = 𝐴>𝑏. (7)

The system matrix 𝐴>𝐴 is still SPD, so (7) can also be solved using the CG method.
However, the convergence will be much slower, as the condition number

𝜅
(
𝐴>𝐴

)
= 𝜅 (𝐴)2 .

The situation is changed further once 𝑢 is replaced by a neural network NN .
Hence, minimizing the loss function with respect to the network parameters 𝜃 does
not correspond to solving a linear system anymore. Moreover, the loss function is, in
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Fig. 2 Exemplary model
architecture with a depth of
four levels, resulting in 8 × 8
feature maps on the deepest
level. Each level is composed
of convolutions (orange),
strided convolution (red),
upsampling (blue) and/or
concatenation (grey) layers. In
total, this model has 834 627
parameters.
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general, not even a convex function with respect to the network parameters anymore.
Thus, in addition to solving a problem (6) that has a significantly worse conditioning
than the original problem (3), we cannot use the CGmethod let alone another Krylov
subspace method anymore.
Minimizing (6) with respect to the network parameters, which is also denoted as

training the neural network, is usually performed using either a variant of stochastic
gradient descent (SGD), such as the Adam (adaptive moments) optimizer [18], or
a second order quasi-Newton method, such as L-BFGS [23]. Those optimizers and
their parameters are typically chosen based on heuristics, which clearly shows that,
at this point, we have lost most of the properties of the original problem (3) beneficial
for a numerical solver.

Extension to more complex problems

Even though, in this paper, we focus on a linear problem on a simple square domain,
our approach can be extended to nonlinear problems on more general geometries
in a straight-forward way. In particular, the linear operator 𝐴 in (6) can be easily
replaced by a nonlinear operator 𝐹, which yields the minimization problem

‖𝑏 − 𝐹 (NN)‖22 → min . (8)

In particular, in the CNN approach for a nonlinear PDE, the operator 𝐹 corresponds
to the finite difference discretization of the nonlinear differential operator of the PDE;
cf. [13] for the application to the Navier–Stokes equations. Even though it cannot be
directly implemented using a simple cross-correlation anymore, it can typically be
written as a composition of cross-correlations and element-wise tensor-operations.
Hence, it can still be easily and efficiently implemented using optimized functions
from state-of-the-art deep learning libraries. To extend the approach tomore complex
geometries, boundary conditions have to be implemented for the corresponding
output coefficients or pixels, respectively. A parametrization of the problem, for
instance, with the respect to the geometry, can be incorporated via the input of
the CNN; cf. Figs. 1 and 2. For more details, we refer to [13].
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4 Network architecture and hyper parameters

As is usual in the context of NNs, the training performance and prediction accuracy
of model strongly depend on the choice of the hyperparameters, which include
the specific network architecture and parameters of the optimizer. In advance of our
numerical study,we have carried out a detailed hyperparameter optimization to obtain
a good performance of the CNN models. In particular, we used the optimized model
for more complex computational fluid dynamics problems with varying geometries;
cf. [13]. Similar to [5, 6, 15], in [13], the CNN model is employed as a reduced
order surrogate model for varying geometries. As a result of the hyper parameter
optimization, we ended up using an architecture which is inspired by the U-Net [30];
cf. Fig. 2. The model is composed of an encoder and a decoder part, each consisting
of several levels. The corresponding levels of the encoder and decoder are connected
with skip connections. Here, each level of the encoder part consists of a convolutional
layer with an increasing number of 3×3 filters and a downsizing convolutional layer
with 2 × 2 filters and stride of 2. In the decoder part, each level consists of a normal
3 × 3 convolutional layer, a concatenation layer for the skip connections and an
up-sampling through nearest-neighbor interpolation layer.
In the hyper parameter optimization, we varied the activation function, the number

of filters in the convolutional layers as well as the number of levels of the U-Net type
architecture. Moreover, we performed numerical experiments for different learning
rates, indicating the best performance for GD with a learning rate of 10−5 and for
Adam with a learning rate of 5.0 · 10−5. For more details on the hyper parameter
optimization, we refer to [13].
In this paper, we focus on the effect of different solvers rather than the effect of

different choices of the neural network architecture. In this sense, our major concern
was to obtain a model architecture which is sufficient for approximating the solu-
tion of our the considered model problem. As we can observe based on the results
in Section 5, this is the case for our model. In fact, the number of parameters and
the model capacity could probably be reduced significantly for this model problem,
at the cost of an additional hyper parameter optimization. Of course, a variation of
the hyperparameters could have some impact on the convergence results in Section 5
but it is not obvious how to take the hyperparameter optimization into account in
the comparison in a fair way. Moreover, we do not expect a major difference in the
performance of the different approaches when varying the hyper parameters.

5 Numerical results

In this section, we compare different solutionmethods for an FD discretization of (1).
In particular, we employ the gradient descent (GD) and conjugate gradient (CG)
methods for the original equations (3) as well as the normal equations (7) arising
from a least-squares formulation of the problem. We compare those results against
training a CNN to predict the coefficient vector using the GD and Adam [18] meth-
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Fig. 3 Convergence of the GD, CG and Adam methods for the original linear equation system (3)
and the least-squares problem eq. (6) for the FD discretization 𝑢 and the CNN 𝑢𝑁𝑁 . Comparison
of the absolute and relative residuum ‖𝑟𝑘 ‖2 / ‖𝑟0 ‖2 where 𝑟𝑘 = 𝑏 − 𝐴𝑢𝑘 , and the relative error
‖𝑢𝑘 − 𝑢∗ ‖ / ‖𝑢∗ ‖.

ods for the physics-informed loss function, which corresponds to the least-squares
formulation (6). All CNN computations were performed on NVIDIA V100-GPUs
with CUDA 10.1 using python 3.6 and tensorflow-gpu 2.4 [1].
For our experiments, we choose 𝑓 = 2𝜋2 sin(𝜋𝑥) sin(𝜋𝑦) as the right hand side.

The resulting BVP has the analytical solution 𝑢∗ = sin(𝜋𝑥) sin(𝜋𝑦), which we use
as the reference. In this work, we exlusively consider an FD discrezation of the
computational domain Ω with 𝑁 = 128 grid nodes in each direction; this results in
a total problem size of 16 384 nodes or degrees of freedom, respectively. For the
classical methods, we use a fixed but random initial guess, the parameters of the
CNNs are randomly initialized using the He normal initialization [16]. We compare
the convergence of the methods via the squared relative residual ‖𝑟𝑘 ‖2/ ‖𝑟0‖2, which
corresponds to a relative mean squared error (MSE). For the classical numerical
methods, we stop the iteration once a tolerance of 10−12 for the relative residual or
an iteration count of 250 k iterations is reached. The CNNs are always trained for
250 k iterations or epochs.
We compare the relative residuals for the various methods applied to the standard

and normal equations in Fig. 3. As expected, the CG method applied to the standard
equation (CG-SE) converges the fastest after 221 iterations; note again that the con-
vergence could be significantly improved using preconditioning techniques. The CG
method applied to the normals equation (CG-NE) converges within 7 737 iterations,
the GD method on the original equation (GD-SE) in 15 811 iterations. The GD
method on the normal equations (GD-NE) does not converge within 250 k iterations
and reaches a relative residual of 5.2 · 10−7 at termination of the iteration.
As can be seen in Fig. 4d, the GD-NE solution, which has not converged within

250 k iterations, has a large relative 𝐿2-error of 34% compared with the analytical
solution. For CG-SE, CG-NE, and GD-SE, we obtain errors of 0.008%, 0.02%,
and 0.15%, respectively, at convergence. In terms of convergence with respect to the
relative squared residual norm, the ML approaches perform worse. Both ML-GD
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(a) CG-SE (b) GD-SE (c) CG-NE (d) GD-NE (e) ML-GD (f) ML-Adam

Fig. 4 The solutions (top row) achieved with the various methods and the corresponding erorrs
(𝑢∗ − 𝑢) (bottom row) w.r.t the analytical solution at the grid nodes.

andML-Adam do not achieve a relative tolerance of 10−12 and the training is stopped
after 250 k iterations/epochs with a final relative residual of 1.5 · 10−7 for ML-GD
and 3.1 ·10−8 for ML-Adam. Nonetheless, we achieve relative 𝐿2-errors of 0.7% for
ML-GD and 0.02% for ML-Adam. These are significantly lower than for GD-NE,
even though the methods terminate at a similar relative residual. In fact, the accuracy
is within one order of magnitude of the CG solutions and even better than the GD-SE
solution; cf. also Fig, 4.

Spectral bias in the CNN training

Let us discuss why, in comparison, the error may be much lower for the CNN
compared to the classical numerical solvers for a residual in the same order of
magnitude. In particular, for the error 𝑒 and the residual 𝑟 , we have

𝐴𝑒 = 𝐴(𝑢∗ − 𝑢) = 𝑏 − 𝐴𝑢 = 𝑟

Hence, of course, the relation of ‖𝑒‖ and ‖𝑟 ‖ depends on how the error decomposes
into eigenfunctions of high/low eigenvalues. Since the CNNs were able to achieve
comparatively low error while exhibiting higher absolute and relative residual, es-
pecially compared to the CG solutions, this suggests that the corresponding error is
mainly composed of eigenfunctions corresponding to high eigenvalues. In particular,
this implies that the CNNs exhibit some form of spectral bias, i.e., that they tend to
learn eigenfunctions corresponding to low eigenvalues. Note that the spectral bias
has been previously studied for DNNs [2, 27] and for PINNs [34]. However, to the
best of the authors’ knowledge, it has not been studied for the physics-informed CNN
approach considered here. A more detailed study is out of the scope of this paper
but will be discussed in future research.
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6 Conclusion

In this work, we have compared physics-informed CNNs with classical methods for
solvinge PDEs on the example of the stationary diffusion problem. We have shown
that solution methods that take advantage of properties of the problem, such as the
CG method, outperform the ML approach both in the accuracy achieved and in
the speed of convergence. Yet, the ML solutions learned were within an order of
magnitude of the CG solutions, i.e., they were not infeasible. But the much slower
convergence coupled with the need for hyperparameter optimization as well as the
heuristic nature of the choice of method parameters argue for the use of classical
methods. Nonetheless, with an ML approach it is possible to include parameters,
such as boundary conditions, geometry, etc., as input. In such cases, ML approaches
are superior to classical methods and thus there is a sound reason again to use
them. The extension of this study to more complex problems, the incorporation of
preconditioning, as well as a more detailed discussed of the spectral bias will be the
subject of future research.
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Optimized Robin Transmission Conditions
for Anisotropic Diffusion on Arbitrary Meshes

Martin J. Gander, Laurence Halpern, Florence Hubert, and Stella Krell

1 Introduction

We are interested in solving in parallel anisotropic diffusion problems of the form

L𝑢 := −div(𝐴∇𝑢) + 𝜂𝑢 = 𝑔 in Ω ⊂ R2, 𝑢 = 0 on 𝜕Ω, (1)

where 𝐴 is a symmetric positive definite matrix with𝑊1,∞ coefficients,

(𝑥, 𝑦) ∈ Ω ↦→ 𝐴(𝑥, 𝑦) =
(
𝐴𝑥𝑥 𝐴𝑥𝑦

𝐴𝑥𝑦 𝐴𝑦𝑦

)
,

and (𝑥, 𝑦) ∈ Ω ↦→ 𝜂(𝑥, 𝑦) ≥ 0 is in 𝐿∞ (Ω). Schwarz algorithms for such problems
are naturally formulated and studied at the continuous level. For a decomposition
of the domain Ω into possibly non-overlapping subdomains Ω 𝑗 , 𝑗 = 1, 2, . . . , 𝐽, the
parallel optimized Schwarz algorithm with Robin transmission conditions for the
anisotropic diffusion problem (1) computes for iteration index ℓ = 1, 2, . . .

L𝑢ℓ
𝑗
= 𝑔 in Ω 𝑗 ,

𝑢ℓ
𝑗
= 0 on 𝜕Ω 𝑗 ∩ 𝜕Ω,

𝐴∇𝑢ℓ
𝑗
· n 𝑗 + 𝑝𝑢ℓ

𝑗
= −𝐴∇𝑢ℓ−1

𝑖
· n𝑖 + 𝑝𝑢ℓ−1

𝑖
on Γ 𝑗𝑖 ,

(2)
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Fig. 1 Three typical discretizations for two subdomain decompositions: square-square (ss), triangle-
square (ts) and triangle-quadrangle (tq).

where n 𝑗 denotes the unit outer normal on the boundary of Ω 𝑗 , and Γ 𝑗𝑖 denotes the
portion of the interface whereΩ 𝑗 takes data fromΩ𝑖 . The efficiency of the algorithm
is known to depend on the choice of the parameter 𝑝, which is usually optimized
for a simple two subdomain decomposition, see [3] for the Laplace case. In [5],
we showed at the continuous level for a general constant diffusion matrix 𝐴 that
for Ω := (−𝑎, 𝑎) × (0, 𝑏) decomposed into two non-overlapping subdomains Ω1 :=
(−𝑎, 0) × (0, 𝑏) andΩ2 := (0, 𝑎) × (0, 𝑏) with the interface Γ12 = Γ21 := 𝜕Ω1∩𝜕Ω2,
the optimized parameters and associated convergence factors are of the form

𝑝∗ =
√︃
𝑓 (𝑘min) 𝑓 (𝑘max), 𝜌∗ =

√︁
𝑓 (𝑘max) −

√︁
𝑓 (𝑘min)√︁

𝑓 (𝑘max) +
√︁
𝑓 (𝑘min)

, (3)

where for a general constant diffusion matrix 𝐴

𝑓 (𝑘) := 𝑓 (𝑟 (𝑘)) with 𝑟 (𝑘) := 1
𝐴𝑥𝑥

√︄
𝜂𝐴𝑥𝑥 +

(
𝜋𝑘

𝑏

)2
det 𝐴, (4)

with the function 𝑓 defined for unbounded and bounded domains by

𝑓 (𝑟) :=
{
𝑓∞ (𝑟) := 𝐴𝑥𝑥𝑟 𝑎 = ∞,

𝑓𝑎 (𝑟) := 𝑓∞ (𝑟) coth(𝑎𝑟) 𝑎 < ∞.
(5)

For both cases, the smallest frequency is 𝑘min = 1 and the largest frequency can
be estimated by 𝑘max = 𝑏

ℎ𝑦
for cell centered (cc) discretization, and 𝑘max = 𝑏

ℎ𝑦
− 1

for vertex centered (vc) discretizations, which are almost the same for small mesh
size ℎ𝑦 in the 𝑦 direction, see below for more information.
We show for the three example meshes in Figure 1 the numerically computed

convergence factors 𝜌̌ in Table 1 when running the optimized Schwarz algorithm dis-
cretized by Discrete Duality Finite Volumes (DDFV, see [5] for the DDFV Schwarz
algorithm, and [7, 2, 1] for DDFV discretizations in general) for the Laplace problem,
𝐴(𝑥, 𝑦) = 𝐼, and four anisotropic diffusion matrices, and characteristic mesh size
ℎ𝑥 = ℎ𝑦 =: ℎ = 1

16 , i.e themeshes in Figure 1 twice refined.We used the theoretically
optimized value 𝑝∗ = 𝑝∗∞,cvc from (3) with 𝑘max = 𝑏

ℎ𝑦
− 1 corresponding to the vc

scheme (index cvc for continuous vertex centered), see the comment at the end of
section 3, and then also determined the numerically best working parameter 𝑝∗ and
associated convergence factor 𝜌̌∗, which we computed (throughout the paper) per-
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Table 1 Numerically measured convergence factors 𝜌̌ of the optimized Schwarz algorithm for the
three example meshes square-square (ss), triangle-square (ts) and triangle-quadrangle (tq) for the
Laplace problem and four anisotropic diffusion problems with the theoretical parameter 𝑝∗

∞,cvc and
the numerically best working one 𝑝̌∗.

Problem ss ts tq ss ts tq
𝐴𝑥𝑥 𝐴𝑦𝑦 𝑝∗

∞,cvc 𝜌̌ 𝜌̌ 𝜌̌ 𝑝̌∗ 𝜌̌∗ 𝑝̌∗ 𝜌̌∗ 𝑝̌∗ 𝜌̌∗

1 1 12.87 0.592 0.592 0.593 11.89 0.567 10.87 0.566 11.63 0.559
16 1 51.50 0.452 0.521 0.602 49.84 0.439 46.29 0.475 44.79 0.556
16 1

16 16.01 0.351 0.343 0.586 23.50 0.174 19.88 0.254 11.07 0.487
1 16 50.35 0.821 0.744 0.687 75.14 0.732 57.22 0.712 57.61 0.647
1
16 16 12.59 0.949 0.919 0.891 26.84 0.884 22.46 0.841 21.52 0.842

forming each time 100 iterations and using the last 40 to fit the linear convergence,
to avoid initial fluctuations due to starting with a random initial guess.
We see from this experiment that for the Laplace problem the theoretically de-

termined best parameter at the continuous level 𝑝∗∞,cvc performs very well on all
meshes, and is close to the numerically best working one 𝑝∗, with 𝜌̌ ≈ 𝜌̌∗. For
anisotropic diffusion however this is not the case: the performance now depends
on the mesh structure, and the numerically optimized parameter 𝑝∗ can be rather
different from the theoretical parameter 𝑝∗∞,cvc. It is this difference we want to better
understand, in particular for DDFV discretizations, which are highly accurate for
anisotropic diffusion.
To start with our investigation, we plot in Figure 2 an example subdomain solution

on the right subdomainΩ2 with interface value equal to 1 and vanishing source term
for the Laplace case and two anisotropic diffusion cases. We see that the anisotropy
deforms the solution quite a bit, and for 𝐴𝑥𝑥 large, the subdomain clearly sees the
boundary conditions at the outer boundary 𝜕Ω (Figure 2 middle), whereas for 𝐴𝑦𝑦

large a boundary layer is forming close to the interface Γ21 (Figure 2 right). This
indicates that both the subdomain size, as well as the discretization, i.e. the mesh
size, should influence the behavior of the optimized Schwarz method for anisotropic
diffusion, and thus the best value of the parameter 𝑝.

Fig. 2 Solutions for 𝐴𝑥𝑥 = 1, 𝐴𝑦𝑦 = 1 (left), for 𝐴𝑥𝑥 = 16, 𝐴𝑦𝑦 = 1 (middle) for 𝐴𝑥𝑥 = 1,
𝐴𝑦𝑦 = 16 (right), on an isotropic mesh.
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2 Optimized parameters at the discrete level

For rectangular meshes and for a diagonal anisotropy (𝐴𝑥𝑦 = 0), it is easy to
see (see e.g. [4]) that the DDFV scheme leads to two decoupled classical finite
difference schemes, a cell centered (cc) scheme with unknowns at the cell centers,
and a vertex centered (vc) schemewith unknowns at the vertices. In [4], we performed
the optimization analysis in the same rectangular domain configuration as above, for
a discretization associated to the step sizes ℎ𝑥 and ℎ𝑦 for both the cc and vc schemes
for unbounded (𝑎 = ∞) and bounded (𝑎 < ∞) domains. The optimized parameters
and associated convergence factors are again of form (3), with

𝑓 (𝑘) := 𝑓 (𝜈(𝑘)), 𝜈(𝑘) := − ln(𝜆(𝑘)), 𝜆(𝑘) := 1 + 𝜇 (𝑘)
2 −

√︃
𝜇(𝑘) + 𝜇 (𝑘)2

4 ,

𝜇(𝑘) := ℎ2𝑥
𝐴𝑥𝑥

(
4 𝐴𝑦𝑦

ℎ2𝑦
sin2

(
𝑘 𝜋ℎ𝑦

2𝑏

)
+ 𝜂

)
,

(6)

and the function 𝑓 is defined for the cc and vc schemes on unbounded and bounded
domains by

𝑓 (𝜈) :=


𝑓∞,cc (𝜈) := 2 𝐴𝑥𝑥

ℎ𝑥
tanh

(
𝜈
2
)
, 𝑎 = ∞,

𝑓𝑎,cc (𝜈) := 𝑓∞,𝑐𝑐 (𝜈)coth
(
𝑎𝜈
ℎ𝑥

)
, 𝑎 < ∞,

𝑓∞,vc (𝜈) := 𝐴𝑥𝑥

ℎ𝑥
sinh (𝜈) , 𝑎 = ∞,

𝑓𝑎,vc (𝜈) = 𝑓∞,𝑣𝑐 (𝜈)coth
(
𝑎𝜈
ℎ𝑥

)
, 𝑎 < ∞.

(7)

Again the smallest frequency 𝑘min = 1, and the maximum frequencies can be esti-
mated by 𝑘max = 𝑏

ℎ𝑦
for the cc scheme and 𝑘max = 𝑏

ℎ𝑦
− 1 for the vc scheme.

3 Asymptotic analysis

In order to understand the difference in the performance of the optimized Schwarz
method in the anisotropic case, we now present a new asymptotic analysis of the
optimized parameters and associated convergence factors. We look at the asymptotic
behavior as ℎ𝑥 and ℎ𝑦 tend to zero, their ratio being constant.
We start with the asymptotic analysis of the optimization results (4)–(5) at the

continuous level. When inserting the smallest frequency 𝑘 = 𝑘min into (4)–(5), we
get in the unbounded domain case

𝑓∞ (𝑘min) =
√︂
𝜂𝐴𝑥𝑥 +

( 𝜋
𝑏

)2
det 𝐴,

and in the bounded domain case
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𝑓𝑎 (𝑘min) =
√︂
𝜂𝐴𝑥𝑥 +

( 𝜋
𝑏

)2
det 𝐴 coth

(
𝑎

𝐴𝑥𝑥

√︂
𝜂𝐴𝑥𝑥 +

( 𝜋
𝑏

)2
det 𝐴

)
.

At the largest frequency 𝑘 = 𝑘max, we obtain the same asymptotics, namely

𝑓∞ (𝑘max) = 𝑓𝑎 (𝑘max) =
𝜋
√
det 𝐴
ℎ𝑦

+ O(1). (8)

Now when ℎ𝑦 tends to zero, we see from (4) that 𝑎𝑟 (𝑘max) tends to infinity, and
therefore coth(𝑎𝑟 (𝑘max)) = 1 + 𝑜(ℎ𝑦). We thus obtain for the unbounded domain
case 𝑎 = ∞ for the optimized parameter and associated convergence factor

𝑝∗∞ ∼
(
𝜂𝐴𝑥𝑥 +

( 𝜋
𝑏

)2
det 𝐴

) 1
4 (

𝜋
√
det 𝐴

) 1
2
ℎ
− 12
𝑦 ,

𝜌∗∞ ∼ 1 − 2
(
𝜂𝐴𝑥𝑥 +

( 𝜋
𝑏

)2
det 𝐴

) 1
4 (

𝜋
√
det 𝐴

)− 12
ℎ
1
2
𝑦 ,

where 𝑓 (ℎ𝑦) ∼ 𝑔(ℎ𝑦) means limℎ𝑦→0
𝑓 (ℎ𝑦 )
𝑔 (ℎ𝑦 ) = 1, and when 𝑎 < ∞, we get

𝑝∗𝑎 ∼
(
𝜂𝐴𝑥𝑥 +

( 𝜋
𝑏

)2
det 𝐴

) 1
4 (
𝜋
√
det 𝐴

) 1
2

(
coth

(
𝑎

𝐴𝑥𝑥

√︂
𝜂𝐴𝑥𝑥 +

( 𝜋
𝑏

)2
det 𝐴

)) 1
2

ℎ
− 12
𝑦 ,

𝜌∗𝑎 ∼ 1−2
(
𝜂𝐴𝑥𝑥+

( 𝜋
𝑏

)2
det 𝐴

)1
4(
𝜋
√
det 𝐴

)− 12(coth (
𝑎

𝐴𝑥𝑥

√︂
𝜂𝐴𝑥𝑥 +

( 𝜋
𝑏

)2
det 𝐴

)) 1
2

ℎ
1
2
𝑦 .

We see that the asymptotic behavior in the mesh size is the same, but the constants
differ between the bounded and unbounded domain case, clearly indicating that the
continuous analysis on the bounded domain can take into account the anisotropy
observed in Figure 2.
We next perform an asymptotic analysis of the optimization results (6) and (7)

at the discrete level. For a diagonal diffusion matrix 𝐴, at the minimum frequency,
𝑘 = 𝑘min, we obtain from (6)

𝜇(𝑘min) =
ℎ2𝑥
𝐴𝑥𝑥

(
4
𝐴𝑦𝑦

ℎ2𝑦
sin2

(
𝜋ℎ𝑦

2𝑏

)
+ 𝜂

)
=

ℎ2𝑥

𝐴2𝑥𝑥

(
𝜂𝐴𝑥𝑥 +

( 𝜋
𝑏

)2
𝐴𝑥𝑥𝐴𝑦𝑦 + O(ℎ2𝑦)

)
.

Hence 𝜇(𝑘min) → 0 when the mesh is refined, and because 𝜆(𝑘min) ∼ 1−
√︁
𝜇(𝑘min)

and 𝑓 (𝑘min) ∼ 𝐴𝑥𝑥

ℎ𝑥

√︁
𝜇(𝑘min), we obtain

𝑓∞,cc (𝑘min) ∼ 𝑓∞,vc (𝑘min) ∼
√︂
𝜂𝐴𝑥𝑥 +

( 𝜋
𝑏

)2
𝐴𝑥𝑥𝐴𝑦𝑦 . (9)

At the highest frequency, 𝑘 = 𝑘max, we obtain for the cc scheme
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𝜇cc (𝑘max) =
ℎ2𝑥
𝐴𝑥𝑥

(
4
𝐴𝑦𝑦

ℎ2𝑦
sin2

( 𝜋
2

)
+ 𝜂

)
=

ℎ2𝑥

𝐴2𝑥𝑥

(
𝜂𝐴𝑥𝑥 + 4

𝐴𝑥𝑥𝐴𝑦𝑦

ℎ2𝑦

)
∼ 4𝛽,

where 𝛽 := 𝐴𝑦𝑦

ℎ2𝑦

ℎ2𝑥
𝐴𝑥𝑥
, and similarly for the vc scheme,

𝜇vc (𝑘max) =
ℎ2𝑥
𝐴𝑥𝑥

(
4
𝐴𝑦𝑦

ℎ2𝑦
sin2

( 𝜋
2
(1 − ℎ𝑦)

)
+ 𝜂

)
=

ℎ2𝑥

𝐴2𝑥𝑥

(
4
𝐴𝑥𝑥𝐴𝑦𝑦

ℎ2𝑦
+ O(1)

)
∼ 4𝛽.

Note that the case of a Laplacian with an isotropic square mesh corresponds to the

parameter value 𝛽 = 1. By hyperbolic trigonometric calculus, and 𝐴𝑥𝑥

ℎ𝑥
=

√
𝐴𝑥𝑥𝐴𝑦𝑦

ℎ𝑦

√
𝛽
,

we obtain the alternative formula 𝑓∞,cc (𝜈(𝑘)) = 2 𝐴𝑥𝑥

ℎ𝑥

1−𝜆(𝑘)
1+𝜆(𝑘) , which yields

𝑓∞,cc (𝑘max) = 2 𝐴𝑥𝑥

ℎ𝑥

−𝛽+
√

𝛽+𝛽2

1+𝛽−
√

𝛽+𝛽2
=

√
𝐴𝑥𝑥𝐴𝑦𝑦

ℎ𝑦

√
𝛽
2 −𝛽+

√
𝛽+𝛽2

1+𝛽−
√

𝛽+𝛽2

=

√
𝐴𝑥𝑥𝐴𝑦𝑦

ℎ𝑦

√
𝛽
2
√

𝛽+𝛽2
1+𝛽 :=

√
𝐴𝑥𝑥𝐴𝑦𝑦

ℎ𝑦
𝜓cc (𝛽),

with 𝜓cc (𝛽) = 2√
1+𝛽
. Similarly, since 𝑓∞,vc (𝜈(𝑘)) =

𝐴𝑥𝑥

ℎ𝑥

1−𝜆(𝑘)2
2𝜆(𝑘) by hyperbolic

trigonometric calculus, we obtain

𝑓∞,vc (𝑘max) = 𝐴𝑥𝑥

ℎ𝑥

2
(
−𝛽+

√
𝛽+𝛽2

) (
1+𝛽−

√
𝛽+𝛽2

)
1+2𝛽−2

√
𝛽+𝛽2

=

√
𝐴𝑥𝑥𝐴𝑦𝑦

ℎ𝑦

√
𝛽
2
(
−𝛽 +

√︁
𝛽 + 𝛽2

) (
1 + 𝛽 −

√︁
𝛽 + 𝛽2

) (
1 + 2𝛽 + 2

√︁
𝛽 + 𝛽2

)
=

√
𝐴𝑥𝑥𝐴𝑦𝑦

ℎ𝑦

√
𝛽
2
√︁
𝛽 + 𝛽2 :=

√
𝐴𝑥𝑥𝐴𝑦𝑦

ℎ𝑦
𝜓vc (𝛽),

with 𝜓vc (𝛽) = 2
√︁
1 + 𝛽. Note that in the special case 𝛽 = 1, we get 𝜓cc (𝛽) =

√
2 and

𝜓vc (𝛽) = 2
√
2, a factor 2 difference. For the unbounded domain case, 𝑎 = ∞, we

then obtain for the optimized parameters and associated convergence factors of the
cc and vc schemes

𝑝∗∞,cc ∼ 𝜓cc (𝛽)
1
2
√︁
𝐴𝑥𝑥𝐴𝑦𝑦

(
𝜂

𝐴𝑦𝑦

+
( 𝜋
𝑏

)2) 14
ℎ
− 12
𝑦 ,

𝑝∗∞,vc ∼ 𝜓vc (𝛽)
1
2
√︁
𝐴𝑥𝑥𝐴𝑦𝑦

(
𝜂

𝐴𝑦𝑦

+
( 𝜋
𝑏

)2) 14
ℎ
− 12
𝑦 ,

𝜌∗∞,cc ∼ 1 − 2𝜓cc (𝛽)−
1
2

(
𝜂

𝐴𝑦𝑦

+
( 𝜋
𝑏

)2) 14
ℎ
1
2
𝑦 ,

𝜌∗∞,vc ∼ 1 − 2𝜓vc (𝛽)−
1
2

(
𝜂

𝐴𝑦𝑦

+
( 𝜋
𝑏

)2) 14
ℎ
1
2
𝑦 .
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In the bounded domain case, 𝑎 < ∞, we see that coth
(
𝑎𝜈 (𝑘max)

ℎ𝑥

)
∼ 1 and when

𝜇(𝑘min) → 0, we have 𝜈(𝑘min) ∼ −
√︁
𝜇(𝑘min), which implies

𝑎𝜈 (𝑘min)
ℎ𝑥

∼ 𝑎√
𝐴𝑥𝑥

√︃
𝜂 +

(
𝜋
𝑏

)2
𝐴𝑦𝑦 ⇒ coth

(
𝑎𝜈 (𝑘min)

ℎ𝑥

)
∼ coth

(
𝑎√
𝐴𝑥𝑥

√︃
𝜂 +

(
𝜋
𝑏

)2
𝐴𝑦𝑦

)
.

(10)
We therefore get for the optimized parameters and associated convergence factors
for the cc and vc schemes in the bounded domain case

𝑝∗a,cc ∼ 𝜓cc (𝛽)
1
2
√︁
𝐴𝑥𝑥𝐴𝑦𝑦

(
𝜂

𝐴𝑦𝑦
+

(
𝜋
𝑏

)2) 14 coth (
𝑎√
𝐴𝑥𝑥

√︃
𝜂 +

(
𝜋
𝑏

)2
𝐴𝑦𝑦

) 1
2

ℎ
− 12
𝑦 ,

𝑝∗a,vc ∼ 𝜓vc (𝛽)
1
2
√︁
𝐴𝑥𝑥𝐴𝑦𝑦

(
𝜂

𝐴𝑦𝑦
+

(
𝜋
𝑏

)2) 14 coth (
𝑎√
𝐴𝑥𝑥

√︃
𝜂 +

(
𝜋
𝑏

)2
𝐴𝑦𝑦

) 1
2

ℎ
− 12
𝑦 ,

𝜌∗a,cc ∼ 1 − 2𝜓cc (𝛽)−
1
2

(
𝜂

𝐴𝑦𝑦
+

(
𝜋
𝑏

)2) 14 coth (
𝑎√
𝐴𝑥𝑥

√︃
𝜂 +

(
𝜋
𝑏

)2
𝐴𝑦𝑦

) 1
2

ℎ
1
2
𝑦 ,

𝜌∗a,vc ∼ 1 − 2𝜓vc (𝛽)−
1
2

(
𝜂

𝐴𝑦𝑦
+

(
𝜋
𝑏

)2) 14 coth (
𝑎√
𝐴𝑥𝑥

√︃
𝜂 +

(
𝜋
𝑏

)2
𝐴𝑦𝑦

) 1
2

ℎ
1
2
𝑦 .

These formulas take both the domain size and the mesh resolution into account, also
when the mesh is not chosen appropriately for the anisotropy under consideration.
If one can not use separate parameters for the cc and vc components in a DDFV

implementation, it was shown in [4] that the optimized choice for one parameter is
of the form

𝑝∗a,ddfv =
√︁
𝑓a,cc (𝜈(𝑘min)) 𝑓a,vc (𝜈(𝑘max)),

and since asymptotically we have 𝑓a,cc (𝜈(𝑘min)) ∼ 𝑓a,vc (𝜈(𝑘min)) from (9) and (10),
one should use the optimized parameter 𝑝∗a,vc ∼ 𝑝∗a,ddfv in that case.
The continuous and discrete asymptotic results lead to the following general

theorem.

Theorem 1 (Optimized Robin parameter for diagonal anisotropic diffusion)
The optimized Schwarz method (2) for the anisotropic diffusion problem (1)

with diagonal diffusion matrix 𝐴 and a subdomain decomposition of the rectangle
Ω = (−𝑎, 𝑎) × (0, 𝑏) into two non-overlapping subdomains Ω1 := (−𝑎, 0) × (0, 𝑏)
and Ω2 := (0, 𝑎) × (0, 𝑏) has for small mesh size ℎ𝑦 the asymptotically optimized
parameter and associated convergence factor

𝑝∗ ∼ 𝜓
1
2
√︁
𝐴𝑥𝑥𝐴𝑦𝑦

(
𝜂

𝐴𝑦𝑦
+

(
𝜋
𝑏

)2) 14
𝑐
1
2 ℎ

− 12
𝑦 , (11)

𝜌∗ ∼ 1 − 2𝜓− 12
(

𝜂

𝐴𝑦𝑦
+

(
𝜋
𝑏

)2) 14
𝑐
1
2 ℎ

1
2
𝑦 , (12)

where in the unbounded domain case, 𝑎 = ∞, we have 𝑐 = 1, whereas in the bounded
domain case, 𝑎 < ∞, we have
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Fig. 3 Graph of the functions 𝜓cc (𝛽) and 𝜓vc (𝛽) for the discrete analysis, compared to 𝜓 (𝛽) = 𝜋

(dotted) from the continuous analysis for small and large 𝛽 range.

𝑐 := 𝑐(𝑎, 𝑏, 𝐴𝑥𝑥 , 𝐴𝑦𝑦 , 𝜂) = coth
(

𝑎
√
𝐴𝑥𝑥

√︂
𝜂 +

( 𝜋
𝑏

)2
𝐴𝑦𝑦

)
. (13)

Furthermore, in the continuous case 𝜓 = 𝜋, and in the discrete case we have

𝜓 := 𝜓cc (𝛽) =
2√︁
1 + 𝛽

or 𝜓 = 𝜓vc (𝛽) := 2
√︁
1 + 𝛽 (14)

for the cell centered or vertex centered discretizations, with

𝛽 :=
𝐴𝑦𝑦

ℎ2𝑦

ℎ2𝑥
𝐴𝑥𝑥

. (15)

Plotting the 𝜓(𝛽) functions in Figure 3, we see that if 𝛽 = 1 then the continuous
and discrete analyses give about the same optimized parameter 𝑝∗ and associated
convergence factor, especially for the vc scheme. Since 𝛽 =

𝐴𝑦𝑦

ℎ2𝑦

ℎ2𝑥
𝐴𝑥𝑥
, this can be

achieved by having equal mesh sizes ℎ𝑥 = ℎ𝑦 and isotropic diffusion 𝐴𝑥𝑥 = 𝐴𝑦𝑦 ,
or by adapting the mesh sizes to the anisotropy, ℎ2𝑦 =

𝐴𝑥𝑥

𝐴𝑦𝑦
ℎ2𝑥 . Such an adaptation is

also recommended for accuracy, since a Taylor expansion gives

𝐴𝑥𝑥
𝑢 (𝑥+ℎ𝑥 ,𝑦)−2𝑢 (𝑥,𝑦)−𝑢 (𝑥−ℎ𝑥 ,𝑦)

ℎ2𝑥
+ 𝐴𝑦𝑦

𝑢 (𝑥,𝑦+ℎ𝑦 )−2𝑢 (𝑥,𝑦)−𝑢 (𝑥,𝑦−ℎ𝑦 )
ℎ2𝑦

= (𝐴𝑥𝑥𝜕𝑥𝑥 + 𝐴𝑦𝑦𝜕𝑦𝑦)𝑢(𝑥, 𝑦) + 1
12 (𝐴𝑥𝑥ℎ

2
𝑥𝜕
4
𝑥 + 𝐴𝑦𝑦ℎ

2
𝑦𝜕
4
𝑦)𝑢(𝑥, 𝑦) + . . . ,

(16)

and from the separation of variables solution 𝑢(𝑥, 𝑦) = 𝑒
− 𝑘𝜋

𝑏

√︃
𝐴𝑦𝑦

𝐴𝑥𝑥
𝑥 sin( 𝑘 𝜋

𝑏
𝑦) we see

that the fourth derivative in 𝑥 scales like 𝐴2𝑦𝑦
𝐴2𝑥𝑥
, while the fourth derivative in 𝑦 does

not scale in these entries, and hence to balance the error term, we should choose
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𝐴𝑥𝑥ℎ
2
𝑥

𝐴2𝑦𝑦

𝐴2𝑥𝑥
≈ 𝐴𝑦𝑦ℎ

2
𝑦 =⇒ ℎ2𝑥

𝐴𝑥𝑥

𝐴𝑦𝑦

ℎ2𝑦
= 𝛽 ≈ 1. (17)

Hence for 𝛽 ≈ 1, we can use the continuous analysis results and expect good perfor-
mance, also in highly anisotropic cases, provided the mesh is adapted accordingly.
If 𝛽 is very different from one, we should use the parameters from the discrete
analysis to get good performance. We also see from Figure 3 (right) that for large 𝛽
the optimized parameters for the cc and vc schemes are becoming more and more
different, and (12) together with (14) indicates that the cc scheme is converging
much faster than the vc scheme in these not well resolved mesh situations. In the
DDFV case with general meshes, where both cc and vc discretizations are involved,
the importance will then lie on a good optimization of the vc parameter, the cc
parameter playing only a secondary role in these not well resolved cases.
Next, we see from Theorem 1 that if 𝑐 ≈ 1, then we can use the unbounded

domain analysis, since the only term depending on the domain bound 𝑎 on the left
and right is 𝑐. Now 𝑐 ≈ 1 if the argument of the coth is large, i.e. either the domains
and thus 𝑎

𝑏
is large, or 𝜂 is large, or 𝐴𝑦𝑦

𝐴𝑥𝑥
is large, which is illustrated in Figure 1 on

the right, where we see that the outer boundary on the right does not play a major
role any more1. If none of these hold, then the bounded domain analysis needs to be
used to obtain good performance.
Finally, from 𝜌∗ in Theorem 1, we see the algorithm will converge very fast with

the well chosen 𝑝∗, provided 𝐴𝑦𝑦 is small or 𝜂 large, or 𝜓(𝛽) is small. Having 𝜓(𝛽)
small is however not advisable, because the discretization accuracy is only good for
𝛽 ≈ 1, see (17).

4 Numerical experiments

We can now explain the discrepancies we observed in Table 1 as soon as we solve
anisotropic diffusion problems. There are two reasons: the first one is that when using
the optimized parameter 𝑝∗∞ from the continuous, unbounded domain analysis, the
fact that the subdomains are actually bounded in a concrete computation becomes
important as soon as the diffusion in the orthogonal direction to the interface is
large, and the cross diffusion tangential to the interface is small. This is visible also
in Figure 1 showing a corresponding solution in the middle, where we can clearly
see that the boundary on the right makes the solution decay linearly in the direction
orthogonal to the interface, in stark contrast to the Laplace case on the left in Figure 1,
where the decay is exponential. The second reason for discrepancies is the uniform
discretization, which can not resolve well the boundary layers close to the top and
bottom boundaries in Figure 1 (middle), and close to the interface in Figure 1 (right)
which also influence the convergence of the Schwarz method.

1 For example, in the case 𝐴𝑥𝑥 = 1 and 𝐴𝑦𝑦 = 16, the difference is of order 10−11.
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Table 2 Results corresponding to Table 1 but now using the theoretical parameter 𝑝∗
a,cvc from the

bounded domain analysis.

Problem ss ts tq ss ts tq
𝐴𝑥𝑥 𝐴𝑦𝑦 𝑝∗

a,cvc 𝜌̌ 𝜌̌ 𝜌̌ 𝑝̌∗ 𝜌̌∗ 𝑝̌∗ 𝜌̌∗ 𝑝̌∗ 𝜌̌∗

1 1 12.48 0.582 0.581 0.583 11.89 0.567 10.87 0.566 11.63 0.559
16 1 60.59 0.514 0.578 0.651 49.84 0.439 46.29 0.475 44.79 0.556
16 1

16 28.04 0.258 0.436 0.741 23.50 0.174 19.88 0.254 11.07 0.487
1 16 48.75 0.826 0.751 0.695 75.14 0.732 57.22 0.712 57.61 0.647
1
16 16 12.19 0.950 0.921 0.894 26.84 0.884 22.46 0.841 21.52 0.842

Table 3 Results corresponding to Table 2 but now using the discrete theoretical parameters 𝑝∗
a,cc

and 𝑝∗
a,vc, and the numerically best working ones 𝑝̌∗

cc and 𝑝̌∗
vc.

Problem ss ts tq ss ts tq
𝐴𝑥𝑥 𝐴𝑦𝑦 𝑝∗

a,cc 𝑝∗
a,vc 𝜌̌ 𝜌̌ 𝜌̌ 𝑝̌∗

cc 𝑝̌∗
vc 𝜌̌∗ 𝑝̌∗

cc 𝑝̌∗
vc 𝜌̌∗ 𝑝̌∗

cc 𝑝̌∗
vc 𝜌̌∗

1 1 8.62 12.22 0.573 0.572 0.574 8.62 11.93 0.566 7.73 11.38 0.533 10.49 10.49 0.527
16 1 49.16 50.56 0.444 0.509 0.592 49.59 49.87 0.439 45.87 45.89 0.468 39.61 40.13 0.514
16 1

16 23.48 23.48 0.174 0.347 0.698 23.50 23.44 0.173 19.75 20.24 0.242 11.42 11.65 0.466
1 16 19.07 84.09 0.723 0.728 0.733 20.01 80.71 0.714 44.46 66.21 0.653 13.78 58.50 0.621
1
16 16 1.84 54.59 0.806 0.834 0.861 1.13 51.09 0.796 1.90 36.72 0.756 0.69 30.80 0.733

As a first remedy, we use the optimized parameter 𝑝∗𝑎 from the continuous,
bounded domain analysis to take into account the boundedness of the domains.
From Table 2 we see that this already improves the performance of the method
when the diffusion is large in the orthogonal direction to the interface and small
tangentially. However for the other cases using the bounded domain analysis is not
sufficient due to the bad mesh resolution in the anisotropic case.
We therefore now use the discrete optimized formulas 𝑝∗a,vc and 𝑝∗a,cc in our DDFV

Schwarz code, which are perfectly adapted to the anisotropy of the problem we are
solving on bounded subdomains, and truly optimize both the vc and cc scheme
component convergence also for the not well chosen mesh resolution. We show the
corresponding results in Table 3. We see that now our parameters predicted by the
discrete analysis for the cc and vc schemes give performance close to the truly best
possible ones for rectangular meshes, and still workwell on general meshes for which
our analysis is not valid any more. Furthermore, the performance still follows our
asymptotic analysis, as the plots of the convergence factors under mesh refinement
in Figure 4 indicate.
We finally show numerical results using an anisotropic mesh which gives better

approximate discrete solutions, see the truncation error analysis in (16). We show
the corresponding results for such meshes in Table 4, and in Figure 5. We see that the
continuous analysis gives now very good predictions for the optimized parameters
for the vc scheme, while for the cc scheme their value is still a bit overestimated.
This does however not influence the performance very much.
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Fig. 4 Asymptotic dependence of 1 − 𝜌̌ on the mesh size for isotropic meshes and the anisotropic
diffusion problems in Table 3, with ℎ = ℎ𝑦 = ℎ𝑥 . From top left to bottom right: (𝐴𝑥𝑥 , 𝐴𝑦𝑦) =

(16, 1) , (16, 116 ) , (1, 16) , (
1
16 , 16) .

5 Conclusions

Using asymptotic analysis, we explained rigorously numerical observations on the
performance of DDFV optimized Schwarz methods applied to anisotropic diffusion.
We showed that for strong anisotropic diffusion solved on uniform, non-adapted
meshes, one needs optimized parameters from a more subtle discrete analysis, con-
tinuous optimization does not suffice. When using suitably adapted, anisotropic
meshes such that the discrete solution is a good approximation of the continuous
one, optimized parameters from a continuous analysis perform however well. We
also showed numerically that this remains true if one uses meshes for which a de-
tailed asymptotic analysis as ours on Cartesian meshes can not be performed. For
extensions of the DDFV Schwarz algorithm to Navier-Stokes problems, see [6].

Table 4 Results obtained using the discrete optimized parameters for adapted anisotropic meshes.

Problem ss aniso
𝐴𝑥𝑥 𝐴𝑦𝑦 𝑝∗

a,ccc 𝑝∗
a,cvc 𝜌̌c 𝑝∗

a,cc 𝑝∗
a,vc 𝜌̌ 𝑝̌∗

cc 𝑝̌∗
vc 𝜌̌∗

16 1 125.13 124.15 0.730 83.94 118.73 0.718 82.30 111.96 0.705
16 1

16 115.32 115.09 0.749 77.37 109.43 0.737 77.37 102.45 0.724
1 16 50.35 48.75 0.601 33.67 47.67 0.581 33.37 46.43 0.573
1
16 16 12.59 12.19 0.601 8.42 11.92 0.580 8.42 11.63 0.574
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Fig. 5 Asymptotic dependence of 1 − 𝜌̌ on the mesh size for anisotropic meshes and the
anisotropic diffusion problems in Table 4. From top left to bottom right: (𝐴𝑥𝑥 , 𝐴𝑦𝑦) =

(16, 1) , (16, 116 ) , (1, 16) , (
1
16 , 16) .
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Domain Decomposition Algorithms
for Neural Network Approximation
of Partial Differential Equations

Hyea Hyun Kim and Hee Jun Yang

1 Introduction

With the success of deep learning technology in many application areas, there have
been pioneering approaches to approximate solutions of partial differential equations
by neural network functions [2, 10, 12, 13]. Such approaches have advantages over
the classical approximation methods in that they can be used without generating
meshes adaptive to problem domains or developing equation dependent numerical
schemes. However, its accuracy, stability, and efficiency questions have not yet been
fully answered. In addition, long training time makes the neural network solution
very expensive.
To enhance the neural network solution accuracy, large or deep neural network

functions are usually employed. When training parameters in such large or deep
neural networks, the optimization error becomes problematic to pollute the resulting
computed solution accuracy. To address this issue in the neural network approxima-
tion, we approximate the solution by using partitioned local neural network functions.
For that we first form an iterative scheme based on domain decomposition methods
and we then find local neural network functions that approximate the local problem
solutions at each iteration. Contrary to the single large or deep neural network case,
the local neural network parameter training can be done more efficiently with less
optimization errors.
There have been previous studies that utilize domain decomposition algo-

rithms [14] to enhance the neural network efficiency and accuracy. In [8, 9], al-
ternating Schwarz algorithms were developed to second order elliptic problems and
in the author’s previous study [6], additive Schwarz algorithms were proposed to
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the same model problems, where the neural network functions are formed based on
overlapping subdomain partitions. In both approaches, the proposedmethods showed
promising results but concrete convergence study has not been fully considered.
In [4, 5], partitioned neural network functions are formed based on a non-overlapping
subdomain partition and the global cost function is formed to train the parameters in
the partitioned neural network functions. In their approach, the communication cost
between local neural networks becomes enormous, since the number of epochs in the
parameter training easily becomes more than several tens of thousands in practice.
In the author’s recent work [7], a concrete convergence analysis on one-level

and two-level additive Schwarz algorithms was provided with an assumption on the
approximation error in the local and coarse neural network solutions. The numerical
results on the one-level method are consistent with the convergence analysis. How-
ever, those on the two-level methods show that the coarse problem does not help to
accelerate the convergence and it even pollutes the solution accuracy. By the NTK
(Neural Tangent Kernel) theory [3, 15], when training the parameters in the neural
network approximation, the smooth part of solutions is well approximated and the
residual loss for the differential equation is well trained than that for the bound-
ary condition. The local neural network solution errors in our proposed method thus
showed high contrast errors near the subdomain boundary that resulted a less smooth
global error during the iteration. The proposed coarse problem in [7] was not suitable
to correct such a non-smooth global error.
In this work, we propose a partitioned neural network by utilizing a partition

of unity functions and we then apply the additive Schwarz algorithm to propose
an iterative solution procedure on the partitioned neural network functions, where
local neural network parameters are trained to approximate local problem solutions
at each iteration. When training the local parameters, only the residual loss for the
differential equation in each subdomain problem comes in the cost function, and the
boundary condition is enforced directly by multiplying the partition of unity function
as an ansatz to the local neural network function. With this idea, the optimization
error can be reduced when training the local parameters at each iteration compared to
the approaches in [7]. As reported in our previous work [7], the coarse problem in the
two-level method did not work due to the high contrast optimization errors observed
near the boundary of subdomain overlapping region. By utilizing the partition of
unity functions in forming the partitioned neural network approximation, we can
remove such error problems and the coarse problem in the two-level method is thus
expected to work more effectively. Such a partitioned neural network function using
ansatz was first proposed in [11] with the aim of obtaining a more accurate neural
network approximation to highly oscillatory solutions.
This paper is organized as follows. In Section 2, we introduce neural network

approximation methods for solving partial differential equations and in Section 3
we propose one-level and two-level additive Schwarz algorithms for the partitioned
neural network functions, where we present the twomethods in our previous work [7]
and extend those methods to the partitioned neural network functions. In Section 4,
numerical results are presented for model elliptic problems and conclusions are
given.
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2 Neural network approximation for partial differential
equations

Among several neural network approaches to solutions of partial differential equa-
tions, wewill consider the PINN (Physics InformedNeural Network)method by [12].
Our domain decomposition approach can be applied to other neural network ap-
proximation methods by [2, 10, 13] as well. In the PINN methods, the solution is
approximated with a neural network function 𝑈 (𝑥; 𝜃) and the parameters 𝜃 in the
neural network function are trained to solve supervised learning tasks in order to
satisfy any given laws of physics described by partial differential equations,

L(𝑢) = 𝑓 , in Ω, B(𝑢) = 𝑔, on 𝜕Ω, (1)

where L denotes a differential operator defined for a function 𝑢 and B describes
a given boundary condition on 𝑢, and 𝑓 , 𝑔 are given functions.
We assume that the model problem in (1) is well-posed and the solution 𝑢 exists.

We then approximate the solution 𝑢 in (1) by a neural network, 𝑈 (𝑥; 𝜃), where the
parameters 𝜃 are trained to minimize the cost function

J (𝜃) = J𝑋Ω
(𝜃) + J𝑋𝜕Ω

(𝜃),

where

J𝑋Ω
(𝜃) := 1

|𝑋Ω |
∑︁
𝑥∈𝑋Ω

|L(𝑈 (𝑥; 𝜃)) − 𝑓 (𝑥) |2,

J𝑋𝜕Ω
(𝜃) := 1

|𝑋𝜕Ω |
∑︁

𝑥∈𝑋𝜕Ω

|B(𝑈 (𝑥; 𝜃)) − 𝑔(𝑥) |2.

In the above, 𝑋𝐷 denotes the collection of points chosen from the region 𝐷 and |𝑋𝐷 |
denotes the number of points in the set 𝑋𝐷 . The cost function J𝑋Ω

(𝜃) and J𝑋𝜕Ω
(𝜃)

are designed so that the optimized neural network 𝑈 (𝑥; 𝜃) satisfies the equations
in (1) derived from physics laws. When training the parameters 𝜃, the following
gradient based method is used,

𝜃 (𝑛+1) = 𝜃 (𝑛) − 𝜖∇𝜃J (𝜃 (𝑛) )

for a given initial 𝜃 (0) and with a suitable learning rate 𝜖 . Each gradient update step
is called an epoch and usually more than several hundreds of thousand epochs are
needed in such neural network approximation methods. Overall computation cost in
the PINN is thus very expensive compared to the classical approximation methods.
The error between the exact solution 𝑢(𝑥) and the computed neural network solu-

tion𝑈 (𝑥; 𝜃̃) can be analyzed as follows. Letting𝑈 (𝑥; 𝜃∗) be the optimal approximate
solution, we obtain

𝑢(𝑥) −𝑈 (𝑥; 𝜃̃) = (𝑢(𝑥) −𝑈 (𝑥; 𝜃∗)) + (𝑈 (𝑥; 𝜃∗) −𝑈 (𝑥; 𝜃̃)),



30 Hyea Hyun Kim and Hee Jun Yang

where the first term in the right hand side is called the approximation error and
the second is the optimization error. The approximation error can be controlled by
enlarging the network size, while the optimization error is difficult to deal with. The
optimization error depends on how to choose the training data set, how to form the
loss functions, and how to perform the gradient based method.
In [11], it was numerically verified that for highly oscillatory model solutions

PINN requires larger neural network functions and larger training epochs to increase
the approximation solution accuracy. Such approximation property in the PINN was
also analyzed by the NTK (Neural Tangent Kernel) theory, see [15]. To enhance
the training efficiency and accuracy, in [11], the approximate solution is formed by
using partitioned neural network functions with a much lesser number of parameters
in each local neural network function than those in the single large neural network
function. When a highly oscillatory solution is localized to a small subdomain, it
becomes less oscillatory and thus it can be well approximated with a smaller neural
network function. The parameter training cost in a smaller neural network function
also becomes much smaller than that in the single larger neural network function. By
utilizing the partitioned neural network functions, we thus expect that for difficult
model problems we can reduce both the approximation error and the optimization
error more effectively than just using a single large neural network function. In
addition, utilizing the parallel computing resources, we can even make our one-level
and two-level methods much more efficient than the single neural network case.

3 Additive Schwarz algorithms for neural network
approximation

In this section, we first review the one-level and two-level additive Schwarz algo-
rithms that were proposed in our previous work [7] and their convergence results
under the approximation error assumption on each local and coarse neural network
solutions. We then introduce a partitioned neural network function to approximate
the solution and propose iterativemethods on the partitioned neural network function
to find the convergent iterates to the solution. The iteration methods can be analyzed
as the same way in our previous study [7] to give the same convergence result. As we
will see in the numerical results later, the partitioned neural network function gives
less optimization errors and thus it gives faster convergence than in the previous
work [7].
Our method is developed for the following model elliptic problem in a bounded

domain Ω, i.e., to find 𝑢 in the Hilbert space 𝐻1 (Ω) satisfying

−4𝑢 = 𝑓 in Ω, 𝑢 = 𝑔 on Ω, (2)

where 𝐻1 (Ω) denotes the space of square integrable functions up to the first deriva-
tives. In the one-level additive Schwarz method, for a given overlapping subdomain
partition,{Ω𝑖}𝑖 of the domainΩ, with an overlapping width 𝛿, the following iterative
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scheme is proposed to find its solution 𝑢. For a given 𝑢 (𝑛) , the following problem in
each subdomain Ω𝑖 is solved to find 𝑢 (𝑛+1)

𝑖
,

−4𝑢 (𝑛+1)
𝑖

= 𝑓 in Ω𝑖 , 𝑢
(𝑛+1)
𝑖

= 𝑢 (𝑛) in Ω \Ω𝑖 . (3)

Using 𝑢 (𝑛+1)
𝑖

, the next iterate is then formed to give

𝑢 (𝑛+1) = (1 − 𝑁𝜏)𝑢 (𝑛) + 𝜏

𝑁∑︁
𝑖=1

𝑢
(𝑛+1)
𝑖

,

where 𝑁 is the number of subdomains in the partition and 𝜏 is a relaxation parameter.
Let 𝑁𝑐 be the maximum number of subdomains sharing the same geometric position
in Ω. With 𝜏 ≤ 1/𝑁𝑐 , 𝑢 (𝑛) converges to the solution 𝑢 of (2) under a suitably
chosen space of functions, see [14, 16]. The algorithm can be further extended into
a two-level method by introducing the coarse problem,

−4𝑤 (𝑛+1)
0 = 𝑓 + 4𝑢 (𝑛) in Ω, 𝑤

(𝑛+1)
0 = 0 on 𝜕Ω,

and by including the coarse problem solution to the iteration formula,

𝑢 (𝑛+1) = (1 − 𝑁𝜏)𝑢 (𝑛) + 𝜏

((
𝑁∑︁
𝑖=1

𝑢
(𝑛+1)
𝑖

)
+ 𝑤

(𝑛+1)
0

)
.

In [7], following similarly as in the analysis for the variational inequalities [1],
under the assumptions on the stable decomposition property and the strengthened
Cauchy-Schwarz inequality, see [14, Section 2.3], the iterates 𝑢 (𝑛) converge to the
exact solution 𝑢 with the convergence rate 𝑅(𝜏),

𝑎(𝑢 − 𝑢 (𝑛+1) , 𝑢 − 𝑢 (𝑛+1) ) ≤ 𝑅(𝜏)𝑎(𝑢 − 𝑢 (𝑛) , 𝑢 − 𝑢 (𝑛) ), (4)

where 𝑎(𝑢, 𝑣) =
∫
Ω
∇𝑢 · ∇𝑣 𝑑𝑥, and 𝑅(𝜏) is

𝑅(𝜏) = 1 − 2
2 + 𝐶0

𝜏 + 𝑁2𝑐𝜏
2 and 𝑅(𝜏) = 1 − 2

2 + 𝐶0
𝜏 + 2(𝑁2𝑐 + 1)𝜏2

in the one-level case and two-level case, respectively. In the above, the constant𝐶0 is
that appears in the stable decomposition property. In a more detail, in the one-level
case, the constant 𝐶0 follows the growth of 𝑁𝑐𝑁𝐻/𝛿 and in the two-level case,
the constant 𝐶0 follows the growth of 𝑁𝑐𝐻/𝛿, under the approximation property
assumption on the coarseHilbert subspace, see [14, Sections 3.5 and 3.6]. Combining
our convergence analysis in (4) with the bound for 𝐶0, we can thus conclude that for
a suitable choice of 𝜏, the iterates 𝑢 (𝑛) converge to 𝑢 in the Hilbert space 𝐻10 (Ω),

|𝑢 (𝑛+1) − 𝑢 |1 ≤ 𝐶 |𝑢 (𝑛) − 𝑢 |1,
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with the constant 𝐶 < 1 increasing to 1 as 𝑁 increasing in the one-level case,
while with the constant 𝐶 being robust as 𝑁 increasing in the two-level case. The
convergent rate 𝐶 in the one-level method deteriorates as the more subdomains in
the partition while it is robust to the increase of the number of subdomains in the
two-level method, that have been also observed in additive Schwarz preconditioners
to algebraic systems in classical numerical methods.
To find a neural network approximate solution, at each iteration in the additive

Schwarzmethods, we approximate the local problem solution and the coarse problem
solution with neural network functions𝑈𝑖 (𝑥; 𝜃 (𝑛+1)𝑖

) and𝑊0 (𝑥; 𝜃 (𝑛+1)0 ) and train the
parameters 𝜃 (𝑛+1)

𝑖
and 𝜃

(𝑛+1)
0 to minimize the cost functions related to each local

problem and the coarse problem, respectively. The neural network iterates 𝑈 (𝑛+1)

are then defined as

𝑈 (𝑛+1) = (1 − 𝑁𝜏)𝑈 (𝑛) + 𝜏

(
𝑁∑︁
𝑖=1

𝑈
(𝑛+1)
𝑖

+𝑊
(𝑛+1)
0 (𝑥, 𝜃 (𝑛+1)0 )

)
,

where 𝑈 (𝑛+1)
𝑖

(𝑥) are 𝑈𝑖 (𝑥; 𝜃 (𝑛+1)𝑖
) in Ω𝑖 and 𝑈 (𝑛) (𝑥) in the rest part, i.e., Ω \ Ω𝑖 . In

the iteration method, we should store all the previous step parameters to obtain the
resulting final step solution as a function of 𝑥, which is not desirable in the practical
calculation.
To obtain a more practical method, we rewrite the above iteration formula as

follows: for any 𝑥 in Ω

𝑈 (𝑛+1) (𝑥) = (1−|𝑠(𝑥) |𝜏)𝑈 (𝑛) (𝑥)+𝜏 ©­«
∑︁

𝑖∈𝑠 (𝑥)
𝑈𝑖 (𝑥, 𝜃 (𝑛+1)𝑖

) +𝑊
(𝑛+1)
0 (𝑥, 𝜃 (𝑛+1)0 )ª®¬ , (5)

where 𝑠(𝑥) denotes the set of subdomain indices sharing 𝑥 and |𝑠(𝑥) | denotes the
number of elements in the set 𝑠(𝑥). We introduce

𝑈 (𝑛+1) (𝑥) := 1
|𝑠(𝑥) |

©­«
∑︁

𝑖∈𝑠 (𝑥)
𝑈𝑖 (𝑥, 𝜃 (𝑛+1)𝑖

) +𝑊
(𝑛+1)
0 (𝑥, 𝜃 (𝑛+1)0 )ª®¬ (6)

and rewrite the above iteration formula into

𝑈 (𝑛+1) (𝑥) = (1 − |𝑠(𝑥) |𝜏)𝑈 (𝑛) (𝑥) + |𝑠(𝑥) |𝜏𝑈 (𝑛+1) (𝑥).

For the iterates 𝑈 (𝑛+1) (𝑥), they also converge to 𝑢(𝑥) in the 𝐿2-norm, see [7], and
the following practical one-level (without the term 𝑊

(𝑛+1)
0 in the iteration formula

in (5) and (6)) and two-level additive Schwarz algorithms are finally obtained:
Algorithm 1: One-level method (input:𝑈 (0) , output:𝑈 (𝑛+1) )
Step 0: Let𝑈 (0) (𝑥) be given and 𝑛 = 0.
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Step 1: Find 𝜃 (𝑛+1)
𝑖

in𝑈𝑖 (𝑥; 𝜃 (𝑛+1)𝑖
) for

−4𝑢 = 𝑓 in Ω𝑖 , 𝑢 = 𝑈 (𝑛) on 𝜕Ω𝑖 .

Step 2: Update𝑈 (𝑛+1) at each data set 𝑋𝜕Ω𝑖
as, see (6),

𝑈 (𝑛+1) (𝑥) = (1 − 𝜏 |𝑠(𝑥) |)𝑈 (𝑛) (𝑥) + 𝜏 |𝑠(𝑥) |𝑈 (𝑛+1) .

Step 3: Go to Step 1 with 𝑛 = 𝑛 + 1 or set the output as 𝑈 (𝑛+1) if the stopping
condition is met.
Algorithm 2: Two-level method (input:𝑈 (0) , output:𝑈 (𝑛+1) )
Step 0: Let𝑈 (0) (𝑥) be given and 𝑛 = 0.
Step 1-1: Find 𝜃 (𝑛+1)

𝑖
in𝑈𝑖 (𝑥; 𝜃 (𝑛+1)𝑖

) for

−4𝑢 = 𝑓 in Ω𝑖 , 𝑢 = 𝑈 (𝑛) on 𝜕Ω𝑖 .

Step 1-2: Find 𝜃 (𝑛+1)0 in𝑊0 (𝑥; 𝜃 (𝑛+1)0 ) for

−4𝑤 = 𝑓 + 4𝑈 (𝑛) in Ω, 𝑤 = 0 on 𝜕Ω.

Step 2: Update𝑈 (𝑛+1) at each data set 𝑋𝜕Ω𝑖
as, see (6),

𝑈 (𝑛+1) (𝑥) = (1 − 𝜏 |𝑠(𝑥) |)𝑈 (𝑛) (𝑥) + 𝜏 |𝑠(𝑥) |𝑈 (𝑛+1) .

Step 3: Go to Step 1-1 with 𝑛 = 𝑛 + 1 or set the output as 𝑈 (𝑛+1) if the stopping
condition is met.
For the neural network iterates 𝑈 (𝑛) and 𝑈 (𝑛) , the following convergence results

are shown
|𝑈 (𝑛+1) − 𝑢 |1 ≤ |𝑢 (𝑛+1) − 𝑢 |1 +

1
1 − 𝐶

𝜖,

‖𝑈 (𝑛+1) − 𝑢‖0 ≤
𝐶𝑝

𝜏

(
|𝑢 (𝑛+1) − 𝑢 |1 + |𝑢 (𝑛) − 𝑢 |1 +

2
1 − 𝐶

𝜖

)
,

where 𝜖 denotes the approximation error in the local and coarse neural network
solutions, 𝑢 (𝑛) are the iterates in the Hilbert space, 𝐶 denotes the convergence rate
in the Hilbert space iterates 𝑢 (𝑛) , ‖ · ‖0 denotes the 𝐿2-norm, and 𝐶𝑝 is the constant
in the Poincare inequality, see [7].
As reported in numerical results in [7], the optimization errors also appear in the

computed neural network solutions and they resulted in less accurate approximate
solutions at each iteration. The resulting errors are observed to have high contrast
near the boundary of the overlapping region, that is harder to be approximated by
the coarse neural network function. Such optimization error behaviors in the neural
network approximation have been analyzed by NTK theory [3, 15]. Regarding the
local problems in our iteration method, the parameters in the local neural network
function are trained to minimize the cost function, consisting of the residual loss
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to the differential equation, and the residual loss to the boundary condition. The
residual loss to the boundary condition is harder to optimize and such optimization
behavior remains as the high contrast error near the overlapping region boundary.
To address such a drawback in our previous method, we form a partitioned neural

network function to approximate the solution 𝑢(𝑥),

𝑈 (𝑥; 𝜃1, · · · , 𝜃𝑁 ) =
𝑁∑︁
𝑖=1

𝜙𝑖 (𝑥)𝑈𝑖 (𝑥; 𝜃𝑖),

where 𝜙𝑖 (𝑥) are a partition of unity functions for the given overlapping subdomain
partition,

𝑁∑︁
𝑖=1

𝜙𝑖 (𝑥) = 1, 0 ≤ 𝜙𝑖 (𝑥) ≤ 1, 𝜙𝑖 (𝑥) = 0,∀𝑥 ∈ Ω \Ω𝑖 .

We note that in [11] the parameters 𝜃𝑖 are trained to minimize the following global
cost function without utilizing the partitioned neural network structure for parallel
computing algorithms,

𝐿 (𝜃1, · · · , 𝜃𝑁 ) = 1
|𝑋Ω |

∑︁
𝑥∈𝑋Ω

|4𝑈 (𝑥; 𝜃1, · · · , 𝜃𝑁 ) + 𝑓 (𝑥) |2

+ 1
|𝑋𝜕Ω |

∑︁
𝑥∈𝑋𝜕Ω

|𝑈 (𝑥; 𝜃1, · · · , 𝜃𝑁 ) − 𝑔(𝑥) |2.

In our work, we propose an iteration method where each local parameters 𝜃𝑖 can be
trained in parallel for a localized problem at each iteration. Such an iterative solution
procedure is more desirable for the partitioned neural networks.
Our new iteration method is as follows:

Algorithm 3: PNN One-level method (input:𝑈 (0) , output:𝑈 (𝑛+1) )
Step 0: Set the initial iterate𝑈 (0) = 𝑈 (𝑥; 𝜃 (0)1 , · · · , 𝜃 (0)

𝑁
).

Step 1: Find 𝜃 (𝑛+1)
𝑖

in 𝜙𝑖 (𝑥)𝑈𝑖 (𝑥; 𝜃𝑖) to approximate the local problem solution;

−4𝑢 = 𝑓 + 4((1 − 𝜙𝑖 (𝑥))𝑈 (𝑛) ) in Ω𝑖 ,

𝑢 = 0 on 𝜕Ω𝑖 ∩Ω, 𝑢 = 𝑔 on 𝜕Ω𝑖 ∩ 𝜕Ω.

Step 2: Set the next iterate;

𝑈 (𝑛+1) = (1 − 𝛼)𝑈 (𝑛) + 𝛼

𝑁∑︁
𝑖=1

𝜙𝑖 (𝑥)𝑈𝑖 (𝑥; 𝜃 (𝑛+1)𝑖
)

Step 3: If the stoping condition ismet then set the output𝑈 (𝑥) = ∑𝑁
𝑖=1 𝜙𝑖 (𝑥)𝑈𝑖 (𝑥; 𝜃 (𝑛+1)𝑖

),
otherwise continue the iteration to go back to Step 1.



DD Algorithms for Neural Network Approximation 35

In Algorithm 3, for the case of floating subdomains, the zero boundary condition
is already enforced in 𝜙𝑖 (𝑥)𝑈𝑖 (𝑥; 𝜃 (𝑛+1)𝑖

) by the partition of unity function 𝜙𝑖 (𝑥)
and only the differential equation comes in the loss function. We can thus expect
that the parameter optimization for such a local problem has less optimization errors
than those in Algorithms 1 and 2. Its two-level version can be derived by adding the
coarse correction term𝑊

(𝑛+1)
0 to the iterates

𝑈 (𝑛+1) = (1 − 𝛼)𝑈 (𝑛) + 𝛼

(
𝑁∑︁
𝑖=1

𝜙𝑖 (𝑥)𝑈𝑖 (𝑥; 𝜃 (𝑛+1)𝑖
) +𝑊0 (𝑥; 𝜃 (𝑛+1)0 )

)
,

where𝑊0 (𝑥; 𝜃 (𝑛+1)0 ) is the neural network approximation to the global coarse prob-
lem, i.e., to find 𝑤 in a coarse subspace 𝑉0 of 𝐻1 (Ω) such that

−4𝑤 = 𝑓 + 4𝑈 (𝑛) , in Ω, 𝑤 = 0, on 𝜕Ω.

For the Algorithm 3 and its two-level version, their convergence can be shown by
following similarly as in our previous work [7]. More rigorous convergence analysis
will be provided in a complete version of the proceeding paper. We note that at each
iteration the local parameters are fully trained for the given differential equation.
Even the case, local parameter training cost per each iteration is much smaller than
the training cost in the single large neural network. The number of training epochs
is much smaller and the gradient update per epoch is also much cheaper for the
smaller local neural network functions. The trade-off is that the total training cost in
our proposed method also depends on the number of outer iterations. As the more
subdomains in the partition, the more outer iterations are needed. It is thus important
to include the coarse component to speed up the outer iterations.

4 Numerical results

For the proposed iterativemethods,we consider the following simple one-dimensional
model problem to compare their convergence behavior,

−𝑢′′ = 𝑓 (𝑥) in (−1 1), 𝑢(𝑥) = 0 at 𝑥 = −1, 1,

where 𝑓 (𝑥) is chosen to give the exact solution 𝑢(𝑥) = sin(𝜋𝑥).
For the domain (−1 1) we introduce an overlapping subdomain partition

with 10 subdomains. We then consider a partitioned neural network with 10 lo-
cal neural network functions, that are defined on each subdomains in the overlapping
subdomain partition. For all the local neural network functions, the number of pa-
rameters is set as 106. We also use the same size of the coarse neural network
function with 106 parameters in the two-level method. When training the parameters
in the local and coarse neural network functions, we use 10000 training epochs in
the gradient method, where we use the Adam optimizer with the learning rate 0.001.
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Fig. 1 Error decay history: Left figure (Error plots for𝑈 (𝑛) ), Right figure (Error plots for𝑈 (𝑛) ),
ASM One level (Algorithm 1), ASM Two level (Algorithm 2), PUASM One level (Algorithm 3),
PUASM Two level (Algorithm 3 with the coarse correction term).

We use randomly selected 100 training data points in each local and coarse problem
parameter training.
In Fig. 1, the convergence history in the proposed methods is presented up to

100 outer iterations. The relative 𝐿2-errors in the neural network approximate so-
lutions at each outer iteration are plotted and compared. In the left figure, the
errors for the neural network iterates 𝑈 (𝑛) to the exact solution are plotted for the
four proposed methods. In the right figure, the errors for the practical neural net-
work iterates 𝑈 (𝑛) are plotted, see (6) for the ASM Two level (Algorithm 2) and
𝑈 (𝑛) = (∑𝑁

𝑖=1 𝜙𝑖 (𝑥)𝑈𝑖 (𝑥; 𝜃 (𝑛)𝑖
)) +𝑊0 (𝑥; 𝜃 (𝑛)0 ) for PUASM Two level (Algorithm 3

with the coarse correction term). The error plots in both figures show that the coarse
correction term in the ASM Two level method does not help to speed up the conver-
gence of the ASM One level. The convergence rate is even larger than the ASM One
level method. As discussed earlier, this is related to the optimization error behaviors
in the local neural network parameter training, that produce high contrast errors near
the boundary of the overlapping region.
In the case of the PUASM Two level method, the coarse problem accelerates the

convergence greatly at the early outer iterations. The local problem in the PUASM
case has only the residual loss for the differential equation and the high contrast
optimization error problems are alleviated in this case with the help of the partition
of unity functions. However, at the later outer iterations, the errors can not be
further reduced due to the practical implementation issue in the partition of unity
functions. The practical implementation issue with the partition of unity functions
needs a further investigation and our future research will be focused on proposing
some new idea in forming and implementing the partition of unity functions that are
suitable for neural network approximation.
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Convergence Bounds for
One-Dimensional ASH and RAS

Marcus Sarkis and Maksymilian Dryja

1 Introduction

The ASH and RASmethods were introduced in [2] and rate of convergence theory is
still missing; apparently it does not fall into the abstract theory of Schwarz methods
since the nonsymmetric terms are no compact perturbations of 𝐻1-norms. As far as
we know, the algebraic convergence theory using weighted max norms introduced
in [3] is the only theoretical work which establishes convergence however no rate
of convergence. Here, we introduce new techniques to analyze RAS and ASH for
the one-dimensional case. Some of these techniques can be used to establish rate of
convergence in higher dimensions and they will be discussed elsewhere.
Let

𝐴𝑢 = 𝑓 (1)

be a system of linear algebraic equations corresponding to the finite difference
approximations of the Poisson problem −𝑢∗𝑥𝑥 = 𝑓 on the interval Ω = (0, 1) with
homogeneous Dirichlet boundary conditions on a uniform mesh in Ωℎ = Ωℎ ∪ 𝑥0 ∪
𝑥𝑛+1, where Ωℎ = {𝑥 𝑗 }𝑛𝑗=1 is the set of interior nodes of the mesh, and 𝑥0 = 0 and
𝑥𝑛+1 = 1 are the boundary nodes. Denote ℎ = 1/(𝑛 + 1) as the mesh size. The
discretization is obtained by setting 𝑢(𝑥0) = 𝑢(𝑥𝑛+1) = 0 and

(−Δℎ𝑢) (𝑥 𝑗 ) = ℎ−2
(
−𝑢(𝑥 𝑗−1) + 2𝑢(𝑥 𝑗 ) − 𝑢(𝑥 𝑗+1)

)
𝑗 = 1, · · · , 𝑛.

Denote the inner product in 𝐿2
ℎ
(0, 1) (which we denote by 𝑉ℎ) by

(𝑢, 𝑣) ≡ (𝑢, 𝑣)ℎ = ℎ

𝑛∑︁
𝑗=1

𝑢(𝑥 𝑗 ) 𝑣(𝑥 𝑗 ) and denote ‖𝑣‖2 = (𝑣, 𝑣).

Marcus Sarkis
Worcester Polytechnic Institute, Worcester, USA, e-mail: msarkis@wpi.edu
Maksymilian Dryja
University of Warsaw, Poland. e-mail: dryja@mimuw.edu.pl

39



40 Marcus Sarkis and Maksymilian Dryja

We introduce the matrix 𝐴

(𝑣, 𝐴𝑢) = (𝑣,−Δℎ𝑢).

also as an operator defined on 𝐿2
ℎ
(0, 1) with inner product (·, ·) and zero Dirichlet

data at 𝑥0 = 0 and 𝑥𝑛+1 = 1. Here the matrix and the operator 𝐴 will be denoted by
the same letter. It is known that (𝐴𝑣, 𝑣) = (∇𝐼ℎ𝑣,∇𝐼ℎ𝑣)𝐿2 (0,1) for 𝑣 ∈ 𝑉ℎ , where 𝐼ℎ𝑣
is the piecewise linear and continuous function with given 𝑣(𝑥 𝑗 ) for 0 ≤ 𝑗 ≤ 𝑛 + 1.
In order to avoid proliferation of constants, we will often use the notation 𝐴 � 𝐵

(𝐴 � 𝐵) to represent 𝐴 ≤ 𝑐𝐵 (𝐴 ≥ 𝑐𝐵) where the positive constant 𝑐 is independent
of ℎ, 𝐻, 𝛿, ℓ and 𝑟 .

2 ASM, RAS, ASH and RASH methods

Let us decompose the nodes ofΩℎ into 𝑁 subdomains and without loss of generality
assume that 𝑚 = 𝑛/𝑁 is an integer; see Fig. 1 with 𝑛 = 28, 𝑁 = 4 and ℓ = 2. Define
the nonoverlapping subdomains nodes of Ω𝑖ℎ

Ω𝑖ℎ = {𝑥 𝑗+1, 𝑥 𝑗+2, · · · , 𝑥 𝑗+𝑚}, where 𝑗 = (𝑖 − 1) 𝑚, 1 ≤ 𝑖 ≤ 𝑁.

Let ℓ ≥ 0 be an integer and let 𝛿 = (1 + ℓ)ℎ. We note that ℓ = 0 is related a block
diagonal preconditioner. Let the extended subdomain nodes of Ω𝑖 𝛿 be obtained by
extending by ℓ nodes to each side of Ω𝑖ℎ inside Ωℎ , that is,

Ω𝑖 𝛿 = {𝑥 𝑗+1−ℓ , 𝑥 𝑗+2−ℓ , · · · , 𝑥 𝑗+𝑚+ℓ } ∩ Ωℎ , where 𝑗 = (𝑖 − 1)𝑚, 1 ≤ 𝑖 ≤ 𝑁.

Fig. 1 (top) Ωℎ with 𝑛 = 28 nodes decomposed into four subdomains Ω𝑖ℎ with 𝑉 10 coarse nodes.
(below) The visualization of Ω𝑖ℎ , Ω𝑖ℎ , Ω𝑖 𝛿 , Ω𝑖 𝛿 , and Ω𝑖 𝛿ℎ = Ω−

𝑖 𝛿ℎ
∪Ω+

𝑖 𝛿ℎ
when 𝑖 = 2 and ℓ = 2.
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The mathematical analysis introduced below can also be extended easily for
the case the domain decomposition is obtained by nonoverlapping subdomains el-
ements. We also use the notation Ω𝑖 𝛿 = {𝑥 𝑗−ℓ , 𝑥 𝑗+1−ℓ , · · · , 𝑥 𝑗+𝑚+ℓ+1} ∩ Ωℎ and
Ω𝑖ℎ = {𝑥 𝑗 , 𝑥 𝑗+1, · · · , 𝑥 𝑗+𝑚+1} ∩ Ωℎ to include their boundary nodes 𝜕Ω𝑖 𝛿 and 𝜕Ω𝑖ℎ ,
respectively. Note that here and below 𝑗 is a function of 𝑖 given by 𝑗 = (𝑖 − 1)𝑚 for
1 ≤ 𝑗 ≤ 𝑁 .
Associated to each Ω𝑖 𝛿 , we introduce the restriction operator 𝑅𝑖 𝛿 . In matrix

terms, 𝑅𝑖 𝛿 is an 𝑚𝑖 × 𝑛 matrix such that (𝑅𝑖 𝛿𝑣) (𝑥 𝑗 ) = 𝑣(𝑥 𝑗 ) for 𝑥 𝑗 ∈ Ω𝑖 𝛿 , ∀𝑣 ∈ 𝑉ℎ .
Here, 𝑚1 = 𝑚 + ℓ, 𝑚𝑖 = 𝑚 + 2ℓ for 2 ≤ 𝑖 ≤ 𝑁 − 1 and 𝑚𝑁 = 𝑚 + ℓ. Define
𝐴𝑖 𝛿 = 𝑅𝑖 𝛿𝐴𝑅

𝑇
𝑖𝛿
.

Associated to each Ω𝑖 𝛿 and Ω𝑖ℎ , we introduce the restriction operator 𝑅̃𝑖ℎ . In
matrix terms, 𝑅̃𝑖ℎ is an 𝑚𝑖 × 𝑛 matrix such that (𝑅̃𝑖ℎ𝑣) (𝑥 𝑗 ) = 𝑣(𝑥 𝑗 ) for 𝑥 𝑗 ∈ Ω𝑖ℎ

and (𝑅̃𝑖ℎ𝑣) (𝑥 𝑗 ) = 0 for 𝑥 𝑗 ∈ Ω𝑖 𝛿\Ω𝑖ℎ , ∀𝑣 ∈ 𝑉ℎ . The superscript tilde notation is
used to recall 𝑅̃𝑖ℎ maps to Ω𝑖 𝛿 rather than Ω𝑖ℎ . For analysis, we will also consider
𝑅𝑖 𝛿ℎ = 𝑅𝑖 𝛿 − 𝑅̃𝑖ℎ and denote Ω𝑖 𝛿ℎ = Ω𝑖 𝛿\Ω𝑖ℎ .
We will also consider preconditioners with a coarse problem. In order to mimic

the 2D and 3D difficulties, we consider two cases of coarse spaces, the𝑉10 and the𝑉
2
0

coarse spaces.
𝑉10 case: The coarse nodes are given by Ω𝐻 = {𝑋𝑖}𝑁−1

𝑖=1 and Ω𝐻 = {𝑋𝑖}𝑁𝑖=0 where
𝑋𝑖 = 𝑖𝑚ℎ for 0 ≤ 𝑖 ≤ 𝑁 and with a zero Dirichlet data at 𝑋0 = 𝑥0 and 𝑋𝑁 = 𝑥𝑛+1. In
other words, the coarse node 𝑋𝑖 is the rightmost node of Ω𝑖ℎ for 1 ≤ 𝑖 ≤ 𝑁 − 1. In
this case, the coarse nodes belong to the overlapping region (if ℓ ≥ 1).
𝑉20 case: The coarse nodes are given by Ω𝐻 = {𝑋𝑖}𝑁𝑖=1 and Ω𝐻 = {𝑋𝑖}𝑁+1

𝑖=0 where
the coarse nodes are 𝑋𝑖 = (𝑖 − 1)𝑚ℎ + b𝑚/2cℎ for 1 ≤ 𝑖 ≤ 𝑁 , and 𝑋0 = 𝑥0 and
𝑋𝑁+1 = 𝑥𝑛+1. Here, b𝑚/2c is the integer part of𝑚/2. In other words, the coarse node
𝑋𝑖 is about the mid node of Ω𝑖ℎ . This is the case the coarse nodes belong to just one
extended subdomain when ℓ is not too large.
In both cases, zero Dirichlet data is imposed at the end nodes. The extrapolation

operator 𝑅𝑇
0 from Ω𝐻 to Ωℎ is the embedding piecewise linear and continuous

coarse functions on the coarse triangulation Ω𝐻 to the fine mesh Ωℎ . Define the
coarse matrix by 𝐴0 = 𝑅0𝐴𝑅

𝑇
0 .

The Additive Schwarz Method–ASM preconditioner is defined by

𝑇asm = 𝐵−1
asm𝐴 =

(
𝑁∑︁
𝑖=1

𝑅𝑇
𝑖 𝛿𝐴

−1
𝑖 𝛿 𝑅𝑖 𝛿 + 𝑅𝑇

0 𝐴
−1
0 𝑅0

)
𝐴.

The Restricted Additive Schwarz Method–RAS preconditioner is defined by

𝑇ras = 𝐵−1
ras𝐴 =

(
𝑁∑︁
𝑖=1

𝑅̃𝑇
𝑖ℎ𝐴

−1
𝑖 𝛿 𝑅𝑖 𝛿 + 𝑅𝑇

0 𝐴
−1
0 𝑅0

)
𝐴.
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The Additive Schwarz with Harmonic Overlap Method–ASH preconditioner is
given by

𝑇ash = 𝐵−1
ash𝐴 =

(
𝑁∑︁
𝑖=1

𝑅𝑇
𝑖 𝛿𝐴

−1
𝑖 𝛿 𝑅̃𝑖ℎ + 𝑅𝑇

0 𝐴
−1
0 𝑅0

)
𝐴.

The symmetrized RAS method, denoted by RASH, is defined by

𝑇rash = 𝐵−1
rash𝐴 =

(
𝑁∑︁
𝑖=1

𝑅̃𝑇
𝑖ℎ𝐴

−1
𝑖 𝛿 𝑅̃𝑖ℎ + 𝑅𝑇

0 𝐴
−1
0 𝑅0

)
𝐴.

By construction, the matrices 𝐵−1
asm, 𝐵−1

ras, 𝐵−1
ash and 𝐵−1

rash are well defined. It is
well known that 𝐵−1

asm is symmetric positive definite. The contributions of this paper
proceedings are: 1) to show that 𝐵−1

ras and 𝐵−1
ash are nonsymmetric and positive definite

on subspaces of 𝑉ℎ and, 2) to establish their lower and upper bounds for exact local
solvers. Lower and upper bounds for 𝐵−1

rash are also established.
The original system (1) is solved by Richardson iterative methods with an optimal

relaxation parameter (or GMRES) with a 𝐵−1 left preconditioner, where 𝐵−1 will
be 𝐵−1

asm, 𝐵−1
ras, 𝐵−1

ash or 𝐵
−1
rash. We discuss two interpretations (residual and solution

vectors) of the methods. Then the analysis of convergence of the discussed method
is given. The Richardson iterative method for the solution vector is given by

𝑢𝑘+1 = 𝑢𝑘 − 𝜏𝐵−1 (𝐴𝑢𝑘 − 𝑓 ), (2)

where 𝜏 > 0 is a relaxation parameter. By multiplying (2) by 𝐴 and setting the
residual vector 𝑟𝑘 = 𝐴𝑢𝑘 − 𝑓 we get

𝑟𝑘+1 = 𝑟𝑘 − 𝜏𝐴𝐵−1𝑟𝑘 . (3)

We recall that (𝑢, 𝑣) = ℎ
∑

𝑖=1,𝑛 𝑢(𝑥𝑖)𝑣(𝑥𝑖) and denote ‖𝑢‖2
𝐶

= (𝑢, 𝐶𝑢) for any
symmetric positive definite matrix 𝐶. The convergence analysis of ‖𝑢 − 𝑢𝑘 ‖𝐴-norm
follows from the convergence analysis of (3) with the ‖𝑟𝑘 ‖𝐴−1 -norm, and vice-versa,
since 𝑟𝑘 = 𝐴(𝑢𝑘 − 𝑢). A bound for the convergence rate for (3) with the optimal
parameter 𝜏𝑘 , or for the GMRES on the 𝐴-norm, is given by the following well
known lemma, for example, see Lemma C.11 of [4].

Lemma 1. Assume that for any 𝑟 ∈ R𝑛

𝛾1 (𝐴−1𝑟, 𝑟) ≤ (𝐵−1𝑟, 𝑟) (4)

and
(𝐴𝐵−1𝑟, 𝐵−1𝑟) ≤ 𝛾2 (𝐴−1𝑟, 𝑟). (5)

Then the iterative method (3) converges with rate

‖𝑟𝑘+1‖𝐴−1 ≤ 𝜌𝑘∗ ‖𝑟𝑘 ‖𝐴−1 with optimal 𝜏∗ = 𝛾1/𝛾2 and 𝜌∗ = (1 − 𝛾21/𝛾2)
1/2.
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3 Reduction of the iterative scheme to a subspace

3.1 ASH inital correction

We first discuss 𝐵−1
ash without the coarse problem. Let 𝑢

0 be determined by

𝑢0 = 𝐵−1
ash𝐴𝑢 = 𝐵−1

ash 𝑓 .

The problem (1) now reduces to solving 𝐴𝑢̂ = 𝑓 where 𝑓 = 𝑓 − 𝐴𝑢0 and 𝑢̂ = 𝑢 − 𝑢0.
Denote R𝑛 as the Euclidean space, and denote R𝑛ash ⊂ R𝑛 as the set of residual
vectors which are zero at all nodes except at the nodes of ∪𝑁

𝑖=1𝜕Ω𝑖 𝛿 ∩ Ωℎ . It is easy
to see, by using that

∑𝑁
𝑖=1 𝑅

𝑇
𝑖𝛿
𝑅̃𝑖ℎ = 𝐼𝑛 that 𝑓 ∈ R𝑛ash. Let V

ℎ
ash = 𝐴−1R𝑛ash be the

space of discrete harmonic vectors on Ωℎ except at the nodes of ∪𝑁
𝑖=1𝜕Ω𝑖 𝛿 ∩ Ωℎ .

Note that 𝑢̂ ∈ 𝑉ℎ
ash. We also note that the subspace R

𝑛
ash is a natural choice since

𝐴(𝑢𝑘 −𝑢𝑘−1) ∈ R𝑛ash for the preconditioned Richardson with 𝜏 = 1 without the initial
correction. From now on, we assume this initial correction was performed and the
superscript hat is dropped. Consider the Richardson method, with 𝑢0 = 0,

𝑢𝑘+1 = 𝑢𝑘 − 𝜏𝐵−1
ash (𝐴𝑢

𝑘 − 𝑓 ) 𝑘 = 0, 1, · · · (6)

It is not hard to see, by recursion, that 𝑟𝑘 ∈ R𝑛ash and 𝑢
𝑘 ∈ 𝑉ℎ

ash for 𝑘 = 0, 1, 2, · · · .

Lemma 2. [1] For 𝑢 ∈ 𝑉ℎ
ash

𝐵−1
ash𝐴𝑢 = 𝐵−1

asm𝐴𝑢.

Proof. It follows from 𝑅̃𝑖ℎ𝐴𝑢 = 𝑅𝑖 𝛿𝐴𝑢 for 𝑢 ∈ V𝑛
ash. ut

As consequence, the upper and lower bounds for 𝐵−1
asm on the space 𝑉ash are also

the upper and lower bounds for 𝐵−1
ash. We note Lemma 2 also holds for the strip case

in 2D and 3D since no more than two extended subdomains overlap the same node.
We now consider the ASH method with a coarse space. First note that the image

of 𝐴𝑅𝑇
0 vanishes at all nodes except the coarse nodes. Therefore if there are no coarse

nodes in any of the Ω𝑖 𝛿ℎ , then Lemma 2 holds and this is the 𝑉20 case. Therefore,
we consider coarse spaces where the coarse nodes are in the overlapping regions,
which is the 𝑉10 coarse space case. It is easy to see after the initial correction 𝑢

0,
R𝑛ash ⊂ R𝑛 is now the set of residual vectors which are zero at all nodes except
for the nodes of ∪𝑁

𝑖=1𝜕Ω𝑖 𝛿 ∩ Ωℎ and at the coarse nodes. It easy to see that all
the 𝑢𝑘 ∈ V𝑛

ash := 𝐴−1R𝑛ash and that Lemma 2 does not hold. New techniques are
introduced below to treated this case.
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3.2 RAS and RASH initial corrections

After an initial correction 𝑢̂0 = 𝐵−1
ras 𝑓 , R𝑛ras ⊂ R𝑛 is now the set of RAS residual

vectors which are zero at all nodes except for the nodes on ∪𝑁
𝑖=1𝜕Ω𝑖ℎ ∩Ωℎ and at the

coarse nodes. After a correction 𝑢̂0 = 𝐵−1
ras 𝑓 or 𝑢̂0 = 𝐵−1

rash 𝑓 , R
𝑛
rash = R

𝑛
ras.

4 Lower and upper bounds for ASH, RAS and RASH methods

Note that 𝐵−1
ras ≥ 𝛾1𝐴

−1 is equivalent to 𝐵−1
ash ≥ 𝛾1𝐴

−1 on the space R𝑛 since

(𝐵−1
ras𝑟, 𝑟) = (𝑟, 𝐵−1

ash𝑟) = (𝐵−1
ash𝑟, 𝑟) 𝑟 ∈ R𝑛. (7)

We note however that the lower bound for 𝐵−1
ash for 𝑟 ∈ R𝑛ash is not necessarily

equivalent to the lower bound for 𝐵−1
ras for 𝑟 ∈ R𝑛ras, therefore, separate analyses are

done for the ASH and RAS methods. In order to establish the lower bounds for the
ASH and RAS, we introduce the following interesting result:

Lemma 3. For any 𝑟 ∈ R𝑛,

2(𝐵−1
ash𝑟, 𝑟) = 2(𝐵

−1
ras𝑟, 𝑟) = (𝐵−1

asm𝑟, 𝑟) + (𝐵−1
rash𝑟, 𝑟) −

𝑁∑︁
𝑖=1

(𝐴−1
𝑖 𝛿 𝑅𝑖 𝛿ℎ𝑟, 𝑅𝑖 𝛿ℎ𝑟). (8)

Proof. First we add and subtract 𝑅̃𝑖 𝛿ℎ to obtain

(𝐵−1
ash𝑟, 𝑟) =

𝑁∑︁
𝑖=1

(𝐴−1
𝑖 𝛿 𝑅𝑖 𝛿𝑟, 𝑅̃𝑖ℎ𝑟)+(𝐴−1

0 𝑅0𝑟, 𝑅0𝑟) = (𝐵−1
asm𝑟, 𝑟)−

𝑁∑︁
𝑖=1

(𝐴−1
𝑖 𝛿 𝑅𝑖 𝛿𝑟, 𝑅𝑖 𝛿ℎ𝑟),

and using 𝑅𝑖 𝛿 = 𝑅𝑖 𝛿ℎ + 𝑅̃𝑖ℎ we have

(𝐵−1
ash𝑟, 𝑟) =(𝐵

−1
asm𝑟, 𝑟) −

𝑁∑︁
𝑖=1

(𝐴−1
𝑖 𝛿 𝑅̃𝑖ℎ𝑟, 𝑅𝑖 𝛿ℎ𝑟) −

𝑁∑︁
𝑖=1

(𝐴−1
𝑖 𝛿 𝑅𝑖 𝛿ℎ𝑟, 𝑅𝑖 𝛿ℎ𝑟), hence,

(𝐵−1
ash𝑟, 𝑟) =(𝐵

−1
asm𝑟, 𝑟) −

𝑁∑︁
𝑖=1

(𝐴−1
𝑖 𝛿 𝑅̃𝑖ℎ𝑟, 𝑅𝑖 𝛿𝑟) +

𝑁∑︁
𝑖=1

(𝐴−1
𝑖 𝛿 𝑅̃𝑖ℎ𝑟, 𝑅̃𝑖ℎ𝑟)

−
𝑁∑︁
𝑖=1

(𝐴−1
𝑖 𝛿 𝑅𝑖 𝛿ℎ𝑟, 𝑅𝑖 𝛿ℎ𝑟)

and the lemma follows by adding and subtracting (𝐴−1
0 𝑅0𝑟, 𝑅0𝑟). ut

In order to use equation (8) to establish the lower bound of RAS and ASH, we
need to understand the lower bound for RASH, which is treated at the end of this
section.
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Weassume from now on thatΩ(𝑖+1) 𝛿∩Ω(𝑖−1) 𝛿 = ∅, that is, the overlap 𝛿 = (1+ℓ)ℎ
is not too large. We recall that ℓ = 0 is the block Jacobi preconditioner and that ASH,
RAS and RASH are all equal to the ASM.

We first consider the ASH lower bound with 𝐵−1 = 𝐵−1
ash. Since the coarse

space 𝑉20 has already been treated in the previous section, in the next lemma we
consider only the 𝑉10 case.

Lemma 4. For any 𝑟 ∈ R𝑛ash, there exists 𝛾1 = 𝑂 (1 + 𝐻
𝛿
)−1 for which (4) holds.

Proof. The strategy of the proof is the following: Consider the equality (8) and use
the following three steps:
Step 1: Consider the equality (8)
Step 2: Find a positive number 𝑐1 such that

(𝐴−1
𝑖 𝛿 𝑅𝑖 𝛿ℎ𝑟, 𝑅𝑖 𝛿ℎ𝑟) ≤ 𝑐1ℎ

2‖𝑅𝑖 𝛿ℎ𝑟 ‖2 1 ≤ 𝑖 ≤ 𝑁.

Step 3: Find positive numbers 𝑐2 and 𝑐3 and let 0 ≤ 𝛾 ≤ 1 such that

𝑁∑︁
𝑖=1

‖𝑅𝑖 𝛿ℎ𝑟 ‖2 ≤ ℎ−2
𝑁∑︁
𝑖=1

(
𝛾𝑐2 (𝐴−1

𝑖 𝛿 𝑅𝑖 𝛿𝑟, 𝑅𝑖 𝛿𝑟) + (1 − 𝛾)𝑐3 (𝐴−1
𝑖 𝛿 𝑅̃𝑖ℎ𝑟, 𝑅̃𝑖ℎ𝑟)

)
.

Then using Steps 1 and 2 we obtain

𝑁∑︁
𝑖=1

(𝐴−1
𝑖 𝛿 𝑅𝑖 𝛿ℎ𝑟, 𝑅𝑖 𝛿ℎ𝑟) | ≤ 𝛾𝑐1𝑐2 (𝐵−1

asm𝑟, 𝑟) + (1 − 𝛾)𝑐1𝑐3 (𝐵−1
rash𝑟, 𝑟).

Step 3: Choose a 𝛾 such that max{𝛾𝑐1𝑐2, (1 − 𝛾)𝑐1𝑐3} < 1, independent of 𝐻, ℎ

and 𝛿. Then use equality (8), and the RASH lower bound (see Lemma 8) and the
ASM lower bound [4] to obtain the lower bound 𝑂 (1 + 𝐻/𝛿)−1.

Step 1 Assume that 𝑟 ∈ R𝑛ash and let 𝑢𝑖 𝛿ℎ := 𝐴−1
𝑖 𝛿
𝑅̃𝑖 𝛿ℎ𝑟. The Ω𝑖 𝛿 is given by (see

Fig. 1)

Ω𝑖 𝛿 = {𝑥 𝑗+1−ℓ , · · · , 𝑥 𝑗+𝑚+ℓ } ∩Ωℎ , 𝑗 = 𝑗 (𝑖) = (𝑖 − 1) 𝑚, 1 ≤ 𝑖 ≤ 𝑁

see Fig. 1, and let
Ω𝑖 𝛿 = (𝑥 𝑗−ℓ ∪Ω𝑖 𝛿 ∪ 𝑥 𝑗+𝑚+ℓ+1) ∩Ωℎ .

Remember that Ω𝑖 𝛿ℎ = Ω𝑖 𝛿\Ω𝑖ℎ . Decompose Ω𝑖 𝛿ℎ = Ω−
𝑖 𝛿ℎ

∪Ω+
𝑖 𝛿ℎ
, where

Ω−
𝑖 𝛿ℎ = {𝑥 𝑗+1−ℓ , · · · 𝑥 𝑗 } ∩Ωℎ and Ω+

𝑖 𝛿ℎ = {𝑥 𝑗+𝑚+1, · · · 𝑥 𝑗+𝑚+ℓ } ∩Ωℎ .

Note that Ω−
1𝛿ℎ and Ω

+
𝑁 𝛿ℎ

are empty sets and Ω−
𝑖 𝛿ℎ

⊂ Ω(𝑖−1)ℎ for 2 ≤ 𝑖 ≤ 𝑁 , and
Ω+

𝑖 𝛿ℎ
⊂ Ω(𝑖+1)ℎ for 1 ≤ 𝑖 ≤ 𝑁 − 1.

The only node where 𝑅𝑖 𝛿ℎ𝑟 is not necessarily zero is at 𝑥 𝑗 ∈ Ω−
𝑖 𝛿ℎ
since for the

coarse nodes of 𝑉10 , it has no coarse nodes in Ω
+
𝑖 𝛿ℎ
. We have

(𝐴−1
𝑖 𝛿 𝑅𝑖 𝛿ℎ𝑟, 𝑅𝑖 𝛿ℎ𝑟) = (𝑢𝑖 𝛿ℎ , 𝑅𝑖 𝛿ℎ𝑟) = ℎ𝑢𝑖 𝛿ℎ (𝑥 𝑗 )𝑟 (𝑥 𝑗 ) = ‖𝑅𝑖 𝛿ℎ𝑟 ‖ℎ1/2 |𝑢𝑖 𝛿ℎ (𝑥 𝑗 ) |.
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Note that 𝑢𝑖 𝛿ℎ = 𝐴−1
𝑖 𝛿
𝑅𝑖 𝛿ℎ𝑟 vanishes at 𝑥 𝑗−ℓ (the node on the boundary ofΩ𝑖 𝛿 inside

Ω(𝑖−1)ℎ), and it is linear (harmonic) from 𝑥 𝑗−ℓ to 𝑥 𝑗 . We can relate |𝑢𝑖 𝛿ℎ (𝑥 𝑗 ) | with
its energy on the interval (𝑥 𝑗−ℓ , 𝑥 𝑗 ) since 𝑢𝑖 𝛿ℎ (𝑥 𝑗−ℓ) = 0 and

ℎ𝑢2𝑖 𝛿ℎ (𝑥 𝑗 ) = ℓℎ2 (
𝑢𝑖 𝛿ℎ (𝑥 𝑗 ) − 𝑢𝑖 𝛿ℎ (𝑥 𝑗−ℓ)

ℎℓ
)2ℓℎ = ℓℎ2 |𝑢𝑖 𝛿ℎ |2𝐻 1 (𝑥 𝑗−ℓ ,𝑥 𝑗 ) ,

and
|𝑢𝑖 𝛿ℎ |2𝐻 1 (𝑥 𝑗−ℓ ,𝑥 𝑗 ) ≤ (𝐴𝑖 𝛿𝑢𝑖 𝛿ℎ , 𝑢𝑖 𝛿ℎ) = (𝐴−1

𝑖 𝛿 𝑅𝑖 𝛿ℎ𝑟, 𝑅𝑖 𝛿ℎ𝑟).

Hence, we obtain 𝑐1 = ℓ.
Step 2 Denote 𝑅 (𝑖−1)

𝑖 𝛿ℎ
= 𝑅(𝑖−1) 𝛿𝑅

𝑇
𝑖 𝛿
𝑅𝑖 𝛿ℎ . Easy to see that

‖𝑅𝑖 𝛿ℎ𝑟 ‖2 =𝑟 (𝑥 𝑗 )2

=
𝛾

2
(𝑅(𝑖−1) 𝛿𝑟, 𝑅

(𝑖−1)
𝑖 𝛿ℎ

𝑟) + 𝛾

2
(𝑅𝑖 𝛿𝑟, 𝑅𝑖 𝛿ℎ𝑟) + (1 − 𝛾) (𝑅̃(𝑖−1)ℎ𝑟, 𝑅

(𝑖−1)
𝑖 𝛿ℎ

𝑟).

Let us first bound (𝑅(𝑖−1) 𝛿𝑟, 𝑅
(𝑖−1)
𝑖 𝛿ℎ

𝑟). Denote 𝑢 (𝑖−1) 𝛿 = 𝐴−1
(𝑖−1) 𝛿𝑅(𝑖−1) 𝛿𝑟 . First see

that 𝑢 (𝑖−1) 𝛿 vanishes at 𝑥 𝑗+1+ℓ (the rightmost node of Ω(𝑖−1) 𝛿), is linear from 𝑥 𝑗

(a coarse node) to 𝑥 𝑗+1+ℓ , and is linear from 𝑥 𝑗−ℓ (the leftmost node of Ω𝑖 𝛿) to 𝑥 𝑗 .
Hence, we obtain 𝑢 (𝑖−1) 𝛿 = 𝐴−1

(𝑖−1) 𝛿𝑅(𝑖−1) 𝛿𝑟 ,

(𝑅(𝑖−1) 𝛿𝑟, 𝑅
(𝑖−1)
𝑖 𝛿ℎ

𝑟) = (𝐴(𝑖−1) 𝛿𝑢 (𝑖−1) 𝛿 , 𝑅
(𝑖−1)
𝑖 𝛿ℎ

𝑟) = (𝐴(𝑖−1) 𝛿𝑢 (𝑖−1) 𝛿 , 𝐸 (𝑅 (𝑖−1)
𝑖 𝛿ℎ

𝑟)),

where 𝐸 (𝑅 (𝑖−1)
𝑖 𝛿ℎ

𝑟) ∈ 𝑉ℎ (Ω(𝑖−1) 𝛿) is an extension of 𝑟 (𝑥 𝑗 ), where (𝐸 (𝑅 (𝑖−1)
𝑖 𝛿ℎ

𝑟) (𝑥 𝑗 ) =
𝑟 (𝑥 𝑗 ), vanishes at 𝑥 𝑗+1+ℓ and 𝑥 𝑗−ℓ and is linear in the subintervals (𝑥 𝑗−ℓ , 𝑥 𝑗 ) and
(𝑥 𝑗 , 𝑥 𝑗+1+ℓ) . We have

(𝑅(𝑖−1) 𝛿𝑟, 𝑅
(𝑖−1)
𝑖 𝛿ℎ

𝑟) ≤ |𝑢 (𝑖−1) 𝛿 |𝐻 1 (𝑥 𝑗−ℓ ,𝑥 𝑗+1+ℓ ) |𝐸 (𝑅
(𝑖−1)
𝑖 𝛿ℎ

𝑟) |𝐻 1 (𝑥 𝑗−ℓ ,𝑥 𝑗+1+ℓ ) .

And using the same arguments as above, we have

|𝐸 (𝑅 (𝑖−1)
𝑖 𝛿ℎ

𝑟) |2
𝐻 1 (𝑥 𝑗−ℓ ,𝑥 𝑗+1+ℓ ) =

1
ℎ2

(
1
ℓ
+ 1
ℓ + 1

)
ℎ𝑟2 (𝑥 𝑗 ).

Hence,

(𝑅(𝑖−1) 𝛿𝑟, 𝑅
(𝑖−1)
𝑖 𝛿ℎ

𝑟) ≤ ℎ−1
(
1
ℓ
+ 1
ℓ + 1

)1/2
|𝑢 (𝑖−1) 𝛿 |𝐻 1 (𝑥 𝑗−ℓ ,𝑥 𝑗+1+ℓ ) ‖𝑅𝑖 𝛿ℎ𝑟 ‖.

Now let us bound (𝑅̃(𝑖−1)ℎ𝑟, 𝑅
(𝑖−1)
𝑖 𝛿ℎ

𝑟). Define 𝑢 (𝑖−1)ℎ = 𝐴−1
(𝑖−1) 𝛿 𝑅̃(𝑖−1)ℎ𝑟 and see

that 𝑢 (𝑖−1)ℎ is also harmonic on the subintevals (𝑥 𝑗−ℓ , 𝑥 𝑗 ) and (𝑥 𝑗 , 𝑥 𝑗+1+ℓ). Using
the same arguments as above we obtain

(𝑅(𝑖−1)ℎ𝑟, 𝑅
(𝑖−1)
𝑖 𝛿ℎ

𝑟) ≤ ℎ−1
(
1
ℓ
+ 1
ℓ + 1

)1/2
|𝑢 (𝑖−1)ℎ |𝐻 1 (𝑥 𝑗−ℓ ,𝑥 𝑗+1+ℓ ) ‖𝑅𝑖 𝛿ℎ𝑟 ‖.
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Now let us bound (𝑅𝑖 𝛿𝑟, 𝑅𝑖 𝛿ℎ𝑟 and let 𝑢𝑖 𝛿 = 𝐴−1
𝑖 𝛿
𝑅𝑖 𝛿𝑟). Using similar arguments

(𝑅𝑖 𝛿𝑟, 𝑅𝑖 𝛿ℎ𝑟) ≤ ℎ−1
(
1
ℓ
+ 1
ℓ + 1

)1/2
|𝑢𝑖 𝛿 |𝐻 1 (𝑥 𝑗−ℓ ,𝑥 𝑗+1+ℓ ) ‖𝑅𝑖 𝛿ℎ𝑟 ‖.

Hence, we obtain 2𝑐2 = 𝑐3 =
(
1
ℓ
+ 1

ℓ+1

)
Step 3 A proper choice is 𝛾 = 2/3 which gives 𝛾𝑐1𝑐2 = (1 − 𝜆)𝑐1𝑐3 < 2/3. ut

We now consider the RAS lower bound for 𝐵−1 = 𝐵−1
ras for both 𝑉10 and 𝑉

2
0 .

Independently if we use 𝑉10 or 𝑉
2
0 , we have nonzero residuals at 𝑥 𝑗 , 𝑥 𝑗+1, 𝑥 𝑗+𝑚

and 𝑥 𝑗+𝑚+1. If 𝑉20 is used, a nonzero residuals will show up also at 𝑥 𝑗+[𝑚/2] .

Lemma 5. For any 𝑟 ∈ R𝑛ras, there exists 𝛾1 = 𝑂 (1 + 𝐻
ℎ
)−1 for which (4) holds.

Proof. We follow the same strategy as in the proof of the previous lemma.
Step 1 Assume 2 ≤ 𝑖 ≤ 𝑁 − 1. Decompose

𝑅𝑖 𝛿ℎ = 𝑅−
𝑖 𝛿ℎ + 𝑅+

𝑖 𝛿ℎ ,

where 𝑅−
𝑖 𝛿ℎ

𝑟 and 𝑅+
𝑖 𝛿ℎ

𝑟 vanish onΩ𝑖 𝛿 except at the nodes 𝑥 𝑗 and 𝑥 𝑗+𝑚+1, respectively.
We have

(𝐴−1
𝑖 𝛿 𝑅𝑖 𝛿ℎ𝑟, 𝑅𝑖 𝛿ℎ𝑟) = ℎ𝑢𝑖 𝛿ℎ (𝑥 𝑗 )𝑟 (𝑥 𝑗 ) + ℎ𝑢𝑖 𝛿ℎ (𝑥 𝑗+𝑚+1)𝑟 (𝑥 𝑗+𝑚+1)

and the |𝑢𝑖 𝛿ℎ (𝑥 𝑗 ) | and |𝑢𝑖 𝛿ℎ (𝑥 𝑗+𝑚+1) | are now controlled by the energy on the
intervals (𝑥 𝑗−ℓ , 𝑥 𝑗 ) and (𝑥 𝑗+𝑚+1, 𝑥 𝑗+𝑚+1+ℓ), respectively. Using the same arguments
as above we obtain

(𝐴−1
𝑖 𝛿 𝑅𝑖 𝛿ℎ𝑟, 𝑅𝑖 𝛿ℎ𝑟) ≤ ℎ2 ℓ

(
‖𝑅−

𝑖 𝛿ℎ𝑟 ‖
2 + ‖𝑅+

𝑖 𝛿ℎ𝑟 ‖
2
)
.

Step 3 Assume 2 ≤ 𝑖 ≤ 𝑁 − 1. Denote 𝑅 (𝑖−1)−
𝑖 𝛿ℎ

= 𝑅(𝑖−1) 𝛿𝑅
𝑇
𝑖𝛿
𝑅𝑖 𝛿ℎ . We have

‖𝑅−
𝑖 𝛿ℎ𝑟 ‖

2 = 𝑟 (𝑥 𝑗 )2 = 𝛾(𝑅(𝑖−1) 𝛿𝑟, 𝑅
(𝑖−1)−
𝑖 𝛿ℎ

𝑟) + (1 − 𝛾) (𝑅̃(𝑖−1)ℎ𝑟, 𝑅
(𝑖−1)−
𝑖 𝛿ℎ

𝑟).

The 𝑅+
𝑖 𝛿ℎ
case can be treated similarly. A difference now with respect to the

ASH analysis is also that 𝑢𝑖 𝛿 now is not discrete harmonic at 𝑥 𝑗+1, therefore,
𝐸 (𝑅 (𝑖−1)−

𝑖 𝛿ℎ
𝑟) can be extended from 𝑟 (𝑥 𝑗 ) linearly on the interval (𝑥 𝑗−ℓ , 𝑥 𝑗 ) how-

ever with just a zero extension on (𝑥 𝑗 , 𝑥 𝑗+1). Another difference is that we cannot
include the term (𝑅𝑖 𝛿𝑟, 𝑅

−
𝑖 𝛿ℎ

𝑟) because the estimates would overlap with estimates
for (𝑅𝑖 𝛿𝑟, 𝑅

(𝑖)+
(𝑖−1) 𝛿ℎ𝑟) on the interval (𝑥 𝑗 , 𝑥 𝑗+1). Fortunately, the region where 𝑢 (𝑖−1)ℎ

and 𝑢 (𝑖−1) 𝛿 now are harmonic in the larger region from 𝑥 𝑗−𝑚+b𝑚/2c (the midpoint
of Ω𝑖ℎ) to 𝑥 𝑗 . Denote 𝐿−

𝑖
= (𝑥 𝑗−𝑚+b𝑚/2c , 𝑥 𝑗+1+ℓ). We obtain
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ℎ2‖𝑅−
𝑖 𝛿ℎ𝑟 ‖

2 ≤𝛾
(

1
𝑚 − b𝑚/2c + 1

)
|𝑢 (𝑖−1) 𝛿 |2𝐻 1 (𝐿−

𝑖
)

+ (1 − 𝛾)
(

1
𝑚 − b𝑚/2c + 1

1 + ℓ

)
|𝑢 (𝑖−1)ℎ |2𝐻 1 (𝐿−

𝑖
) .

Gathering Steps 1 and 2 together we obtain

𝑁∑︁
𝑖=1

(𝐴−1
𝑖 𝛿 𝑅𝑖 𝛿ℎ𝑟, 𝑅𝑖 𝛿ℎ𝑟) ≤𝛾

(
1 + ℓ

b𝑚/2c

)
(𝐵−1
asm𝑟, 𝑟)

+ (1 − 𝛾)
(

ℓ

1 + ℓ
+ ℓ

b𝑚/2c

)
(𝐵−1
rash𝑟, 𝑟).

Step 3 Let us choose 𝛾 = 1/(2 + ℓ), that is, when 𝛾ℓ = (1 − 𝛾) ℓ
1+ℓ . We obtain

(1 + ℓ/2 + 𝑜(1)) (𝐵−1
ras𝑟, 𝑟) ≥ (𝐵−1

asm𝑟, 𝑟) + (𝐵−1
rash𝑟, 𝑟),

where 𝑜(1) is a tiny positive numberwhen𝑚 is large compared to ℓ. The result follows
from the lower bounds for ASM and RASH since 𝑂 (1 + 𝐻/𝛿) ∗ (1 + 𝛿/ℎ + 𝑜(1)) =
𝑂 (1 + 𝐻/ℎ). ut

We now consider the ASH upper bound.

Lemma 6. For all 𝑟 ∈ R𝑛ash, there exists 𝛾1 = 𝑂 (1) for which (5) holds.

Proof. Since a node does not belong to more than two extended subdomains, we
have

(𝐴𝐵−1
ash𝑟, 𝐵

−1
ash𝑟) ≤ 3

𝑁∑︁
𝑖=1

(
𝐴𝑅𝑇

𝑖 𝛿𝐴
−1
𝑖 𝛿 𝑅̃𝑖ℎ𝑟, 𝑅

𝑇
𝑖 𝛿𝐴

−1
𝑖 𝛿 𝑅̃𝑖ℎ𝑟

)
+3

(
𝐴𝑅𝑇
0 𝐴

−1
0 𝑅0𝑟, 𝑅

𝑇
0 𝐴

−1
0 𝑅0𝑟

)
and see that (

𝐴𝑅𝑇
0 𝐴

−1
0 𝑅0𝑟, 𝑅

𝑇
0 𝐴

−1
0 𝑅0𝑟

)
=(𝑅0𝑟, 𝐴−1

0 𝑅0𝑟),(
𝐴𝑅𝑇

𝑖 𝛿𝐴
−1
𝑖 𝛿 𝑅̃𝑖ℎ𝑟, 𝑅

𝑇
𝑖 𝛿𝐴

−1
𝑖 𝛿 𝑅̃𝑖ℎ𝑟

)
=(𝐴−1

𝑖 𝛿 𝑅̃𝑖ℎ𝑟, 𝑅̃𝑖ℎ𝑟)

and using the same analysis of Step 2 of Lemma 4 with 𝛾 = 1, and the classical ASM
upper bounds

(𝐴−1
𝑖 𝛿 𝑅̃𝑖ℎ𝑟, 𝑅̃𝑖ℎ𝑟) ≤2(𝐴−1

𝑖 𝛿 𝑅𝑖 𝛿𝑟, 𝑅𝑖 𝛿)𝑟 + 2(𝐴−1
𝑖 𝛿 𝑅𝑖 𝛿ℎ𝑟, 𝑅𝑖 𝛿ℎ𝑟)

≤(2 + ℓ( 1
ℓ
+ 1
1 + ℓ

)) (𝐴−1
𝑖 𝛿 𝑅𝑖 𝛿𝑟, 𝑅𝑖 𝛿𝑟).

ut

We now consider the RAS upper bound.

Lemma 7. For all 𝑟 ∈ R𝑛ras, there exists 𝛾2 = 𝑂 (1 + ℓ) for which (5) holds.
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Proof. Following the initial steps of the proof of Lemma 6, we now need to estimate(
𝑅̃𝑇
𝑖ℎ𝐴

−1
𝑖 𝛿 𝑅𝑖 𝛿𝑟, 𝐴𝑅̃

𝑇
𝑖ℎ𝐴

−1
𝑖 𝛿 𝑅𝑖 𝛿𝑟

)
= (𝑅̃𝑇

𝑖ℎ𝑢𝑖 𝛿 , 𝐴𝑅̃
𝑇
𝑖ℎ𝑢𝑖 𝛿) where 𝑢𝑖 𝛿 = 𝐴−1

𝑖 𝛿 𝑅𝑖 𝛿𝑟.

We have

(𝑅̃𝑇
𝑖ℎ𝑢𝑖 𝛿 , 𝐴𝑅̃

𝑇
𝑖ℎ𝑢𝑖 𝛿) =|𝑢𝑖 𝛿 |

2
𝐻 1 (𝑥 𝑗+1 ,𝑥 𝑗+𝑚) +

1
ℎ
𝑢𝑖 𝛿 (𝑥 𝑗+1)2 +

1
ℎ
𝑢𝑖 𝛿 (𝑥 𝑗+𝑚)2

≤(1 + ℓ) (𝑢𝑖 𝛿 , 𝐴𝑖 𝛿𝑢𝑖 𝛿).

The result follows from the classical ASM upper bound [4]. ut

Due to space limitations and since the analysis for RASH follows the classical
abstract Schwarz theory for positive symmetric definite operators, the proofs for the
RASH lower and upper bounds are ommited.

Lemma 8. For any 𝑟 ∈ R𝑛, there exists 𝛾1 = 𝑂 (1 + 𝐻
𝛿
)−1 for which (4) holds.

Lemma 9. For all 𝑟 ∈ R𝑛ras, there exists 𝛾2 = 𝑂 (1 + ℓ)2 for which (5) holds.

Final Remark: The techniques used in the proofs for the two-level ASH and RAS
hold also for their one-level versions, where in Step 3 we replace the lower bounds
for the ASM and RASH from 𝑂 (1 + 𝐻/𝛿) by 𝑂 (1 + 1/𝐻𝛿).

5 Numerical section and conclusions and future directions

We consider Ω = (0, 1) and fix 𝐻/ℎ = 64 and 1/𝐻 = 8 and vary ℓ. We now test
numerically the optimal lower and upper bounds of Lemma 1 by finding the smallest
eigenvalue of 12 (𝐵

−1 + 𝐵−𝑇 )𝑟 = 𝜆1𝐴
−1 and the largest eigenvalue of 𝐵−𝑇 𝐴𝐵−1𝑣 =

𝜆2𝐴
−1. Here 𝐵−𝑇 stands for the transpose of 𝐵−1. The convergence rate of GMRES

or the Richardson with optimal parameter is related to
√︃
1 − (𝛾1/

√
𝛾2)2, hence, we

provide numerically 𝛾1 and
√
𝛾2.

In Table 1, 𝛾1 and
√
𝛾2 (in parenthesis) are provided for ASH, RAS, RASH and

ASM with no coarse space. The generalized eigenvalue problems described above
are solved on reduced spaces, that is, on the subspace R𝑛ash for ASH and ASM
methods, and on the subspace R𝑛ras for RAS and RASH. As predicted by Lemma 2,
ASH and ASMmethods are the samemethod and satisfy the𝑂 (1+1/(𝐻𝛿))−1 (since
we have no coarse space) for the lower bound and the𝑂 (1) for the upper bound. The
theory for the RASH method is also sharp by Lemmas 8 and 9. Clearly, RASH is
not a good method due to mostly the upper bound. We were successful in showing
that 𝐵−1

ras is positive on the subspace R𝑛ras however we can see from the Table 1 that
the theoretical upper and lower bounds are not sharp by a 𝑂 (1 + ℓ) factor. It is an
open problem to improve both bounds.
In Table 2, we run the previous test except that we add the coarse space 𝑉20 . The

conclusions are similar except that the lower bounds are related to 𝑂 (1 + 𝐻/𝛿)−1.
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The techniques introduced here allowed us to obtain the first results on conver-
gence rate and positiveness of 𝐵−1

ras and 𝐵−1
ash. We also understand why 𝐵−1

rash is not
a good method. Some open problems are:
1) Is it possible to improve the lower and upper bounds for 𝐵−1

ras?
2) Is it possible to extend the new theory to the space R𝑛 rather than for the reduced
spaces, and also for inexact local solvers?, and
3) The extension of the new theory to the two-dimensional case, with and without a
coarse space, and with or without cross points.

Table 1 No coarse space. The reduced systems: min𝜆1 and in parenthesis max
√
𝜆2

prec ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3
ASH 0.0012(1.9988) 0.0035(1.9965) 0.0059(1.9941) 0.0083(1.9917)
RAS 0.0012(1.9988) 0.0035(1.9965) 0.0059(1.9941) 0.0083(1.9919)
RASH 0.0012(1.9988) 0.0024(3.9931) 0.0035(5.9830) 0.0047(7.9690)
ASM 0.0012(1.9988) 0.1058(1.9965) 0.1594(1.9941) 0.0083(1.9917)

Table 2 Coarse space 𝑉 20 . The reduced systems: min𝜆1 and in parenthesis max
√
𝜆2

prec ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3
ASH 0.0491(2.1180) 0.1058(2.2045) 0.1594(2.2638) 0.2100(2.3119)
RAS 0.0491(2.1180) 0.1058(2.2412) 0.1592(2.3730) 0.2097(2.5122)
RASH 0.0491(2.1180) 0.0767(4.0147) 0.1028(6.0013) 0.1274(7.9861)
ASM 0.0491(2.1180) 0.1058(2.2045) 0.1594(2.2638) 0.2100(2.3119)
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Weak Scalability of Domain Decomposition
Methods for Discrete Fracture Networks

Stefano Berrone and Tommaso Vanzan

1 Introduction

Discrete Fracture Networks (DFNs) are complex three-dimensional structures char-
acterized by the intersections of planar polygonal fractures, and are used to model
flows in fractured media. Despite being suitable for Domain Decomposition (DD)
techniques, there are relatively fewworks on the application of DDmethods to DFNs,
see, e.g., [1, 7] and references therein.
In this manuscript, we present a theoretical study of Optimized Schwarz Methods

(OSMs) applied to DFNs. Interestingly, we prove that the OSMs can be weakly scal-
able (that is, they converge to a given tolerance in a number of iterations independent
of the number of fractures) under suitable assumptions on the domain decomposi-
tion. This contribution fits in the renewed interest on the weak scalability of DD
methods after the works [2, 4, 3], which showed weak scalability of DD methods for
specific geometric configurations, even without coarse spaces.
Despite simplifying assumptions which may be violated in practice, our analysis

provides heuristics tominimize the computational efforts in realistic settings. Finally,
we emphasize that the methodology proposed can be straightforwardly generalized
to study other classical DD methods applied to DFNs (see, e.g., [3]).

2 Scalability analysis for one-dimensional DFNs

We start considering a simplified DFN made of one-dimensional fractures 𝐹𝑖 , 𝑖 =
1, . . . , 𝑁 arranged in a staircase fashion depicted in Fig 1. The DFN is Ω := ∪𝑁

𝑖=1𝐹𝑖 .
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The boundary of the fractures is denotedwith 𝜕𝐹𝑖 and it holds 𝜕Ω = ∪𝑁
𝑖=1𝜕𝐹𝑖 . Further,

𝜕Ω can be decomposed into a Dirichlet boundary Γ𝐷 and a Neumann boundary Γ𝑁 ,
so that 𝜕Ω = Γ𝐷 ∪ Γ𝑁 . The intersections between fractures are called traces and
are denoted by 𝑆𝑚, 𝑚 = 1, . . . , 𝑁 − 1 =: 𝑀 . We assume that both the vertical and

𝐹1
𝑆1

𝐹2

𝐹3
𝑆2

𝐹4

𝑆3

𝐹5
𝑆4

0

𝑥

𝐿𝛾1 𝛾2

𝑦
0

𝐿

𝛾1

𝛾2

Fig. 1 Geometry of the simplified DFN and of its one-dimensional fractures.

horizontal fractures have two traces located at 𝜏 = 𝛾1 and 𝜏 = 𝛾2 with 𝛾1 < 𝛾2,
(𝜏 being the local coordinate), except the first and last fracture. The mathematical
DFN model consists in the coupled system of partial differential equations for the
hydraulic heads 𝑢 𝑗 ,

−𝜈 𝑗𝜕𝜏 𝑗 𝜏 𝑗
𝑢 𝑗 = 𝑓 in 𝐹𝑗 , B 𝑗 (𝑢) = 0 on 𝜕𝐹𝑗 , 𝑗 = 1, . . . , 𝑁, (1)

𝑢 |𝐹𝑖
= 𝑢 |𝐹𝑖+1 on 𝑆𝑖 , 𝑖 = 1, . . . , 𝑀, (2)[ [

𝜕𝑢𝑖

𝜕𝜏𝑖

] ]
+

[ [
𝜕𝑢𝑖+1
𝜕𝜏𝑖+1

] ]
= 0 on 𝑆𝑖 , 𝑖 = 1, . . . , 𝑀, (3)

where B 𝑗 represent boundary conditions (b.c.) (specified later), 𝜈 𝑗 is the local
diffusion coefficient, and [[𝑣]] is the jump of 𝑣 across the intersection of fractures.
The local solutions 𝑢 𝑗 are coupled through (2)–(3) which enforce continuity of the
hydraulic heads, and balance between the jumps of the co-normal derivatives across
the traces.
System (1)–(3) is clearly prone to a DD approach. We consider a nonoverlap-

ping DD in which each subdomain corresponds to a single fracture, and the opti-
mized Schwarz method (OSM) that, starting from an initial guess 𝑢0

𝑗
computes for

𝑛 = 1, 2, . . . until convergence

−𝜈 𝑗𝜕𝜏 𝑗 𝜏 𝑗
𝑢𝑛𝑗 = 𝑓 𝑗 in 𝐹𝑗 , B 𝑗 (𝑢𝑛𝑗 ) = 0 on 𝜕𝐹𝑖 ,[ [

𝜕𝑢𝑛
𝑗

𝜕𝜏𝑗

] ]
+ 𝑠+𝑗−1𝑢

𝑛
𝑗 = −

[ [
𝜕𝑢𝑛−1

𝑗−1

𝜕𝜏𝑗−1

] ]
+ 𝑠+𝑗−1𝑢

𝑛−1
𝑗−1 on 𝑆 𝑗−1, (4)[ [

𝜕𝑢𝑛
𝑗

𝜕𝜏𝑗

] ]
+ 𝑠−𝑗 𝑢

𝑛
𝑗 = −

[ [
𝜕𝑢𝑛−1

𝑗+1

𝜕𝜏𝑗+1

] ]
+ 𝑠−𝑗 𝑢

𝑛−1
𝑗+1 on 𝑆 𝑗 .

for 𝑗 = 2, . . . , 𝑁 − 1, while for 𝑗 = 1, 𝑁 ,



Weak Scalability of Domain Decomposition Methods for Discrete Fracture Networks 55

− 𝜈1𝜕𝜏1𝜏1𝑢
𝑛
1 = 𝑓1 in 𝐹1, B1 (𝑢𝑛1 ) = 0, −𝜈𝑁 𝜕𝜏𝑁 𝜏𝑁 𝑢

𝑛
𝑁 = 𝑓𝑁 in 𝐹𝑁 , B𝑁 (𝑢𝑛𝑁 ) = 0,[ [

𝜕𝑢𝑛1
𝜕𝜏1

] ]
+ 𝑠−1 𝑢

𝑛
1 = −

[ [
𝜕𝑢𝑛−12
𝜕𝜏2

] ]
+ 𝑠−1 𝑢

𝑛−1
2 on 𝑆1, (5)[ [

𝜕𝑢𝑛
𝑁

𝜕𝜏𝑁

] ]
+ 𝑠+𝑁−1𝑢

𝑛
𝑁 = −

[ [
𝜕𝑢𝑛−1

𝑁−1
𝜕𝜏𝑁−1

] ]
+ 𝑠+𝑁−1𝑢

𝑛−1
𝑁−1 on 𝑆𝑁−1.

The functions 𝑓 𝑗 are the restrictions of the force term on the fracture 𝐹𝑗 and 𝑠+,−𝑗
,

𝑗 = 1, . . . , 𝑀 are positive parameters.
To carry out the scalability analysis, we assume for the sake of simplicity that

𝑠
+,−
𝑗

= 𝑝 ∈ R+ and 𝜈 𝑗 = 1 for all 𝑗 . We study later how to optimize the choice
for 𝑠+,−

𝑗
. We first discuss the case in which every B 𝑗 represents a Dirichlet boundary

condition, and thenwe treat the case inwhichNeumann b.c. are imposed everywhere,
except at the left boundary of 𝐹1 (source fracture) and at the right boundary of 𝐹𝑁 .
More general configurations can be included straightforwardly in our analysis.
Due to the linearity of the problem,we define the errors 𝑒𝑛

𝑗
:= 𝑢−𝑢𝑛

𝑗
and study their

convergence to zero. The errors 𝑒 𝑗 satisfy an error system obtained setting 𝑓 𝑗 = 0
in (4)–(5). Inside each fracture, 𝑒 𝑗 is harmonic and has the analytical expression

𝑒𝑛1 =
𝑒𝑛1𝜏1

𝛾2
𝜒[0,𝛾2 ] +

𝑒𝑛1 (𝐿 − 𝜏1)
𝐿 − 𝛾2

𝜒[𝛾2 ,𝐿 ] , (6)

𝑒𝑛𝑗 =
𝑒
1,𝑛
𝑗

𝜏𝑗

𝛾1
𝜒[0,𝛾1 ] +

𝑒
1,𝑛
𝑗

(𝛾2 − 𝜏𝑗 ) + 𝑒
2,𝑛
𝑗

(𝜏𝑗 − 𝛾1)
𝛾2 − 𝛾1

𝜒[𝛾1 ,𝛾2 ] +
𝑒
2,𝑛
𝑗

(𝐿 − 𝜏𝑗 )
𝐿 − 𝛾2

𝜒[𝛾2 ,𝐿 ] ,

𝑒𝑛𝑁 =
𝑒𝑛
𝑁
𝜏𝑁

𝛾1
𝜒[0,𝛾1 ] +

𝑒𝑛
𝑁
(𝐿 − 𝜏𝑁 )
𝐿 − 𝛾1

𝜒[𝛾1 ,𝐿 ] ,

𝑗 = 2, . . . , 𝑁 . Unknown coefficients are collected into e𝑛 := (𝑒𝑛1 , 𝑒
1,𝑛
2 , 𝑒

2,𝑛
2 , . . . , 𝑒𝑛

𝑁
)>

∈ R𝑁̃ , 𝑁̃ := 2(𝑁 −2) +2, and represent the values of the error functions at the traces,
while 𝜒[𝑎,𝑏] are characteristic functionswhich satisfy 𝜒(𝜏) = 1 if 𝜏 ∈ [𝑎, 𝑏] and zero
otherwise. Inserting these expressions into the transmission conditions (2)-(3), we
aim to express 𝑒𝑖,𝑛

𝑗
in terms of the coefficients of the errors in fractures 𝑗 −1 and 𝑗 +1

at iteration 𝑛−1. A direct calculation, which we omit due to space limitation (see [8]
for more details) leads to the recurrence relation e𝑛 = 𝑇𝐷

𝑁
e𝑛−1 = 𝑀−1

𝑁
𝑁𝑁 e𝑛−1, where

𝑀𝑁 , 𝑁𝑁 ∈ R𝑁 ,𝑁 have the block structure

𝑀𝑁 :=

©­­­­­­­­«

𝐹1
𝐹2

𝐹2
. . .

𝐹2
𝐹4

ª®®®®®®®®¬
, 𝑁𝑁 :=

©­­­­­­­­­­­­­­­«

𝑎𝑏

𝑑2
𝑎 𝑏

𝑏 𝑐

. . .
. . .

𝑏 𝑐

. . .
. . . 𝑎 𝑏

𝑑1
𝑏 𝑐

ª®®®®®®®®®®®®®®®¬

(7)
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with blocks

𝐹1 := 𝑝 + 𝐿

𝛾2 (𝐿 − 𝛾2)
, 𝐹2 :=

(
𝑝 + 𝛾2

𝛾1 (𝛾2−𝛾1 ) − 1
𝛾2−𝛾1

− 1
𝛾2−𝛾1 𝑝 + 𝐿−𝛾1

(𝐿−𝛾2 ) (𝛾2−𝛾1 )

)
, 𝐹4 := 𝑝 + 𝐿

𝛾1 (𝐿 − 𝛾1)
,

𝑎 := 𝑝 − 𝛾2
𝛾1 (𝛾2 − 𝛾1)

, 𝑏 :=
1

𝛾2 − 𝛾1
, 𝑐 := 𝑝 − 𝐿 − 𝛾1

(𝐿 − 𝛾2) (𝛾2 − 𝛾1)
, 𝑑 𝑗 := 𝑝 − 𝐿

𝛾 𝑗 (𝐿 − 𝛾 𝑗 )
.

The next theorem shows that the spectral radius of 𝑇𝐷
𝑁
is bounded strictly below 1

for every 𝑁 if the Dirichlet b.c. are imposed on each fracture. Thus, the number
of iterations to reach a given tolerance is independent of 𝑁 , and OSM is weakly
scalable.

Theorem 1 Let 𝛾1 + 𝛾2 = 𝐿 and 𝑠
+,−
𝑗

= 𝑝, ∀ 𝑗 . Then, OSM is weakly scalable
for the solution of problem (1) with Dirichlet b.c. on each 𝐹𝑖 , in the sense that
𝜌(𝑇𝐷

𝑁
) ≤ 𝐶 < 1, independently of 𝑁 for every 𝑝 > 0.

Proof Notice that 𝜌(𝑇𝐷
𝑁
) = 𝜌(𝑀−1

𝑁
𝑁𝑁 ) = 𝜌(𝑁𝑁𝑀−1

𝑁
) ≤ ‖𝑁𝑁𝑀−1

𝑁
‖∞. Direct

calculations show that

‖𝑁𝑁𝑀−1
𝑁 ‖∞=max

{���� 𝑝𝛾2 (𝐿 − 𝛾2) − 𝐿

𝑝𝛾2 (𝐿 − 𝛾2) + 𝐿

���� ,2𝑝(𝐿 − 𝛾2)2 +
��𝐿 + (𝐿 − 2𝛾2) (𝐿 − 𝛾2)2𝑝2

��
(𝑝(𝐿 − 𝛾2) + 1) (𝑝(𝐿 − 𝛾2) (2𝛾2 − 𝐿) + 𝐿)

}
.

The first term is clearly less than 1 for every 𝑝 > 0. For the second term, we
distinguish two cases: if 𝐿 + (𝐿 − 2𝛾2) (𝐿 − 𝛾2)2𝑝2 < 0, then it simplifies to���−1+(𝐿−𝛾2) 𝑝1+(𝐿−𝛾2) 𝑝

��� which strictly less than 1. Similarly, if 𝐿 + (𝐿 − 2𝛾2) (𝐿 − 𝛾2)2𝑝2 ≥ 0,

then 2𝑝 (𝐿−𝛾2)
2+|𝐿+(𝐿−2𝛾2) (𝐿−𝛾2)2 𝑝2 |

(𝑝 (𝐿−𝛾2)+1) (𝑝 (𝐿−𝛾2) (2𝛾2−𝐿)+𝐿) =

��� 𝑝 (𝐿−𝛾2) (2𝛾2−𝐿)−𝐿𝑝 (𝐿−𝛾2) (2 𝛾2−𝐿)+𝐿

��� < 1 being 2𝛾2 > 𝐿. Thus,
∃𝐶 < 1 independent on 𝑁 such that ‖𝑁𝑁𝑀−1

𝑁
‖∞ < 𝐶 for every 𝑝 > 0. �

The hypothesis 𝛾1 + 𝛾2 = 𝐿 is used to simplify the otherwise cumbersome calcula-
tions, but it has not been observed in numerical experiments.
We emphasize that OSMs are not scalable for one-dimensional chains of fixed

size-subdomains [3]. In our setting, the scalability is due to the geometrical config-
uration typical for DFNs, which permits to impose Dirichlet b.c. on each fracture,
being the transmission conditions imposed in the interior. Thus, we observe error
contraction before information is propagated through the iterations across the sub-
domains (see [3, Section 3]). With a similar argument, we expect OSM not to be
scalable if Neumann b.c. are applied on each fracture, as the errors in the middle
fractures would require about 𝑁/2 to start contracting. To verify this, we can perform
the same analysis by replacing (6) with appropriate subdomains solutions. We then
obtain the recurrence relation e𝑛 = 𝑇𝑁

𝑁
e𝑛−1 = 𝑀−1

𝑁
𝑁𝑁 e𝑛−1, where 𝑀𝑁 𝑁𝑁 have the

same structure of (7), but with blocks

𝐹1:=𝑝+
1
𝛾2

, 𝐹4:=𝑝+
1

𝐿−𝛾1
, 𝐹2:=

(
𝑝+ 1

𝛾2−𝛾1 − 1
𝛾2−𝛾1

− 1
𝛾2−𝛾1 𝑝+ 1

𝛾2−𝛾1

)
,

𝑎̃:=𝑝− 1
𝛾2−𝛾1

, 𝑏̃:=
1

𝛾2−𝛾1
, 𝑐̃:=𝑎̃, 𝑑 𝑗 :=𝑝−

1
(𝐿−𝛾 𝑗 )

.
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Fig. 2 Left and center panel: spectral radii of 𝑇 𝐷
𝑁
and 𝑇 𝑁

𝑁
as the number of fractures increases.

Right panel: spectral radius of 𝑇 𝐷
𝑁
as 𝑝 varies. Parameters: 𝐿 = 1, 𝛾1 = 0.2, 𝛾2 = 0.6, 𝜈 = 1.

The first two panels of Fig. 2 show the dependence of the spectral radii of𝑇𝐷
𝑁
and𝑇𝑁

𝑁

as 𝑁 increases. While 𝜌(𝑇𝐷
𝑁
) remains bounded below one, 𝜌(𝑇𝑁

𝑁
) tends rapidly to

one as 𝑁 grows, thus OSMs are not weakly scalable if the Neumann b.c. are used.
We remark that in applications it is quite common to impose homogeneous Neu-

mann b.c. in internal fractures because at the tip of the fracture the flow exchange
with the surrounding matrix is negligible. In such cases, the analysis suggests two
possible heuristics to improve the convergence of DD solvers. The first one is to stress
the importance of an efficient partition of the fractures into subdomains (each sub-
domain generally contains more than one fracture). Such partition should minimize
the maximum, over floating subdomains, of the distance of each subdomain from
the Dirichlet boundary Γ𝑑 (see [8] for numerical experiments). Recall that a subdo-
main Ω 𝑗 is called “floating subdomain” if 𝜕Ω 𝑗 ∩ Γ𝐷 = ∅. The second heuristic is
to replace the Neumann b.c. with Robin ones (which would also model the realistic
case of a flux across 𝜕𝐹𝑗 ). Ref [5] suggest that Robin b.c. would permit to recover
scalability of OSMs for DFN as in the Dirichlet case.
Notice that the rate of convergence of OSMs, which may be independent of 𝑁 (see

discussion above), still depends on the transmission conditions, hence it is important
to have good estimates of the parameters 𝑠+,−

𝑗
. To estimate them, we consider two

fractures 𝐹1 and 𝐹2, which are coupled across a single trace. The general solutions
are given by

𝑒𝑛1 =
𝑒𝑛1𝜏1

𝛾2
𝜒[0,𝛾2 ] +

𝑒𝑛1 (𝐿 − 𝜏1)
𝐿 − 𝛾2

𝜒[𝛾2 ,𝐿 ] , 𝑒𝑛2 =
𝑒𝑛2𝜏1

𝛾1
𝜒[0,𝛾1 ] +

𝑒𝑛2 (𝐿 − 𝜏1)
𝐿 − 𝛾1

𝜒[𝛾1 ,𝐿 ] ,

where the unknowns are two coefficients 𝑒𝑛1 and 𝑒
𝑛
2 . Inserting these solutions in the

transmission conditions we obtain the scalar recurrence relation for 𝑗 = 1, 2,

𝑒𝑛𝑗 = 𝜌1𝐷 (𝑠−1 , 𝑠
+
1 , 𝜈1, 𝜈2)𝑒

𝑛−2
𝑗 , 𝜌1𝐷 (𝑠−1 , 𝑠

+
1 , 𝜈1, 𝜈2) =

(
𝜈2𝐿

𝛾1 (𝐿−𝛾1) − 𝑠−1

) (
𝜈1𝐿

𝛾2 (𝐿−𝛾2) − 𝑠+1

)(
𝜈1𝐿

𝛾2 (𝐿−𝛾2) + 𝑠−1

) (
𝜈2𝐿

𝛾1 (𝐿−𝛾1) + 𝑠+1

) .
If we chose 𝑠−1 = 𝑠

−,opt
1 := 𝜈2𝐿

𝛾1 (𝐿−𝛾1) and 𝑠+1 = 𝑠
+,opt
1 := 𝜈1𝐿

𝛾2 (𝐿−𝛾2) , we would have
𝜌(𝑠−1 , 𝑠

+
1 , 𝜈1, 𝜈2) = 0, that is, OSM is nilpotent. The right panel of Fig. 2 verifies that

two fracture analysis provides very good estimates for the optimal Robin parameters
in the many-fractures case.
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3 Scalability analysis for two-dimensional DFNs

In this section we consider two dimensional extension of Fig. 2. Each fracture 𝐹𝑗

is a two dimensional polygon, see Fig. 3, and the traces, denoted by 𝑆 𝑗 , are straight
segments crossing the whole fracture. On each fracture, the local reference system
has coordinates {𝜏1, 𝜏2}. Due to the geometrical configuration, the error can be

𝜈 𝑗
𝜕𝑢 𝑗

𝜕𝜏2
= 0

𝜈 𝑗
𝜕𝑢 𝑗

𝜕𝜏2
= 0

B 𝑗 (𝑢 𝑗 ) = 0 B 𝑗 (𝑢 𝑗 ) = 0𝑆 𝑗−1
𝛾1 𝛾2

𝑆 𝑗

𝜏1

𝜏2

𝜈 𝑗
𝜕𝑢 𝑗

𝜕𝜏2
= 0𝜈 𝑗

𝜕𝑢 𝑗

𝜕𝜏2
= 0

B 𝑗 (𝑢 𝑗 ) = 0

B 𝑗 (𝑢 𝑗 ) = 0

𝑆 𝑗−1

𝑆 𝑗

𝛾1

𝛾2 𝜏2

𝜏1

Fig. 3 Geometry of a two dimensional fracture.

expanded in Fourier series in each fracture, i.e. 𝑒 𝑗 =
∑∞

𝑘=0 𝑒 𝑗 (𝜏1, 𝑘) cos( 𝑘 𝜋𝐿 𝜏2). The
Fourier coefficients 𝑒 𝑗 (𝜏1, 𝑘) are obtained imposing the b.c. and the transmission
conditions. The long expressions are omitted due to space limitation (see for complete
expressions [8]). We only report the expressions for the first subdomain

𝑒𝑛1 (𝜏1, 𝑘) = 𝑒𝑛1 (𝑘)
sinh( 𝑘 𝜋

𝐿
𝜏1)

sinh( 𝑘 𝜋
𝐿
𝛾2)

𝜒[0,𝛾2 ] + 𝑒𝑛1 (𝑘)
sinh( 𝑘 𝜋

𝐿
(𝐿 − 𝜏1))

sinh( 𝑘 𝜋
𝐿
(𝐿 − 𝛾2))

𝜒[𝛾2 ,𝐿 ] , 𝑘 > 0,

𝑒𝑛1 (𝜏1, 0) =
𝑒𝑛1 (0)𝜏1

𝛾2
𝜒[0,𝛾2 ] +

𝑒𝑛1 (0) (𝐿 − 𝜏1)
𝐿 − 𝛾2

𝜒[𝛾2 ,𝐿 ] , 𝑘 = 0.

The unknowns 𝑒𝑖,𝑛
𝑗
(𝑘) are the values attained by the 𝑘-th mode of the Fourier ex-

pansions at each trace. In numerical computations, 𝑘 ∈ [𝑘min, 𝑘max] for the Dirichlet
b.c., while 𝑘 ∈ [0, 𝑘max] for the Neumann b.c., 𝑘max = 𝜋

ℎ
being the maximum fre-

quency supported by the numerical grid and 𝑘min = 𝜋
𝐿
. Similarly to the 1D case, one

can obtain recurrence relations which link the Fourier coefficients of one fracture at
iteration 𝑛 as functions of the Fourier coefficients of the neighbouring fractures at
iteration 𝑛 − 1. In particular for 𝑘 = 0, e𝑛0 :=

(
𝑒𝑛1 (0), 𝑒

1,𝑛
2 (0), 𝑒2,𝑛2 (0), . . . , 𝑒𝑛

𝑁
(0)

)>
satisfies e𝑛0 = 𝑇𝐷

𝑁
e𝑛−10 , where 𝑇

𝐷
𝑁
is the matrix of the 1D system with the Dirichlet

b.c.. For 𝑘 > 0, we obtain instead e𝑛
𝑘
= 𝑇2𝐷

𝑁
(𝑘)e𝑛−1

𝑘
, where 𝑇2𝐷

𝑁
= 𝑀−1

2𝐷𝑁2𝐷 has the
same block structure of the 1D case but with blocks defined as

𝐹2 :=

(
𝑝+coth( 𝑘 𝜋

𝐿
𝛾1)+coth( 𝑘 𝜋𝐿 (𝛾2−𝛾1)) − 1

coth( 𝑘𝜋
𝐿

(𝛾2−𝛾1 ))
− 1
sinh( 𝑘𝜋

𝐿
(𝛾2−𝛾1 ))

𝑝+coth( 𝑘 𝜋
𝐿
(𝐿−𝛾2))+coth( 𝑘 𝜋𝐿 (𝛾2−𝛾1))

)
,
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𝐹1 := 𝑝 + coth( 𝑘 𝜋
𝐿
𝛾2) + coth( 𝑘 𝜋𝐿 (𝐿 − 𝛾2)) and 𝐹4 := 𝑝 + coth( 𝑘 𝜋

𝐿
(𝐿 − 𝛾1)) +

coth( 𝑘 𝜋
𝐿
(𝛾1)). On the other hand, the coefficients of 𝑁2𝐷 are

𝑎 := 𝑝 − coth
(
𝑘𝜋

𝐿
𝛾1

)
− coth

(
𝑘𝜋

𝐿
(𝛾2 − 𝛾1)

)
, 𝑏 :=

1
sinh( 𝑘 𝜋

𝐿
(𝛾2 − 𝛾1))

,

𝑐 := 𝑝 − coth
(
𝑘𝜋

𝐿
(𝐿 − 𝛾2)

)
− coth

(
𝑘𝜋

𝐿
(𝛾2 − 𝛾1)

)
,

𝑑 𝑗 := 𝑝 − coth
(
𝑘𝜋

𝐿
(𝐿 − 𝛾 𝑗 )

)
− coth

(
𝑘𝜋

𝐿
𝛾 𝑗

)
.

Fig 4 shows numerically that OSM is scalable also for a 2D DFN with the Dirich-
let b.c. Observing that the frequency 𝑘 = 0 behaves according to the 1D analysis,
we expect OSM with the Neumann b.c. on each fracture except on the first and last
ones not to be weakly scalable. Repeating the calculations one finds an iteration
matrix 𝑇2𝐷

𝑁
and Fig. 4 confirms this conclusion.
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Fig. 4 Left and center panel: spectral radii of max𝑘∈[𝑘min ,𝑘max ] 𝑇 2𝐷𝑁
(𝑘) and max𝑘∈[0,𝑘max ] 𝑇 2𝐷𝑁

(𝑘)
as 𝑁 grows. Parameters: 𝐿 = 1, 𝛾1 = 0.2, 𝛾2 = 0.6 and 𝑝 = 20. Right panel:
max𝑘∈[𝑘min ,𝑘max ] 𝑇 2𝐷𝑁

(𝑘) as 𝑝 varies.

We now derive the optimized parameters by analyzing the coupling of two frac-
tures. Inserting the Fourier expansions into the transmission conditions and defining

𝑓 𝑗 (𝑘):=
𝜈3− 𝑗 𝑘𝜋

𝐿

(
coth

(
𝑘𝜋

𝐿
𝛾 𝑗

)
+coth

(
𝑘𝜋

𝐿
(𝐿−𝛾 𝑗 )

))
, 𝑗=1,2,

we obtain 𝑒𝑛
𝑗
(𝑘) = 𝜌(𝑘, 𝑠−1 , 𝑠

+
1 )𝑒

𝑛−2
𝑗

(𝑘), for 𝑘 > 0, 𝑗 = 1, 2, where 𝜌(𝑘, 𝑠−1 , 𝑠
+
1 ) :=

𝑓1 (𝑘)−𝑠−1
𝑓2 (𝑘)+𝑠−1

𝑓2 (𝑘)−𝑠+1
𝑓1 (𝑘)+𝑠+1

. On the other hand, for the constant mode 𝑘 = 0 we recover the
1D result: 𝑒𝑛

𝑗
(0) = 𝜌1𝐷 (𝑠−1 , 𝑠

+
1 )𝑒

𝑛−2
𝑗

(0). To derive optimized parameters, we set
𝑠−1 = 𝑓1 (𝑝), 𝑠+1 = 𝑓2 (𝑝) for some 𝑝 ∈ R+, and we study

min
𝑝∈R+

max
{
𝜌1𝐷 (𝑝), max

𝑘∈[ 𝜋
𝐿
,𝑘max ]

𝜌(𝑘, 𝑝)
}
. (8)

Despite 𝜌(𝑘, 𝑝) is not defined at 𝑘 = 0 since coth(·) has a singularity, we observe
that lim𝑘→0 𝜌(𝑘, 𝑝) = 𝜌1𝐷 (𝑝). Thus, we introduce the function 𝜌̃(𝑘, 𝑝) = 𝜌(𝑘, 𝑝)
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for 𝑘 > 0 and 𝜌̃(0, 𝑝) = 𝜌1𝐷 (𝑝), and further simplify the min-max problem to

min
𝑝∈R+

max
𝑘∈[0,𝑘max ]

𝜌̃(𝑘, 𝑝). (9)

The next theorem can be proved using the same steps of [6, Theorem 2.3]. Fig. 4
confirms that effectiveness of the analysis even in the many-fractures case.

Theorem 2 The solution of the min-max problem (9) is given by the unique 𝑝★ which
satisfies 𝜌̃(0, 𝑝★) = 𝜌̃(𝑘max, 𝑝★).

Future works will focus on testing the results of the analysis presented on more
realistic DFN configurations.
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How Does the Partition of Unity Influence
SORAS Preconditioner?

Marcella Bonazzoli, Xavier Claeys, Frédéric Nataf, and Pierre-Henri Tournier

1 Introduction

The Symmetrized Optimized Restricted Additive Schwarz (SORAS) preconditioner,
first introduced in [8] for the Helmholtz equation and called OBDD-H, was later
studied in [6] for generic symmetric positive definite problems and viewed as a sym-
metric variant of ORAS preconditioner. Its convergence was rigorously analyzed
in [5] for the Helmholtz equation, and in [1] we generalized this theory to generic
non self-adjoint or indefinite problems. Moreover, as an illustration of our theory, we
proved new estimates for the specific case of the heterogeneous reaction-convection-
diffusion equation. In the numerical experiments in [1], we noticed that the number
of iterations for convergence of preconditioned GMRES appears not to vary signifi-
cantly when increasing the overlap width. In the present paper, we show that actually
this is due to the particular choice of the partition of unity for the preconditioner. The
influence of five different kinds of partition of unity on SORAS solver and precon-
ditioner for the Laplace equation has been briefly studied in the conclusion of [4],
where the method is named ORASH. Here, for the reaction-convection-diffusion
equation, we focus on two kinds of partitions of unity, and study the dependence on
the overlap and on the number of subdomains.
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2 SORAS preconditioner and two kinds of partition of unity

Let 𝐴 denote the 𝑛 × 𝑛 matrix, not necessarily positive definite nor self-adjoint,
arising from the discretization of the problem to be solved, posed in an open do-
main Ω ⊂ R𝑑 . Given a set of overlapping open subdomains Ω 𝑗 , 𝑗 = 1, . . . , 𝑁 , such
that Ω =

⋃𝑁
𝑗=1Ω 𝑗 and each Ω 𝑗 is a union of elements of the mesh T ℎ of Ω, we

consider the set N of the unknowns on the whole domain, so #N = 𝑛, and its
decomposition N =

⋃𝑁
𝑗=1N𝑗 into the non-disjoint subsets corresponding to the

different overlapping subdomains Ω 𝑗 ∩ Ω, with #N𝑗 = 𝑛 𝑗 . Denote by 𝛿 the width
of the overlap between subdomains. The following matrices are then the classical
ingredients to define overlapping Schwarz domain decomposition preconditioners
(see e.g. [2, §1.3]):

• restriction matrices 𝑅 𝑗 from Ω to Ω 𝑗 ∩ Ω, which are 𝑛 𝑗 × 𝑛 Boolean matrices
whose (𝑖, 𝑖′) entry equals 1 if the 𝑖-th unknown in N𝑗 is the 𝑖′-th one in N and
vanishes otherwise;

• extension by zero matrices 𝑅𝑇
𝑗
from Ω 𝑗 ∩Ω to Ω;

• partition of unity matrices 𝐷 𝑗 , which are 𝑛 𝑗 ×𝑛 𝑗 diagonal matrices with real non-
negative entries such that

∑𝑁
𝑗=1 𝑅

𝑇
𝑗
𝐷 𝑗𝑅 𝑗 = 𝐼 and which can be seen as matrices

that properly weight the unknowns belonging to the overlap between subdomains;
• local matrices 𝐵 𝑗 , of size 𝑛 𝑗 × 𝑛 𝑗 , which arise from the discretization of subprob-
lems posed in Ω 𝑗 ∩ Ω, with for instance Robin-type or more general absorbing
transmission conditions on the interfaces 𝜕Ω 𝑗 \ 𝜕Ω.

Then the one-level Symmetrized Optimized Restricted Additive Schwarz (SORAS)
preconditioner is defined as

𝑀−1 B
𝑁∑︁
𝑗=1

𝑅𝑇
𝑗 𝐷 𝑗𝐵

−1
𝑗 𝐷 𝑗𝑅 𝑗 . (1)

Note that 𝑀−1 is not self-adjoint when 𝐵 𝑗 is not self-adjoint, even if we maintain
the SORAS name, where S stands for ‘Symmetrized’. In fact, this denomination was
introduced in [6] for symmetric positive definite problems, since in that case SORAS
preconditioner is a symmetric variant of ORAS preconditioner

∑𝑁
𝑗=1 𝑅

𝑇
𝑗
𝐷 𝑗𝐵

−1
𝑗
𝑅 𝑗 .

Thus, the adjective ‘Symmetrized’ stands for the presence of the rightmost partition
of unity𝐷 𝑗 .We recall that ‘Restricted’ indicates the presence of the leftmost partition
of unity 𝐷 𝑗 and that ‘Optimized’ refers to the choice of transmission conditions other
than standard Dirichlet conditions in the local matrices 𝐵 𝑗 .
Here we focus on the influence exerted by the choice of partition of unity matri-

ces 𝐷 𝑗 on the convergence of GMRES preconditioned by (1). Indeed, several defini-
tions of the diagonal matrices 𝐷 𝑗 are possible to ensure property

∑𝑁
𝑗=1 𝑅

𝑇
𝑗
𝐷 𝑗𝑅 𝑗 = 𝐼.

In general, the diagonals of the 𝐷 𝑗 can be constructed by the interpolation of contin-
uous partition of unity functions 𝜒 𝑗 : Ω → [0, 1], 𝑗 = 1, . . . , 𝑁: ∑𝑁

𝑗=1 𝜒 𝑗 = 1 in Ω,
and supp(𝜒 𝑗 ) ⊂ Ω 𝑗 , so in particular 𝜒 𝑗 is zero on the subdomain interfaces 𝜕Ω 𝑗 \𝜕Ω.
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Fig. 1 Illustration in a one-dimensional two-subdomain case of the two kinds of partition of unity
functions 𝜒𝑗 : Ω → [0, 1] (PU1 on the left and PU2 on the right), with increasing width of the
overlap 𝛿 from top to bottom.

In addition, in the case of ORAS fixed-point iterative solver, also the first deriva-
tives of 𝜒 𝑗 are required to be equal to zero on 𝜕Ω 𝑗 \𝜕Ω, because this property ensures
that the continuous version of ORAS solver is equivalent to Lions’ algorithm, see
e.g. [2, §2.3.2] for a particular model problem. An instructive calculation for a sim-
ple one- (and two-) dimensional problem, which shows an analogous equivalence
property for RAS solver, is given in [3]; a more general equivalence result for ORAS
solver is proved in [10, Theorem 3.4]. This first choice of Partition of Unity (PU1),
where the gradient of 𝜒 𝑗 is zero on the subdomain interfaces 𝜕Ω 𝑗 \ 𝜕Ω, is illustrated
in a one-dimensional two-subdomain case in Figure 1, left, and starting from an
overlap 𝛿 = 4ℎ. Note that PU1 in Figure 1 is actually different from the original
RAS/ORAS partition of unity, which is defined for any overlap size 𝛿 multiple of ℎ,
but essentially just at the discrete level, and takes only the values 0 or 1; in the orig-
inal RAS/ORAS articles, the 𝐷 𝑗 are indeed hidden inside the definition of special
extension matrices 𝑅𝑇

𝑗
related to an auxiliary non-overlapping partition of the do-

main (see e.g. [3, 10] and references therein). However, since the PU1 functions 𝜒 𝑗

in Figure 1 are symmetrical to each other, defining the 𝐷 𝑗 by interpolation of the 𝜒 𝑗

is more practical for a parallel implementation.
A second kind of Partition of Unity (PU2) is illustrated in Figure 1, right, where

the 𝜒 𝑗 functions are different from zero in the interior of the whole overlapping
region. This choice ismotivated by the fact that using PU1 for SORAS preconditioner
can hinder the communication of information between subdomains since in (1) the
matrix 𝐷 𝑗 is also applied before 𝐵−1

𝑗
, that is before the local problem solve. Indeed,
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the numerical experiments performed in [1], where PU1 was used, show that the
number of iterations for convergence of preconditioned GMRES does not vary
significantly when increasing the overlap size (see also Tables 1,2,3 in Section 4).

3 Definition of the model problem

As in the second part of [1], we consider the heterogeneous reaction-convection-
diffusion problem in conservative form:{

𝑐0𝑢 + div(a𝑢) − div(𝜈∇𝑢) = 𝑓 in Ω,
𝑢 = 0 on Γ,

(2)

where Ω ⊂ R𝑑 is an open bounded polyhedral domain, Γ = 𝜕Ω, n is the outward-
pointing unit normal vector to Γ, 𝑐0 ∈ L∞ (Ω), a ∈ L∞ (Ω)𝑑 , div a ∈ L∞ (Ω),
𝜈 ∈ L∞ (Ω), 𝑓 ∈ L2 (Ω) and all quantities are real-valued.Wedenote 𝑐 B 𝑐0+div a/2,
and suppose that there exist 𝑐− > 0, 𝑐+ > 0 such that

𝑐− ≤ 𝑐(x) ≤ 𝑐+ a.e. in Ω, (3)

and that there exist 𝜈− > 0, 𝜈+ > 0 such that 𝜈− ≤ 𝜈(x) ≤ 𝜈+ a.e. in Ω. The
variational formulation of problem (2) is (see e.g. [1, §4]): find 𝑢 ∈ H10 (Ω) such that

𝑎(𝑢, 𝑣) = 𝐹 (𝑣), for all 𝑣 ∈ H10 (Ω), (4)

𝑎(𝑢, 𝑣) B
∫
Ω

(
𝑐𝑢𝑣 + 1

2
a · ∇𝑢 𝑣 − 1

2
𝑢 a · ∇𝑣 + 𝜈∇𝑢 · ∇𝑣

)
, 𝐹 (𝑣) B

∫
Ω

𝑓 𝑣.

On each subdomain we consider the local problem with bilinear form

𝑎 𝑗 (𝑢, 𝑣) B
∫
Ω 𝑗

(
𝑐𝑢𝑣 + 1

2
a · ∇𝑢 𝑣 − 1

2
𝑢 a · ∇𝑣 + 𝜈∇𝑢 · ∇𝑣

)
+
∫
𝜕Ω 𝑗\Γ

𝛼𝑢𝑣,

where we impose an absorbing transmission condition on the subdomain interface
𝜕Ω 𝑗 \ 𝜕Ω given by 𝛼(x) =

√︁
(a · n)2 + 4𝑐0𝜈/2 (see e.g. [7]).

4 Numerical experiments

We simulate problem (4) with Ω a rectangle [0, 𝑁 · 0.2] × [0, 0.2], where 𝑁 is the
number of subdomains. In Tables 1,2,3 we take 𝑁 = 5 and

𝑓 = 100 exp{−10((𝑥 − 0.5)2 + (𝑦 − 0.1)2)}.
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In Table 4, we test weak scaling by varying 𝑁 , with

𝑓 = 100 exp{−10((𝑥 − 0.1)2 + (𝑦 − 0.1)2)}.

The problem is discretized by piece-wise linear Lagrange finite elements on a uniform
triangular mesh with 60 nodes on the vertical side of the rectangle and 𝑁 · 60 nodes
on the horizontal one, resulting in 18361 degrees of freedom for 𝑁 = 5, and 7381,

Table 1 Iteration numbers for SORAS preconditioner (𝑁 = 5).

#PU1(PU2)
a = 2𝜋 [−(𝑦 − 0.1) , (𝑥 − 0.5) ]𝑇 𝛿 = 2ℎ 𝛿 = 4ℎ 𝛿 = 6ℎ 𝛿 = 8ℎ

𝑐0 = 1, 𝜈 = 1 21(21) 20(17) 20(15) 19(14)
𝑐0 = 1, 𝜈 = 0.001 14(14) 13(11) 12(11) 12(10)
𝑐0 = 0.001, 𝜈 = 1 21(21) 20(18) 20(15) 19(14)
𝑐0 = 0.001, 𝜈 = 0.001 15(15) 14(12) 13(11) 13(11)

Table 2 Repeat of Table 1 but with a = [−𝑥, −𝑦 ]𝑇 . In this case div a = −2 is negative and
𝑐̃ = 𝑐0 − 1 does not verify condition (3).

#PU1(PU2)
a = [−𝑥, −𝑦 ]𝑇 𝛿 = 2ℎ 𝛿 = 4ℎ 𝛿 = 6ℎ 𝛿 = 8ℎ

𝑐0 = 1, 𝜈 = 1 21(21) 21(19) 20(17) 20(15)
𝑐0 = 1, 𝜈 = 0.001 16(16) 16(14) 16(13) 16(13)
𝑐0 = 0.001, 𝜈 = 1 22(22) 22(19) 22(17) 21(16)
𝑐0 = 0.001, 𝜈 = 0.001 17(17) 16(15) 16(14) 16(13)

Table 3 Repeat of Table 1 but with a = [1, 0]𝑇 and with Streamline Upwind Petrov-Galerkin
stabilization for the Galerkin approximation.

#PU1(PU2)
a = [1, 0]𝑇 𝛿 = 2ℎ 𝛿 = 4ℎ 𝛿 = 6ℎ 𝛿 = 8ℎ

𝑐0 = 1, 𝜈 = 1 20(20) 20(18) 20(16) 20(15)
𝑐0 = 1, 𝜈 = 0.001 11(11) 11(12) 11(12) 11(12)
𝑐0 = 0.001, 𝜈 = 1 20(20) 20(18) 20(16) 20(15)
𝑐0 = 0.001, 𝜈 = 0.001 12(12) 12(12) 12(13) 12(12)

Table 4 Iteration numbers in a weak scaling test (𝛿 = 4ℎ).

#PU1(PU2)
a = [1, 0]𝑇 𝑁 = 2 𝑁 = 4 𝑁 = 8 𝑁 = 16 𝑁 = 32 𝑁 = 64

𝑐0 = 1, 𝜈 = 1 18(15) 23(20) 28(24) 35(28) 36(29) 36(29)
𝑐0 = 1, 𝜈 = 0.001 8(8) 10(12) 16(16) 23(24) 37(37) 63(61)
𝑐0 = 0.001, 𝜈 = 1 18(15) 23(20) 29(25) 35(29) 36(29) 36(29)
𝑐0 = 0.001, 𝜈 = 0.001 8(8) 10(12) 16(17) 24(25) 40(40) 71(71)
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14701, 29341, 58621, 117181, 234301 degrees of freedom for 𝑁 = 2, 4, 8, 16, 32, 64
respectively. The domain is partitioned into 𝑁 vertical strips, then each subdomain is
augmentedwithmesh elements layers of size 𝛿/2 to obtain the overlapping decompo-
sition: the total width of the overlap between two subdomains is then 𝛿. In particular,
for 𝛿 = 2ℎ, 4ℎ, 6ℎ, 8ℎ the ratio between the subdomain width (60ℎ) and 𝛿 is equal to
30, 15, 10, 7.5. We use GMRES with right preconditioning, with a zero initial guess
in Tables 1,2,3 and a random initial guess in Table 4. The stopping criterion is based
on the relative residual, with a tolerance of 10−6. To apply the preconditioner, the
local problems in each subdomain are solved with the direct solver MUMPS1. All
the computations are done in the ffddm framework [11] of FreeFEM2.
We compare the number of iterations for convergence (denoted by # in the tables)

using the two kinds of partition of unity: the results for PU1 were also included
in [1] and the results for PU2 are reported inside brackets in Tables 1–4. In ffddm
framework, the first partition of unity is selected by the flag -raspart, while the
second partition of unity is the one used by default.
As in [1], we examine several configurations for the coefficients in (2). First, in

Table 1 we consider a rotating convection field a = 2𝜋[−(𝑦 − 0.1), (𝑥 − 0.5)]𝑇 and
small/large values for the reaction coefficient 𝑐0 and the viscosity 𝜈. We can see that
a larger overlap helps the convergence of the preconditioner, especially with PU2,
while with PU1 the number of iterations does not vary significantly. Moreover, with
both kinds of partition of unity, the number of iterations appears not very sensitive
to the reaction coefficient 𝑐0, while it increases when the viscosity 𝜈 is larger.
Then, in Table 2 we take a = [−𝑥,−𝑦]𝑇 , which has negative divergence

div a = −2, to test the robustness of themethodwhen condition (3) on the positiveness
of 𝑐 is violated: in this case, 𝑐 = 𝑐0 − 1, so 𝑐 = 0, 𝑐 = −0.999 for 𝑐0 = 1, 𝑐0 = 0.001
respectively.We can still observe a convergence behavior similar to the one of Table 1.
Finally, in Table 3 we consider a horizontal convection field a = [1, 0]𝑇 , which

is normal to the interfaces between subdomains. Since in this case non-physical
numerical instabilities appear in the solution, we stabilize the discrete variational
formulation using the Streamline Upwind Petrov-Galerkin (SUPG) method (see for
instance [9, §11.8.6]). In this configuration for the convection field, for low viscosity
𝜈 = 0.001 the dependence of the iteration number on the overlap size 𝛿 appears to
be not significant, even with PU2.
Again in this third configuration with a = [1, 0]𝑇 and SUPG stabilization, we

perform a weak scaling test by taking Ω = [0, 𝑁 · 0.2] × [0, 0.2] for increasing
number of subdomains 𝑁 , and 𝛿 = 4ℎ. We can see that especially in the cases with
low viscosity 𝜈 = 0.001, convergence deteriorates with 𝑁 , as expected since we are
testing a one-level preconditioner.
In summary, our numerical investigation shows that, for the considered SORAS

preconditioner, PU2 generally improves the iteration counts obtained with PU1.
Moreover, the first kind of partition of unity (PU1), which would be the natural
choice for ORAS solver instead, yields for SORAS preconditioner iterations counts

1 http://mumps.enseeiht.fr/

2 https://freefem.org/
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Table 5 Minimum and maximum eigenvalues of the preconditioned operator.

PU1(PU2)
a = [0, 0]𝑇 𝛿 = 2ℎ 𝛿 = 4ℎ 𝛿 = 6ℎ 𝛿 = 8ℎ

𝜆min 0.50 (0.50) 0.50 (0.50) 0.50 (0.50) 0.50 (0.50)
𝜆max 11.25 (11.25) 10.61 (5.98) 10.07 (4.01) 9.60 (3.02)
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Fig. 2 Numerical range of the preconditioned operator (a = [−𝑥, −𝑦 ]𝑇 ).

that do not vary significantly when increasing the overlap width, whereas using the
second kind of partition of unity (PU2) a larger overlap gives faster convergence.
To conclude, we wish to provide a deeper explanation of the observed effects.

First, we examine the symmetric positive definite case, with a = [0, 0]𝑇 , 𝑐0 = 1,
𝜈 = 1 (so 𝑐 = 𝑐0 > 0), and report in Table 5 the largest and smallest eigenvalues
of the preconditioned operator. We take 𝑁 = 2 and 40 nodes on the vertical side of
the rectangle, 2 · 40 nodes on the horizontal one. Note that SORAS preconditioner
for generic symmetric positive definite problems was analyzed in [6], but no explicit
discussion about the influence of the partition of unity was included there. On the
one hand, the largest eigenvalue of the preconditioned operator is controlled by the
modes of the local generalized eigenvalue problems defined in [6, Definition 3.1],
where the partition of unity matrices appear in the local operator on the left-hand
side: Table 5 shows that indeed 𝜆max is smaller for PU2, which is less steep than PU1,
especially when increasing the overlap width 𝛿 (see Fig. 1). Moreover, with PU1,
the dependence of 𝜆max on 𝛿 is much less significant than with PU2. On the other
hand, the smallest eigenvalue of the preconditioned operator is controlled by the
modes of the local generalized eigenvalue problems defined in [6, Definition 3.2],
where the partition of unity is not involved: in Table 5 we can see that indeed 𝜆min
is independent of the partition of unity.
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For the non-symmetric case, with a = [−𝑥,−𝑦]𝑇 , 𝑐0 = 0.001, 𝜈 = 0.001 (so
𝑐 = 𝑐0 − 1 < 0), we plot in Fig. 2 the contour of the numerical range of the
preconditioned operator for overlap widths that range from 𝛿 = 2ℎ to 𝛿 = 8ℎ, for the
two types of partition of unity.We can remark that for PU1 (Fig. 2, left) the numerical
ranges practically coincide for the different overlap widths, whereas for PU2 (Fig. 2,
right) the numerical range gets smaller for larger overlap width. This explains the
more favorable convergence properties of preconditioned GMRES with PU2 when
increasing the overlap width, and the much less significant influence of the overlap
in the case of PU1.
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Convergence of the Micro-Macro Parareal
Method for a Linear Scale-Separated
Ornstein-Uhlenbeck SDE

Ignace Bossuyt, Stefan Vandewalle, and Giovanni Samaey

1 Model problem and motivation

In this work, we consider a two-dimensional slow-fast Ornstein-Uhlenbeck (OU)
stochastic differential equation (SDE) [9], modelling the coupled evolution of
a slowly evolving variable 𝑥 ∈ R and a variable 𝑦 ∈ R that quickly reaches its
equilibrium distribution:[

𝑑𝑥

𝑑𝑦

]
=

[
𝛼 𝛽

𝛾/𝜖 𝜁/𝜖

] [
𝑥

𝑦

]
𝑑𝑡 + 𝜎

[
1 0
0 1/

√
𝜖

]
𝑑𝑊. (1)

where 𝑑𝑊 ∈ R2 is a two-dimensional Brownian motion and 𝜖 ∈ R is a (small) time
scale separation parameter 𝜖 � 1. The initial condition has a distribution with mean[
𝑚𝑥,0 𝑚𝑦,0

]
and covariance matrix

[
Σ𝑥,0 Σ𝑥𝑦,0
Σ𝑥𝑦,0 Σ𝑦,0

]
, and time 𝑡 ∈ [0, 𝑇].

Model problem (1) mimics the general situation where 𝑥 is a low-dimensional
quantity of interest whose evolution is influenced by a quickly evolving, high-
dimensional variable 𝑦, all described by SDEs. The joint probability density of 𝑥
and 𝑦 obeys a Fokker-Planck equation (see, e.g. [3]). Instead of directly solving
this partial differential equation using classical deterministic techniques, which suf-
fer from the curse of dimensionality, the corresponding SDE can be solved using
a Monte Carlo method. In this paper, our aim is to obtain insight in the conver-
gence of a parallel-in-time (PinT) method applied to the low-dimensional linear
OU model problem (1). In our method, the fine propagator of the SDE is based on
a high-dimensional slow-fast microscopic model; the coarse propagator is based on
a model-reduced version of the latter, that captures the low-dimensional, effective
dynamics at the slow time scales. This problem allows for an analytic treatment, if

Ignace Bossuyt, Stefan Vandewalle, Giovanni Samaey
Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium,
e-mail: ignace.bossuyt1@kuleuven.be, stefan.vandewalle@kuleuven.be,
giovanni.samaey@kuleuven.be
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the quantities of interest are the mean and the (co)variance of 𝑥 and 𝑦. We expect
that this convergence analysis can be useful as a stepping stone for analysing PinT
methods for higher-dimensional (nonlinear) SDEs.

1.1 Derivation of a reduced model

The averaging technique from [7, chapter 10, see, e.g., Remark 10.2] allows to define
the reduced dynamics variable 𝑋 , that approximates the slow variable 𝑥 in (1). This
technique exploits time-scale separation in order to integrate out the fast variable
with respect to 𝜌∞ (𝑦 |𝑥), the invariant distribution of the fast variable 𝑦 conditioned
on a fixed slow variable 𝑥.
The reduced model reads as follows (ΛΣ and ΣΣ are defined implicitly):

𝑑𝑋 = 𝐴(𝑋)𝑑𝑡 + 𝑆(𝑋)𝑑𝑊 (2)
with

𝐴(𝑋) =
∫
Y
𝑎(𝑋, 𝑦)𝜌∞ (𝑦 |𝑋)𝑑𝑦 = ΛΣ𝑋 B

(
𝛼 − 𝛽𝛾

𝜁

)
𝑋

𝑆(𝑋)𝑆(𝑋)𝑇 =

∫
Y
𝑠(𝑋, 𝑦)𝑠(𝑋, 𝑦)𝑇 𝜌∞ (𝑦 |𝑋)𝑑𝑦 = ΣΣ B 𝜎,

where Y denotes the domain of 𝑦. It can be shown that for the OU system (1), the
conditional distribution 𝜌∞ (𝑦 |𝑥) = N

(
𝛾𝑥

𝜁
, 𝜎

2

2𝜁

)
(see [7, Example 6.19]).

The reduced model (2), while it is only an approximation to the slow dynamics,
offers two computational advantages w.r.t. the full, scale-separated system (1): (i) it
contains fewer degrees of freedom, and (ii) it is less stiff with a computational cost
that is independent of 𝜖 . As 𝜖 approaches zero, the multiscale model (1) gets more
stiff, while the (cheaper) reduced model becomes a more accurate approximation.

1.2 Moment system for the Ornstein-Uhlenbeck process

The evolution of mean and variance of a linear SDE can be described exactly using
the moment models from [1]. Thus, for the linear Ornstein-Uhlenbeck SDE model
problem, we can use these linear ODEs instead of using a Monte Carlo simulation.

Moments for reduced model. The evolution of the mean of 𝑋 in (2) is given by

𝑑𝑚𝑋

𝑑𝑡
=

(
𝛼 − 𝛽𝛾

𝜁

)
𝑚𝑋 . (3)

The evolution of the variance of the reduced system is given by the ODE

𝑑Σ𝑋

𝑑𝑡
= ΛΣΣ𝑋 + Σ2Σ = 2

(
𝛼 − 𝛽𝛾

𝜁

)
Σ𝑋 + 𝜎2. (4)
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Moments for multiscale model. The evolution of the mean of the multiscale
SDE (1) is described by the following linear ODE:

𝑑

𝑑𝑡

[
𝑚𝑥

𝑚𝑦

]
=

[
𝛼 𝛽

𝛾/𝜖 𝜁/𝜖

] [
𝑚𝑥

𝑚𝑦

]
. (5)

The evolution of the covariance of (1) is given by the linear ODE ¤Σ = 𝐵ΣΣ + 𝑏Σ:

𝑑

𝑑𝑡


Σ𝑥

Σ𝑥𝑦

Σ𝑦

 =

2𝛼 2𝛽 0
𝛾/𝜖 𝛼 + 𝜁/𝜖 𝛽

0 2𝛾/𝜖 2𝜁/𝜖



Σ𝑥

Σ𝑥𝑦

Σ𝑦

 +

𝜎2

0
𝜎2/𝜖

 (6)

where we define Σ𝑞 =
[
Σ𝑥𝑦 Σ𝑦

]𝑇 , and where the blocks of 𝐵Σ are named as

𝐵Σ =

[
2𝛼 𝑝𝑇

Σ

𝑞Σ/𝜖 −𝐴Σ/𝜖

]
, where 𝐴Σ = −

[
𝛼 + 𝜁/𝜖 𝛽

2𝛾/𝜖 2𝜁/𝜖

]
. To ensure stability of the

fast dynamics, we assume that the parameters in (1) are chosen such that the real part
of the eigenvalues of the matrix 𝐴Σ are all positive 𝜇Σ,𝑖 ≥ 𝜇− > 0. This condition is
satisfied for instance for any 𝛼, 𝛽 ∈ R if 𝜁 and 𝛾 are sufficiently small.

2 The Micro-Macro Parareal algorithm

The Micro-Macro Parareal (mM-Parareal) for scale-separated ODEs [5] and for
SDEs [4], is a generalisation of the Parareal algorithm [6]. It combines two levels
of description: (i) the micro variable 𝑢, with corresponding fine propagator F , and
(ii) the macro variable 𝜌, which is lower-dimensional, with coarse propagator C.
These levels are related through coupling operators: the restriction operator R ex-
tracts macro information from a micro state, the lifting operator L produces a micro
state that is consistent with a given macro state, and finally the matching operatorM
produces a micro state that is consistent with a given macro state, based on prior
information of the micro state. Examples of these operators are given in the sequel.
The mM-Parareal algorithm iterate at iteration 𝑘 and time step 𝑛 is given next. For
𝑘 = 0 (initialization), we have

𝜌0𝑛+1 = C(𝜌0𝑛) 𝑢0𝑛+1 = L(𝜌0𝑛+1), (7)

and for 𝑘 ≥ 1,
𝜌𝑘+1𝑛+1 = C(𝜌𝑘+1𝑛 ) + R(F (𝑢𝑘𝑛)) − C(𝜌𝑘𝑛)
𝑢𝑘+1𝑛+1 = M(𝜌𝑘+1𝑛+1 , F (𝑢𝑘𝑛)).

(8)

If the coupling operators are chosen such thatM(R𝑢, 𝑢) = 𝑢, then at each iteration it
holds that 𝜌𝑘𝑛 = R𝑢𝑘𝑛. Classical Parareal [6] corresponds to the caseR = L = M = I.

Convergence of Micro-Macro Parareal for linear scale-separated ODEs.
In [5], the convergence of mM-Parareal for a linear scale-separated ODE is studied.
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We briefly review the main ingredients of the theory, because we will use them
further on to study the convergence for our model problem (1).
The test system in [5], modelling the coupled evolution of a slow variable 𝑟 ∈ R

and a fast variable 𝑣 ∈ R𝑝 , 𝑝 ≥ 1, has the following structure:[
¤𝑟
¤𝑣

]
=

[
𝑎 𝑝𝑇

𝑞/𝜖 −𝐴/𝜖

] [
𝑟

𝑣

]
(9)

where 𝐴 ∈ p × p has positive eigenvalues: the fast component 𝑣 is dissipative. The
model for the approximate slow variable 𝑈, and the parameter Λ, are defined as
follows:

¤𝑈 = Λ𝑈 =

(
𝑎 + 𝑝𝑇 𝐴−1𝑞

)
𝑈, (10)

with 𝑈 (0) = 𝑈0 = 𝑟0. In [5, equations (2.8), (2.13) and (2.14)] the following
properties of the multiscale system (9) and its reduced model (10) are proven (the
subscript ·0 denotes the initial condition):

sup
𝑡 ∈[0,𝑇 ]

|𝑟 (𝑡) −𝑈0 exp(Λ𝑡) | ≤ 𝐶𝜖 ( |𝑟0 | + ‖𝑣0 − 𝐴−1𝑞𝑟0‖), (11)

sup
𝑡 ∈[0,𝑇 ]

|𝑟 (𝑡) | ≤ 𝐶 ( |𝑟0 | + 𝜖 ‖𝑣0‖), (12)

sup
𝑡 ∈[𝑡BL ,𝑇 ]

‖𝑣(𝑡)‖ ≤ 𝐶 ( |𝑟0 | + 𝜖 ‖𝑣0‖), (13)

where the constant 𝐶 only depends only on 𝐴, 𝑝, 𝑞, 𝑎 and 𝑇 (see (9)).
Using the properties (11)–(13), in [5], the convergence of mM-Parareal for the lin-

ear test problem (9) with coarse model (10) is analysed, using the restriction operator
R(

[
𝑟, 𝑣

]𝑇 ) = 𝑟 (with R⊥ (
[
𝑟, 𝑣

]𝑇 ) = 𝑣), the lifting operator L(𝑈) =
[
𝑈, 𝐴−1𝑞𝑈

]𝑇
and the matching operator M(𝑈, 𝑢) =

[
𝑈, R⊥𝑢

]𝑇 . We now present two minor
extensions to existing Micro-Macro Parareal convergence lemmas for later use.

Lemma 1 (Convergence of mM-Parareal for nonhomogenous linear ODEs) The
mM-Parareal solution of the system ¤𝑢 = 𝐴𝑢 + 𝑏 equals the mM-Parareal solution of
the system ¤𝑣 = 𝐴𝑣, with 𝑣 = 𝑢 = 𝐴−1𝑏, if 𝑣(0) is chosen 𝑣(0) = 𝑢(0) − 𝐴−1𝑏, with 𝐴
and 𝑏 constant. Assume that the (numerical) fine propagator satisfies the following
property when it is applied on a linear system: F (𝑢) = (𝐼 + 𝐴F)𝑢 + 𝐵F with 𝐵F = 0
for the homogeneous system. (This assumption is not restrictive, e.g., it is satisfied by
any Runge Kutta method.) Futher assume thatM(𝜌, 𝑢)−M(𝜎, 𝑣) = M(𝜌−𝜎, 𝑢−𝑣)
and that the coarse propagator is linear. Then, the mM-Parareal iterates satisfy

𝑢𝑘𝑛 = 𝑣𝑘𝑛 + 𝐴−1𝐵 (14)

The proof of Lemma 1 can be constructed by induction on 𝑛.
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Lemma 2 (Convergence of mM-Parareal without lifting in the zeroth iteration
for linear scale-separated ODEs)

Using trivial lifting, that is L(𝑋) =
[
𝑋, 𝑣0

]
, and using mM-Parareal, defined

in (7)–(8), with the specific choice of operators (9)–(10), let 𝐸 𝑘
Σ𝑋 ,𝑛

= 𝑢𝑘𝑛 − R𝑢𝑛 be
the macro error and 𝑒𝑘𝑛 = 𝑢𝑘𝑛 − 𝑢𝑛 be the micro error. Then, there exists 𝜖0 ∈ (0, 1),
that only depends on 𝛼, 𝑝, 𝑞, 𝐴 and 𝑇 , such that, for all 𝜖 < 𝜖0 and all Δ𝑡 > 𝑡𝐵𝐿

𝜖 ,
there exists a constant 𝐶𝑘 , independent of 𝜖 , such that for all 𝑘 ≥ 0:

sup
0≤𝑛≤𝑁

|𝐸 𝑘
𝑛 | ≤ 𝐶𝑘𝜖

1+b(𝑘+1)/2c , (15)

sup
0≤𝑛≤𝑁

‖𝑒𝑘𝑛 ‖ ≤ 𝐶𝑘𝜖
d(𝑘+1)/2e . (16)

The proof of Lemma 2 closely follows [5, proof of Theorem 13].

3 Convergence of Micro-Macro Parareal for model problem:
theoretical analysis

The model problem is the multiscale Ornstein-Uhlenbeck process (1). We de-
fine the micro variable, describing the first two moments of its solution as
𝑢𝑘𝑛 =

[
𝑚𝑥 𝑚𝑦 Σ𝑥 Σ𝑥𝑦 Σ𝑦

]
. The macro variable is defined as 𝜌𝑘𝑛 =

[
𝑚𝑥 Σ𝑥

]
.

For the fine propagator F , we use the SDE (1), which we model via its mo-
ment models (5) and (6). The coarse propagator C simulates the reduced sys-
tem (2), or equivalently the scalar ODEs (6) and (4). The restriction opera-
tor is defined as R

( [
𝑚𝑥 𝑚𝑦 Σ𝑥 Σ𝑦 Σ𝑥𝑦

] )
=

[
𝑚𝑥 Σ𝑥

]
, the lifting operator as:

L
( [
𝑀𝑋 𝑆𝑋

]𝑇 )
=

[
𝑀𝑋 𝑚𝑦,0 𝑆𝑋 Σ𝑦,0 Σ𝑥𝑦,0

]𝑇
, and the matching operator as

M
( [
𝑀𝑋 𝑆𝑋

]𝑇
,
[
𝑚𝑥 𝑚𝑞 Σ𝑥 Σ𝑦 Σ𝑥𝑦

]𝑇 )
=
[
𝑀𝑋 𝑚𝑦 𝑆𝑋 Σ𝑦 Σ𝑥𝑦

]𝑇
. The lifting op-

erator thus initializes the moments of the fast variable to its initial value.
Convergence of first moment. The moment equations (5) and (3), describing

the evolution of the first moment obey the structure of the multiscale system (9), and
therefore we can, after using Lemma 1, apply Lemma 2.

Converence of covariance. The evolution of the multiscale covariance (6) does
not satisfy the same property as the model in equation (9) because (i) the subma-
trix 𝐴Σ contains the parameter 𝜖 , and (ii) the reduced model is not defined using (10).
Nextwewill prove that, although themodels (6) and (9) are different, they both satisfy
some key theoretical properties that were used in [5].

Lemma 3 (An equivalent of (11) for model (6) instead of model (9)) For system (6)
and its reduced model (4), it holds true that

sup
𝑡 ∈[0,𝑇 ]

|Σ𝑥 (𝑡) − Σ𝑥,0 exp(ΛΣ𝑡) | ≤ 𝐶𝜖 ( |Σ𝑥,0 | + ‖Σ𝑦,0 − 𝐴−1
Σ 𝑞ΣΣ𝑥,0‖). (17)
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Proof From (11), (6) and (19), we have

sup
𝑡 ∈[0,𝑇 ]

|Σ𝑥 (𝑡) − Σ𝑥,0 exp(𝜆Σ𝑡) | ≤ 𝐶𝜖 ( |Σ𝑥,0 | + ‖Σ𝑧,0‖). (18)

If we define
𝜆Σ = 2𝛼 + 𝑝𝑇Σ 𝐴−1

Σ 𝑞Σ, (19)

we can interpret the averaged model (4) as a limit of the reduced model (10)

for the system (6): ΛΣ = lim
𝜖→0

𝜆Σ = 2𝛼 − 2 𝛽𝛾
𝜁
. Now we define ΔΛΣ = ΛΣ − 𝜆Σ

(see (4) and (19)) and we observe that ΔΛΣ = O(𝜖). It then holds that exp (ΛΣ𝑡) =
exp ((𝜆Σ + ΔΛΣ)𝑡) = exp (𝜆Σ𝑡) [1 + O(𝜖)]. From the triangle inequality and the
inequality (11) we have that

sup
𝑡 ∈[0,𝑇 ]

|Σ𝑥 (𝑡) − Σ𝑥,0 exp(ΛΣ𝑡) | ≤ sup
𝑡 ∈[0,𝑇 ]

|Σ𝑥 (𝑡) − Σ𝑥,0 exp(𝜆Σ𝑡) (1 + O(𝜖)) |

≤ 𝐶𝜖 ( |Σ𝑥,0 | + ‖Σ𝑧,0‖) + |Σ𝑥,0 | |O(𝜖) |
≤ 𝐾𝜖 ( |Σ𝑥,0 | + ‖Σ𝑧,0‖),

(20)

where 𝐾 > 𝐶. This proves equation (17). �

Lemma 4 (An equivalent of (12) and (13) for model (6) instead of model (9))
Assuming that that the eigenvalues 𝜇Σ,𝑖 of the matrix 𝐴Σ (see (6)) are all positive,
the properties in equation (12) and (13) hold true for the system (6):

sup
𝑡 ∈[0,𝑇 ]

|Σ𝑥 (𝑡) | ≤ 𝐶 ( |Σ𝑥,0 | + 𝜖 ‖Σ𝑞,0‖),

sup
𝑡 ∈[𝑡BL ,𝑇 ]

‖Σ𝑞 (𝑡)‖ ≤ 𝐶 ( |Σ𝑥,0 | + 𝜖 ‖Σ𝑞,0‖).
(21)

Proof The proof is similar to [5, Proof of Corollary 3]. In [5], the assumption that
the eigenvalues of 𝐴Σ are all positive is important. The structure of 𝜆Σ (or ΛΣ) does
not further influence the proof. �

The preceding lemmas allow us to formulate our main result.
Lemma 5 (Convergence of mM-Parareal for evolution of covariance) Consider
mM-Parareal, defined in (7)–(8), with fine and coarse propagators the full system (6)
and the reduced system (4), respectively. Let 𝐸 𝑘

Σ𝑋 ,𝑛
= 𝜌𝑘𝑛 − R𝑢𝑛 be the macro error

and 𝑒𝑘𝑛 = 𝑢𝑘𝑛 − 𝑢𝑛 be the micro error. Then there exists 𝜖0 ∈ (0, 1), that only depends
on 𝛼, 𝑝Σ, 𝑞Σ, 𝐴Σ and 𝑇 , such that, for all 𝜖 < 𝜖0 and all Δ𝑡 > 𝑡𝐵𝐿

𝜖 , there exists
a constant 𝐶𝑘 , independent of 𝜖 , such that for all 𝑘 ≥ 0:

sup
0≤𝑛≤𝑁

|𝐸 𝑘
𝑛 | ≤ 𝐶𝑘𝜖

1+b(𝑘+1)/2c (22)

sup
0≤𝑛≤𝑁

‖𝑒𝑘𝑛 ‖ ≤ 𝐶𝑘𝜖
d(𝑘+1)/2e (23)

Proof Using Lemmas 1, 2, 3, and 4 the proof follows from [5, Proof of Theorem 2].�
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4 Numerical experiments

The test parameters for the numerical experiments are chosen to be:[
𝛼 𝛽

𝛾/𝜖 𝜁/𝜖

]
=

[
−1. −1.
0.1/𝜖 −1./𝜖

]
, 𝜎 = 0.5 (24)

The time interval is chosen as [0, 10], the number of time intervals 𝑁 = 10, and
the initial value

[
𝑚𝑥,0 𝑚𝑞,0 Σ𝑥,0 Σ𝑞,0 Σ𝑥𝑞,0

]𝑇
=

[
100 100 100 0 0

]𝑇 . In the ex-
periments, which are shown in Figure 1, it is seen that the micro and macro errors
in the mean follow the behaviour given by Lemma 2; those in the variance follow
the behaviour as given by Lemma 5. Observe that mM-Parareal converges faster for
computationally more expensive models (with small 𝜖).

Fig. 1 Error as function of time-scale separation parameter 𝜖 . We used ∞-norm over time (only
considering coarse discretisation points) and the 2-norm for the micro error. Top left: macro error
on mean, Top right: micro error on mean, Bottom left: macro error on variance, Bottom right;
micro error on variance. We used a numerical solver to discretise the moment equations (3)–(6)
with a very stringent tolerance, so that the effect of numerical discretisation errors can be neglected.
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5 Discussion and conclusion

Summary.We presented a convergence analysis of the Micro-Macro Parareal al-
gorithm on scale-separated Ornstein-Uhlenbeck SDEs. We analysed its convergence
behaviour w.r.t. the time scale separation parameter 𝜖 , using moment models. The
convergence of the first moment is closely related to the analysis in [5]. For the
covariance we presented some extensions to this theory.

Limitations. While the analysis using moment models quantifies the error on
the mean and variance of the SDE solution, we cannot say anything about other
quantities of interest, such as higher moments of the SDE solutions.
Also, by using the moment model (an ODE that we solved using very stringent

tolerances), we exclusively looked at the model error, neglecting the discretisation
errors and statistical errors (in e.g. Monte Carlo simulations) that arise in the dis-
cretisation of an SDE.

Open questions. It remains to be studied how the analysis generalises to higher
dimensions, for instance when the slow variable is multi-dimensional. Also, an
extension of the convergence analysis could cover nonlinear SDEs, or linear SDEs
for which there is a coupling between mean and variance in the moment model
ODEs. Another open problem is an analysis of convergence of the method w.r.t. the
iteration number, in contrast to convergence w.r.t. the parameter 𝜖 . This would be
more useful in practice.

Software. The code that is used for the numerical experiments, is available1. We
used the Julia language [2] and the DifferentialEquations.jl package [8].
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A Trefftz-Like Coarse Space for the Two-Level
Schwarz Method on Perforated Domains

Miranda Boutilier, Konstantin Brenner, and Victorita Dolean

1 Introduction and model problem

Numerical modeling of overland flows plays an increasingly important role in pre-
dicting, anticipating and controlling floods, helping to size and position protective
systems including dams, dikes or rainwater drainage networks. One of the chal-
lenges of the numerical modeling of urban floods is that the small structural features
(buildings, walls, etc.) may significantly affect the flow. Luckily, modern terrain
survey techniques including photogrammetry and Laser Imaging, Detection, and
Ranging (LIDAR) allow to acquire high-resolution topographic data for urban areas
as well as for natural (highly vegetated) media. For example, the data set used in this
article has been provided by Métropole Nice Côte d’Azur (MNCA) and allows for
the infra-metric description of the urban geometries [3].
From the hydraulic perspective, these structural features can be assumed to be es-

sentially impervious, and therefore represented as perforations (holes) in the model
domain. Our long term modelling strategy is based on the Diffusive Wave equa-
tion [2]. However, understanding linear problems posed on perforated domains is
a crucial preliminary step and the object of this contribution.
Let𝐷 be an open simply connected polygonal domain inR2, we denote by

(
Ω𝑆,𝑘

)
𝑘

a finite family of perforations in𝐷 such that eachΩ𝑆,𝑘 is an open connected polygonal
subdomain of𝐷. The perforations aremutually disjoint, that isΩ𝑆,𝑘∩Ω𝑆,𝑙 = ∅ for any
𝑘 ≠ 𝑙. We denote Ω𝑆 =

⋃
𝑘 Ω𝑆,𝑘 and Ω = 𝐷 \Ω𝑆 , assuming that the family

(
Ω𝑆,𝑘

)
𝑘

is such that Ω is connected. Note that the latter assumption implies that Ω𝑆,𝑘 are
simply connected.

Miranda Boutilier, Konstantin Brenner
Université Côte d’Azur, LJAD, France
e-mail: miranda.boutilier@univ-cotedazur.fr, konstantin.brenner@univ-cotedazur.fr

Victorita Dolean
University of Strathclyde, Dept. of Maths and Stats and Université Côte d’Azur, LJAD, CNRS,
France, e-mail: work@victoritadolean.com

77



78 Miranda Boutilier, Konstantin Brenner, and Victorita Dolean

Let 𝑓 ∈ 𝐿2 (Ω), in this article we are interested in the boundary value problem
−Δ𝑢 = 𝑓 in Ω,

−𝜕𝑢

𝜕n
= 0 on 𝜕Ω ∩ 𝜕Ω𝑆 ,

𝑢 = 0 on 𝜕Ω \ 𝜕Ω𝑆 .

(1)

Depending on the geometrical complexity of the computational domain, the
numerical resolution of (1) may become challenging. A typical data set that we
are interested in, illustrated by Figure 3, may contain numerous perforations that
are described on different scales. In this regard, our strategy relies on the use of
a Krylov solver combined with domain decomposition (DD) methods. Generally,
to achieve scalability with respect to the number of subdomains in overlapping
Schwarz methods, coarse spaces/components are needed. Including a coarse space
in a Schwarz preconditioner results in what is referred to as a two-level Schwarz
preconditioner.
The model problem can be thought of as the extreme limit case of the elliptic

model containing highly contrasting coefficients. Two-level domain decomposition
methods have been extensively studied for such heterogeneous problems. There
are many classical results for coarse spaces that are contructed so as to resolve
the jumps of the coefficients; see [6, 7, 12] for further details. Approaches to obtain
a robust coarse space without careful partitioning of the subdomains include spectral
coarse spaces such as those given in [8, 13, 15]. Additionally, the family of GDSW
(Generalized Dryja, Smith,Widlund)methods [5] employ energy-minimizing coarse
spaces and can be used to solve heterogeneous problems on less regular domains.
These spaces are discrete in nature and involve both edge and nodal basis functions.
Alternatively, robust coarse spaces can be constructed using the ideas frommulti-

scale finite elements methods (MsFEM) [1, 10]. The combination of spectral and
MsFEM methods can be found in [9]. Outside of the DD framework, specifically on
domains with small and numerous perforations, the authors of [4, 11] also introduced
an enriched MsFEM-like method.
Here, we present an efficient and novel coarse space in the overlapping Schwarz

framework inspired by the Boundary Element based Finite Element (BEM-FEM)
method [16]. In contrast with the classical BEM-FEM approach, the local multiscale
basis functions are computed numerically such as inMsFEMmethods. This approach
is motivated by our interest in nonlinear time dependent models for which the
analytical expression of the fundamental solutions may not be easily available.

2 Discretization and preliminary notations

We introduce a coarse discretization of Ω which involves a family of polygonal cells(
Ω 𝑗

)
𝑗=1,...,𝑁 , the so-called coarse skeleton Γ, and the set of coarse grid nodes that

will be referred to byV.
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The construction is as follows. Consider a finite nonoverlapping polygonal parti-
tioning of 𝐷 denoted by

(
𝐷 𝑗

)
𝑗=1,...,𝑁 and an induced nonoverlapping partitioning

of Ω denoted by
(
Ω 𝑗

)
𝑗=1,...,𝑁 such that Ω 𝑗 = 𝐷 𝑗 ∩Ω. We will refer to

(
Ω 𝑗

)
𝑗=1,...,𝑁

as the coarse mesh over Ω. Additionally, we denote by Γ the skeleton of the coarse
mesh, that is Γ =

⋃
𝑗∈{1,...,𝑁 } 𝜕Ω 𝑗 \ 𝜕Ω𝑆 .

Let vert(Ω 𝑗 ) denote the set of vertices of the polygonal domain Ω 𝑗 . The set
of coarse grid nodes is given asV =

⋃
𝑗∈{1,...,𝑁 } vert(Ω 𝑗 ) ∩ Γ. The total number of

coarse grid nodes is denoted by 𝑁V .We refer to Figure 1 for the illustration of the
coarse mesh entities.

Fig. 1 Coarse grid cell Ω 𝑗 ,
nonoverlapping skeleton Γ

(blue lines), and coarse grid
nodes x𝑠 ∈ V (red dots).
Coarse grid nodes are located
at Γ ∩ 𝜕Ω𝑆 .

We discretize the model problem (1) with piecewise linear continuous finite
elements on a triangular mesh ofΩ. This mesh is conforming to the coarse polygonal(
Ω 𝑗

)
𝑗=1,...,𝑁 ; an example of the triangulation for various numbers of coarse cells 𝑁

is given in Figure 2. The finite element discretization of (1) results in the linear
system Au = f.

(a) 2×2 subdomains (b) 8×8 subdomains

Fig. 2 Conforming triangulation for the same domain Ω with different numbers of coarse cells 𝑁 .
The coarse skeleton Γ is shown by the blue lines.
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Let
(
Ω′

𝑗

)
𝑗=1,...,𝑁

denote the set of overlapping subdomains of Ω. In practice,
each Ω′

𝑗
is constructed by propagating Ω 𝑗 by a few layers of triangles. Consider

classical boolean restriction matrices R 𝑗 and corresponding extension matrices R𝑇
𝑗

associated to the family of overlapping subdomains
(
Ω′

𝑗

)
𝑗=1,...,𝑁

. With a coarse
restriction matrix R0 that will be specified later, the two-level discrete Additive
Schwarz (ASM) preconditioner is given by

𝑀−1
𝐴𝑆𝑀,2 = R𝑇

0 (R0AR𝑇
0 )

−1R0 +
𝑁∑︁
𝑗=1

R𝑇
𝑗 (¯

R 𝑗AR𝑇
𝑗 )−1R 𝑗 . (2)

3 Description of the Trefftz-like coarse space

Here we introduce the Trefftz-like coarse space spanned by the functions that are
piecewise linear on the skeleton Γ and discrete harmonic inside the nonoverlapping
subdomainsΩ 𝑗 . For any node x𝑠 ∈ V, we introduce the function 𝑔𝑠 : Γ → R, which
is continuous on Γ and linear on each edge of Γ. It is clear that 𝑔𝑠 is fully defined by
its values at the nodes x𝑖 ∈ V, for which we set

𝑔𝑠 (x𝑖) =
{
1, 𝑠 = 𝑖,

0, 𝑠 ≠ 𝑖.

To illustrate the construction of the nodal basis of the coarse space, we consider the
following set of boundary value problems. For allΩ 𝑗 and for all 𝑠 = 1, . . . , 𝑁V , find
𝜙
𝑗
𝑠 ∈ 𝐻1 (Ω 𝑗 ) such that 𝜙 𝑗

𝑠 is the weak solution to the following problem
−Δ𝜙 𝑗

𝑠 = 0 in Ω 𝑗 ,

−𝜕𝜙
𝑗
𝑠

𝜕n
= 0 on 𝜕Ω 𝑗 ∩ 𝜕Ω𝑆 ,

𝜙
𝑗
𝑠 = 𝑔𝑠 on 𝜕Ω 𝑗 \ 𝜕Ω𝑆 .

(3)

The finite element discretization of (3) results in the system of the form A′
𝑗
𝝓 𝑗
𝑠 = b 𝑗

𝑠 ,

where A′
𝑗
is the local stiffness matrix and b 𝑗

𝑠 accounts for the Dirichlet boundary
data in (3). LetR 𝑗 denote the restriction matrices corresponding toΩ 𝑗 , and let 𝝓𝑠 be
a vector such that R 𝑗𝝓𝑠 = 𝝓 𝑗

𝑠 for all 𝑗 = 1, . . . , 𝑁 . The coarse space is then defined
as the span of the basis functions 𝜙𝑠 , 𝑠 = 1, . . . , 𝑁V , while the 𝑘th row of R0 is
given by 𝝓𝑇

𝑘
for 𝑘 = 1, . . . , 𝑁V .
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4 Numerical results

We present below the numerical experiments concerning the performance of the
conjugate gradient (CG) method using two-level preconditioner (2) and the Trefftz-
like coarse space introduced in Section 3. For the sake of comparison we also report
the numerical results obtained using a more standard Nicolaides coarse space which
is going to be detailed later.
The data sets used in this experiment have been kindly provided by Métropole

Nice Côte d’Azur and reflect the structural topography of the city of Nice. Although
this type of data is available for the whole city [3], we focus here on a relatively small
special frame (see Figure 3). In this numerical experiment we consider two kinds
of structural elements - buildings (and assimilated small elevated structures) and
walls. We note that the perforations resulting from the data sets we use (especially
the wall data) can span across multiple coarse cells, which is a challenging situation
for traditional coarse spaces.

(a) Without walls (b) With walls

Fig. 3 Approximate solution over a computational domain divided in 𝑁 = 8 × 8 nonoverlapping
subdomains.

In this numerical experiment we consider the problem (1) with the-right-hand
side given by 𝑓 = 1. Figure 3 reports the finite element solution obtained for the
data excluding and including walls. The figure also reflects the nonoverlapping
partitioning into 𝑁 = 8 × 8 subdomains.
Figure 4 and Table 1 report the performance of the two-level preconditioner

used in the PCG method, for varying number of subdomains 𝑁 and two relative
overlap sizes. As the computational domain Ω remains fixed independently of 𝑁 ,
the results of this experiment could be interpreted in terms of a strong scalability.
However, we wish to stress that the fine-scale triangulation is obtained based on the
nonoverlapping partitioning (Ω 𝑗 ) 𝑗=1,...,𝑁 . Consquentially, the linear system Au = f
changes from one coarse partitioning to another. Nevertheless we ensure that the
dimension of the system is roughly constant throughout the experiment. Depending
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on the chosen 𝑁 , the linear system involves about 60𝑘 (buildings alone) and 180𝑘
(buildings and walls) nodal unknowns.
For the sake of comparison, we also provide numerical results for the well-known

Nicolaides coarse space [14], made of flat-top partition of unity functions associated
with the overlapping partitioning. As the scalability provided by the Nicolaides space
relies on the Poincaré inequality over the subdomains, we further partition (Ω′

𝑗
) 𝑗

into a family of connected regions for this space. In other words, let 𝑚 𝑗 denote the
number of disconnected components for each overlapping subdomain Ω′

𝑗
and let

Ω′
𝑗 ,𝑙
, 𝑙 = 1, . . . , 𝑚 𝑗 denote the corresponding disconnected component. Then our

new overlapping partioning contains 𝑚 =
∑𝑁

𝑗=1 𝑚 𝑗 total subdomains and is given by

(Ω̂𝑘 )𝑘∈{1,...,𝑚} =
(
(Ω′

𝑗 ,𝑙)𝑙∈{1,...,𝑚 𝑗 }
)
𝑗∈{1,...,𝑁 } .

Then, the Nicolaides coarse space is as follows. The 𝑘th row of R0 and therefore
the 𝑘th column of R𝑇

0 is given by (R
T
0 )𝑘 = R̂𝑇

𝑘
D̂𝑘R̂𝑘1 for 𝑘 = 1, . . . , 𝑚, where R̂𝑘

and D̂𝑘 are the restriction and partition of unity matrices corresponding to Ω̂𝑘 and 1
is a vector full of ones. The partition of unity matrices are constructed such that
I =

∑𝑚
𝑘=1 R̂𝑇

𝑘
D̂𝑘R̂𝑘 .

Figure 4 reports convergence histories of the preconditioned CG method using
the Nicolaides and Trefftz-like coarse spaces for the data set including both walls and
buildings. Table 1 summarizes the numerical performance for data sets including
or excluding walls. In particular, for both preconditioners, it reports the dimensions
of the coarse spaces, as well as the number of CG iterations required to achieve
a relative 𝑙2 error of 10−8.
The performance of the Trefftz-like coarse space appears to be very robust with

respect to both 𝑁 and the complexity of the computational domain. The improvement
with respect to the alternative Nicolaides approach is quite striking, especially in
the case of the minimal geometric overlap. As expected, increased overlap in the
first level of the Schwarz preconditioner provides additional acceleration in terms
of iteration count. However, for the Trefftz-like space, the results with minimal
geometric overlap appear to already be quite reasonable.
The dimensions and the relative dimensions of the two coarse spaces are reported

in Table 1. Relative dimension refers to the would-be dimension of the coarse space
in the case of a homogeneous domain with Ω𝑆 = ∅, that is, the relative dimensions
are computed as dim(𝑅0)

(
√
𝑁+1)2 for the Trefftz-like space and as

dim(𝑅0)
𝑁

for the Nicolaides
space. We observe that the Trefftz-like coarse space requires a much larger number
of degrees of freedom, which naturally leads to a large coarse system to solve. We
note that the contrast between the dimensions of two spaces reduces as 𝑁 grows. In
general, the dimension of the Trefftz-like coarse space seems reasonable given the
geometrical complexity of the computational domain.
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Table 1 PCG iterations, condition number, dimension, and relative dimension for the Trefftz-like
and Nicolaides coarse spaces. Results are shown for minimal geometric overlap and 1

20𝐻 , where
𝐻 = max 𝑗 diam(Ω 𝑗 ) . As the dimension of the Nicolaides space will change with respect to the
overlap, its dimension is given as the average dimension over the two overlap values.

Nicolaides Trefftz
it. cond. dim. (rel) it. cond. dim. (rel)

N min. 𝐻
20 min. 𝐻

20 min 𝐻
20 min. 𝐻

20
16 no walls 149 51 581 82 21 (1.3) 52 28 59 11 170 (6.8)

walls 348 70 6826 133 96 (6.0) 56 22 136 7 400 (16.0)
64 no walls 164 78 567 119 85 (1.3) 50 28 50 12 433 (5.3)

walls 359 132 5902 297 256 (4.0) 56 26 57 9 880 (10.9)
256 no walls 136 81 273 89 312 (1.2) 56 27 54 10 1010 (3.5)

walls 317 159 4575 12 719 (2.8) 59 30 60 13 1912 (6.6)
1024 no walls 120 83 341 149 1204 (1.2) 56 28 76 13 2500 (2.3)

walls 362 174 3895 1310 2044 (2.0) 61 28 97 13 4253 (3.9)

(a) Minimal geometric overlap (b) Overlap 1
20 𝐿

Fig. 4 Convergence curves for the Trefftz-like (solid lines) and Nicolaides (dashed lines) coarse
spaces for the data set involving both buildings and walls and two overlap sizes. Colors correspond
to the number of subdomains as follows: 𝑁 = 16 (blue), 𝑁 = 64 (orange), 𝑁 = 256 (green),
𝑁 = 1024 (red).

5 Conclusions

In this work we presented a novel Trefftz-like coarse space for the two-level ASM
preconditioner, specifically designed for problems resulting from elliptic PDEs in
perforated domains. This coarse space is robust with respect to data complexity
and number of subdomains on a fixed total domain size, and provides significant
acceleration in terms of Krylov iteration counts when compared to a more standard
Nicolaides coarse space. This improvement comes at the price of a somewhat larger
coarse problem. Current work in progress involves coarse approximation error and
stable decomposition estimates and is left to a future article by the same authors.
We are also planning to extend the presented two-level preconditioning strategy to
nonlinear PDEs that model free-surface flows.
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On Global and Monotone Convergence of the
Preconditioned Newton’s Method for Some
Mildly Nonlinear Systems

Konstantin Brenner

1 Introduction

Let 𝛽 be a diagonal mapping from R𝑁 to itself and let 𝐴 be an 𝑁 × 𝑁 real matrix.
Given some 𝑟 ∈ R𝑁 , we are interested in solving numerically the flowing system of
nonlinear equations

𝛽(𝑢) + 𝐴𝑢 = 𝑟. (1)

Such mildly nonlinear systems with only a diagonal nonlinearity are commonly
found in the context of geophysical flow and transport modeling, where they result
from the discretization of nonlinear evolutionary PDEs. They arise, for example,
from Richards’ and porous medium equations, or, alternatively, from the models of
reactive transport involving equilibrium adsorption.
This contribution is concerned with the global convergence analysis of precondi-

tionedNewton’smethods applied to (1). Nonlinear preconditioning is an increasingly
popular technique that may drastically improve the robustness and convergence rate
of linearization schemes such as Newton’s method. As in the case of linear problems,
the nonlinear preconditioning consists in replacing the original system by an equiva-
lent one that can be solved more efficiently. Since more than twenty years variety of
nonlinear preconditioning methods has been proposed, including Schwarz-inspired
methods ASPIN [4], MSPIN [9], [13] and RASPEN [6], as well as the nonlinear
versions of FETI-DP [10] and BDDC [11].
Nonlinear preconditioning appears to be particularly efficient in the application

to models of subsurface flow and reactive transport [9], [12], where the failures and
lack of robustness of nonlinear solvers is one the major factors limiting the reliability
of the simulation codes. In those applications, the major benefit seems to result in the
form of an extended convergence region, which, in case of time-dependent problems,
allows for larger time steps [12].

Konstantin Brenner
Université Côte d’Azur, LJAD, CNRS, INRIA, e-mail: konstantin.brenner@univ-cotedazur.fr
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The present work aims to contribute to the theoretical analysis of nonlinear pre-
conditioning methods, which remains relatively unexplored. We extend the previous
work [2], concerned with the Jacobi-Newton method, and cover the nonlinear coun-
terparts of some popular linear preconditioners based onmulti-splitting of the system.
Our analysis includes, in particular, nonlinear preconditioning by block Jacobi or
RAS methods. We prove that, under appropriate assumptions discussed below, the
one-level RAS-Newton method (or RASPEN [6]) applied to (1) exhibits global and
essentially monotone convergence. The analysis of this method is carried out in the
framework on nonlinear multi-splitting methods [7, 8], and extends to other methods
such as, for example, block Gauss-Seidel.
As an alternative to nonlinear preconditioning, we study a simpler two-step

scheme alternating the nonlinear multi-splitting and the standard Newton lineariza-
tion steps. The two-step multi-splitting/Newton scheme enjoys the same global and
monotone convergence properties as the full preconditioned method. We note that
in the context of the RAS approach, such scheme has been proposed in [5] under
the name of NKS-RAS method. It turns out that for simple splitting methods, like
(block) Jacobi or Gauss-Seidel, the preconditioned Newton’s method is equivalent
to the former two-step approach.
Our convergence analysis relies on the Monotone Newton Theorem [1, 14]; and

requires two major assumptions on the system (1), namely the concavity of the
nonlinear map involved in (1) and the assumption that the Jacobian of the system
has a nonnegative inverse. More specifically, we will assume the following

(𝐴1) For each 0 ≤ 𝑖 ≤ 𝑁 , the functions 𝛽𝑖 ∈ 𝐶1 (R) are monotone and concave.
(𝐴2) For any 𝑢 ∈ R𝑁 , the matrix 𝛽′(𝑢) + 𝐴 is an M-matrix.

We wish to stress that the assumptions (𝐴1) and (𝐴2) are quite sub-optimal and
aim to improve reader’s experience at the expense of sharpness. For example, the
generalizations of (𝐴1) can be performed along the following lines. First, one can
relax the regularity assumption; clearly piecewise regular functions 𝛽𝑖 would do.
Secondly, the derivative of 𝛽𝑖 need not to be bounded, or alternatively 𝛽𝑖 need not be
defined over R, such case has been treated in [2]. As a matter of fact, we believe that
the analysis presented here can be extended to 𝛽𝑖 being merely maximal monotone
and concave (in some appropriate sense). We also note that the analysis presented
below applies to 𝛽 convex instead on concave. The explicit concavity assumption is
motivated the the applications to porous media flow models that we have in mind.
Similarly, the assumption (𝐴2) can be relaxed by allowing positive off-diagonal
elements in the Jacobian, assuming, for example, that 𝐴 is nonsingular and 𝐴−1 ≥ 0.
Before moving any further, let us recall some basic properties of the system (1):

Proposition 1 (Existence and uniqueness of solution)
Let 𝐹 (𝑢) = 𝛽(𝑢) + 𝐴𝑢. Under the assumptions (𝐴1) and (𝐴2), the mapping 𝐹−1

is well defined on R𝑁 and is convex.

Next, we state the global version of the Monotone Newton Theorem, for which
we refer to [14].
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Theorem 1 (Global monotone Newton theorem)
Let F : R𝑁 → R𝑁 be continuous, Gâteaux differentiable and concave. Suppose

that F ′(𝑢) has a nonnegative inverse for all 𝑢 ∈ R𝑁 , and assume that F (𝑢) = 0 has
a solution. Then, for any 𝑢0 ∈ R𝑁 , the sequence

𝑢𝑛+1 = 𝑢𝑛 − F ′(𝑢𝑛)−1F (𝑢𝑛), 𝑛 ≥ 0

satisfies F (𝑢𝑛) ≤ 0 and 𝑢𝑛 ≤ 𝑢𝑛+1 ≤ F −1 (0) for all 𝑛 ≥ 1. If, in addition, there
exists an invertible 𝑃 ∈ M(𝑁) such that F ′(𝑢)−1 ≥ 𝑃 ≥ 0 for all 𝑢 ∈ R𝑁 , then the
sequence 𝑢𝑛 converges to F −1 (0).

In view of Theorem 1 and Proposition 1 one can deduce that Newton’s method
applied to the system (1) converges regardless of the initial guess. Unfortunately,
depending on the stiffness of the function 𝛽, this convergence may become arbitrarily
slow as pointed out in [3] and [2]. While the lack of robustness with respect to the
shape of 𝛽 can be addressed by diagonal Jacobi preconditioning [2], the efficiency of
the Jacobi-Newtonmethod for systems resulting from the discretization of degenerate
PDEs is still controlled by the mesh size, which motivates the use of nonlinear
preconditioning of domain decomposition type.
Having in mind the application to the overlapping domain decomposition, we

introduce in Section 2 the preconditioning technique based on the nonlinear multi-
splitting of (1). We prove that the preconditioned system satisfies Theorem 1 and,
therefore, Newton’s method is unconditionally convergent. In Section 3 we present
the numerical results based on a discretized porous media equation [16] and using
some variants of nonlinear RAS method including RASPEN and RAS/Newton two-
step methods (NKS-RAS method from [5]).

2 Nonlinear multi-splitting method

In this section we present the nonlinear preconditioning procedure inspired by the
linear multi-splitting methods [7], [15].
Let (𝑃𝑖 , 𝑄𝑖)𝑖=1,...,𝐾 be a finite of family matrices such that 𝐴 = 𝑃𝑖 − 𝑄𝑖 . We

denote 𝑀𝑖 (𝑢) = 𝛽(𝑢) +𝑃𝑖𝑢 and 𝑁𝑖 (𝑢) = 𝑄𝑖𝑢 + 𝑟. If 𝑀𝑖 (𝑢) admits an inverse defined
on R𝑁 , then one can reformulate the original problem (1) as

F𝑖 (𝑢) := 𝑢 − 𝑀−1
𝑖 (𝑁𝑖 (𝑢)) = 0. (2)

Let (𝐸𝑖)𝑖=1,...,𝐾 be a family of nonnegative diagonalmatrices such that
∑𝐾
𝑖=1 𝐸𝑖 = 𝐼.

Multiplying (2) by 𝐸𝑖 and summing over 𝑖 we obtain the system

F (𝑢) :=
𝐾∑︁
𝑖=1

𝐸𝑖F𝑖 (𝑢) = 𝑢 −
𝐾∑︁
𝑖=1

𝐸𝑖𝑀
−1
𝑖 (𝑁𝑖 (𝑢)) = 0. (3)
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Clearly, the solution of the original system satisfies (3). The proposition below states
that F is concave and that F ′(𝑢) has nonnegative inverse for all 𝑢, which implies,
in particular, that F is inverse isotone, and, therefore, the solution to (3) is unique.

Proposition 2 Assume that for all 𝑢 ∈ R𝑁 and all 𝑖, the splitting

𝐹 ′(𝑢) = 𝑀 ′
𝑖 (𝑢) −𝑄𝑖

is weakly regular and that 𝑀 ′
𝑖
(𝑢) is an M-matrix. Then, the mapping F (𝑢) from (3)

is a concave bijection from R𝑁 to R𝑁 , and, for all 𝑢 ∈ R𝑁 , the matrix F ′(𝑢) is an
M-matrix satisfying F ′(𝑢)−1 ≥ 𝐼.

Proof In view of Proposition 1 the mappings 𝑀−1
𝑖
are well defined on R𝑁 and are

convex, which implies that F is concave since 𝐸𝑖 ≥ 0. Let us show that for all
𝑢 ∈ R𝑁 , the matrix F ′(𝑢) is an M-matrix satisfying F ′(𝑢)−1 ≥ 𝐼. We begin with
the following spectral bound, which is the founding stone for the analysis of the
multi-splitting methods (see [15])

𝜌

(∑︁
𝐸𝑖𝑀

′
𝑖 (𝑢)−1𝑄𝑖

)
< 1. (4)

Let 𝑢̃𝑖 = 𝑀−1
𝑖

(𝑁𝑖 (𝑢)), we have F ′(𝑢) = 𝐼 − ∑
𝑖 𝐸𝑖𝑀

′
𝑖
(𝑢̃𝑖)−1𝑄𝑖 . Let 𝑤 ∈ R𝑁

be a component-wise maximum of the vectors 𝑢̃𝑖; that is (𝑤)𝑘 = max𝑖 (𝑢̃𝑖)𝑘 .
Since 𝑢 ↦→ 𝑀 ′

𝑖
(𝑢) is antitone and 𝑀 ′

𝑖
(𝑢) has nonnegative inverse, we deduce that

𝑀 ′
𝑖
(𝑢̃𝑖)−1𝑀 ′

𝑖
(𝑤) ≤ 𝐼, and, since 𝑀 ′

𝑖
(𝑢̃𝑖)−1𝑄𝑖 ≥ 0 and 𝑀 ′

𝑖
(𝑤)−1𝑄𝑖 ≥ 0, we obtain

𝑀 ′
𝑖 (𝑢̃𝑖)−1𝑄𝑖 = 𝑀 ′

𝑖 (𝑤)−1𝑄𝑖 +
(
𝑀 ′
𝑖 (𝑢̃𝑖)−1𝑀 ′

𝑖 (𝑤) − 𝐼

)
𝑀 ′
𝑖 (𝑤)−1𝑄𝑖 ≤ 𝑀 ′

𝑖 (𝑤)−1𝑄𝑖

and 0 ≤ ∑
𝑖 𝐸𝑖𝑀

′
𝑖
(𝑢̃𝑖)−1𝑄𝑖 ≤

∑
𝑖 𝐸𝑖𝑀

′
𝑖
(𝑤)−1𝑄𝑖 . It follows from (4) that

𝜌

(∑︁
𝑖

𝐸𝑖𝑀
′
𝑖 (𝑢̃𝑖)−1𝑄𝑖

)
≤ 𝜌

(∑︁
𝑖

𝐸𝑖𝑀
′
𝑖 (𝑤)−1𝑄𝑖

)
< 1,

which implies in turn that F ′(𝑢)−1 ≥ 0. Clearly the off-diagonal part of F ′(𝑢) is
nonpositive, implying that it is M-matrix; moreover, since F ′(𝑢) ≤ 𝐼, we deduce
that F ′(𝑢)−1 ≥ 𝐼. �

Based on Proposition 2 one shows that the mapping F satisfies the assumptions of
Theorem 1. In addition, we consider the following multi-splitting/Newton two-step
scheme: Given 𝑢0 ∈ R𝑁 , compute for all 𝑛 ≥ 0

𝑢̃𝑛 =
∑︁
𝑖

𝐸𝑖𝑀
−1
𝑖 (𝑁𝑖 (𝑢𝑛)) (5)

and
𝑢𝑛+1 = 𝑢̃𝑛 − 𝐹 ′(𝑢̃𝑛)−1 (𝐹 (𝑢̃𝑛) − 𝑟) . (6)
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We note that (5) can be interpreted as a step of a quasi-Newton method applied to (3),
where the matrix F (𝑢)−1 has been replaced by its subinverse 𝐼. It can be shown
that (5)–(6) leads again to a globally convergent scheme. Remarkably enough, in the
case of a simple splitting, like (block) Jacobi or Gauss-Seidel, the two-step scheme
is equivalent to the preconditioned Newton’s method.

Proposition 3 Let 𝐴 = 𝑃−𝑄 be some splitting such that the inverse of 𝑀 = 𝛽(𝑢)+𝑃𝑢
is well defined and 𝑀 ′(𝑢) is non-singular for all 𝑢 ∈ R𝑁 . Then, the two-step scheme
and the preconditioned Newton’s generate the same iterates.

Proof Let 𝑢̃ = 𝑀−1 (𝑁 (𝑢)), we remark that F (𝑢) = 𝑢 − 𝑢̃ and F ′(𝑢) =

𝐼 − 𝑀 ′(𝑢̃)−1𝑄 = 𝑀 ′(𝑢̃)−1𝐹 ′(𝑢̃). Therefore, the update generated by the precon-
ditioned Newton’s method starting from 𝑢 is given by

𝛿prec (𝑢) =
(
𝑀 ′(𝑢̃)−1𝐹 ′(𝑢̃)

)−1
(𝑢̃ − 𝑢) . (7)

Now, let us consider the update generated by the two-step method (5)-(6). We have
𝛿two−step (𝑢) = 𝑢̃ − 𝑢 − 𝐹 ′(𝑢̃)−1𝐹 (𝑢̃). We remark that 𝐹 (𝑢̃) = 𝑀 (𝑢̃) − 𝑁 (𝑢̃) =

𝑁 (𝑢) − 𝑁 (𝑢̃), and using linearity of 𝑁 , we deduce that 𝐹 (𝑢̃) = 𝑄(𝑢 − 𝑢̃). Therefore,

𝛿𝑢two−step =
(
𝐼 + 𝐹 ′(𝑢̃)−1𝑄

)
(𝑢̃ − 𝑢) = 𝐹 ′(𝑢̃)−1𝑀 ′(𝑢̃) (𝑢̃ − 𝑢),

which, in view of (7), provides 𝛿two−step (𝑢) = 𝛿prec (𝑢). �

3 Numerical experiment

We now proceed with the numerical experiment that illustrates the performance of
block Jacobi-Newton, RASPEN and the two-step RAS/Newton methods applied to
the system resulting from the discretization of a degenerate parabolic equation. The
(block) Jacobi-Newton consists of applying Newton’s method to the system of the
form (2) obtained from a simple splitting 𝐴 = 𝑃 −𝑄, where 𝑃 is a (block) diagonal
part of 𝐴. On the other hand, RASPEN can be expressed as Newton’s method applied
to the system (3) resulting from a particularmulti-splitting (wee refer to [8] for further
details). Using same multi-splitting, the RAS/Newton method is given by (5)–(6).
The test case considered here is similar to the one presented in [2] to which we

refer for more detailed discussion. In brief, we are interested in the algebraic system
resulting from the implicit in time discretization of the porous media equation [16].
More specifically, focusing on a single step (of length 𝜏) of the backward Euler time
integration scheme, we consider the system of the form (1) resulting from the finite
difference discretization of the following boundary value problem{

𝛽(𝑢) − 𝛽(𝑢𝑖𝑛𝑖) = 𝜏𝜕2𝑥𝑥𝑢 𝑥 ∈ (0, 1),
𝜕𝑥𝑢(0) = −𝑞, 𝜕𝑥𝑢(1) = 0,

(8)
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Fig. 1 Left: the solution for 𝑁 = 100 (black) and the iterates 𝛽 (𝑢𝑛) of the Jacobi-Newton method
for 𝑛 = 10, 20, . . . 70. Right: convergence history of the Jacobi-Newton method for 𝑁 = 100 (blue)
and 400 (red), the iteration count is scaled by the size of the discrete system; the error is measured
in 𝑙∞ norm. The vertical black line positioned at 𝑁 𝑓 /𝑁 indicate the location of the solution front.

where 𝛽(𝑢) = 𝑢1/𝑚 with 𝑚 > 1. We consider the following set of parameters:
𝑚 = 10, 𝑞 = 1, 𝜏 = 0.5, and 𝛽(𝑢𝑖𝑛𝑖) = 10−6. The problem (8) is discretized using
𝑁 = 100 or 400 degrees of freedom, and the vector 𝑢𝑖𝑛𝑖 is used as the initial guess
by the iterative methods under consideration.
We note that, since the derivative of 𝛽 is unbounded at the origin, onemay consider

the change of variable in (8). For example, using 𝛽(𝑢) as the new unknown will
improve the performance of the straightforward Newton’s method [3]. Unfortunately,
the modified system is no longer concave and, therefore, the monotone convergence
is lost; moreover, compared to the splitting-based preconditioning, the convergence
of Newton’s method applied to the modified system turns out to be slower [2].
The solutions of the porous media equation are characterized by the finite speed

of propagation of the support. Qualitatively this behavior persists even for strictly
positive but small initial data. For the discrete counterpart of the elliptic problem (8)
the latter property is reflected in the performance of Newton’s method. Typically,
and unless some Schwarz-type preconditioning is performed, the solution fronts
resulting from Newton’s method can cross at most one degree of freedom at time.
For the Jacobi-Newton method, this behavior is illustrated by Figure 1. The left
sub-figure exhibits the final position of the solution front and some iterates of the
method. The right sub-figure reports the convergence history of the method for two
values of the mesh size. The numerical performance is characterized by two very
distinct regimes: a very fast near-solution convergence is preceded by a long period
of a slow error decrease. As a matter of fact, the length of the convergence plateau is
proportional to the number of the degrees of freedom 𝑁 𝑓 that has to be crossed by
the solution front, and can be expressed as 𝜎 𝑁 𝑓 , where 𝜎 is the cost of propagating
the front trough one degree of freedom. As shown in [3] and [2], the parameter 𝜎
of the standard Newton’s method can become arbitrarily large depending on the
coefficient 𝑚 and the initial data. In contrast, the Jacobi-Newton method [2] appears
to be virtually independent of 𝑚 and can handle general nonnegative initial data.
Nevertheless, the efficiency of the latter method is still dependent on 𝑁 𝑓 and thus on
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Fig. 2 Convergence history of preconditioned Newton’s method for 𝑁 = 100 (blue) and 400 (red);
the error is measured in 𝑙∞ norm.

the discretization. More precisely, the right side of Figure 1 reflects the convergence
of the Jacobi-Newton for 𝑁 = 100 and 400 degrees of freedom. By scaling the
iteration count by 𝑁 we observe that the performance of the method is essentially
controlled by 𝑁 𝑓 . The vertical black line positioned at 𝑁 𝑓 /𝑁 reflects the final
location of the front. The scaled convergence curves are almost identical, while the
total iteration count measured for the Jacobi-Newton method is of 71 for 𝑁 = 100
and 271 for 𝑁 = 400.
The dependency of the mesh size can be removed by means of the nonlinear

domain decomposition. We report on Figure 2 the convergence history of RASPEN
and RAS/Newton (RAS/N) methods for 5 equally sized sub-domain with the relative
overlap of 0.1. In addition, we consider the case of the minimal algebraic overlap,
denoted RASPEN(0), corresponding to preconditioning based on the block Jacobi
method. In this numerical experiment none of the considered methods appear to
exhibit any substantial dependency on the mesh size. Unsurprisingly, the overlap
seems to be beneficial for the convergence of both RASPEN and RAS/N. While
being slightly less efficient than RASPEN, the two-step RAS/N method still appears
as a competitive alternative. The convergence of the nonlinear RAS method, applied
as a solver instead of being used as a preconditioner, is not reported here, but roughly
speaking, the nonlinear RAS method is as inefficient as the linear one.

4 Conclusion

Wehave analyzed a family of preconditionedNewtonmethods based on the nonlinear
multi-splitting approach in application to mildly nonlinear systems resulting from
the discretization of some degenerate evolutionary PDEs such as porous media
or Richards’ equation. Based on the Monotone Newton Theorem we show that
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the preconditioned method is globally convergent. The current result extends our
previous analysis [2] to the one-level RASPEN method [6]. In addition, for the
preconditioning based on a single nonlinear splitting, including themethod presented
in [2], the preconditioned Newton’s method is equivalent to a simpler to implement
predictor-corrector scheme. The numerical experiment based on discrete porous
media equation shows that the performance of block Jacobi-Newton, RASPEN and
RAS/Newton methods is essentially independent of the mesh size.
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Optimized Schwarz Method in Time
for Transport Control

Duc-Quang Bui, Bérangère Delourme, Laurence Halpern, and Felix Kwok

1 Introduction

Parallel-in-timemethods for solving optimal control problems under time-dependent
PDE constraints have gained much interest in the past decade (see, e.g., ParaOpt [5]).
Among all the possible approaches, it is natural to consider Schwarz time domain
decomposition techniqueswhen one dealswith transport equations, since the original
control problem is equivalent to an elliptic problem in which the initial and target
conditions play the role of boundary conditions (see e.g. [1]).
In this paper, we consider the following one-dimensional transport control prob-

lem. Let 𝑇 > 0, and let 𝑦ini and 𝑦tar be two periodic functions in ∈ 𝐿2loc (R) with
period one. We want to find a control 𝑣 ∈ 𝐿2loc (R × (0, 𝑇)), periodic in space of
period one, such that the function 𝑦 defined by{

𝜕𝑡 𝑦 + 𝜕𝑥𝑦 = 𝑣 in R × (0, 𝑇),
𝑦(., 0) = 𝑦ini,

(1)

verifies the exact constraint

𝑦(., 𝑇) = 𝑦tar. (2)

Over all the possible controls 𝑣, we shall seek the onewithminimal 𝐿2-norm, namely,
we minimize the functional

𝐽 (𝑣) = 1
2

∫ 𝑇

0
‖𝑣‖2

𝐿2 (0,1) . (3)
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The optimization problem (1)-(2)-(3) admits a unique solution 𝑣∗ that can be deduced
from the following optimality system: find (𝑦, 𝜆), 1-periodic in space, such that

𝜕𝑡 𝑦 + 𝜕𝑥𝑦 = 𝜆 in R × (0, 𝑇),
𝜕𝑡𝜆 + 𝜕𝑥𝜆 = 0 in R × (0, 𝑇),
𝑦(., 0) = 𝑦ini,
𝑦(., 𝑇) = 𝑦tar,

𝑣∗ = 𝜆. (4)

2 Domain decomposition in time for the continuous problem

We apply Schwarz-in-time domain decomposition methods to (4). To do so, we
decompose the time interval (0, 𝑇) into two subdomains (0, 𝑇1) and (𝑇1, 𝑇) with
𝑇1 = Δ𝑇 =

𝑇

2
. To start with, we solve the system (4) using the optimized Schwarz

method with Robin transmission conditions on the interface 𝑡 = Δ𝑇 , with a single
parameter 𝔭. More specifically, at iteration 𝑘 , the functions 𝑦𝑘1 and 𝜆

𝑘
1 (resp. 𝑦

𝑘
2 and

𝜆𝑘
2 ) are solutions to (4) on (0, 𝑇1) (resp (𝑇1, 𝑇)) together with the following boundary
condition:

𝔭𝑦𝑘1 + 𝜆𝑘
1 = 𝔭𝑦𝑘−12 + 𝜆𝑘−1

2 , −𝔭𝑦𝑘2 + 𝜆𝑘
2 = −𝔭𝑦𝑘−11 + 𝜆𝑘−1

1 . (5)

Theorem 1 Let 𝔭 =
1
Δ𝑇

. Then the Schwarz iterative algorithm based on (5) and
applied to the system (4) converges after 1 iteration.

The theorem is proven by calculating explicitly the solutions of the sub-domain
problems. We point out that in [6], a convergence proof using energy estimates has
been given for all 𝔭 > 0. On the other hand, to our knowledge, there has not been
a detailed analysis of the convergence factor on the corresponding discrete systems
(see [4, 7] for a convergence proof for semi-discrete schemes in the parabolic case).
Understanding the behaviour of the discrete systems is the subject of the next sections.

3 Time-domain decomposition for a discrete problem

3.1 Discrete control problem

To discretize our problem, we consider a spatial discretization based on the up-
wind scheme with 𝑁 uniform nodes and a mesh size of Δ𝑥 = 1/𝑁 . We denote by
AΔ𝑥 ∈ M𝑁 (R) the corresponding matrix: its diagonal terms are Δ𝑥−1, its lower
sub-diagonal ones are equal to −Δ𝑥−1, and [AΔ𝑥]1,𝑁 = −Δ𝑥−1 (to take into account
the periodicity), and zero coefficients elsewhere. The time discretization is made
using the semi-implicit Euler scheme (explicit in 𝑦 and implicit in 𝑣), using 𝑀 + 1
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uniform nodes on [0, 𝑇] and a mesh size of Δ𝑡 = 𝑇
𝑀
. We denote by yini, ytar (vectors

of R𝑁 ), the discretization of 𝑦ini and 𝑦tar. We mimic the continuous minimization
problem (1)-(2)-(3) by considering the following discrete one:

min
v=(v𝑛

𝑖
) ∈R𝑁×𝑀

𝐽 (v) = 1
2
Δ𝑡 Δ𝑥 ‖v‖2, (6)

where the control v = (v1, . . . , v𝑀 ) is such that y = (y0, . . . , y𝑀 ) ∈ (R𝑁 )𝑀+1

satisfies 
y𝑚 − y𝑚−1

Δ𝑡
+ AΔ𝑥y𝑚−1 = v𝑚 𝑚 = 1, . . . , 𝑀,

y0 = yini,
(7)

as well as the target constraint
y𝑀 = ytar. (8)

In the problem (6), ‖ · ‖ denotes the usual Euclidean norm on R𝑁×𝑀 . As in the
continuous case, Problem (6)-(7)-(8) admits a unique solution v𝑚∗ = 𝜆𝜆𝜆𝑚, where
(y𝑚, 𝜆𝜆𝜆𝑚) is the solution of the following optimality system (see [3]):

y𝑚 − (I − Δ𝑡 AΔ𝑥)y𝑚−1 = Δ𝑡𝜆𝜆𝜆𝑚 𝑚 = 1, . . . , 𝑀,

𝜆𝜆𝜆𝑚−1 − (I − Δ𝑡 A𝑡
Δ𝑥
)𝜆𝜆𝜆𝑚 = 0 𝑚 = 1, . . . , 𝑀,

y0 = yini,
y𝑀 = ytar.

(9)

In the sequel, in order to guarantee the convergence of the scheme, we shall consider
the standard relation between Δ𝑡 and Δ𝑥 given by

Δ𝑡

Δ𝑥
= 𝑟, (10)

where 𝑟 is a given real parameter in (0, 1).

3.2 Schwarz domain decomposition

Weapply the Schwarzmethod strategy (5) to the system (9). For the sake of simplicity,
let us consider 𝑀 = 2𝐿, so that the interface 𝑇/2 corresponds exactly to the node 𝐿.
The algorithm then reads: starting from an initial guess (𝜉𝜉𝜉01, 𝜉𝜉𝜉

0
2) ∈ R2𝑁 , at each

iteration 𝑘 ≥ 1, we construct (y𝑘,𝑚

1 , 𝜆𝜆𝜆
𝑘,𝑚

1 ) (respectively (y𝑘,𝑚

2 , 𝜆𝜆𝜆
𝑘,𝑚

2 )) solution to (9)
for 𝑚 = 1, . . . , 𝐿 (resp. 𝑚 = 𝐿 +1, . . . , 𝑀) together with the transmission conditions

𝔭y𝑘,𝐿

1 + 𝜆𝜆𝜆𝑘,𝐿

1 = 𝜉𝜉𝜉𝑘−11 , −𝔭y𝑘,𝐿

2 + 𝜆𝜆𝜆𝑘,𝐿

2 = 𝜉𝜉𝜉𝑘−12 . (11)

Then, we update 𝜉𝜉𝜉𝑘1 by taking

𝜉𝜉𝜉𝑘1 = 𝔭y𝑘,𝐿

2 + 𝜆𝜆𝜆𝑘,𝐿

2 , 𝜉𝜉𝜉𝑘2 = −𝔭y𝑘,𝐿

1 + 𝜆𝜆𝜆𝑘,𝐿

1 . (12)
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Remark 1 The local subdomain problems are indeed optimality systems associated
with local control problems (see [6]).

The convergence analysis of the algorithm (9)-(11)-(12) relies on the Discrete
Fourier transform in space R𝑁 → R𝑁 , (𝑢1, . . . , 𝑢𝑁−1) ↦→ (𝑢̂0, . . . 𝑢̂𝑁−1) defined by

𝑢̂ℓ =
𝑁−1∑
𝑛=0

𝑢𝑛 exp(−2𝜋iℓ𝑛Δ𝑥). Indeed, (9)-(11)-(12) can be transformed as follows:
at iteration 𝑘 , in subdomain Ω𝑖 , for any ℓ between 0 and 𝑁 − 1 (spatial frequency),
𝑦̂
𝑘,𝑚

𝑖,ℓ
(with 𝑚 denoting the time step) solves{

𝑦̂
𝑘,𝑚

𝑖,ℓ
− (1 − 𝜎(ℓ) Δ𝑡) 𝑦̂𝑘,𝑚−1

𝑖,ℓ
= Δ𝑡𝜆̂

𝑘,𝑚

𝑖,ℓ
,

(1 − 𝜎(ℓ)Δ𝑡)𝜆̂𝑘,𝑚

𝑖,ℓ
− 𝜆̂

𝑘,𝑚−1
𝑖,ℓ

= 0,
where 𝜎(ℓ) = 1 − exp(−2𝜋iℓΔ𝑥)

Δ𝑥
,

(13)

together with boundary conditions{
𝑦̂
𝑘,0
1,ℓ = 𝑦̂ini,ℓ ,

𝔭𝑦̂
𝑘,𝐿

1,ℓ + 𝜆̂
𝑘,𝐿

1,ℓ = 𝜉𝑘−11,ℓ ,

{
−𝔭𝑦̂𝑘,𝐿2,ℓ + 𝜆̂

𝑘,𝐿

2,ℓ = 𝜉𝑘−12,ℓ ,

𝑦̂
𝑘,𝑀

2,ℓ = 𝑦̂tar,ℓ .
(14)

Then,

𝜉𝑘1,ℓ = 𝔭𝑦̂
𝑘,𝐿

2,ℓ + 𝜆̂
𝑘,𝐿

2,ℓ , 𝜉𝑘2 = −𝔭𝑦̂𝑘,𝐿1,ℓ + 𝜆̂
𝑘,𝐿

1,ℓ . (15)

As the problem is linear, the convergence analysis of the algorithm reduces to
investigating the case 𝑦̂ini,ℓ = 𝑦̂tar,ℓ = 0, starting from given data 𝜉01,ℓ and 𝜉02,ℓ .
Eliminating 𝑦̂𝑘,0

𝑖,ℓ
and 𝜆̂𝑘,0

𝑖,ℓ
by solving explicitly the recurrence equations (13)–(15),

we see that 𝜉𝑘+2
𝑖,ℓ
follows the geometric progression

𝜉𝑘+2𝑖,ℓ = 𝜌Δ𝑡 (𝔭, ℓ) 𝜉𝑘𝑖,ℓ with 𝜌Δ𝑡 (𝔭, ℓ) =
(
1 − 𝔭𝛾Δ𝑡 (ℓ)
1 + 𝔭𝛾Δ𝑡 (ℓ)

) (
|𝛽Δ𝑡 (ℓ) |2 − 𝔭𝛾Δ𝑡 (ℓ)
|𝛽Δ𝑡 (ℓ) |2 + 𝔭𝛾Δ𝑡 (ℓ)

)
,

where 𝛽Δ𝑡 (ℓ) = (1 − 𝜎(ℓ)Δ𝑡)𝐿 , and 𝛾Δ𝑡 (ℓ) = Δ𝑡
∑𝐿−1

𝑚=0 |1 − 𝜎(ℓ)Δ𝑡 |2𝑚. As in [2],
our objective is to minimize |𝜌Δ𝑡 | uniformly in ℓ, namely, to solve the problem

min
𝔭>0

(
max

ℓ=0,...,𝑁−1
|𝜌Δ𝑡 (𝔭, ℓ) |

)
. (16)

To analyse (16), and in view of Theorem 1, we first make the change of variables
𝑝 = 𝔭Δ𝑇 . Then, under the assumption (10), we see that

|1 − 𝜎(ℓ)Δ𝑡 |2 = 1 − 4 · Δ𝑡
Δ𝑥

(
1 − Δ𝑡

Δ𝑥

)
sin2 (𝜋ℓΔ𝑥) = 1 − 4𝑟 (1 − 𝑟) sin2

(
𝜋ℓ

Δ𝑡

𝑟

)
.
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It motivates us to introduce the new variable

𝑧 = 4𝑟 (1 − 𝑟) sin2
(
𝜋ℓ

Δ𝑡

𝑟

)
,

which varies between 0 and 𝑧max = 4𝑟 (1 − 𝑟) (take ℓ = 𝑁/2) as ℓ varies from 0 to
𝑁 − 1. For the sake of simplicity, we choose to optimize 𝜌Δ𝑡 over the whole interval
[0, 𝑧max] and to study

min
𝑝>0

(
max

0≤𝑧≤𝑧max
|𝜌Δ𝑡 (𝑝, 𝑧) |

)
𝜌Δ𝑡 (𝑝, 𝑧) =

𝜑Δ𝑡 (𝑧) − 𝑝

𝜑Δ𝑡 (𝑧) + 𝑝
· 𝜓Δ𝑡 (𝑧) − 𝑝

𝜓Δ𝑡 (𝑧) + 𝑝
(17)

with
𝜑Δ𝑡 (𝑧) =

Δ𝑇

𝛾Δ𝑡 (𝑧)
, 𝜓Δ𝑡 (𝑧) =

|𝛽Δ𝑡 (𝑧) |2Δ𝑇
𝛾Δ𝑡 (𝑧)

,

and |𝛽Δ𝑡 (𝑧) |2 = (1 − 𝑧)𝐿 , 𝛾Δ𝑡 (𝑧) = Δ𝑡
∑𝐿−1

𝑚=0 (1 − 𝑧)𝑚.

4 Existence, uniqueness and asymptotic study of the optimized
parameter

The following theorem proves the well-posedness of the problem (17) and describes
the asymptotic behaviour of the optimal convergence factor as Δ𝑡 goes to 0.

Theorem 2 For any Δ𝑡 > 0, Problem (17) has a unique solution 𝑝∗
Δ𝑡

, which is the
unique solution larger than 1 of the following alternation equation

max
0≤𝑧≤𝑧max

𝜌Δ𝑡 (𝑝, 𝑧) = − min
0≤𝑧≤𝑧max

𝜌Δ𝑡 (𝑝, 𝑧). (18)

Moreover, as Δ𝑡 goes to 0,

𝑝∗Δ𝑡 =
√︁
2Δ𝑇 𝑧max Δ𝑡

−1/2 + 𝑜

(
Δ𝑡−1/2

)
, (19)

max
0≤𝑧≤𝑧max

|𝜌Δ𝑡 (𝑝∗Δ𝑡 , 𝑧) | = 1 −
2
√
2

√
Δ𝑇 𝑧max

Δ𝑡1/2 + 𝑜

(
Δ𝑡1/2

)
. (20)

Remark 2 In (19)-(20), 𝑜(Δ𝑡𝑠) (with 𝑠 = ±1/2)means that the remainder is negligible
relative to Δ𝑡𝑠 . We also point out that, unless 𝑟 = 1 (in which case the scheme is
exact), we have limΔ𝑡→0 𝑝∗Δ𝑡 ≠ 1, meaning we do not recover the optimal parameter
associated with the continuous DD algorithm.

The remainder of this section is dedicated to the sketch of the proof of Theorem 2.
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Step 1: We prove that the alternation Equation (18) has a unique solution 𝑝∗
Δ𝑡

larger
than 1. Let us introduce

𝜌Δ𝑡 ,max (𝑝) = max
0≤𝑧≤𝑧max

𝜌Δ𝑡 (𝑝, 𝑧), 𝜌Δ𝑡 ,min (𝑝) = min
0≤𝑧≤𝑧max

𝜌Δ𝑡 (𝑝, 𝑧),

and the function 𝑠(𝑝) = 𝜌Δ𝑡 ,max (𝑝) + 𝜌Δ𝑡 ,min (𝑝). We prove that 𝑠 has a unique zero
larger than one (and, consequently (18) has a unique root). Indeed,

- For 𝑝 > 1, the function 𝑠 is a continuous and strictly increasing function of 𝑝.
In fact, for 𝑝 > 1, a direct computation shows that 𝜕𝑝𝜌Δ𝑡 (𝑝, 𝑧) > 0. Therefore,
𝜌Δ𝑡 ,max, 𝜌Δ𝑡 ,min, and their sum 𝑠 are strictly increasing functions of 𝑝.

- 𝑠(1) < 0 (𝜌Δ𝑡 ,max (1) ≤ 0 and 𝜌Δ𝑡 ,min (1) < 0).
- 𝑠(𝜑Δ𝑡 (𝑧max)) > 0 (𝜌Δ𝑡 ,max (𝜑Δ𝑡 (𝑧max)) > 0 and 𝜌Δ𝑡 ,min (𝜑Δ𝑡 (𝑧max)) = 0).

Thus, (18) has a unique solution 𝑝∗
Δ𝑡

> 1.

Step 2: We show that 𝑝∗
Δ𝑡

is the unique solution to Problem (17). First, based on
the properties of 𝜑Δ𝑡 and 𝜓Δ𝑡 , we can prove (by contradiction) that any solution 𝑝

of (17) must be in the interval (1, 𝜑Δ𝑡 (𝑧max)). But,

- For 𝑝 ∈ (1, 𝑝∗
Δ𝑡
), a careful investigation leads to

max
0≤𝑧≤𝑧max

|𝜌Δ𝑡 (𝑝, 𝑧) | = −𝜌Δ𝑡 ,min (𝑝) > −𝜌Δ𝑡 ,min (𝑝∗Δ𝑡 ) = max
0≤𝑧≤𝑧max

|𝜌Δ𝑡 (𝑝∗Δ𝑡 , 𝑧) |.

- Similarly, for 𝑝 ∈ (𝑝∗
Δ𝑡
, 𝜑Δ𝑡 (𝑧max)), we obtain

max
0≤𝑧≤𝑧max

|𝜌Δ𝑡 (𝑝, 𝑧) | = 𝜌Δ𝑡 ,max (𝑝) > 𝜌Δ𝑡 ,max (𝑝∗Δ𝑡 ) = max
0≤𝑧≤𝑧max

|𝜌Δ𝑡 (𝑝∗Δ𝑡 , 𝑧) |.

Therefore, 𝑝∗
Δ𝑡
is the unique global minimum of (17).

Step 3: Asymptotics of the optimal parameter 𝑝∗
Δ𝑡

and its corresponding convergence
factor with respect toΔ𝑡.Wefirst remark that Equation (18) is defined implicitly in 𝑝,
so it is a priori difficult to tackle directly. However, we can approximate 𝜌Δ𝑡 ,max (𝑝)
by 𝜌Δ𝑡 (𝑝, 0): indeed, an attentive analysis shows that there exists Δ𝑡0 > 0 and
a constant 𝐶 such that for Δ𝑡 < Δ𝑡0,

|𝜌Δ𝑡 ,max (𝑝) − 𝜌Δ𝑡 (𝑝, 0) | ≤ 𝐶𝑝−1Δ𝑡. (21)

Consequently, for small Δ𝑡, it is sufficient to consider the ’approximate’ equation

𝜌Δ𝑡 (𝑝, 0) = −𝜌Δ𝑡 (𝑝, 𝑧max), (22)

which turns out to be explicitly solvable. Its solution 𝑝∗eq,Δ𝑡 is given by

𝑝∗eq,Δ𝑡 =
©­«𝑆𝑚,Δ𝑡 −

𝑃𝑚,Δ𝑡

2
− 1
2
+

((
𝑆𝑚,Δ𝑡 −

𝑃𝑚,Δ𝑡

2
− 1
2

)2
− 𝑃𝑚,Δ𝑡

)1/2ª®¬
1/2

,
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where 𝑆𝑚,Δ𝑡 = 𝜓Δ𝑡 (𝑧max) + 𝜑Δ𝑡 (𝑧max) and 𝑃𝑚,Δ𝑡 = 𝜓Δ𝑡 (𝑧max)𝜑Δ𝑡 (𝑧max). From the
asymptotic behaviour of 𝜓Δ𝑡 (𝑧max) and 𝜑Δ𝑡 (𝑧max), we deduce that when Δ𝑡 → 0,

𝑝∗eq,Δ𝑡 =
√︁
2Δ𝑇 𝑧max.Δ𝑡

−1/2 + 𝑜

(
Δ𝑡−1/2

)
,

which implies

−𝜌Δ𝑡 (𝑝∗eq,Δ𝑡 , 𝑧max) = 𝜌Δ𝑡 (𝑝∗eq,Δ𝑡 , 0) = 1 −
2
√
2

√
Δ𝑇 𝑧max

· Δ𝑡1/2 + 𝑜

(
Δ𝑡1/2

)
.

Finally, the asymptotic formulas (19)–(20) result from (21).

5 Numerical illustration

We illustrate the results of Theorem 2 in the case of 𝑇 = 1. In the left panel of
Figure 1, we plot 1− |𝜌Δ𝑡 |max (𝑝∗Δ𝑡 ) with respect to Δ𝑡 (in logarithmic scale) for three
different values of 𝑟 . In each case, the optimized parameter 𝑝∗

Δ𝑡
is computed using

fminsearch in Matlab. As expected, whatever the choice of 𝑟 ∈ (0, 1), we obtain
straight lines with slope equal to that of the curve 𝑦 =

√
Δ𝑡.

Fig. 1 Left: Asymptotic behaviour of 1 − |𝜌Δ𝑡 |max (𝑝∗
Δ𝑡
) . Right: performance of 𝑝∗

Δ𝑡
for Δ𝑡 =

1/160, 𝑟 = 1/2.

Next, we test the performance of our domain decomposition-in-time algorithm. For
the simulation, we take Δ𝑡 = 1/160, 𝑟 = 1/2, 𝑦ini = 𝑦tar = 0, and we start from
a random initial guess 𝜉𝜉𝜉0

𝑖
(i.e. we compute the zero solution). In the right panel of

Figure 1, we display in blue the evolution of the error with respect to the number
of iterations; in the present case, it just consists of computing the maximum of
the 𝐿2 norm of 𝜉𝜉𝜉𝑘1 and 𝜉𝜉𝜉𝑘2 . The performance is as predicted by the theory. On
the other hand, the convergence rate can be drastically improved by using a two-
sided algorithm, where we allow for two different values 𝑝 and 𝑞 instead of 𝔭
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in the formulas (5). The fminsearch function provides us with two optimized
parameters (𝑝∗

Δ𝑡
, 𝑞∗

Δ𝑡
) = (1.1831, 8.5024× 10−2), leading to a convergence factor of

7.0728×10−2. The performance of the two-sided algorithm for this value is displayed
in red, and appears to be much better than the optimized one-sided one. The proof
of that result will be given in a forthcoming publication.
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An Overlapping Preconditioner for 2D Virtual
Problems Posed in H(rot) with Irregular
Subdomains

Juan G. Calvo, César Herrera, and Filánder A. Sequeira

1 Introduction

Given a bounded polygonal domain Ω ⊂ R2, we seek 𝒖 ∈ 𝐻0 (rot;Ω) such that

𝑎(𝒖, 𝒗) :=
∫
Ω

(𝛼 rot 𝒖 rot 𝒗 + 𝛽𝒖 · 𝒗) =
∫
Ω

𝒇 · 𝒗 ∀𝒗 ∈ 𝐻0 (rot;Ω), (1)

where rot 𝒖 := 𝜕𝑥1𝑢2 − 𝜕𝑥2𝑢1, 𝒇 ∈ [𝐿2 (Ω)]2, and 𝛼, 𝛽 ∈ 𝐿∞ (Ω) are positive
functions that are uniformly bounded from below. The weak form (1) arises from
implicit time integration of the eddy current model of Maxwell’s equation [5] and is
considered in several studies; see, e.g., [1, 13]. We recall that

𝐻0 (rot;Ω) :=
{
𝒗 ∈ [𝐿2 (Ω)]2 : rot 𝒗 ∈ 𝐿2 (Ω), 𝒗 · 𝒕 = 0 on 𝜕Ω

}
,

where 𝒕 denotes the unit tangential vector on 𝜕Ω. The bilinear form 𝑎(·, ·) defined
in (1) is obtained from the differential operator L𝒖 := rot (𝛼rot 𝒖) + 𝛽𝒖, where
rot 𝑞 :=

(
𝜕𝑥2𝑞,−𝜕𝑥1𝑞

)𝑇 . The well-posedness of problem (1) can be established by
a straightforward application of the Lax-Milgram lemma; for the sake of brevity we
omit further details and refer to [15].
In this paper, we present a two-level overlapping Schwarz preconditioner for

problem (1) discretized with finite or virtual element methods (FEM or VEM,
respectively) in two dimensions. To the best of our knowledge, there are no theoretical
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results for preconditioning the linear system that arises from (1) when VEM are used.
Our method allows us to handle irregular subdomains and general polygonal meshes,
and applies to a broader range of material properties and subdomain geometries than
previous studies.
First studies for problems posed in 𝐻1 (Ω) with FEM discretizations and irregular

subdomains include [14, 17, 11], where discrete harmonic extensions are required
for the construction of a coarse component of the preconditioner; for problems
posed in 𝐻 (rot;Ω) see [7, 8]. Such algorithms require us to solve a linear system
on the fine mesh for each coarse function. The ideas introduced in [9, 10] allowed
to extend standard Domain Decomposition Methods (DDM) from FEM to VEM for
problems posed in 𝐻1 (Ω) in a natural way. Hence, we replace harmonic extensions
by projectors onto polynomial spaces of degree at most 𝑘 . In this variant, we need
to solve a linear system with just O(𝑘2) unknowns in order to construct a coarse
function, reducing the complexity of the construction of coarse functions while
preserving the dimension of the coarse space defined in [7] for FEM, which is
equal to the number of interior subdomain edges. In this paper, we present such
generalization for problems posed in 𝐻 (rot;Ω).
In [7], a theoretical bound for the condition number 𝜅 of a two-level overlapping

Schwarz preconditioner for FEM, based on discrete harmonic extensions, is given by

𝜅 ≤ 𝐶

(
1 + 𝐻

𝛿

) (
1 + log 𝐻

ℎ

)
,

where 𝐶 only depends on 𝛼, 𝛽 and some parameters related to the regularity of
the subdomains. We observe similar results for our preconditioner when VEM and
harmonic extensions are considered.
We remark that there are different DDM such as FETI-DP and BDDC methods;

see [12, 8] for studies related to our problem. Nevertheless, the simplicity of imple-
menting an overlapping additive Schwarz algorithm with competitive results gives
relevance to our work.
The rest of this paper is organized as follows.We briefly describe the VEM for our

model problem (1) in Section 2. We then describe the two-level overlapping additive
Schwarz and the definition of our coarse space with detail in Section 3. Finally, some
numerical results and conclusions are included in Section 4.

2 The virtual element method

We briefly describe a virtual element scheme for problem (1). Given an integer
ℓ ≥ 0, let Pℓ (D) denote the space of polynomials defined in D of total degree at
most ℓ. Let {Tℎ}ℎ>0 be a family of decompositions of Ω into polygonal elements.
We assume that there exists a constant 𝐶T > 0 such that for each decomposition Tℎ
and for each 𝐸 ∈ Tℎ it holds that (see, e.g., [6, Section 3.2] and [4, Section 2]):
1. the ratio between the shortest edge and the diameter ℎ𝐸 is bigger than 𝐶T , and
2. 𝐸 is star-shaped with respect to a ball of radius 𝐶Tℎ𝐸 and center 𝒙𝐸 ∈ 𝐸 .
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The lowest-order conforming Nédélec first-type local space

𝑁𝐸
0 := {𝒗 ∈ [P1 (𝐸)]2 : 𝒗 = (−𝑏𝑥2 + 𝑎1, 𝑏𝑥1 + 𝑎2)𝑇 , 𝑎1, 𝑎2, 𝑏 ∈ R}

is typically used for the discretization of (1) with triangular meshes; see [12, 7, 8].
For general polygonal meshes, we replace the Nédélec space 𝑁𝐸

0 by the lowest-order
local virtual element space𝑊𝐸

0 , defined as

𝑊𝐸
0 :=

{
𝒗 ∈ [𝐿2 (𝐸)]2 : 𝒗 · 𝒕 |𝑒 ∈ P0 (𝑒)∀𝑒 ∈ 𝜕𝐸, rot 𝒗, div 𝒗 ∈ P0 (𝐸),

∫
𝐸

𝒗 · 𝒙𝐸 = 0
}

where 𝑒 ∈ 𝜕𝐸 represents an edge of 𝐸 , 𝒙𝐸 = 𝒙 − 𝒃𝐸 , and 𝒃𝐸 is the barycenter
of 𝐸 ; see [4, eq. (28)]. The degrees of freedom of a virtual function 𝒗 ∈ 𝑊𝐸

0 can
be chosen as the moments 𝜆𝑒 (𝒗) = 1

|𝑒 |
∫
𝑒
𝒗 · 𝒕 for each edge 𝑒 ∈ 𝜕𝐸 , similar as

what is done when Nédélec elements are used; see, e.g., [3, eq. (3.13)]. We remark
that rot 𝒗 = 1

|𝐸 |
∫
𝐸
rot 𝒗 = 1

|𝐸 |
∫
𝜕𝐸

𝒗 · 𝒕 = 1
|𝐸 |

∑
𝑒∈𝜕𝐸 |𝑒 |𝜆𝑒 (𝒗), and therefore we

can compute the rotor of 𝒗 ∈ 𝑊𝐸
0 from its degrees of freedom. Thus, the term∫

𝐸
𝛼rot 𝒖rot 𝒗 of the bilinear form can be computed and we only require to modify

the mass matrix. Given 𝒗 ∈ [𝐿2 (𝐸)]2, let Π𝐸
1 : [𝐿

2 (𝐸)]2 → [P1 (𝐸)]2 be the
orhogonal projector given by∫

𝐸

Π𝐸
1 𝒗 · 𝒑 =

∫
𝐸

𝒗 · 𝒑 ∀𝒑 ∈ [P1 (𝐸)]2. (2)

We remark that Π𝐸
1 is computable for functions in𝑊

𝐸
0 only knowing its degrees of

freedom; we omit details and refer to [2, Remark 3]. For the mass-term, we then
replace 𝒗 by Π𝐸

1 𝒗 in the local bilinear form. Therefore, as it is standard in VEM,
a stabilizing term is required, which is defined as

𝑠𝐸 (𝒘, 𝒗) := ℎ𝐸

∑︁
𝑒∈𝜕𝐸

∫
𝑒

(𝒘 · 𝒕) (𝒗 · 𝒕) ∀𝒘, 𝒗 ∈ 𝑉0 (𝐸);

see [4, Theorem A.2] and [3, eq. (4.8)] for further details. We then consider the local
bilinear form

𝑎𝐸
ℎ
(𝒘, 𝒗) :=

∫
𝐸

(
𝛼rot 𝒘 rot 𝒗 + 𝛽Π𝐸

1 𝒘 · Π𝐸
1 𝒗

)
+ 𝑠𝐸

(
𝒘 − Π𝐸

1 𝒘, 𝒗 − Π𝐸
1 𝒗

)
for 𝒘, 𝒗 ∈ 𝑊𝐸

0 . The global virtual element space 𝑉ℎ ⊂ 𝐻0 (rot;Ω) is then given by

𝑉ℎ :=
{
𝒗 ∈ 𝐻0 (rot;Ω) : 𝒗 |𝐸 ∈ 𝑊𝐸

0 ∀𝐸 ∈ Tℎ
}
, (3)

and, as usual, the global bilinear form is obtained by assembling the local bilinear
forms 𝑎𝐸

ℎ
(·, ·). We then define the virtual element scheme associated to (1): find

𝒖ℎ ∈ 𝑉ℎ such that
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𝐸 ∈Tℎ

𝑎𝐸ℎ (𝒖ℎ , 𝒗ℎ) =
∑︁
𝐸 ∈Tℎ

∫
𝐸

𝒇 · Π𝐸
1 𝒗ℎ ∀ 𝒗ℎ ∈ 𝑉ℎ .

This problem is well-posed and standard estimates for the approximated solution can
be obtained; for the sake of brevity we omit such details.

3 Overlapping Schwarz methods

In this section, we briefly describe two-level overlapping methods; see [16, Chap-
ter 3] for further details. We partition the domain Ω into 𝑁 non-overlapping subdo-
mains {Ω𝑖}𝑁𝑖=1 of diameter 𝐻𝑖 which are the union of elements of Tℎ . Subdomains
are assumed to satisfy the same assumptions as the elements on the fine mesh; this
implies that they are simply connected and the number of edges of each subdomain
is uniformly bounded. The edges on this decomposition are denoted by 𝑒𝐻 , which
correspond to edges of the polygons Ω𝑖 . We then construct overlapping subdomains
Ω′

𝑖
⊃ Ω𝑖 by adding layers of elements that are external to Ω𝑖 , and we will denote

by 𝛿𝑖 the minimum width of the region Ω′
𝑖
\Ω𝑖 .

We consider the usual local virtual spaces 𝑉𝑖 , 1 ≤ 𝑖 ≤ 𝑁 , defined by

𝑉𝑖 :=
{
𝒗 ∈ 𝐻0 (rot ;Ω′

𝑖) : 𝑣 |𝐸 ∈ 𝑊𝐸
0 ∀ 𝐸 ⊂ Ω′

𝑖

}
.

Thus, the degrees of freedom of a function 𝒗𝑖 ∈ 𝑉𝑖 are 𝜆𝑒 (𝒗𝑖) at the fine edges 𝑒 that
are in the interior of Ω′

𝑖
. We also consider the natural operators 𝑅𝑇

𝑖
: 𝑉𝑖 → 𝑉ℎ given

by the zero extension from the subdomain Ω′
𝑖
to Ω, 1 ≤ 𝑖 ≤ 𝑁 .

We can define the coarse space 𝑉0 as the virtual element space (3) defined on
the coarse mesh {Ω𝑖}𝑁𝑖=1. Nevertheless, its dimension can be an inconvenience for
parallel implementations in the presence of irregular subdomains with too many
edges; see Figure 1. Instead, for each subdomain edge E𝑖 𝑗 (defined as the interior of
Ω𝑖 ∩ Ω 𝑗 ), we define a coarse function 𝒄E ∈ 𝑉0 by defining its degrees of freedom
of𝑉0.We set𝜆𝑒

𝐻 (𝒄E) = 𝒅E · 𝒕𝑒𝐻 for every edge 𝑒𝐻 in E, and𝜆𝑒
𝐻 (𝒄E) = 0 otherwise.

Here, 𝒅E denotes a unit vector in the direction between the endpoints of E, and 𝒕𝑒𝐻
is the unit tangent vector of 𝑒𝐻 . The reduced coarse space 𝑉𝑅

0 is then defined as
the span of these coarse basis functions 𝒄E . We remark that the dimension of 𝑉𝑅

0 is
equal to the number of subdomain edges, similar as in [7, 8, 12].
In order to define an operator 𝑅𝑇

0 : 𝑉
𝑅
0 ⊆ 𝑉0 → 𝑉ℎ that approximates functions in

the coarse space by elements in𝑉ℎ , we can consider discrete harmonic extensions as
in [7], for which a generalization for VEM can be established. Nevertheless, we can
avoid discrete harmonic extensions by approximating virtual functions in 𝑉𝑅

0 in the
interior of subdomains by polynomials as follows. Consider the high-order virtual
spaces of order 𝑘 ∈ N, defined on the coarse mesh, as the set

𝑉 𝑘
0 = {𝒗 ∈ 𝐻0 (rot ;Ω) : 𝒗 |Ω𝑖

∈ 𝑊
Ω𝑖

𝑘
∀𝑖 ∈ {1, 2, . . . , 𝑁}},
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Fig. 1 (left)Voronoimesh and
(right) non-convex mesh with
𝑁 = 16 irregular subdomains.
Subdomains have, in average,
45 and 55 edges for the
Voronoi and non-convex
meshes, respectively.

where𝑊Ω𝑖

𝑘
is defined as the set{

𝒗 ∈ [𝐿2 (Ω𝑖)]2 : 𝒗 · 𝒕 |𝑒𝐻 ∈ P𝑘 (𝑒𝐻 )∀𝑒𝐻 ∈ 𝜕Ω𝑖 , rot 𝒗 ∈ P𝑘 (Ω𝑖), div 𝒗 ∈ P𝑘−1 (Ω𝑖)
}

Following [2, Section 3.2], the local degrees of freedom for 𝒗 ∈ 𝑊
Ω𝑖

𝑘
can be chosen as

𝑚𝑒𝐻

𝑞 (𝒗) :=
∫
𝑒𝐻

(𝒗 · 𝒕) 𝑞 ∀ 𝑞 ∈ P𝑘 (𝑒𝐻 ) ,∀ 𝑒𝐻 ∈ 𝜕Ω𝑖 ,

𝑚
Ω𝑖

𝑝,rot (𝒗) :=
∫
Ω𝑖

(rot 𝒗) 𝑝 ∀ 𝑝 ∈ P𝑘 (Ω𝑖) \ {1} ,

𝑚
Ω𝑖

𝑝,div (𝒗) :=
∫
Ω𝑖

(𝒗 · 𝒙Ω𝑖
) 𝑝 ∀ 𝑝 ∈ P𝑘−1 (Ω𝑖) ,

which are unisolvent; see [2, Proposition 3.3]. It is clear that 𝑉𝑅
0 ⊆ 𝑉0 ⊆ 𝑉 𝑘

0 . For
every coarse function 𝒄E𝑖 𝑗 ∈ 𝑉𝑅

0 , we seek the degrees of freedom of the function
𝒄̃E𝑖 𝑗 ∈ 𝑉 𝑘

0 , with the same degrees of freedom of 𝒄E on the interface, such that∑︁
𝐸 ∈Ω𝑙

𝑎𝐸ℎ (𝐼
ℎ (ΠΩ𝑙

𝑘
𝒄̃E𝑖 𝑗 ), 𝐼ℎ (ΠΩ𝑙

𝑘
𝒄̃E𝑖 𝑗 )) (4)

is minimum for 𝑙 ∈ {𝑖, 𝑗}, where 𝒘 = 𝐼ℎ𝒗 ∈ 𝑉ℎ is the usual interpolant given by the
condition 𝜆𝑒 (𝒗 − 𝒘) = 0 for all edge 𝑒, and ΠΩ𝑙

𝑘
: [𝐿2 (Ω𝑙)]2 → [P𝑘 (Ω𝑙)]2 is the

orthogonal projector onto Ω𝑙; see (2) for the case 𝑘 = 1. The degrees of freedom
of 𝒄̃E given by 𝑚𝑒𝐻

𝑞 ( 𝒄̃E) and 𝑚Ω𝑖

𝑝,rot ( 𝒄̃E) are known and can be computed from 𝒄E .
Since

∫
Ω𝑖
(𝒗 · 𝒙Ω𝑖

) = 0, the remaining degrees of freedom can be obtained just by
solving a linear system with 𝑘 (𝑘 + 1)/2 − 1 equations for each subdomain with E
on its boundary, obtained by directly computing the critical points of (4). For the
sake of brevity we omit details and refer to [9] that includes how to obtain this linear
system. Preserving degrees of freedom on the interface guarantees continuity across
the interface when we interpolate coarse functions to the fine mesh. We then define
𝑅𝑇
0 𝒄E ∈ 𝑉ℎ by setting:

(a’) 𝜆𝑒 (𝑅𝑇
0 𝒄E) = 𝜆𝑒 (𝒄E) if 𝑒 is an edge on the interface;

(b’) 𝜆𝑒 (𝑅𝑇
0 𝒄E) = 𝜆𝑒 (ΠΩ𝑙

𝑘
𝒄̃E) if 𝑒 is an interior edge of Ω𝑙;

(c’) 𝜆𝑒 (𝑅𝑇
0 𝒄E) = 0 otherwise;
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Fig. 2 (left) 𝑅𝑇
0 𝒄E for an

irregular edge E, evalu-
ated in the interior of each
subdomain by interpolating
Π

Ω𝑖

6 for 𝑖 ∈ {1, 2}. (right)
A discontinuous coefficient 𝛽
varying from 𝛽 = 103 (red) to
𝛽 = 10−3 (blue).

see Figure 2where we show 𝑅𝑇
0 𝒄E for a given subdomain edge E.We finally consider

the two-level additive overlapping Schwarz preconditioner

𝑃𝑎𝑑 :=
𝑁∑︁
𝑖=0

𝑃𝑖 = 𝐴−1
𝑎𝑑𝐴, with 𝐴

−1
𝑎𝑑 =

𝑁∑︁
𝑖=0

𝑅𝑇
𝑖 (𝑅𝑖𝐴𝑅

𝑇
𝑖 )−1𝑅𝑖 , (5)

where we consider exact solvers for each subspace for simplicity; see [16, Chap. 2].

4 Numerical results and conclusions

We present numerical results for the two-level additive overlapping Schwarz pre-
conditioner (5). We solve the resulting linear systems using the preconditioned
conjugate gradient method to a relative residual tolerance of 10−6. We estimate
the condition number 𝜅(𝑃𝑎𝑑) and compute the number of iterations 𝐼𝑘 (for spaces
of degree 𝑘) and 𝐼H (for the coarse space based on discrete harmonic extensions)

Table 1 Number of iterations 𝐼 and condition number 𝜅 (in parenthesis) with Voronoi meshes and
𝑁 METIS subdomains. 𝐼3, 𝐼6 and 𝐼H correspond to 𝑘 = 3, 𝑘 = 6 and discrete harmonic extensions,
respectively. 𝑁E is the dimension of the coarse space.

𝛽 = 10−3 𝛽 = 1 𝛽 = 103
𝑁E 𝐼3 (𝜅) 𝐼6 (𝜅) 𝐼H (𝜅) 𝐼3 (𝜅) 𝐼6 (𝜅) 𝐼H (𝜅) 𝐼3 (𝜅) 𝐼6 (𝜅) 𝐼H (𝜅)

𝑁 Test 1: 𝐻/ℎ = 8, 𝐻/𝛿 = 2, 𝛼 = 1
82 161 38(47.5) 31(23.9) 21(7.7) 35(38.5) 22(10.5) 20(7.2) 18(7.3) 18(7.3) 18(7.3)
122 389 58(112) 49(79.0) 24(9.4) 55(95.7) 33(20.3) 21(8.0) 20(8.3) 19(8.2) 19(8.2)
162 709 73(201) 66(181) 23(9.3) 69(163) 51(51.6) 21(8.0) 20(7.9) 20(7.9) 20(7.9)
202 1128 90(328) 84(289) 25(9.9) 84(262) 68(132) 22(8.4) 20(8.4) 20(8.0) 20(8.0)

𝐻/𝛿 Test 2: 𝐻/ℎ = 32, 𝑁 = 16, 𝛼 = 1
4 33 33(25.4) 30(24.1) 19(6.1) 31(22.8) 28(19.8) 18(6.0) 16(5.1) 15(5.1) 15(5.1)
8 33 43(58.3) 39(52.3) 21(7.5) 40(49.5) 37(35.6) 20(7.0) 15(4.8) 15(4.9) 15(5.0)
16 33 57(136) 56(124) 24(12.7) 53(100) 49(65.7) 23(13.0) 16(6.1) 16(6.1) 16(6.0)
32 33 82(300) 81(300) 35(28.6) 73(166) 62(101) 32(23.0) 20(8.6) 20(8.4) 19(7.8)

𝐻/ℎ Test 3: 𝑁 = 16, 𝐻/𝛿 = 4, 𝛼 = 1
8 33 32(32.6) 24(12.4) 19(7.2) 30(22.4) 19(6.9) 18(7.0) 14(5.4) 14(5.3) 14(5.3)
16 34 31(26.8) 29(26.1) 18(6.1) 30(22.9) 27(14.1) 18(5.8) 15(5.1) 15(5.0) 15(5.1)
32 33 33(25.4) 30(24.1) 19(6.1) 31(22.8) 28(19.8) 18(6.0) 16(5.1) 15(5.1) 15(5.1)
64 33 34(22.6) 32(22.6) 18(5.5) 32(21.6) 31(19.3) 18(5.5) 14(5.3) 16(5.1) 16(5.1)



An Overlapping Preconditioner for 2D Virtual Problems Posed in H(rot) 107

Table 2 Number of iterations 𝐼 and condition number 𝜅 (in parenthesis) with non-convex meshes
and 𝑁 METIS subdomains. 𝐼3, 𝐼6 and 𝐼H correspond to 𝑘 = 3, 𝑘 = 6 and discrete harmonic
extensions, respectively. 𝑁E is the dimension of the coarse space.

𝛽 = 10−3 𝛽 = 1 𝛽 = 103
𝑁E 𝐼3 (𝜅) 𝐼6 (𝜅) 𝐼H (𝜅) 𝐼3 (𝜅) 𝐼6 (𝜅) 𝐼H (𝜅) 𝐼3 (𝜅) 𝐼6 (𝜅) 𝐼H (𝜅)

𝑁 Test 1: 𝐻/ℎ = 8, 𝐻/𝛿 = 2, 𝛼 = 1
82 158 38(54.0) 28(17.3) 20(8.0) 36(36.9) 21(7.8) 19(6.7) 20(10.1) 20(10.1) 20(10.1)
122 379 57(130) 45(66.1) 21(7.4) 53(81.6) 29(13.7) 20(7.1) 23(13.5) 23(13.6) 22(13.5)
162 699 76(261) 61(136) 21(7.7) 69(139) 34(21.2) 20(7.2) 24(16.4) 24(16.1) 24(16.2)
202 1109 93(537) 82(265) 23(8.3) 83(245) 45(38.3) 21(8.5) 27(20.9) 27(20.7) 27(20.9)

𝐻/𝛿 Test 2: 𝐻/ℎ = 32, 𝑁 = 16, 𝛼 = 1
4 33 33(30.7) 30(28.7) 18(6.4) 31(24.0) 29(17.7) 17(5.5) 15(5.1) 15(5.1) 15(5.0)
8 33 43(80.4) 42(73.7) 22(8.2) 42(49.5) 35(29.8) 20(7.9) 17(8.0) 17(8.0) 16(7.9)
16 33 56(129) 57(139) 26(11.4) 52(70.3) 45(41.4) 24(12.0) 21(12.8) 21(12.8) 20(12.7)
32 33 78(297) 78(304) 34(21.9) 67(112) 55(62.7) 32(20.6) 30(28.4) 30(28.4) 29(29.4)

𝐻/ℎ Test 3: 𝑁 = 16, 𝐻/𝛿 = 4, 𝛼 = 1
8 33 31(29.6) 23(10.7) 18(6.4) 27(19.5) 18(6.4) 17(5.7) 19(11.4) 19(11.3) 19(11.7)
16 31 31(30.8) 29(27.7) 18(6.0) 29(20.2) 23(10.0) 17(5.8) 16(7.7) 16(7.7) 16(7.7)
32 33 33(30.7) 30(28.7) 18(6.4) 31(24.0) 29(17.7) 17(5.5) 15(5.0) 15(5.1) 15(5.0)
64 33 38(39.5) 33(29.8) 19(6.1) 35(25.2) 31(20.9) 18(5.7) 16(4.9) 16(5.1) 15(5.0)

Table 3 Number of iterations 𝐼 and condition number 𝜅 (in parenthesis) with non-convex meshes
and discontinuous values for 𝛽 as in Figure 2. 𝐼6 and 𝐼H correspond to 𝑘 = 6 and discrete harmonic
extensions, respectively. 𝑁E is the dimension of the coarse space.

𝑁 𝑁E 𝐼6 (𝜅) 𝐼H (𝜅)
82 158 20 (10.1) 20 (10.1)
122 379 23 (13.6) 22 (13.5)
162 699 24 (16.1) 24 (16.2)
202 1109 27 (20.7) 27 (20.9)

𝐻/ℎ 𝑁E 𝐼6 (𝜅) 𝐼H (𝜅)
8 33 19 (11.3) 19 (11.7)
16 31 16 (7.7) 16 (7.7)
32 33 15 (5.1) 15 (5.0)
64 33 16 (5.1) 15 (5.0)

for each experiment; see results in Tables 1 and 2. We include different values for
𝛽 ∈ {10−3, 1, 103} since previous bounds depend on the parameters 𝛼 and 𝛽. We
confirm the linear growth in the condition number as we increase 𝐻/𝛿 and we ob-
serve no significant dependence on the parameter 𝐻/ℎ. We observe that the coarse
space based on discrete harmonic extensions is numerically scalable, and for small
values of 𝛽 the scalability is impaired when polynomial spaces are used. We remark
that for the case of triangular meshes and square subdomains, our method recovers
the same spaces as in [7]. We also include numerical results where 𝛽 is piecewise
constant on each subdomain; see Table 3 and Figure 2.
The theoretical bound for the condition number of the preconditioned system is in

progress, where we have been able to obtain certain bounds for the coarse component
of a decomposition for 𝒖 ∈ 𝑉ℎ , without considering Helmholtz decompositions as
in [7]. There is also interest of implementing these ideas in 3D problems, in order
to compare numerical results and running times with previous preconditioners. We
also remark that similar results will hold for two-dimensional problems posed in
𝐻 (div;Ω), since two-dimensional Raviart-Thomas elements correspond to a 90◦
rotation of the elements considered in this paper.
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A Two-Level Restricted Additive Schwarz
Method for Asynchronous Computations

Faycal Chaouqui and Daniel B. Szyld

1 Introduction

In this paper, we investigate the parallel performance of both synchronous and
asynchronous domain decomposition methods (DDMs) for the solution of algebraic
systems coming from the discretization of partial differential equations (PDEs). In
particular, we extend the ideas introduced in [8] for different types of coarse space
corrections. We consider a PDEof the formL(u) = f onΩ ⊂ R2 such thatu|Ω = 0.
The operatorL after discretization yields a large sparse system of algebraic equations
of the form

Au = f, (1)

whereA ∈ Rn×n and f ∈ Rn. Here, we focus our attention on theRestrictedAdditive
Schwarz (RAS) domain decomposition solver [2, 4]. For the sake of simplicity,
we assume that L = −∆. We assume that the domain Ω is decomposed into p
overlapping subdomains Ω1, . . . , Ωp. Let R>i , i = 1, . . . , p, denotes the boolean
matrix that maps the local degrees of freedom defined in Ωi to Ω. We define the
local stiffness matrix Ai = RiAR

>
i . Let us also define the diagonal matrices Di,

i = 1, . . . p, such that we satisfy the partition of unity, i.e.,
∑p
i=1R

>
i DiRi = I,

where I denotes the identity matrix in Rn×n. The RAS iteration is then defined as

uk+1 = uk +
p∑
i=1

R>i DiA
−1
i Ri(f−Auk). (2)

We note that in our case, the matrices Di correspond to diagonal boolean matrices
that are 1 in the non-overlapping partition, and 0 otherwise. We note also that there
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are other ways for choosing those matrices, and we refer the reader to [4, 5]. In the
next section, we will describe briefly the asynchronous RAS method.

2 Asynchronous restricted additive Schwarz

We briefly describe asynchronous iterations (see, e.g., [3]) for fixed point problems
defined on a product space U = U1 × · · · × Up, of the form u = T u with a unique
solution. In other words, we have u = (u1, . . . ,up) and T = (T1, T2, · · · , Tp),
with Ts : U → Us. We have in mind that the operation in process s, of the form
us = Ts (u1, . . . ,up) is performed without synchronization, i.e., without waiting for
other processors to send new information.

For a mathematical model of these asynchronous iterations on p processors,
we follow the model introduced by Bertsekas [1]. To that end, we define a time
stamp k, k ∈ N, and denote by {σ(k)}k∈N the sequence of non-empty subsets of
{1, . . . , p}, defining which processes update their components at the time stamp k.
Define also for s, q ∈ {1, . . . , p},

{
τsq (k)

}
k∈N a sequence of integers, representing

the update number (or time stamp) of the data coming from process q and available
on process s at the time k. Thus, a delaywould be k−τsq (k). We begin with an initial
approximation u0 =

(
u0
1, . . . ,u0

p

)
, and define, for each process s, the asynchronous

iterations as follows.

uk+1
s =

{
Ts
(

uτ
s
1 (k)

1 , . . . ,uτ
s
p (k))
p

)
if s ∈ σ(k + 1),

uks if s /∈ σ(k + 1) .
(3)

In this model, one also assumes that the three following natural conditions are
satisfied

∀s, q ∈ {1, . . . , p} ,∀k ∈ N, τsq (k) ≤k, (4)
∀s ∈ {1, . . . , p} , card {k ∈ N|s ∈ σ(k)} =+∞, (5)

∀s, q ∈ {1, . . . , p} , lim
k→+∞

τsq (k) = +∞. (6)

Condition (4) represents the fact that data used at the time kmust have been produced
before time k, i.e., time does not flow backward. Condition (5) indicates that no
process will ever stop updating its components. Condition (6) means that new data
will always be provided to the process. In other words, no process will have a piece
of data that is never updated.

One important theoretical result states that for a fixed point problem, say
T (u) = u, on a product space, under conditions (4)–(6), if there is a norm such that
the map T is contracting, i.e., if the (synchronous) fixed point iteration converges,
then, the corresponding asynchronous iteration converges as well; see, e.g., [3] and
references therein. For the RAS iteration, the map Ts defined in (3) is equivalent to
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Algorithm 1 (Asynchronous RAS)
1: Input: u0.
2: Output: u ≈ u∗.
3: Set r0 = f−Au0, converged = false.
4: In parallel, each processor core s:
5: while converged = false do
6: Set us = Ts(u1, . . . , up) . Update subdomain s
7: Compute ‖Dsrs‖2 . Compute local residual norm
8: if s == 1 then
9: Compute ‖r‖2 =

√∑p
i=1 ‖Diri‖22

10: if ‖r‖2/‖r0‖2 ≤ ε then . Check global convergence
11: converged = true
12: end if
13: end if
14: end while (for processor s)
15: Set u =

∑p
s=1R

>
s Dsus . Assemble global solution

Ts(u1,u2, . . . ,up) = us +Rs

p∑
i=1

R>i DiA
−1
i ri, (7)

where ri = Ri(f−Au) it the local residual for the subdomain Ωi, i = 1, . . . p. The
implementation of iteration (3) is presented in Algorithm 1.

In Algorithm 1 each processor core computes and updates the components of
the local vector as well as the corresponding local residual norms. A processor core
is then in charge of accumulating all the local residuals and computing the global
residual. The algorithm then stops when the global residual is smaller than the toler-
ance. We provide results of numerical examples illustrating the performance of both
synchronous and asynchronous RAS. We consider Ω = [0, 1] × [0, 1] decomposed
into regular squares with a total of p subdomains and a minimal overlap. The source
term f is chosen such that sin(πx) sin(πy) corresponds to the exact monodomain
solution. We partition the domain into p = 4× 4 subdomains with a total of 10k dis-
cretization points. We note that each processor core was assigned to one subdomain.
All the tests were carried out on a shared memory machine which consists of 88
CPU cores / 176 threads and 1536GB of RAM. The implementation of Algorithm 1
was in C++ and the parallelization uses the OpenMP multithreading directives. We
run two different types of experiments. In the first run, we assume all processors run
at the same speed and compare both the timings required by both synchronous and
asynchronous to reach a specified tolerance. This is illustrated in Figure 1 (left). We
can see that in this case the synchronous is faster than the asynchronous. To show
the advantage of the asynchronous approach, we repeat the experiment but with one
processor core twice as slow. This can be realized by measuring the time needed
for a single update and then forcing the processor to sleep (idle) for that amount of
time. In this manner we mimic heterogeneous architectures, as well as cases where
one subdomain is larger than the others. We can observe from Figure 1 (right) that
the asynchronous is faster than the synchronous in this case.
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Fig. 1 Left: CPU time versus relative residual 2-norm for synchronous and asynchronous RAS
with p = 16. Right: Same but one thread is twice as slow.

3 Two-level asynchronous restricted additive Schwarz

A second level is an essential component to obtain a robust domain decomposition
method. It relies generally on solving a smaller problem on a coarser mesh so that
there is global communication between the subdomains. The coarse space allows
us then to construct the coarse restriction matrix R0. The two-level RAS is then
defined as

uk+1/2 = uk +
p∑
i=1

R>i DiA
−1
i Ri(f−Auk)

uk+1 = uk+1/2 +R>0 A
−1
0 R0(f−Auk+1/2).

(8)

In order to use iteration (8) asynchronously, we need to use the coarse grid in an
additive way. This can be done by using a weighted additive version or multiplica-
tive/additive variant of (8). The corresponding two-levelmapping T̃ can be expressed
in the case of the additive variant as

T̃s(u1,u2, . . . ,up) = us+Rs

(
1

2

p∑
i=1

R>i DiA
−1
i ri +

1

2
R>0 A

−1
0 R0

p∑
i=1

R>i Diri

)
.

(9)
For work using a multiplicative additive variant, we mention [7, 9]. To avoid

over-correction from the coarse grid, we have to make sure that no subdomain is
corrected again until all the remaining subdomains have updated at least once [8].
We present in Algorithm 2, the implementation of the asynchronous two-level RAS.

We describe now the coarse correction we use. We would like the coarse grid
to ensure the scalability of the method as a solver. In the same spirit of [6], we use
harmonically extended coarse basis functions. Let ni denotes the number of cross
points for each subdomain Ωi, i = 1, . . . p. Let ϕji , j = 1, . . . ni define a piecewise
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Algorithm 2 (Asynchronous two-level RAS)
1: Input: u0.
2: Output: u ≈ u∗.
3: Set r0 = f−Au0, converged = false.
4: Set update[s]=false, and correction[s]=false, s = 1, . . . , p.
5: In parallel, each processor s:
6: while converged = false do
7: if s > 0 then
8: if correction[s] then . Check if coarse correction is needed
9: Set us = T̃s(u1, . . . , up) . Update subdomain s
10: Set correction[s]=false
11: else
12: Set us = Ts(u1, . . . , up) . Update subdomain s
13: Set update[s]=true
14: end if
15: Compute ‖Dsrs‖2 . Compute local residual norm
16: if s == 1 then
17: Compute ‖r‖2 =

√∑p
i=1 ‖Diri‖22

18: if ‖r‖2/‖r0‖2 ≤ ε then . Check global convergence
19: converged = true
20: end if
21: end if
22: else
23: if update[q], ∀q = 1, . . . , p then . Check if all subdomains updated
24: Compute the coarse correction.
25: Set correction[i]=true, i = 1, . . . , p
26: Set update[i]=false, i = 1, . . . , p
27: end if
28: end if
29: end while (for processor s)
30: Set u =

∑p
s=1R

>
s Dsus . Assemble global solution

linear function on ∂Ωi that is 1 at one cross point and 0 on the others. We define the
coarse basis functions φji , j = 1, . . . , ni, i = 1, . . . p, as the solution of{

L|Ωi
(φji ) = 0, on Ωi
φji = ϕji , on ∂Ωi .

(10)

We define our coarse spaceZ ⊂ Rd as the span of extended coarse functions φji , i.e.,

Z = span
{
R>i φ

j
i , j = 1, . . . , ni i = 1, . . . , p

}
. (11)

The columns of the matrix R>0 forms a basis of Z . We show in Table 1 the number
of iterations needed to reach a tolerance ε = 10−8 with this specific coarse space for
(synchronous) RAS as a solver.We can see that the two-level method outperforms the
one-level method and is also scalable, i.e., the number of iterations does not increase
when we grow the number of subdomains. We also report the iterations required
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Table 1 Weak scalability of additive two-level RAS
p n dimZ dimZMG #iter (RAS) #iter (RAS+Z) #iter (RAS+ZMG)
16 14400 36 49 630 93 144
25 22500 64 81 953 98 107
36 32400 100 121 1344 99 108
49 44100 144 169 1802 100 99
64 57600 196 225 2325 100 99

for two-level RAS constructed using a multigrid (MG) approach with four levels
of coarsening. We can observe that the coarse grid considered in our simulation is
asymptotically similar to MG for our model problem L. However, it has a smaller
coarse grid size.

Next, we test the performance of the two-level asynchronous Algorithm 2 by
comparing the time needed to reach a specified tolerance. In Figure 2 we plot
the timing versus the residual norm for both synchronous and asynchronous two-
level methods. We can observe that in this case the synchronous is faster than the
asynchronous. We also see that the timing required to converge is faster than for
the one-level method. The introduction of heterogeneity among processors yields
a faster asynchronous two-level method. We note that as is the case for the local
subdomains, the coarse problem was solved exactly since it is small for the coarse
space defined (11). In Table 2, we report the timings required for both synchronous
and asynchronous one and two-level RAS for processors with random time delays.
We realize this by adding a random time delay to each processor core that follows
a uniform density function of the form U(0, εTs), where Ts is the timings required
for the processor s to finish its workload, and ε = 0.01, 0.1, 1. We can observe from
Table 2 that the introduction of heterogeneities in the computation, even with a small
magnitude reveals the advantages of asynchronous computations.

In Figure 3 we test the weak scalability of both the synchronous and asynchronous
methods. To do so, we fix the tolerance to ε = 10−6 and the subdomain’s size to 1600,
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Fig. 2 Left: CPU time versus relative residual 2-norm for two-level synchronous and asynchronous
RAS with p = 16. Right: Same but one thread is twice as slow.
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Table 2 Timing required (in sec) of synchronous and asynchronous one- and two-level RAS to
reach a tolerance of 10−8 for different levels of heterogeneities.

ε Sync RAS Async RAS Sync two-level RAS Async two-level RAS
0.01 2.3173 2.1973 0.4547 0.3539
0.1 2.4788 2.4051 0.4075 0.3601
1 5.9415 5.7202 1.0837 1.0295
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Fig. 3 Left: The number of subdomains versus the CPU time needed for convergence for one and
two-level synchronous and asynchronous RAS. Right: Same but with a processor core twice as
slow.

then run the two-level algorithms and measure the CPU time required to converge.
We also plot the time required for the synchronous one as well. In Figure 3 (left),
all the processors run at the same speed and there is no load imbalance. We can
observe that in this case, the two-level asynchronous method is the fastest among
all the four methods. The one-level synchronous method is still slightly faster than
the one-level asynchronous (except for p = 64). In Figure 3 (right) we repeat the
same experiment, but with one processor core twice as slow. We can see now that
the asynchronous method outperforms the synchronous method. This is true for both
the one- and two-level methods. Observe also that while the two-level synchronous
method is slightly slower in the simulated heterogeneous architecture (for p = 64,
5.85 sec vs. 2.38 sec), the asynchronous method is faster (2.59 sec vs. 6.17 sec). The
introduction of heterogeneity clearly shows how asynchronous can be effective in
practice.

4 Conclusion

In this paper, we analyzed the performance of one and two-level synchronous and
asynchronous RAS. In particular, we used a specific coarse grid correction for our
asynchronous computations. Our numerical results suggest that the asynchronous
methods exhibit good performance. In particular, we observed that for heterogeneous
hardware, the asynchronous outperforms the synchronous method. This was valid
for both the one and two-level methods.
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Cross-Points in the Neumann-Neumann Method

Bastien Chaudet-Dumas and Martin J. Gander

1 Introduction

The Neumann-Neumann method (NNM), first introduced in [1] in the case of two
subdomains, is among the most popular non-overlapping domain decomposition
methods. However, when used as a stationary solver at the continuous level, it has
been observed that the method faced well-posedness issues in the presence of cross-
points, see [2]. Here, our goal is to analyze in detail the behaviour of the NNM near
cross-points on a simple, but rather instructive, bidimensional configuration.
Let Ω ⊂ R2 be the square (−1, 1) × (−1, 1), divided into four non-overlapping

square subdomains Ω𝑖 , 𝑖 ∈ I := {1, 2, 3, 4}, see Figure 1. This leads to one interior
cross-point (red dot), and four boundary cross-points (black dots). We denote the
interfaces between adjacent subdomains by Γ𝑖 𝑗 := int(𝜕Ω𝑖 ∩ 𝜕Ω 𝑗 ), the skeleton of
the partition by Γ :=

⋃
𝑖, 𝑗 Γ𝑖 𝑗 , and 𝜕Ω0

𝑖
:= 𝜕Ω𝑖 ∩ 𝜕Ω. We consider the Laplace

problem with Dirichlet boundary conditions on Ω, that is: find 𝑢 solution to

−Δ𝑢 = 𝑓 in Ω, 𝑢 = 𝑔 on 𝜕Ω, (1)

where 𝑓 ∈ 𝐿2 (Ω) and 𝑔 ∈ 𝐻
3
2 (𝜕Ω), ensuring that 𝑢 ∈ 𝐻2 (Ω).
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• ••
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Fig. 1 Transmission conditions of the standard NNM for 𝑢 (left) and 𝜓 (right).
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Given an initial couple (𝑢0, 𝜓0), and a relaxation parameter 𝜃 ∈ R, each iteration
𝑘 ≥ 1 of the NNM applied to (1) can be split into two steps:

• (Dirichlet step) Solve for all 𝑖 ∈ I,

−Δ𝑢𝑘𝑖 = 𝑓 in Ω𝑖 , 𝑢𝑘𝑖 = 𝑔 on 𝜕Ω0𝑖 ,

𝑢𝑘𝑖 = 𝑢𝑘−1𝑖 − 𝜃

(
𝜓𝑘−1
𝑖 + 𝜓𝑘−1

𝑗

)
on Γ𝑖 𝑗 , ∀ 𝑗 ∈ I s.t. Γ𝑖 𝑗 ≠ ∅ .

• (Neumann step) Compute the correction 𝜓𝑘 , that is, solve for all 𝑖 ∈ I,

−Δ𝜓𝑘
𝑖 = 0 in Ω𝑖 , 𝜓𝑘

𝑖 = 0 on 𝜕Ω0𝑖 ,

𝜕𝑛𝑖𝜓
𝑘
𝑖 = 𝜕𝑛𝑖𝑢

𝑘
𝑖 + 𝜕𝑛 𝑗

𝑢𝑘𝑗 on Γ𝑖 𝑗 , ∀ 𝑗 ∈ I s.t. Γ𝑖 𝑗 ≠ ∅ .

For the method to be well defined, it is assumed in the rest of this paper that the
initial couple (𝑢0, 𝜓0) is compatible with the Dirichlet boundary condition, i.e. it
satisfies: 𝑢0 ∈ 𝐻2 (Ω), 𝜓0 ∈ 𝐻2 (Ω) ∩ 𝐻10 (Ω) and 𝑢

0 |𝜕Ω∩Γ= 𝑔 |Γ.

2 Convergence analysis of the Neumann-Neumann method

Definition 1 A measurable function ℎ : Ω → R is said to be even symmetric (resp.
odd symmetric) if for a.e. (𝑥, 𝑦) ∈ Ω, ℎ(−𝑥,−𝑦) = ℎ(𝑥, 𝑦) (resp.−ℎ(𝑥, 𝑦)).Moreover,
any measurable function ℎ can be uniquely decomposed into ℎ = ℎ𝑒 + ℎ𝑜 where ℎ𝑒
is even symmetric and ℎ𝑜 is odd symmetric.

Following this notion, as in [3], we introduce the so-called even symmetric and odd
symmetric parts of problem (1): find 𝑢𝑒 and 𝑢𝑜 solutions to

−Δ𝑢𝑒 = 𝑓𝑒 in Ω, 𝑢𝑒 = 𝑔𝑒 on 𝜕Ω, (2a)
−Δ𝑢𝑜 = 𝑓𝑜 in Ω, 𝑢𝑜 = 𝑔𝑜 on 𝜕Ω. (2b)

If 𝑢 denotes the solution to (1), it is known (see [3]) that the unique solutions 𝑢𝑒
and 𝑢𝑜 to these subproblems are precisely the even symmetric part and the odd
symmetric part of 𝑢. In what follows, we will perform the convergence analysis
of the NNM separately for the errors associated with the even and odd symmetric
subproblems, as they lead to completely different behaviours of the method.

Case of the even symmetric part. The next Theorem states that the NNM is
convergent when applied to the even symmetric part of (1).

Theorem 1 Taking (𝑢0𝑒, 𝜓0𝑒) as initial couple for the NNM applied to (2a) produces
a sequence

{
𝑢𝑘𝑒

}
𝑘

that converges geometrically to the solution 𝑢𝑒 with respect to the
𝐿2-norm and the broken 𝐻1-norm for any 𝜃 ∈ (0, 12 ). Moreover, the convergence
factor is given by |1−4𝜃 |, which also proves that the method becomes a direct solver
for the specific choice 𝜃 = 1

4 .
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Proof As in [3] for the Dirichlet-Neumann method, let us study the first iterations
of the NNM in terms of the local errors 𝑒𝑘

𝑒,𝑖
:= 𝑢𝑒 |Ω𝑖

− 𝑢𝑘
𝑒,𝑖
.

• Iteration 𝑘 = 1, Dirichlet step: In each Ω𝑖 , 𝑖 ∈ I, the errors satisfy

−Δ𝑒1𝑒,𝑖 = 0 in Ω𝑖 , 𝑒1𝑒,𝑖 = 0 on 𝜕Ω
0
𝑖 ,

𝑒1𝑒,𝑖 = 𝑒0𝑒,𝑖 + 𝜃

(
𝜓0𝑒,𝑖 + 𝜓0𝑒, 𝑗

)
on Γ𝑖 𝑗 , ∀ 𝑗 ∈ I s.t. Γ𝑖 𝑗 ≠ ∅ .

Since (𝑢0𝑒, 𝜓0𝑒) is compatible with the even symmetric part of the Dirichlet boundary
condition, 𝑒1

𝑒,𝑖
exists and is unique in 𝐻1 (Ω𝑖). Using the even symmetry properties

of 𝑒0𝑒 and 𝜓0𝑒, one can deduce that the 𝑒1𝑒,𝑖 , for 𝑖 ∈ {2, 3, 4}, can be expressed in terms
of 𝑒1

𝑒,1 as follows:

𝑒1𝑒,2 (𝑥, 𝑦) = 𝑒1𝑒,1 (−𝑥, 𝑦) , for a.e. (𝑥, 𝑦) ∈ Ω2 ,

𝑒1𝑒,3 (𝑥, 𝑦) = 𝑒1𝑒,1 (−𝑥,−𝑦) , for a.e. (𝑥, 𝑦) ∈ Ω3 ,

𝑒1𝑒,4 (𝑥, 𝑦) = 𝑒1𝑒,1 (𝑥,−𝑦) , for a.e. (𝑥, 𝑦) ∈ Ω4 .

• Iteration 𝑘 = 1, Neumann step: We compute the correction 𝜓1
𝑒,𝑖
in each subdo-

main Ω𝑖 . For instance, taking 𝑖 = 1, we get in Ω1
−Δ𝜓1𝑒,1 = 0 in Ω1 , 𝜓1𝑒,1 = 0 on Γ1 ,

𝜕𝑛1𝜓
1
𝑒,1 = −

(
𝜕𝑛1𝑒

1
𝑒,1 + 𝜕𝑛2𝑒

1
𝑒,2

)
= −2𝜕𝑛1𝑒1𝑒,1 on Γ12 ,

𝜕𝑛1𝜓
1
𝑒,1 = −

(
𝜕𝑛1𝑒

1
𝑒,1 + 𝜕𝑛4𝑒

1
𝑒,4

)
= −2𝜕𝑛1𝑒1𝑒,1 on Γ41 .

Thus, uniqueness of 𝜓1
𝑒,1 in 𝐻

1 (Ω1) yields 𝜓1𝑒,1 = −2𝑒1
𝑒,1 inΩ1. A similar reasoning

applies to each 𝜓1
𝑒,𝑖
, 𝑖 ∈ {2, 3, 4}, therefore the recombined correction simply reads:

𝜓1𝑒 = −2𝑒1𝑒 in Ω \ Γ.
• Iteration 𝑘 ≥ 2: At iteration 𝑘 = 2, the transmission condition for the Dirichlet
step in Ω𝑖 on each Γ𝑖 𝑗 is given by, 𝑒2𝑒,𝑖 = 𝑒1

𝑒,𝑖
+ 𝜃

(
𝜓1
𝑒,𝑖

+ 𝜓1
𝑒, 𝑗

)
= (1 − 4𝜃)𝑒1

𝑒,𝑖
.

Uniqueness of 𝑒2
𝑒,𝑖
in 𝐻1 (Ω𝑖) enables us to conclude that 𝑒2𝑒,𝑖 = (1 − 4𝜃)𝑒1

𝑒,𝑖
in Ω𝑖 .

Since this holds in each subdomain, the exact same reasoning as for iteration 𝑘 = 1
applies, and we get after the Neumann step 𝑒2𝑒 = (1 − 4𝜃)𝑒1𝑒 and 𝜓2𝑒 = −2(1 − 4𝜃)𝑒1𝑒
in Ω \ Γ. By induction, we obtain for any 𝑘 ≥ 3, 𝑒𝑘𝑒 = (1 − 4𝜃)𝑘−1𝑒1𝑒 in Ω \ Γ. This
leads to the following estimates for the error on the whole domain Ω in the 𝐿2-norm
and the broken 𝐻1-norm:

‖ 𝑢𝑘𝑒 − 𝑢𝑒 ‖𝐿2 (Ω)=
∑︁
𝑖∈I

‖ 𝑒𝑘𝑒,𝑖 ‖𝐿2 (Ω𝑖)≤ 𝐶 |1 − 4𝜃 |𝑘−1,∑︁
𝑖∈I

‖ 𝑢𝑘𝑒,𝑖 − 𝑢𝑒,𝑖 ‖𝐻 1 (Ω𝑖)≤𝐶
′ |1 − 4𝜃 |𝑘−1,

where 𝐶, 𝐶 ′ are strictly positive constants depending on the data and the geometry
of the domain decomposition. �
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Case of the odd symmetric part. As for the Dirichlet-Neumann method, the
NNM does not converge in general when applied to the odd symmetric part of (1).

Theorem 2 The NNM applied to (2b) is not well-posed. More specifically, taking
(𝑢0𝑜, 𝜓0𝑜) as initial couple, there exists an integer 𝑘0 > 0 such that the solution to
the problem obtained at the 𝑘0-th iteration is not unique. In addition, all possible
solutions 𝑢𝑘0𝑜 are singular at the cross-point, with a leading singularity of type (ln 𝑟)2.

Theorem 3 If we let the NNM go beyond the ill-posed iteration 𝑘0 from Theorem 2,
we end up with a sequence {𝑢𝑘𝑜}𝑘≥𝑘0 of non-unique iterates. Moreover, for each
𝑘 ≥ 𝑘0, all possible 𝑢𝑘𝑜 are singular at the cross-point, with a leading singularity of
type (ln 𝑟)2(𝑘−𝑘0)+2.

Proof The proofs of these results rely on the exact same arguments as those in the
proofs of [3, Theorem 7 and 8]. �

The previous results show that, at some point in the iterative process, the NNM
method will lead to solving an ill-posed problem. This will generate a singular
solution, and the generated singularity will then propagate through the following
iterations.

3 Toward a modified Neumann-Neumann method

The conclusions from the previous section suggest that the transmission conditions
of the standard NNM are naturally well adapted to the even symmetric part of
the problem. Indeed, in this context, one may express at each iteration 𝑘 all local
errors 𝑒𝑘

𝑒,𝑖
in terms of only one, say 𝑒𝑘

𝑒,1, by symmetry. This motivates the search
for different transmission conditions such that a similar symmetry property holds for
the odd symmetric part of the problem.

Fixing the odd symmetric case. In order to fix the well-posedness issue in the
odd symmetric case, and obtain the symmetry propertymentioned above, we propose
a new distribution of Dirichlet and Neumann transmission conditions, as shown in
Figure 2.
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Fig. 2 Transmission conditions of the mixed NNM for 𝑢 (left) and 𝜓 (right).
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Let us introduce Γ1
𝐷
, Γ1

𝑁
, Γ2

𝐷
, Γ2

𝑁
the sets containing all parts of the interface Γ

where transmission conditions of Dirichlet or Neumann type are imposed for 𝑢
(superscript 1) and for 𝜓 (superscript 2), that is :

Γ1𝐷 := {Γ23, Γ41}, Γ1𝑁 := {Γ12, Γ34}, Γ2𝐷 := {Γ12, Γ34}, Γ2𝑁 := {Γ23, Γ41}.

Given an initial couple (𝑢0, 𝜓0) and relaxation parameter 𝜃, each iteration 𝑘 ≥ 1 of
the proposed mixed Neumann-Neumann method can be split into two steps:

• (First step) Solve for all 𝑖 ∈ I

−Δ𝑢𝑘𝑖 = 𝑓 in Ω𝑖 , 𝑢𝑘𝑖 = 𝑔 on 𝜕Ω0𝑖 ,

𝑢𝑘𝑖 = 𝑢𝑘−1𝑖 − 𝜃

(
𝜓𝑘−1
𝑖 + 𝜓𝑘−1

𝑗

)
on Γ𝑖 𝑗 , ∀ 𝑗 ∈ I s.t. Γ𝑖 𝑗 ∈ Γ1𝐷 ,

𝜕𝑛𝑖𝑢
𝑘
𝑖 = 𝜕𝑛𝑖𝑢

𝑘−1
𝑖 + (−1)𝑖𝜃

(
𝜕𝑛𝑖𝜓

𝑘−1
𝑖 + 𝜕𝑛 𝑗

𝜓𝑘−1
𝑗

)
on Γ𝑖 𝑗 , ∀ 𝑗 ∈ I s.t. Γ𝑖 𝑗 ∈ Γ1𝑁 .

• (Second step) Compute the correction 𝜓𝑘 , that is, solve for all 𝑖 ∈ I

−Δ𝜓𝑘
𝑖 = 0 in Ω𝑖 , 𝜓𝑘

𝑖 = 0 on 𝜕Ω0𝑖 ,

𝜓𝑘
𝑖 = 𝑢𝑘𝑖 − 𝑢𝑘𝑗 on Γ𝑖 𝑗 , ∀ 𝑗 ∈ I s.t. Γ𝑖 𝑗 ∈ Γ2𝐷 ,

𝜕𝑛𝑖𝜓
𝑘
𝑖 = 𝜕𝑛𝑖𝑢

𝑘
𝑖 + 𝜕𝑛 𝑗

𝑢𝑘𝑗 on Γ𝑖 𝑗 , ∀ 𝑗 ∈ I s.t. Γ𝑖 𝑗 ∈ Γ2𝑁 .

With this choice of transmission conditions, we are able to prove that the proposed
mixed NNM is convergent when applied to the odd symmetric part of (1).

Theorem 4 Taking (𝑢0𝑜, 𝜓0𝑜) as initial couple for the mixed NNM applied to (2b)
produces a sequence

{
𝑢𝑘𝑜

}
𝑘

that converges geometrically to the solution 𝑢𝑜 with
respect to the 𝐿2-norm and the broken 𝐻1-norm for any 𝜃 ∈ (0, 12 ). Moreover, the
convergence factor is given by |1 − 4𝜃 |, which also proves that the method becomes
a direct solver for the specific choice 𝜃 = 1

4 .

Proof We follow the same steps as in the proof of Theorem 1.
• Iteration 𝑘 = 1, Dirichlet step: In each Ω𝑖 , 𝑖 ∈ I, the odd errors satisfy

−Δ𝑒1𝑜,𝑖 = 0 in Ω𝑖 , 𝑒1𝑜,𝑖 = 0 on 𝜕Ω
0
𝑖 ,

𝑒1𝑜,𝑖 = 𝑒0𝑜,𝑖 + 𝜃

(
𝜓0𝑜,𝑖 + 𝜓0𝑜, 𝑗

)
on Γ𝑖 𝑗 , ∀ 𝑗 ∈ I s.t. Γ𝑖 𝑗 ∈ Γ1𝐷 ,

𝜕𝑛𝑖 𝑒
1
𝑜,𝑖 = 𝜕𝑛𝑖 𝑒

0
𝑜,𝑖 − (−1)𝑖𝜃

(
𝜕𝑛𝑖𝜓

0
𝑜,𝑖 + 𝜕𝑛 𝑗

𝜓0𝑜, 𝑗

)
on Γ𝑖 𝑗 , ∀ 𝑗 ∈ I s.t. Γ𝑖 𝑗 ∈ Γ1𝑁 .

These problems are well-posed since (𝑢0𝑜, 𝜓0𝑜) is compatible with the odd symmetric
part of the boundary condition. This time, using the mixed conditions enforced
along Γ together with the odd symmetry properties of 𝑒0𝑜 and 𝜓0𝑜, we can deduce that
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𝑒1𝑜,2 (𝑥, 𝑦) = −𝑒1𝑜,1 (−𝑥, 𝑦) , for a.e. (𝑥, 𝑦) ∈ Ω2 ,

𝑒1𝑜,3 (𝑥, 𝑦) = −𝑒1𝑜,1 (−𝑥,−𝑦) , for a.e. (𝑥, 𝑦) ∈ Ω3 ,

𝑒1𝑜,4 (𝑥, 𝑦) = 𝑒1𝑜,1 (𝑥,−𝑦) , for a.e. (𝑥, 𝑦) ∈ Ω4 .

Indeed, for the first equality, taking (𝑥, 𝑦) ∈ Ω2, we have on Γ23 and Γ12

𝑒1𝑜,2 (𝑥, 0) = 𝑒0𝑜,2 (𝑥, 0) + 𝜃

(
𝜓0𝑜,2 (𝑥, 0) + 𝜓0𝑜,3 (𝑥, 0)

)
= −𝑒0𝑜,1 (−𝑥, 0) − 𝜃

(
𝜓0𝑜,4 (−𝑥, 0) + 𝜓0𝑜,1 (−𝑥, 0)

)
= −𝑒1𝑜,1 (−𝑥, 0) ,

(𝜕𝑛2𝑒1𝑜,2) (0, 𝑦) = −(𝜕𝑥𝑒0𝑜,2) (0, 𝑦) − 𝜃

(
(𝜕𝑥𝜓0𝑜,2) (0, 𝑦) + (𝜕𝑥𝜓0𝑜,1) (0, 𝑦)

)
= −(𝜕𝑥𝑒0𝑜,1) (0, 𝑦) − 𝜃

(
(𝜕𝑥𝜓0𝑜,1) (0, 𝑦) + (𝜕𝑥𝜓0𝑜,2) (0, 𝑦)

)
= −(𝜕𝑛1𝑒1𝑜,1) (0, 𝑦) = −(𝜕𝑛2𝑒1𝑜,1 (− ·, ·)) (0, 𝑦) .

Then uniqueness of the solution to the subproblem in Ω2 yields 𝑒1𝑜,2 = −𝑒1
𝑜,1 (− ·, ·)

a.e. inΩ2. The two other equalities are obtained using similar arguments, see Figure 3
for an illustration of this symmetry property.
• Iteration 𝑘 = 1, Neumann step: For 𝑖 = 1, we get in Ω1

−Δ𝜓1𝑜,1 = 0 in Ω1 , 𝜓1𝑜,1 = 0 on Γ1 ,

𝜓1𝑜,1 = −𝑒1𝑜,1 + 𝑒1𝑜,2 = −2𝑒1𝑜,1 on Γ12 ,

𝜕𝑛1𝜓
1
𝑜,1 = −

(
𝜕𝑛1𝑒

1
𝑜,1 + 𝜕𝑛4𝑒

1
𝑜,4

)
= −2𝜕𝑛1𝑒1𝑜,1 on Γ41 .

Therefore, 𝜓1
𝑜,1 = −2𝑒1

𝑜,1 inΩ1. Extending these arguments to the other subdomains
yields a recombined correction 𝜓1𝑜 = −2𝑒1𝑜 in Ω \ Γ.
• Iteration 𝑘 ≥ 2: At iteration 𝑘 = 2, the transmission conditions for the first step
in Ω1 are given by

Fig. 3 Source term 𝑓 (left), and absolute error at iteration 1 for 𝜃 = 0.25 (right), in Example 2.
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𝑒2𝑜,1 = 𝑒1𝑜,1 + 𝜃

(
𝜓1𝑜,1 + 𝜓1𝑜,4

)
= (1 − 4𝜃)𝑒1𝑜,1 on Γ41 ,

𝜕𝑛1𝑒
2
𝑜,1 = 𝜕𝑛1𝑒

1
𝑜,1 + 𝜃

(
𝜕𝑛1𝜓

1
𝑜,1 + 𝜕𝑛2𝜓

1
𝑜,2

)
= (1 − 4𝜃)𝜕𝑛1𝑒1𝑜,1 on Γ12 .

This implies that 𝑒2
𝑜,1 = (1 − 4𝜃)𝑒1

𝑜,1 in Ω1. Using the same arguments in the
other subdomains and performing the second step leads to 𝑒2𝑜 = (1 − 4𝜃)𝑒1𝑜 and
𝜓2𝑜 = −2(1 − 4𝜃)𝑒1𝑜 in Ω \ Γ. As in the proof of Theorem 1, we obtain by induction
that, for any 𝑘 ≥ 3, 𝑒𝑘𝑜 = (1 − 4𝜃)𝑘−1𝑒1𝑜 in Ω \ Γ. The desired error estimates are
then deduced from the last relation. �

The new NNM.Here are the different steps of our newNNM to solve (1) starting
from an initial couple (𝑢0, 𝜓0) compatible with the Dirichlet boundary condition,
and a relaxation parameter 𝜃 ∈ (0, 1/2).
1. Decompose the data into their even/odd symmetric parts to get (2a) and (2b).
2. Solve in parallel:

• (2a) using the standard NNM starting from (𝑢0𝑒, 𝜓0𝑒),
• (2b) using the mixed NNM starting from (𝑢0𝑜, 𝜓0𝑜).

3. Recompose the solution 𝑢 = 𝑢𝑒 + 𝑢𝑜.

Remark 1 It is actually enough to solve for 𝑢𝑒 and 𝑢𝑜 in Ω1 ∪ Ω2, and then extend
them to the whole domainΩ by symmetry. One iteration of the new NNM thus costs
the same as one iteration of the original NNM.

4 Numerical experiments

In order to test our new NNM, we apply it to two simple benchmarks: one with even
symmetric data (Example 1: 𝑔 = 0 and 𝑓 = 1) and one with odd symmetric data
(Example 2: 𝑔 = 0 and 𝑓 = 𝑥 + 𝑦 + 𝑘 where 𝑘 = sin(2𝜙) in Ω1, 𝑘 = − sin(2𝜙) in Ω3
and 𝑘 = 0 in Ω2 ∪ Ω4, with 𝜙 being the angle in polar coordinates, see Figure 3).
The discretization of (1) is performed using a standard five point finite difference
scheme on a cartesian grid of meshsize ℎ = 0.01. When two Dirichlet conditions
meet at a corner, the value of 𝑔 at this node is set to the average of the two values. In
addition, when Dirichlet and Neumann conditions meet at a corner, we choose the
Dirichlet one to be enforced at this node. The results obtained show that the method
behaves as predicted by Theorem 1 and Theorem 4. For 𝜃 = 1

4 , the method converges
after two iterations, see the left column in Figure 4. And for 𝜃 ∈ (0, 12 ), 𝜃 ≠ 1

4 , it
converges geometrically to the solution with the expected convergence factor, see
the right column in Figure 4 where 𝜃1 = 0.23 and 𝜃2 = 0.247. These two graphs also
indicate that the convergence behaviour does not depend on ℎ since, in each case,
the error curves for ℎ = 0.01 and ℎ = 0.005 are almost overlaid on each other.
In this short paper, we gave a complete analysis of the standard NNM in a sim-

ple configuration involving one cross-point. The even/odd decomposition showed
that the NNM was able to treat very efficiently the even symmetric part of the so-
lution, while it faced well-posedness and convergence issues when applied to the
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Fig. 4 Absolute error at iteration 2 for 𝜃 = 0.25 (left column), and error curves for 𝜃 ∈ {𝜃1, 𝜃2 }
and ℎ ∈ {0.01, 0.005} (right column), in Example 1 (top) and Example 2 (bottom).

odd symmetric part of the solution. Based on this observation, we proposed new
mixed transmission conditions of Dirichlet/Neumann type to treat efficiently the odd
symmetric part. We proved that the newly proposed NNM built upon a combina-
tion between the standard NNM and the new mixed method is convergent, and we
validated this property by some numerical experiments. A natural extension of this
work would be the 3D case of a cube divided into eight subcubes. It would also
be interesting to generalize the notion of even/odd symmetry to the case of more
general cross-points (not necessarily rectilinear, or with 𝑁 ≠ 4 subdomains).
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A Preconditioner for Free-Surface
Hydrodynamics BEM

Gabriele Ciaramella, Marco Gambarini, and Edie Miglio

1 Introduction

The computation of hydrodynamic loads from sea surface waves on large arrays of
objects is of physical and engineering interest. Typical applications are the simu-
lation of arrays of wave energy converters [3] and the modeling of ice floes in the
marginal ice zone [6]. The interest is in array sizes of the order of tens (for wave
energy converter arrays) to hundreds (for ice floes) of objects. In these scenarios, the
relatively small distances between the floating objects make the correct simulation
of mutual hydrodynamic interactions essential. Under the assumptions of incom-
pressible, irrotational, inviscid flow and small displacements, one can derive a linear
potential model, which is widely used for the considered range of applications. This
model is discretized using the boundary element method [2], resulting in a linear
system characterized by a dense and complex matrix. The dimension of the discrete
problem grows proportionally to the number of simulated objects. In general, itera-
tive solvers are not scalable for the corresponding numerical solution: the number of
iterations needed to achieve a given tolerance grows with the number of objects [5].
To tackle this problem, we propose a preconditioner for the efficient simulation of
large arrays of objects and present its implementation using hierarchical matrices.
Consider an array of 𝑛 floating objects. To compute all its hydrodynamic proper-

ties, a number of problems equal to the number of its degrees of freedom needs to be
solved. Each problem corresponds to imposing a unit oscillation in one of the degrees
of freedom, while keeping all others fixed. Exploiting linearity, the solution of the
dynamic problem with loads from incident waves and possibly other external forces
can then be written as a linear combination of such unit oscillations. Considering
only vertical oscillations, system (1) needs to be solved for 𝑖 = 1, . . . , 𝑛

Gabriele Ciaramella, Marco Gambarini, Edie Miglio
MOX, Dipartimento di Matematica Politecnico di Milano, Italy, e-mail:
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Δ𝜙 = 0 in Ω ⊂ R3,
𝜕𝜙

𝜕𝑛
= 0 on Γ𝑏 ,

𝜕𝜙

𝜕𝑧
− 𝜔2

𝑔
𝜙 = 0 on Γ𝑠 ,

𝜕𝜙

𝜕𝑛
= 𝑛𝑧 on Γ𝑜,𝑖 ,

𝜕𝜙

𝜕𝑛
= 0 on Γ𝑜, 𝑗 , 𝑗 = 1, . . . , 𝑛 ∧ 𝑗 ≠ 𝑖,

(1)

where 𝜙 is the velocity potential,Ω is the (3D) domain, bounded by the sea bottom Γ𝑏 ,
the mean free surface Γ𝑠 , and the immersed surfaces of the objects Γ𝑜,𝑖 , 𝑖 = 1, . . . , 𝑛.
Further, 𝜔 is the angular frequency of oscillations, 𝑔 is the gravitational field, and 𝑛𝑧
is the vertical component of the normal vector to the surface of objects. The numerical
solution using a source-distribution boundary element method (BEM) is based on
recasting (1) in integral form:

1
2
𝜎(𝒙) +

∫
∪𝑘Γ𝑜,𝑘

𝜎(𝒙′) 𝜕G
𝜕𝑛

(𝒙; 𝒙′) d𝒙′ =
{
𝑛𝑧 if 𝒙 ∈ Γ𝑜,𝑖 ,
0 if 𝒙 ∈ Γ𝑜, 𝑗 , 𝑗 ≠ 𝑖,

(2)

𝜙(𝒙) =
∫
∪𝑘Γ𝑜,𝑘

𝜎(𝒙′)G(𝒙; 𝒙′) d𝒙′, ∀𝒙 ∈ Ω. (3)

Here, the unknown is the source distribution 𝜎 defined on body surfaces. The kernel
is the Green function G, a complex elementary solution of the Laplace equation
satisfying the boundary conditions on the bottom and free surface [7, Sect. 16]. By
discretizing the surfaces of objects into elements, Eq. (2) can be represented as the
linear algebraic system 𝐴𝝈 = 𝒃. Once this system has been solved, Eq. (3), in the
discretized form 𝝓 = 𝐵𝝈, can be used to compute the potential in any point of the
domain.

2 The coarse-corrected block-Jacobi algorithm

Thematrix 𝐴 resulting from the discretization of Eq. (2) is full, because each element
interacts with all others. Moreover, even though the Green function is symmetric
with respect to an exchange of its arguments, matrix 𝐴 is non-symmetric because
interacting elements have in general different areas and orientations. The problem
has a natural block structure

𝐴 =


𝐴11 · · · 𝐴1𝑛
...

. . .
...

𝐴𝑛1 · · · 𝐴𝑛𝑛

 , 𝝈 =


𝝈1
...

𝝈𝑛

 , 𝒃 =


𝒃1
...

𝒃𝑛

 , (4)
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where 𝝈𝑗 is a vector containing the unknowns corresponding to the 𝑗-th object. The
diagonal block 𝐴𝑖𝑖 represents the interaction of body 𝑖 with itself. The off-diagonal
block 𝐴𝑖 𝑗 represents the effect on body 𝑖 of waves radiated from body 𝑗 . The structure
of (4) suggests the use of a block-Jacobi algorithm, equivalent to the parallel method
of reflections [5]. This method, together with a coarse correction, has been presented
in [5] for the real Laplace equation in perforated domains. Block-Jacobi is based on
the splitting 𝐴 = 𝐷 − 𝑁 , where 𝐷 is the block-diagonal part of 𝐴. At each iteration,
starting from 𝝈𝑘 , it requires solving for 𝝈𝑘+1/2 in

𝐷𝝈𝑘+1/2 = 𝑁𝝈𝑘 + 𝒃. (5)

The solution of (5) can be performed block by block in parallel. After the block-
Jacobi step, a coarse correction is performed by solving the correction problem
𝐴𝒆 = 𝒓𝑘+1/2 in a low-dimensional (coarse) space C, where 𝒓𝑘+1/2 = 𝒃 − 𝐴𝒙𝑘+1/2

is the residual. Consider, for simplicity, a problem with 𝑛 identical bodies, each
one discretized with 𝑝 elements, so that the full system has dimension 𝑛𝑝. Define
C = span{𝒄1, 𝒄2, . . . , 𝒄𝑚}, 𝑚 � 𝑛𝑝. Then we can introduce a restriction operator
R : R𝑛𝑝 → C represented by matrix 𝑅 =

[
𝒄1 𝒄2 . . . 𝒄𝑚

]𝑇 and a prolongation
operator P : R𝑛𝑝 → C represented by matrix 𝑅𝑇 . Let 𝒆𝑐 ∈ R𝑚 be a vector such that
𝒆 = 𝑅𝑇 𝒆𝑐 is an approximation of the error 𝒆. The coarse problem is

𝑅𝐴𝑅𝑇 𝒆𝑐 = 𝑅𝒓𝑘+1/2, (6)

where 𝐴𝑐 := 𝑅𝐴𝑅𝑇 . Once the coarse problem (6) has been solved, the update

𝝈𝑘+1 = 𝝈𝑘+1/2 + 𝑅𝑇 𝒆𝑐

is performed. The efficiency of the correction step is strongly related to the choice
of the coarse space C. This has to be rich enough to well represent the main error
components that block-Jacobi cannot dealwith, but its dimension𝑚must be relatively
small, so that the cost of a single iteration is not increased significantly. A simple
choice for the coarse space is taking a constant value of the source distribution 𝜎 on
each body. This choice is suggested by the one presented in [5] and corresponds to
𝒄𝑖 := 1𝑖 , 𝑖 = 1, . . . , 𝑛, 1𝑖 being the discrete indicator function of the 𝑖-th object. In
this case, the dimension of C is equal to the number of objects 𝑛.
Our two-level block-Jacobi method is detailed in Algorithms 1 and 2. The former

is a precomputation step, that does not depend on the right-hand side vector. Thus,
if multiple systems with the same matrix and different right hand sides need to be
solved, Alg. 1 needs to be performed only once. In this algorithm, matrix 𝑅 = 𝑅𝐴

is efficiently (see Section 3) computed, so that the cost for computing the restricted
residual at each iteration is reduced. Alg. 2 corresponds to the stationary method

𝝈𝑘+1 = [𝐼 − (𝑃𝑐 + 𝐷−1 − 𝑃𝑐𝐷
−1)𝐴]𝝈𝑘 + (𝑃𝑐 + 𝐷−1 − 𝑃𝑐𝐷

−1)𝒃
= 𝝈𝑘 + (𝑃𝑐 + 𝐷−1 − 𝑃𝑐𝐷

−1)𝒓𝑘 ,
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Algorithm 1 Two-level block-Jacobi algorithm: initialization
1: for 𝑖 = 1 to 𝑛 do
2: Compute the LU decomposition of 𝐴𝑖𝑖 .
3: end for
4: Compute 𝑅 = 𝑅𝐴, 𝐴𝑐 = 𝑅𝑅𝑇 .

Algorithm 2 Two-level block-Jacobi algorithm: solution
Require: Initial guess 𝝈0, tolerance 𝑡𝑜𝑙, maximum number of iterations 𝑚𝑎𝑥𝑖𝑡 .
1: Set 𝑘 = 0.
2: while ‖𝒃 − 𝐴𝝈𝑘 ‖ > 𝑡𝑜𝑙 and 𝑘 < 𝑚𝑎𝑥𝑖𝑡 do
3: Compute 𝒒 = 𝒃 − 𝑁𝝈𝑘 .
4: for 𝑖 = 1 to 𝑛 do
5: Solve 𝐴𝑖𝑖𝝈

𝑘+1/2
𝑖

= 𝒒𝑖 using the LU decomposition of 𝐴𝑖𝑖 .
6: end for
7: Compute the restricted residual 𝒓𝑐 = 𝑅𝒃 − 𝑅𝝈𝑘+1/2.
8: Solve for 𝒆𝑐 in 𝐴𝑐𝒆𝑐 = 𝒓𝑐 .
9: Update 𝝈𝑘+1 = 𝝈𝑘+1/2 + 𝑅𝑇 𝒆𝑐 .
10: Update 𝑘 = 𝑘 + 1.
11: end while

with 𝑃𝑐 = 𝑅𝑇 𝐴−1
𝑐 𝑅 and where we can recognize the inverse preconditioner 𝑃−1 =

𝑃𝑐 + 𝐷−1 − 𝑃𝑐𝐷
−1. Such preconditioner can then be used to accelerate a Krylov

method. Using 𝑃−1, the system is recast as 𝑃−1𝐴𝝈 = 𝑃−1𝒃. Since the new system
matrix 𝑃−1𝐴 is not symmetric, a classical choice is GMRES. In our implementation,
the preconditioning matrix 𝑃−1 is not assembled explicitly; instead, GMRES is
provided with a function (based on Alg. 2) computing the action of 𝑃−1𝐴 on an
arbitrary vector.

3 Implementation details and H-matrices

Hierarchical matrices, denoted here asH -matrices, are an efficient tool for reducing
the storage and computational cost of BEM problems. The method is based on
defining a hierarchical cluster tree from the set of mesh elements. The system matrix
is then built with a hierarchical block structure accordingly. Each block describes
the interaction between two clusters of elements. If the centers of the two clusters
are farther than a threshold, then a low-rank approximation on the block is built;
otherwise, the block is built in dense form. If the tree is balanced and if we take
as leaves of the tree the single objects, discretized with 𝑝 elements, then both the
costs of storage and of matrix-vector multiplication are O(max(𝑟, 𝑝)𝑛𝑝 log(𝑛𝑝)) [4,
Th. 2.6, 2.8], where 𝑟 is the maximum rank of matrix blocks.
Fig. 1 shows the tree and the hierarchical structure of matrix 𝐴 for an example

with 10 objects on a row, with spacing of 5 m. The ordinate of each node in the tree
is the distance between the centers of its sons. In the matrix, blue blocks are dense,
while white blocks are low-rank. Notice that dense blocks gather mostly close to
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Fig. 1 Clustering of positions (left) and hierarchical structure of matrix 𝐴 (right) for a test with 10
objects.

the diagonal. Information on the nodes of the tree is stored in the so-called linkage
matrix. The leaves constitute the first 𝑛 nodes of the tree. All other nodes are defined
by the rows of the linkage matrix: its 𝑖-th row contains the labels of the sons of the
(𝑛 + 𝑖)-th node.
Our implementation of Alg. 1 and 2 is done starting from the BEM code Capy-

taine [2], which includes anH -matrices engine. Matrix-vector multiplication in line
3 of Alg. 2 is performed with the built-in routine. Handling of diagonal blocks and
building the coarse space, instead, require special care. Since the structure of matrix
storage is hierarchical, extracting the diagonal blocks of 𝐴 to build matrices 𝐷 and 𝑁
is not immediate. In order to do it, first a list leaves, whose 𝑖-th element is the list of
leaves belonging to node 𝑖, is built by sweeping over the rows of the linkage matrix.
Then, a list paths is constructed. This contains 𝑛 sublists. The 𝑖-th sublist has size
equal to the level of the 𝑖-th leaf. The ℓ-th element of this sublist is equal to 0 or 1,
if at the ℓ-th level one has to turn left or right, respectively, to step down toward the
𝑖-th leaf. For example, in Fig. 1 (left) the path to leaf 5 is paths[5] = [0, 1, 0]. The
lists leaves and paths are exploited to compute 𝑅𝐴 efficiently in Alg. 2. Because
of the sparsity of the rows of 𝑅, that are vectors c𝑇

𝑖
, for dense matrices this operation

can be made very efficient by multiplying each of the c𝑖 only by the rows of 𝐴
corresponding to its non-zero elements. Slicing a hierarchical matrix, however, is
not as trivial. For this reason, we propose the recursive procedure detailed in Alg. 3
and described graphically in Fig. 2. At the beginning, 𝐴 = 𝐴 and 𝒗 = 𝒄𝑖 are set. The
algorithm then descends from the root to the level above the 𝑖-th leaf following list
path = paths[𝑖]. In doing this, because of the structure of the tree, 2× 2 blocks are
encountered at each level. At level 𝑗 , the nonzero contributions 𝒄𝑖𝐴 come only from
the 𝑘-th block-row, with 𝑘 = path[ 𝑗]. The off-diagonal part of the 𝑘-th block row is
directly multiplied by the appropriate slice of 𝒗; then, the algorithm is applied again
to the diagonal block 𝐴𝑘𝑘 . At the end, only the (dense) diagonal block corresponding
to the interaction of the 𝑖-th object with itself is left, and this last multiplication is
performed. The main advantage of this strategy is that, at each level of the hierarchy
except the last, off-diagonal blocks, that are expected to be mostly low-rank, are
multiplied.
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Algorithm 3 Computation of 𝑅 = 𝑅𝐴 forH -matrices
Require: 𝐴, 𝑅 = [𝒄1, · · · , 𝒄𝑛 ] and paths.
1: for 𝑖 = 1 to 𝑛 do
2: Select the path to the 𝑖-th leaf: path = paths[𝑖 ].
3: Set 𝐴 = 𝐴, 𝒗 = 𝒄𝑖 , 𝑎 = 0, 𝑏 = 𝑛𝑝, and initialize a zero array 𝒅 of size 𝑛𝑝.
4: for 𝑗 = 1 to length(path) do
5: Set 𝑘 = path[ 𝑗 ] and 𝑁𝑟𝑜𝑤 as the number of rows of 𝐴𝑘𝑘 .
6: if 𝑘 = 0 then
7: Select the first 𝑁𝑟𝑜𝑤 rows of 𝒗: 𝒗 = 𝒗 [0 : 𝑁𝑟𝑜𝑤 ].
8: Multiply 𝒘 = 𝒗𝐴01 and set 𝒅 [𝑏 − length(𝒘) : 𝑏] = 𝒘.
9: Update: 𝑏 = 𝑏 − length(𝒘) .
10: else
11: Select the last 𝑁𝑟𝑜𝑤 rows of 𝒗: 𝒗 = 𝒗 [end − 𝑁𝑟𝑜𝑤 : end].
12: Multiply 𝒘 = 𝒗𝐴10 and set 𝒅 [𝑎 : 𝑎 + length(𝒘) ] = 𝒘.
13: Update: 𝑎 = 𝑎 + length(𝒘) .
14: end if
15: Set 𝐴 = 𝐴𝑘𝑘 .
16: end for
17: Diagonal block multiplication: 𝒅 [𝑎 : 𝑏] = 𝒗 𝐴̃.
18: Set 𝑅 [𝑖, :] = 𝒅.
19: end for

4 Numerical experiments
The method is implemented by integration with the BEM code Capytaine [2]. Hi-
erarchical clustering on the positions of the objects is performed using SciPy. We
simulate two geometries: line arrays and grid arrays. In both cases the objects are
half-spheres of radius 2 m and the minimum distance between two bodies is 5 m.
The results are reported in Table 1. Times for GMRES and preconditioned GMRES
refer to the solution of the 𝑛 systems required to build the radiation dataset; thus the
number of systems needing to be solved increases with the number of objects. The
loops described in Algorithms 2 and 3 are performed serially. We build the radiation
dataset only for vertical motion; in the general case of a rigid body, 6𝑛 systems would
need to be solved. In some cases, the number of iteration varies depending on the
right hand side (i.e., depending on the radiating object).
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(a) 𝑗 = 1 (b) 𝑗 = 2

(c) 𝑗 = 3 (d) Diagonal block

Fig. 2 Blocks selected for multiplication in Algorithm 3 for leaf 𝑖 = 5.

Table 1 Results of the numerical experiment. Top table: line geometry. Bottom table: grid geometry.
In both tables, init is the time for initializing the coarse solver (coarse space definition).

GMRES Preconditioned GMRES
𝑛 storage (%) niter 𝑡 (s) 𝑡/𝑛 (s) init (s) niter 𝑡 (s) 𝑡/𝑛 (s)
80 6.19 12 18 0.23 0.47 7 15 0.19
160 3.32 13 107 0.67 1.05 7 68 0.85
240 2.33 14 449 1.87 1.64 7 294 1.23
320 1.75 14-15 831 2.60 2.51 7 487 1.52
400 1.43 15 1182 2.95 3.46 7 698 1.74
480 1.23 15-16 1715 3.57 4.14 7 993 2.07

GMRES Preconditioned GMRES
𝑛 storage (%) niter 𝑡 (s) 𝑡/𝑛 (s) init (s) niter 𝑡 (s) 𝑡/𝑛 (s)
16 48.42 10 0.51 0.03 0.07 7 1.03 0.06
64 20.00 13 35 0.55 0.87 8 25 0.40
144 10.82 17 281 1.95 3.40 8-9 157 1.09
256 6.72 24-26 2216 8.66 15.5 9 826 3.23
400 4.82 38-43 7215 18.03 23.5 9-10 2030 5.08

5 Discussion and conclusions

The presented results indicate that the preconditioned GMRES method has a lower
cost than the standard GMRES method for large arrays of floating objects. The
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advantage becomes larger as the number of bodies increases: speedups of up to
a factor of 3.5 are obtained. For the line geometry, the number of iterations of
GMRES tends to become constant with respect to the number of objects, while the
iterations of preconditioned GMRES remain exactly constant and equal to 7. On
the other hand, for the grid geometry the number of iterations of GMRES increases
as 𝑛 grows, while preconditioned GMRES scales well. The use of Alg. 3 for the
construction of the coarse space, which needs to be performed only once, keeps the
cost of such operation low. Thus, a substantial speedup can be obtained with respect
to standard GMRES even when a small subset of the entire radiation dataset needs to
be computed. In the grid test case the percentage of dense blocks is larger, resulting
in a larger time for the initialization of Alg. 3.
Possible improvements include the parallelization of the loops in Alg. 2 and the

use of a preconditioner also for the solution of the coarse problem, whose cost can
become relevant for very large arrays. In the case of a single row of bodies, the coarse
matrix 𝐴𝑐 has a Toeplitz structure, and the natural choice in this case is to use a
circulant preconditioner. This strategy has been explored at block level in [1], while
some choices of circulant preconditioners are presented in [8].
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A Performance Comparison of Classical Volume
and New Substructured One- and Two-Level
Schwarz Methods in PETSc

Gabriele Ciaramella, Martin J. Gander, Serge Van Criekingen, and
Tommaso Vanzan

1 Introduction

Substructured Schwarz methods are interpretations of volume Schwarz methods as
algorithms on interface variables. We compare here the Parallel Schwarz Method
(PSM, equivalent to RAS) in volume to the new substructured version of PSM
in [11, p.24] and recently extended to a two-level (i.e. coarse-corrected) framework
in [6] and [5], using a geometric and spectral approach for the definition of the
coarse space. The expected gain of substructured methods is due to the smaller size
of the resulting problems, notably with Krylov-type acceleration techniques when
the dimension of the subspace of approximants becomes large [12].
While the numerical results in [5, 6] were obtained sequentially, we present here

a parallel performance comparison of volume and substructured Schwarz methods
using PETSc [1, 2, 3], successively considering one- (Section 2) and two- (Section 3)
level methods. The substructured results are compared to the ones obtained by the
RAS method in volume [4] for which two-level results with various coarse spaces
were presented in [9, 10] also using PETSc . For the two-level substructured method,
four coarse spaces are introduced here, all based on a geometric approach. Note that,
at this time, spectral approaches still require further investigations and are therefore
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not presented here (- the reason being that the eigenvectors on which spectral coarse
spaces are based in [5] are in general complex and in turn necessitate a PETSc
installation adapted to complex arithmetic, which has a negative influence on the
resulting computational times).

2 The one-level substructured formulation

We consider the system 𝐴𝑢 = 𝑓 for the Laplace problem with Dirichlet boundary
conditions discretizedwith finite differences.Wefirst derive the substructured system

0 1

1 𝑎 𝑏 𝐽
• • • • • • • • • • • • • • • • • • •

Ω1
Ω2

Fig. 1 Two subdomain decomposition in the 1-D case.

for the 1-D case, namely the [0,1] interval subdivided into 𝐽 + 1 mesh cells of size ℎ
as depicted in Fig. 1 in the two-subdomain case. Following [11], we decompose
𝐴 ⊂ R(𝐽−1)×(𝐽−1) in two different ways as

𝐴 =

(
𝐴1 𝐵1
𝐶1 𝐷1

)
=

(
𝐷2 𝐶2
𝐵2 𝐴2

)
, (1)

where 𝐴1 ⊂ R(𝑏−1)×(𝑏−1) and 𝐴2 ⊂ R(𝐽−𝑎)×(𝐽−𝑎) . Our starting point is the dis-
cretized Parallel Schwarz Method (PSM) for 𝐴𝑢 = 𝑓 which reads

𝐴1𝑢
𝑛+1
1 = 𝑓1 − 𝐵̃1𝑢

𝑛
2 , (2)

𝐴2𝑢
𝑛+1
2 = 𝑓2 − 𝐵̃2𝑢

𝑛
1 , (3)

where 𝐵̃1 = [0𝑏−1,𝑑−1𝐵1] and 𝐵̃2 = [𝐵20𝐽−𝑎,𝑑−1] (with 𝑑 = 𝑏 − 𝑎 the overlap) are
extensions by zeros of the 𝐵1 and 𝐵2 matrices of (1) such that

𝐵̃1𝑢2 = (0, ..., 0,− 1
ℎ2

(𝑢2)𝑏) ⊂ R𝑏−1,

𝐵̃2𝑢1 = (− 1
ℎ2

(𝑢1)𝑎, 0, . . . , 0) ⊂ R𝐽−𝑎 .

Thus, 𝐵̃1 maps a vector defined on Ω2 into one defined on Ω1, extended by zero out
of Ω2 (and similarly for 𝐵̃2). We introduce the trace operators

𝐺1 : (𝑣1, . . . , 𝑣𝑎, . . . , 𝑣𝑏−1) → 𝑣𝑎,

𝐺2 : (𝑣𝑎+1, . . . , 𝑣𝑏 , . . . , 𝑣𝐽 ) → 𝑣𝑏 ,
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such that𝐺1𝑢1 = (𝑢1)𝑎 and𝐺2𝑢2 = (𝑢2)𝑏 , as well as the extension by zero operators

𝐸1 : 𝑣𝑏 → (0, . . . , 0, 𝑣𝑏) ⊂ R𝑏−1,

𝐸2 : 𝑣𝑎 → (𝑣𝑎, 0, . . . , 0) ⊂ R𝐽−𝑎,

such that 𝐵̃1𝑢2 = − 1
ℎ2
𝐸1 (𝑢2)𝑏 and 𝐵̃2𝑢1 = − 1

ℎ2
𝐸2 (𝑢1)𝑎. Applying the trace operators

to the PSM system (2)–(3) then yields

(𝑢𝑛+11 )𝑎 =
1
ℎ2

𝐺1 𝐴
−1
1 𝐸1 (𝑢𝑛2 )𝑏 + 𝐺1 𝐴

−1
1 𝑓1,

(𝑢𝑛+12 )𝑏 =
1
ℎ2

𝐺2 𝐴
−1
2 𝐸2 (𝑢𝑛1 )𝑎 + 𝐺2 𝐴

−1
2 𝑓2.

Defining interface unknowns 𝑔𝑇 = (𝑔1, 𝑔2) = ((𝑢1)𝑎, (𝑢2)𝑏), this is the block Jacobi
method applied to the substructured system

𝑇𝑔 = 𝑓 𝑔, (4)

where

𝑇 =

(
𝐼 − 1

ℎ2
𝐺1 𝐴

−1
1 𝐸1

− 1
ℎ2

𝐺2 𝐴
−1
2 𝐸2 𝐼

)
and 𝑓 𝑔 =

(
𝐺1 𝐴

−1
1 𝑓1

𝐺2 𝐴
−1
2 𝑓2

)
. (5)

This system can also be solved using a Krylov method (GMRES here).
From a parallel data transfer point of view, in the two-subdomain case of Fig.1,

we have that Ω1 sends 𝑢𝑎 to Ω2, while Ω2 sends 𝑢𝑏 to Ω1. In the three subdomain
case (Fig.2), two trace operators are necessary for the central subdomain Ω2, ex-

0 1

1 𝑎 𝑏 𝑐 𝑑 𝐽
• • • • • • • • • • • • • • • • • • •

Ω1
Ω2

Ω3

Fig. 2 Three subdomain decomposition in the 1-D case.

tracting respectively 𝑢𝑏 and 𝑢𝑐 and sending them to Ω1 and Ω3, again respectively.
Meanwhile, subdomain Ω2 receives 𝑢𝑎 from Ω1 and 𝑢𝑑 from Ω3.
In 2-D, for a typical non-boundary subdomain, data exchange consists in receiving

data on a square skeleton obtained by extending the domain by the size of the overlap
(Fig. 3a) and sending local data from four “portions” within the domain, at overlap
distance from the interface (Fig. 3b). Furthermore, in 2D a partition of unity is
required and we investigated two data exchange options, with or without transfers
from diagonal neighbours, as illustrated in Fig. 4 for the left-to-right data exchange.
The 𝑇 substructured system matrix defined in (5) is implemented matrix-free

in our PETSc implementation, using the MatCreateShell and MatShellSet-
Operation tools. Each multiplication by 𝑇 implies data transfer (with or without
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(a) (b)

Fig. 3 Dotted are the substructure values to be received (a) or sent (b) by the central subdomain.

····
··

····
····

····
··

····
····

(a)

····
··

····
····

····
··

····
····

(b)

Fig. 4 Schematic representation of left-to-right data exchange with (a) or without (b) transfers from
diagonal neighbours. The transferred data are in red.

diagonal transfers), extension by zero (𝐸𝑖), exact solve by the local matrices 𝐴𝑖

(direct solver with LU decomposition computed only once) and taking the trace in
the subdomain (𝐺𝑖). To solve the substructured system (4), we apply GMRESwithout
preconditioner, since this system is in fact already preconditioned by the Schwarz
method.
We compare our substructured method to the (volume) RAS method [4] (im-

plemented in PETSc as PCASM) on a weak scaling experiment for the 2-D Laplace
problem on the unit square with 5-point finite difference scheme, using square de-
compositions into 2 × 2 to 32 × 32 subdomains (one processor per subdomain) and
a 256 × 256 fine mesh within each subdomain (.004 fine-to-coarse mesh ratio).
Several observations can be made from the results displayed in Fig.5. First, there is
virtually no difference in the number of iterations with or without diagonal transfers,
so that the extra cost of the diagonal transfers is not compensated by a decrease in
iterations. Consequently, we stick to the no diagonal transfer option in the remainder
of our study. Second, when looking at computational times, the optimal GMRES restart
parameter for the substructured method (here 500, which in fact means no restart
since a bit less than 500 iterations are then performed) appears to be larger than
for the volume method (here 400 with 200 being very close), the smaller size of
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(a) Iteration count (b) Timing results

Fig. 5 Weak scaling results for the 2 × 2 to 32 × 32 square decompositions, using various
GMRES restart parameters. Volume methods (solid lines) and substructured methods with (dashed
lines) or without (dashdot lines) diagonal transfer are used.

the substructured problem thus making a larger Krylov space profitable. Third, and
most importantly, at high restart parameters and in particular at the optimal one,
substructured methods yield better timing performances than volume methods. This
appears to be due to the smaller size of the substructured systems since the number
of iterations with both methods is similar.

3 Two-level substructured methods

Wemodel our two-level substructured method on the (volume) two-level RAS meth-
ods (“RAS2”) developped in [9], namely

𝑢𝑛+1/2 = 𝑢𝑛 +
𝐽∑︁
𝑗=1

𝑅̃𝑇
𝑗 𝐴−1

𝑗 𝑅 𝑗 ( 𝑓 − 𝐴𝑢𝑛),

𝑢𝑛+1 = 𝑢𝑛+1/2 + 𝑅𝑇
𝑐 𝐴−1

𝑐 𝑅𝑐 ( 𝑓 − 𝐴𝑢𝑛+1/2),

where 𝑅 𝑗 are restriction operators to the (possibly overlapping) Ω 𝑗 subdomains
decomposing the global domain Ω, 𝑅̃ 𝑗 are the equivalents for a non-overlapping
decomposition of Ω into Ω̃ 𝑗 , and 𝑅𝑐 is the restriction operator to the coarse space.
Moreover, we have defined the local matrices as 𝐴 𝑗 = 𝑅 𝑗 𝐴 𝑅𝑇

𝑗
and the coarse matrix

as 𝐴𝑐 = 𝑅𝑐 𝐴 𝑅𝑇
𝑐 . In our PETSc implementation, this is implemented as a multiplica-

tive composition (PCCOMPOSITE) of RAS (PCASM) with a hand-made second-level
correction (PCSHELL framework). The coarse solve 𝐴−1

𝑐 is performed with the direct
solver MUMPSwith agglomeration of the coarse unknowns. A GMRES acceleration can
be applied to the (full) iteration. The volume RAS2 coarse correction chosen here
is Q1, a coarse space made out of linear functions with, in 2-D, four coarse nodes
placed around each cross-point [7, 8, 9].
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(for the upper-left coarse point,
similarly for the three others.)
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(c) Enriched

Fig. 6 Schematic view of substrucutred coarse space options, with coarse point positions (above)
and coarse function sketch (below).

We proceed similarly for our two-level substructured implementation: for the
system 𝑇𝑔 = 𝑓 𝑔, our two-level method reads

𝑔𝑛+1/2 = 𝑔𝑛 + ( 𝑓 𝑔 − 𝑇𝑔𝑛), (6)
𝑔𝑛+1 = 𝑔𝑛+1/2 + 𝑅𝑇

𝑐 𝑇−1
𝑐 𝑅𝑐 ( 𝑓 𝑔 − 𝑇𝑔𝑛+1/2), (7)

where 𝑅𝑐 is again the restriction operator to the coarse space and 𝑇𝑐 = 𝑅𝑐𝑇𝑅
𝑇
𝑐 is

the coarse matrix. In PETSc, we proceed again with a multiplicative composition of,
this time, PCNONE (no preconditioner) with a hand-made second-level correction.
The 𝑇𝑐 matrix is built once and for all at the begining of the calculation, as well
as its LU decomposition using MUMPS. Here also GMRES can be applied to the full
iteration.
Our substructured coarse space functions will be defined exclusively on the inter-

faces, more precisely, for each of them, on the four substructure portions of a typical
non-boundary subdomain (Fig. 3b). We here consider four geometric substructured
coarse spaces, namely Constant with one constant coarse function per portion
(so 4 functions for a non-boundary subdomain), Linear (Fig. 6a) with two linear
coarse functions per portion (so 8 coarse points and functions for a non-boundary sub-
domain), Linear4 (Fig. 6b) with four linear functions (and as many coarse points)
for a non-boundary subdomain (- this space can be seen as the volume Q1 coarse
space restricted to the substructure) and Enriched (Fig. 6c) with three linear coarse
functions per portion (so 12 coarse points and functions for a non-boundary sub-
domain). Thus, for an 𝑁 × 𝑁 decomposition, the coarse space sizes asymptotically
behave as 4𝑁2 with Constant and Linear4, 8𝑁2 with Linear and 12𝑁2 with
Enriched.
Figure 7 displays iteration count and computational (wall-clock) times for the

weak scaling experiment described above using the two-level volume and substruc-
tured methods, with square decompositions up to 128 × 128 subdomains (- the
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(a) Iteration count (b) Wall-clock total (solid) and coarse solution
(dashed) times

Fig. 7 Two-level numerical results up to 16,384 processors.

solution time results, not shown here, exhibit a very similar behavior). There is no
GMRES restart performed here. We observe that all our two-level methods achieve
scalability in terms of number of iterations. Scalability in terms of computational
times is quite well achieved even though not perfectly, with performances slightly
below the two-level volume Q1 method. It is possible to improve the substructured
computational times further by noting that the two-level iteration (6)–(7) requires
the computation of two actions of the operator T, and one of them can be eliminated
using the strategy proposed in [5, 6]. This is possible to do in PETSc as well, but
requires a substantial modification in the implementation technique that goes be-
yond this short manuscript, and will appear elsewhere. Note also the particularly
interesting behavior of the Linear4 coarse space, yielding less iterations than the
Constant one with asymptotically the same number of coarse functions. Its coarse
solution time appears very close the Q1 one in volume as shown in Fig. 7b (dashed
lines).

4 Conclusions

A PETSc implementation of the substructured one-and two-level PSM has been
presented. Our one-level results show that the smaller size of the substructured
system compared to the volume onemakes the use of larger Krylov spaces (i.e., using
larger GMRES restart parameters, or no restart at all) profitable, resulting in better
computational times. Furthermore, we introduced four new substructured geometric
coarse spaces defined exclusively on the interfaces and our numerical results up to
16,384 cores show that the resulting two-levelmethods achieve a perfect scalability in
terms of number of iterations and a very decent scalability in terms of computational
solution and wall-clock times.

Acknowledgements This work was performed using HPC resources from GENCI-IDRIS.
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Semi-Discrete Analysis of a Simplified Air-Sea
Coupling Problem with Nonlinear Coupling
Conditions

Simon Clement, Florian Lemarié, and Eric Blayo

1 Introduction

This paper addresses the mathematical properties of a simplified nonlinear coupling
problem representing the air-sea exchanges: it is shown in [4] that there is room for
improvement in the coupling methods of state-of-the-art Earth System Models. Key
ingredients in the ocean-atmosphere coupling are the computation, exchange and
diffusion of turbulent fluxes at the interface. Those ingredients are represented by
a nonlinear coupling condition which depends on the space discretization. We focus
here on showing the existence of strong unsteady solutions of the semi-discrete in
space problem with a nonlinear interface condition. Moreover we study the conver-
gence of Schwarz Waveform Relaxation (SWR) applied to this coupled problem.
In [2], the existence of unsteady solutions of nonlinear turbulent models for oceanic
surface mixing layers is proven with the help of the inverse function theorem. After
introducing the coupled problem in §2, its well-posedness is discussed by applying
the inverse function theorem in §3. A convergence analysis of SWR is then pursued
in §4 and complemented by numerical experiments detailed in §5.

2 Simplified air-sea coupled problem

We examine the solutions 𝑈𝑎,𝑈𝑜 of coupled 1D linear reaction-diffusion equations
which is a proxy for coupled ocean-atmosphere problems [3, 5]:

(𝜕𝑡 + i 𝑓 )𝑈 𝑗 = 𝜈 𝑗𝜕𝑧𝑧𝑈 𝑗 + i 𝑓 𝑢 𝑗

𝐺
, ( 𝑗 = 𝑎, 𝑜), (1)
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eric.blayo@univ-grenoble-alpes.fr
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where initial, boundary and coupling conditions will be specified together with
the discretization. The reaction-diffusion equation (1) has a constant viscosity 𝜈 𝑗

representing the turbulent vertical mixing and a complex reaction term i 𝑓 accounting
for the Coriolis effect:𝑈 𝑗 are complex and include the horizontal direction of winds
and currents (e.g. [5]). The Coriolis parameter 𝑓 is a constant determined by the
latitude of the 1D vertical column considered. There is also a nudging term 𝑢

𝑗

𝐺
in (1)

which pulls the solution towards the geostrophic equilibrium, i.e. a balance between
the Coriolis force and the pressure gradient. In this study 𝑢𝑎

𝐺
, 𝑢𝑜

𝐺
are constant.

The coupling between ocean and atmosphere actually excludes from the compu-
tational domains a surface layer Ωsl = [𝑧− 12 , 𝑧 12 ] which is located between the first
grid points of the two domains and contains the interface 𝑧0. The size of this surface
layer being linked with the discretization in space, we investigate the properties of the
semi-discrete in space coupled problem. The solution𝑈 𝑗 ( 𝑗 = 𝑜, 𝑎) at the grid point
𝑧𝑚+ 12

(𝑚 is the space index) is denoted 𝑈 𝑗 ,𝑚+ 12
and we denote by 𝜙 𝑗 the derivatives

in space which are approximated with finite differences:

𝜙 𝑗 ,𝑚 =
1
ℎ 𝑗

(
𝑈 𝑗 ,𝑚+ 12

−𝑈 𝑗 ,𝑚− 12

)
, 𝑚 ≠ 0, (2)

where ℎ 𝑗 is the space step assumed constant in each subdomain. The function 𝜙 𝑗 ,0
will be determined by the boundary conditions involved in the coupling. The semi-
discrete in space coupled problem is the following (for 𝐻𝑜

ℎ𝑜
< 𝑚 + 1

2 <
𝐻𝑎

ℎ𝑎
,

where 𝐻 𝑗 are the size of the spatial domains):

(𝜕𝑡 + i 𝑓 )𝑈 𝑗 ,𝑚+ 12
= 𝜈 𝑗

𝜙 𝑗 ,𝑚+1 − 𝜙 𝑗 ,𝑚

ℎ 𝑗

+ i 𝑓 𝑢 𝑗

𝐺
, 𝑡 ∈]0, 𝑇], (3a)

𝑈 𝑗 ,𝑚+ 12

���
𝑡=0

= 𝑈0, 𝑈 𝑗

��
𝑧=𝐻 𝑗

= 𝑈∞
𝑗 , 𝑡 ∈]0, 𝑇], (3b)

𝜈𝑎𝜙𝑎,0 = 𝐶𝐷

���𝑈𝑎, 12
−𝑈𝑜,− 12

��� (𝑈𝑎, 12
−𝑈𝑜,− 12

)
, 𝑡 ∈]0, 𝑇], (3c)

𝜌𝑜𝜈𝑜𝜙𝑜,0 = 𝜌𝑎𝜈𝑎𝜙𝑎,0, 𝑡 ∈]0, 𝑇], (3d)

The initial condition𝑈0 is chosen as the steady state (derived in Section 3.1) and the
geostrophic winds and currents are prescribed as boundary conditions: 𝑈∞

𝑗
= 𝑢

𝑗

𝐺
.

The spatial extent of the domains will be considered sufficiently large (𝐻 𝑗 → ∞)
but all the results can be easily extended to finite domains. The coupling conditions
are composed of a quadratic friction law (3c) and of a flux continuity (3d). Those
conditions are representative of the ones that can be found in more realistic models:
they are simpler, because𝐶𝐷 and 𝜈 𝑗 are assumed to be constant instead of depending
themselves on𝑈𝑎, 12

−𝑈𝑜,− 12
. The densities 𝜌 𝑗 are such that 𝜌𝑎𝜌𝑜 ≈ 10−3.
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3 Well-posedness

In this section the focus is on the well-posedness of (3). First the steady state is
given, and the existence and uniqueness of solutions are proven in a neighborhood
of this steady state. We assume in this section that 𝑓 ≠ 0: it can be proven that there
is otherwise no bounded steady state of (3).

3.1 Steady state

The derivation of the steady state of (3a) is somewhat similar to [6] and we obtain
𝜙𝑒𝑜,−𝑚 = 𝐴𝑒 (𝜆𝑒𝑜 + 1)𝑚 and 𝜙𝑒𝑎,𝑚 = 𝐵𝑒 (𝜆𝑒𝑎 + 1)𝑚 with 𝜆𝑒

𝑗
= 1
2

(
𝜒 𝑗 −

√
𝜒 𝑗

√︁
𝜒 𝑗 + 4

)
,

𝜒 𝑗 =
i 𝑓 ℎ2

𝑗

𝜈 𝑗
. The continuity of the flux (3d) gives 𝐴𝑒

𝐵𝑒 and finding a steady state solution
amounts to find 𝑥̃ ∈ C such that

𝑥̃ −
(
𝑢𝑎𝐺 − 𝑢𝑜𝐺

)
= 𝑑 |𝑥̃ |𝑥̃, (4)

where 𝑑 = 𝐶𝐷

(
𝜆𝑒
𝑎

i 𝑓 ℎ𝑎 + 𝜌𝑎
𝜌𝑜

𝜆𝑒
𝑜

i 𝑓 ℎ𝑜

)
and 𝑥̃ = 𝐴𝑒 𝜌𝑜𝜈𝑜

𝜌𝑎𝐶𝐷
𝑑 +

(
𝑢𝑎
𝐺
− 𝑢𝑜

𝐺

)
. The steady state

corresponds to a solution 𝑥̃ whose modulus |𝑥̃ | is a real and non-negative root of
a polynomial:

|𝑥̃ | = 𝑑𝑅

2|𝑑 |2
±
√
𝜁 + 𝛾

2
± 1
2

√︄
2𝜁 − 𝛾 ± 2𝑑𝑅

3 − 2𝑑𝑅 |𝑑 |2
|𝑑 |6

√
𝜁 + 𝛾

, 𝑑𝑅 = ℜ(𝑑), (5a)

𝛾 =

(
𝑠
2 +

1
2

√︁
𝑠2 − 4𝛽3

) 1
3

3|𝑑 |2
+ 𝛽

3|𝑑 |2
(
𝑠
2 +

1
2

√︁
𝑠2 − 4𝛽3

) 1
3
, 𝜁 = − 2

3|𝑑 |2
+ 𝑑𝑅

2

|𝑑 |4
, (5b)

𝑠 = 2 +
(
𝑢𝑎𝐺 − 𝑢𝑜𝐺

)2 (
72|𝑑 |2 − 108𝑑2𝑅

)
, 𝛽 = 1 − 12|𝑑 |2

(
𝑢𝑎𝐺 − 𝑢𝑜𝐺

)2
, (5c)

where the first± and the third one in (5a) are necessarily the same. For our parameters
there is only one combination of ± in (5a) for which |𝑥̃ | is real and non-negative.
There is hence only one steady solution of (3).
Finally, we recover 𝑥̃ from (4): 𝑥̃ =

𝑢𝑎
𝐺
−𝑢𝑜

𝐺

1−𝑑 | 𝑥̃ | , then 𝐴𝑒 =
𝐶𝐷𝜌𝑎
𝜌𝑜𝜈𝑜𝑑

(
𝑥̃ − (𝑢𝑎

𝐺
− 𝑢𝑜

𝐺
)
)

and 𝐵𝑒 =
𝜌𝑜𝜈𝑜
𝜌𝑎𝜈𝑎

𝐴𝑒. The steady state𝑈𝑒
𝑗
is given by

𝑈𝑒
𝑜,−𝑚−1/2 = 𝑢𝑜𝐺 − 𝜈𝑜𝜆

𝑒
𝑜

i 𝑓 ℎ𝑜
(1 + 𝜆𝑒𝑜)𝑚𝐴𝑒,

𝑈𝑒
𝑎,𝑚+1/2 = 𝑢𝑎𝐺 + 𝜈𝑎𝜆

𝑒
𝑎

i 𝑓 ℎ𝑎
(1 + 𝜆𝑒𝑎)𝑚𝐵𝑒 .

(6)

Fig. 1 shows that this analysis exactly fits the numerical solution.
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Fig. 1 Stationary solution profile in the ocean (bottom) and the atmosphere (top); A numerical
steady state computed with 10 Schwarz iterations is the continuous red lines and the theoretical
steady state obtained is displayedwith dashed blue lines. Notice that the surface layer is not explicitly
computed.

3.2 Existence of solutions of the nonlinear semi-discrete in space
problem

The method used by [2] to prove the existence and unicity of a solution in the neigh-
borhood of a steady state can be used to deal with several types of nonlinearities. In
particular, we can prove the existence and uniqueness of a solution to the problem (3)
close to the steady state (i.e. with initial condition, boundary conditions and nudging
terms close to𝑈0,𝑈∞

𝑗
, 𝑢

𝑗

𝐺
), thanks to the following steps:

1. The existence of a steady state𝑈𝑒 is discussed in §3.1.
2. The well-posedness of the coupled problem with the linearized transmission
conditions is proven in Appendix 6.A of [3].

3. The use of the inverse function theorem can be done in four steps:

a. concatenate the state vectors in a single vector U = {𝑈𝑎,𝑈𝑜, 𝜙𝑎 |𝑧=0} ∈ U
where U = (𝐿2 ( [0, 𝑇]))𝑀𝑎+𝑀𝑜+1 and 𝑀𝑎, 𝑀𝑜 are the number of grid levels
in the subdomains. The functions 𝜙𝑎 |𝑧≠0 and 𝜙𝑜 are not inU because they can
be expressed as linear combinations of elements of U.

b. Define a mapping 𝚽 : U → Y such that

𝚽(U) = {(𝜕𝑡 + i 𝑓 )𝑈𝑎 − 𝜈𝑎𝜕𝑧𝜙𝑎 − 𝑔𝑎, (𝜕𝑡 + i 𝑓 )𝑈𝑜 − 𝜈𝑜𝜕𝑧𝜙𝑜 − 𝑔𝑜,

𝑈𝑎 (𝐻𝑎, 𝑡) −𝑈∞
𝑎 , 𝑈𝑜 (𝐻𝑜, 𝑡) −𝑈∞

𝑜 , 𝑈𝑎 |𝑡=0 −𝑈𝑒
𝑎, 𝑈𝑜 |𝑡=0 −𝑈𝑒

𝑜 ,

𝜈𝑎 𝜙𝑎 |𝑧=0 − 𝐶𝐷

���𝑈𝑎, 12
−𝑈𝑜,− 12

��� (𝑈𝑎, 12
−𝑈𝑜,− 12

)
},

(7)
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where 𝜕𝑧𝜙 𝑗 is to be understood in the finite difference sense. Let us draw some
important remarks about 𝚽:
• The equation 𝜙𝑜,0 =

𝜌𝑎𝜈𝑎
𝜌𝑜𝜈𝑜

𝜙𝑎,0 at interface is implicit: in (7), 𝜕𝑧𝜙𝑜 at the

first grid level is 𝜌𝑎𝜈𝑎
𝜌𝑜𝜈𝑜

𝜙𝑎,0 − 1
ℎ𝑜

(
𝑈𝑜,− 12

−𝑈𝑜,− 32

)
.

• The function 𝚽 is such that 𝚽(U𝑒) = 0 where U𝑒 is the steady state;
• The codomain Y is

Y = (𝐿2 ( [0, 𝑇]))𝑀𝑎−1×(𝐿2 ( [0, 𝑇]))𝑀𝑜−1×(𝐿2 ( [0, 𝑇]))3×R𝑀𝑎+𝑀𝑜 . (8)

• Finding 𝚽−1 (𝑦) is equivalent to solving the nonlinear semi-discrete prob-
lem (3) if the component of 𝑦 corresponding to the interface condition is
zero (the other components correspond to other forcing terms, boundary
conditions and initial condition). The idea of the proof is that if𝚽 is invert-
ible around U𝑒 then the nonlinear semi-discrete problem (3) is invertible.
Moreover, the inverse function theorem also tells us that𝚽−1 is continuous:
this means that around the equilibrium state, the problem (3) is well-posed:
it has a unique solution that depends continuously on the initial data.

c. Prove that 𝚽 is 𝐶1 in a neighborhood of U𝑒. The function 𝚽 is linear except
for the transmission condition. Besides, the nonlinearity in this transmission
condition is the function 𝑥 ↦→ |𝑥 |𝑥, which is continuously differentiable in a
ball that does not contain zero. It is then straightforward to show that 𝚽 is 𝐶1
and that its differential𝐷𝚽(U𝑒) is given by the linearized problem (a rigourous
proof that can be directly adapted here is given in [2]).

d. Prove that 𝐷𝚽(U𝑒) is an isomorphism: this is where the well-posedness of
the coupled problem with linearized transmission conditions intervenes. The
differential 𝐷𝚽(U𝑒) corresponds indeed to the linearized problem with addi-
tional input data.

The next section uses the idea of considering the linearized problem around the
steady state in the context of examining the convergence of a SWR algorithm.

4 Convergence analysis

In this section we conduct a convergence analysis of the SWR algorithm applied to
the coupled problem (initial and boundary conditions are similar to (3) and omitted):

(𝜕𝑡 + i 𝑓 )𝑈𝑘

𝑗,𝑚+ 12
= 𝜈 𝑗

𝜙𝑘
𝑗,𝑚+1 − 𝜙𝑘

𝑗,𝑚

ℎ 𝑗

+ i 𝑓 𝑢 𝑗

𝐺
, (9a)

𝜈𝑎𝜙
𝑘
𝑎,0 = 𝐶𝐷

���𝑈𝑘−1
𝑎, 12

−𝑈𝑘−1
𝑜,− 12

��� (𝑈𝑘−1+𝜃
𝑎, 12

−𝑈𝑘−1
𝑜,− 12

)
, (9b)

𝜌𝑜𝜈𝑜𝜙
𝑘
𝑜,0 = 𝜌𝑎𝜈𝑎𝜙

𝑘
𝑎,0, (9c)
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where 𝑘 is an iteration index and 𝑈𝑘−1+𝜃
𝑎,1/2 = (1 − 𝜃)𝑈𝑘−1

𝑎,1/2 + 𝜃𝑈𝑘
𝑎,1/2. Here 𝜃 > 0 is

a relaxation parameter: the goal of the convergence analysis pursued in this section
is to find an adequate value of 𝜃 leading to a fast convergence. The time windows
is also assumed to be of infinite size: this hypothesis is necessary to carry a Fourier
analysis of the convergence; finite time windows were handled at the semi-discrete in
time level [1] but the method is not straightforward to extend to discretized equations
in space.
The analysis of the SWR algorithm with the nonlinear transmission condition

cannot be directly pursued through a Fourier transform. We thus consider the lin-
earization of the problem around a steady state 𝑈𝑒

𝑗
, 𝜙𝑒

𝑗
defined in (6). Assuming

that 𝑈𝑘
𝑗
is in a neighborhood of 𝑈𝑒

𝑗
, the modulus in (9b) is non-zero and is thus

differentiable (close to zero, one could also smooth the modulus). Differences with
the steady state at the interface are noted 𝛿𝜙𝑘

𝑗
= 𝜙𝑘

𝑗,0 − 𝜙𝑒
𝑗,0, 𝛿𝑈

𝑘
𝑎 = 𝑈𝑘

𝑎, 12
−𝑈𝑒

𝑎, 12
and

𝛿𝑈𝑘
𝑜 = 𝑈𝑘

𝑜,− 12
−𝑈𝑒

𝑜,− 12
(note that we omit the 12 in 𝛿𝑈

𝑘
𝑗
).

The linearized transmission operator involves the complex conjugate 𝛿𝑈𝑘−1
𝑗
:

𝜈𝑎𝛿𝜙
𝑘
𝑎 = 𝛼𝑒

((
3
2
− 𝜃

)
𝛿𝑈𝑘−1

𝑎 + 𝜃 𝛿𝑈𝑘
𝑎 − 3
2
𝛿𝑈𝑘−1

𝑜 +R
𝑒

2
𝛿𝑈𝑘−1

𝑎 − 𝛿𝑈𝑘−1
𝑜

)
(10)

with 𝛼𝑒 = 𝐶𝐷

���𝑈𝑒
𝑎,1/2 −𝑈𝑒

𝑜,−1/2

��� and R𝑒 =
𝑈𝑒

𝑎,1/2−𝑈
𝑒
𝑜,−1/2

𝑈𝑒
𝑎,1/2−𝑈

𝑒
𝑜,−1/2

. The relation (10) is used in

the convergence analysis instead of (9b).
We now follow [6] to derive a convergence factor of the SWR method applied

to the linearized transmission condition. It yields notably that the Fourier transform
of 𝑈𝑘

𝑎,𝑚+1/2 is 𝑈
𝑘
𝑎,𝑚+1/2 = 𝐵𝑘 (𝜆𝑎 + 1)𝑚 with 𝜆 𝑗 =

1
2 ( 𝜒̃ 𝑗 −

√︁
𝜒̃ 𝑗

√︁
𝜒̃ 𝑗 + 4) and 𝜒̃ 𝑗 =

( 𝑓 +𝜔)iℎ2
𝑗

𝜈 𝑗
. We find that the evolution of 𝐵𝑘 is:

𝐵𝑘+1 (𝜔) = 𝑎1 (𝜔)𝐵𝑘 (𝜔) + 𝑎2 (𝜔)𝐵𝑘 (−𝜔), where 𝑎1 = 𝛼𝑒
3
2 𝜇(𝜔) − 𝜃

𝜈𝑎
ℎ𝑎

(𝜆𝑎 − 𝜒̃𝑎) − 𝛼𝑒𝜃
,

𝑎2 = 𝛼𝑒
R𝑒

2 𝜇(−𝜔)
𝜈𝑎
ℎ𝑎

(𝜆𝑎 − 𝜒̃𝑎) − 𝛼𝑒𝜃
and 𝜇(𝜔) = 1 − 𝜆𝑎 − 𝜒̃𝑎

𝜆𝑜
𝜖
𝜈𝑎ℎ𝑜

𝜈𝑜ℎ𝑎
.

Note that the variable i𝜔 = −i𝜔 appears when using the Fourier transform on
𝛿𝑈𝑘−1

𝑎 − 𝛿𝑈𝑘−1
𝑜 . As a consequence, the convergence factor 𝜉𝑞 in the linearized

quadratic friction case differs from one iteration to another: it is a function of
𝐵𝑘−1 (−𝜔)
𝐵𝑘−1 (𝜔) . We need to examine the evolution of both 𝐵𝑘+1 (𝜔), 𝐵𝑘+1 (−𝜔):(

𝐵(𝜔)

𝐵(−𝜔)

)
𝑘+1

= M

(
𝐵(𝜔)

𝐵(−𝜔)

)
𝑘

, M =

(
𝑎1 (𝜔) 𝑎2 (𝜔)

𝑎2 (−𝜔) 𝑎1 (−𝜔).

)
(11)

The singular values (shown in Fig. 2) ofM can be studied instead of the convergence
factor. One can see on Fig. 2 that its two singular values 𝜉1 and 𝜉2 are different for
small frequencies, especially around the frequencies 𝑓 and − 𝑓 .
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One can hence expect that for frequencies close to 𝑓 and − 𝑓 the “convergence
factor"

√︃
|𝐵𝑘 (𝜔) |2+|𝐵𝑘 (−𝜔) |2

|𝐵𝑘−1 (𝜔) |2+|𝐵𝑘−1 (−𝜔) |2 will be different from one iteration to another and
will be between 𝜉1 and 𝜉2.
We optimize only the maximum over the frequencies of the largest singular

value 𝜉1 (see Fig. 3) and find that the optimal value of 𝜃 is slightly smaller than 1.5.
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ω
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Fig. 2 Singular values 𝜉1 (𝜔) , 𝜉2 (𝜔)
of M. The observed “convergence fac-
tor" at the first iteration 𝜉obs =√︃

|𝐵2 (𝜔) |2+|𝐵2 (−𝜔) |2
|𝐵1 (𝜔) |2+|𝐵1 (−𝜔) |2 is in purple. The nu-

merical validation 𝜉obs fits the convergence
analysis since 𝜉2 ≤ 𝜉obs ≤ 𝜉1:
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Fig. 3 Singular values 𝜉1, 𝜉2 ofM maxi-
mized over the set of discrete frequencies
{− 𝜋

Δ𝑡
, . . . , 𝜋

𝑇
, 0, 𝜋

𝑇
, . . . , 𝜋

Δ𝑡
} as a func-

tion of 𝜃 . The vertical dashed line high-
lights the minimum of max 𝜉1. The win-
dows length 𝑇 is one day and Δ𝑡 = 60 s.

It is also seen in Fig. 3 that for 𝜃 < 1
2 , 𝜉1 > 1, which means that the SWR algorithm

does not converge. On the contrary, for 𝜃 larger than 12 both singular values are
smaller than one for all the frequencies, and the convergence factor is then bounded
by 𝜉1.

5 Numerical experiments

Parameters of the numerical experiments are𝐶𝐷 = 1.2×10−3, ℎ𝑎 = 20 m, ℎ𝑜 = 2 m,
𝐻𝑜 = 𝐻𝑎 = 2000 m. The Coriolis parameter is 𝑓 = 10−4 s−1 and the diffusivities are
𝜈𝑎 = 1 m2 s−1, 𝜈𝑜 = 3 × 10−3 m2 s−1. The boundary conditions and nudging terms
𝑈∞

𝑗
= 𝑢

𝑗

𝐺
are set to constant values of 10 m s−1 in the atmosphere and 0.1 m s−1

in the ocean, while the initial condition is the steady state 𝑈0 (𝑧) = 𝑈𝑒
𝑗
(𝑧). SWR is

initialized at the interface with a white noise around the interface value of the steady
state. Fig. 1 and Fig. 2 show that with those parameters, the theoretical results are
coherent with the numerical experiments. Moreover Fig. 4 shows the evolution of the
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Fig. 4 Evolution of the 𝐿2 norm of the er-
rors for 𝜃 = 1

2 (green) and 𝜃 = 3
2 (purple).

The singular value 𝜉1 gives an upper bound
of the error represented by dashed lines.
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error for two choices of 𝜃. As it is expected the choice 𝜃 = 1
2 leads to a convergence

rate of approximately 1 whereas a relatively fast convergence is obtained with 𝜃 = 3
2 .
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A Block Jacobi Sweeping Preconditioner
for the Helmholtz Equation

Ruiyang Dai

1 Introduction

Solving Helmholtz problems using numerical methods is challenging due to the
large, indefinite, and ill-conditioned linear systems that result, which cannot be
solved using classical direct or iterative solvers [5]. While optimized Schwarz (OS)
methods have been proposed as an alternative, the number of iterations required
by Krylov methods increases with the number of subdomains, especially for layer-
type domain decompositions [9]. Preconditioners, such as sweeping preconditioners,
are necessary when using iterative methods to solve Helmholtz problems. Lately,
there has been significant interest in sweeping preconditioners, invented by [3, 4],
that achieve quasi-linear asymptotic complexity. Despite their effectiveness, sweep-
ing preconditioners face challenges with parallel scalability due to the inherently
sequential nature of their operations, as well as the need to ensure accurate and
consistent information transfer between subdomains. These challenges can restrict
the use of layer-type domain decompositions.
To address these challenges, recent research has focused on improving parallel per-

formance through new sweeping strategies on checkerboard domain decompositions
that can handle more general domain decompositions. Several sweeping algorithms
have been proposed that improve parallelism by ensuring consistent transfer among
subdomains, such as L-sweeps preconditioners [11], trace transfer-based diagonal
sweeping preconditioners [7], and multidirectional sweeping preconditioners [2],
with high-order transmission conditions and cross-point treatments [8].
Subdomains in sweeping algorithms can be assigned to Message Passing Inter-

face (MPI) ranks based on rows or columns. This enables parallel application of
sweeping algorithms for a single right-hand side. However, these approaches still
have limitations, including long preconditioning procedures, waste of computation
resources, and relatively high computation costs. To overcome these limitations, the
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authors propose a block Jacobi sweeping preconditioner that uses block Jacobi ma-
trices to decompose full sweeps into several partial sweeps, which can be thought of
as sweeps that operate on a subset of the subdomains. These partial sweeps can be
performed concurrently. This approach enhances scalability and makes full use of
resources on parallel computer architectures.

2 Notations

Let i = (𝑖1, 𝑖2) ∈ N2 be a multi-index denoting the subdomain number. We define the
discrete 𝑙1 norm by: |i|1 := |𝑖1 | + |𝑖2 |.We use the convention that two multi-indices i
and j are equal if and only if 𝑖1 = 𝑗1 and 𝑖2 = 𝑗2.
Definition 1 The lexicographic order onmulti-indices is the relation defined by i < j
if and only if |i|1 < |j|1, or |i|1 = |j|1 and 𝑖1 < 𝑗1.

Definition 2 The lexicographic order on pair multi-indices (i, j) ∈ N2 × N2 is the
relation defined by (i, j) < (k, l) if and only if i < k, or i = k and j < l.

We define a function𝑚 thatmaps a pair ofmulti-indiceswhich are in lexicographic
order to natural numbers in a monotonically increasing fashion 𝑚 : N2 × N2 → N,
such that 𝑚((1, 1), (1, 2)) = 1, 𝑚((1, 1), (2, 1)) = 2, 𝑚((1, 2), (1, 1)) = 3, etc.
We consider Ω ⊂ R2 be a square domain with boundary 𝜕Ω, which is given by

the union of the scattered boundary 𝜕Ωsca with the external artificial boundaries Γ∞
𝑖

for 𝑖 = 1, 2, 3, 4, and its a non-overlapping checkerboard partition, which consists
in a lattice of rectangular non-overlapping subdomains Ωi with 𝑁1 columns and 𝑁2
rows (𝑖1 = 1, . . . , 𝑁1, and 𝑖2 = 1, . . . , 𝑁2), that is

Ω =
⋃

Ωi, and Ωi ∩Ωj = ∅ for j ≠ i.

And we say that ∃i, such that Ωsca ⊆ Ω◦
i and 𝜕Ω

sca ∩ 𝜕Ωi = ∅. The boundary of
a subdomainΩi is split into two parts: the exterior part 𝜕Ωi∩Γ∞

𝑖
and the interior part

including decomposed interior interfaces Γi,j := 𝜕Ωi ∩ 𝜕Ωj (j ≠ i), and Γi,j = Γj,i.
There are 𝑁dom = 𝑁1 × 𝑁2 subdomains, 𝑁𝑒 = 2𝑁1𝑁2 − 𝑁1 − 𝑁2 interior interfaces.
We define the number of diagonal groups 𝑁𝑔 := 𝑁1 + 𝑁2 − 1.

3 Non-overlapping domain decomposition method

We study the 2D Helmholtz equation in Ω with an absorbing boundary condition
on Γ∞

𝑖
. For a more detailed description, see [2]. We seek the field 𝑢(x) that verifies

(−Δ − 𝜅2)𝑢 = 0, in Ω,
(𝜕𝒏𝑖

−𝒯)𝑢 = 0, on Γ∞
𝑖 ,

𝑢 = −𝑢inc, on 𝜕Ωsca,
(1)
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where 𝜅 is the wavenumber, 𝑢inc is the incident wave, 𝜕𝒏 is the exterior normal
derivative, and 𝒯 is an impedance operator to be defined. We take the convention
that the time-dependence of the fields is 𝑒−𝚤𝜔𝑡 , where 𝜔 is the angular frequency
and 𝑡 is the time.
The domain decomposition method consists in considering the 𝑁dom local sub-

problems coupled by the Robin conditions: Seek the field 𝑢i (x) that verifies
(−Δ − 𝜅2)𝑢i = 0, in Ωi,

(𝜕𝒏i,𝑖 −𝒯)𝑢i = 0, on 𝜕Ωi ∩ Γ∞
𝑖 ,

(𝜕𝒏i,j −𝒯)𝑢i = (−𝜕𝒏j,i −𝒯)𝑢j, on Γi,j,∀j ∈ 𝐷i,

𝑢i = −𝑢inc, on 𝜕Ωi ∩ 𝜕Ωsca,

(2)

where the set 𝐷i :=
{
j | j ≠ i and Γi,j ≠ ∅

}
. The paper uses high-order absorbing

boundary conditions (HABCs) as transmission conditions, which are effective for
both layered-type and checkerboard-type domain decompositions [1, 8]. However,
special treatment is required at corners in 2D cases for polygonal domains. Section 4
of the paper employs HABCs, but in the next section, the paper uses less effec-
tive boundary conditions based on the basic impedance operator to investigate the
algebraic structure of the interface problem for clarity.

4 Interface problem

To derive the interface problem, let’s introduce 𝑤i (x) a lifting of the source:
Seek 𝑤i (x) that verifies

(−Δ − 𝜅2)𝑤i = 0, in Ωi,

(𝜕𝒏i,𝑖 −𝒯)𝑤i = 0, on 𝜕Ωi ∩ Γ∞
𝑖 ,

(𝜕𝒏i,j −𝒯)𝑤i = 0, on Γi,j,∀j ∈ 𝐷i,

𝑢i = −𝑢inc, on 𝜕Ωi ∩ 𝜕Ωsca,

(3)

By the linearity of the problem, the field 𝑢i can be decomposed into 𝑣i+𝑤i, where 𝑣i is
the field (2) after lifting the sources by (3). We introduce the local scattering operator
𝒮𝑚(j,i) ,𝑚(i,k) : 𝑥𝑚(i,k) → (−𝜕𝒏i,j −𝒯)𝑣i where

(−Δ − 𝜅2)𝑣i = 0, in Ωi,

(𝜕𝒏i,𝑖 −𝒯)𝑣i = 0, on 𝜕Ωi ∩ Γ∞
𝑖 ,

(𝜕𝒏i,k −𝒯)𝑣i = 𝑥𝑚(i,k) , on Γi,k,

(𝜕𝒏i,l −𝒯)𝑣i = 0, on Γi,l,∀l ≠ k,

(4)

and j, k, l ∈ 𝐷i. Using the linearity of the problem and the above scattering operator,
we obtain the interface problem
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(𝜕𝒏j,i −𝒯)𝑣j =
∑︁
k∈𝐷i

𝒮𝑚(j,i) ,𝑚(i,k) (𝜕𝒏i,k −𝒯)𝑣i + (−𝜕𝒏i,j −𝒯)𝑤i, j ∈ 𝐷i.

We introduce the global scattering matrix 𝑆 ∈ 𝑀2𝑁𝑒
(𝒮𝑚(j,i) ,𝑚(i,k) ), the global ad-

ditional variable vector 𝑔 ∈ 𝑀2𝑁𝑒×1 (𝑔𝑚(j,i) ), and the global right-hand-side vector
𝑏 ∈ 𝑀2𝑁𝑒×1 (𝑏𝑚(j,i) ), where

𝑔𝑚(j,i) = (+𝜕𝒏j,i −𝒯)𝑣j, 𝑏𝑚(j,i) = (−𝜕𝒏i,j −𝒯)𝑤i.

We obtain that 𝑔 is the solution to the global matrix

(𝐼 − 𝑆)𝑔 = 𝑏, (5)

or
𝑔𝑚(j,i) −

∑︁
k

𝒮𝑚(j,i) ,𝑚(i,k)𝑔𝑚(i,k) = 𝑏𝑚(j,i) , ∀j, for i, k ∈ 𝐷j. (6)

5 Sweeping preconditioner

Let 𝑉𝑖 be the 2𝑁𝑒 × 𝑛𝑖 matrix 𝑉𝑖 = (𝑒𝑚(i,j) ), with |i|1 = 𝑖 (𝑖 = 2, . . . , 𝑁𝑔 + 1), where
each 𝑒𝑚(i,j) is the 𝑚(i, j)-th column of the 2𝑁𝑒 × 2𝑁𝑒 identity matrix, and 𝑛𝑖 is the
number of columns. One has 𝑉>

𝑖
𝑉 𝑗 = 0, if 𝑖 ≠ 𝑗 . Let 𝑆𝑖, 𝑗 be the 𝑛𝑖 × 𝑛 𝑗 matrix

𝑆𝑖, 𝑗 = 𝑉>
𝑖
𝑆𝑉 𝑗 .

Proposition 1 The upper and lower triangular matrix of the global matrix (𝐼 − 𝑆)
can be decomposed by Gaussian elimination.

Proof We denote the lower triangular matrix of the global matrix (5) 𝑆𝐿 . Consider
the followingmatrix

∏
𝑖 (𝐼−𝑉𝑖𝑆𝑖,𝑖−1𝑉>

𝑖−1), 𝑖 = 3, . . . , 𝑁𝑔+1. Then,∀𝑖 = 3, . . . , 𝑁𝑔,
we have

(𝐼 −𝑉𝑖𝑆𝑖,𝑖−1𝑉
>
𝑖−1) (𝐼 −𝑉𝑖+1𝑆𝑖+1,𝑖𝑉

>
𝑖 )

= 𝐼 −𝑉𝑖𝑆𝑖,𝑖−1𝑉
>
𝑖−1 −𝑉𝑖+1𝑆𝑖+1,𝑖𝑉

>
𝑖 +𝑉𝑖𝑆𝑖,𝑖−1𝑉>

𝑖−1𝑉𝑖+1𝑆𝑖+1,𝐼𝑉
>
𝑖

= 𝐼 −𝑉𝑖𝑆𝑖,𝑖−1𝑉
>
𝑖−1 −𝑉𝑖+1𝑆𝑖+1,𝑖𝑉

>
𝑖

The last term at the 2nd line vanishs since 𝑉>
𝑖−1𝑉𝑖+1 is null. Hence, we have∏

𝑖

(𝐼 −𝑉𝑖𝑆𝑖,𝑖−1𝑉
>
𝑖−1) = 𝐼 −

∑︁
𝑖

𝑉𝑖𝑆𝑖,𝑖−1𝑉
>
𝑖−1 = 𝐼 − 𝑆𝐿 .

Similarily, we can proof that the upper triangular matrix of the global matrix (5) 𝑆𝑈
can be decomposed as

𝐼 − 𝑆𝑈 =
∏
𝑖

(𝐼 −𝑉𝑖−1𝑆𝑖−1,𝑖𝑉
>
𝑖 ), 𝑖 = 𝑁𝑔 + 1, . . . , 3,

which is a series of matrices. �
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Next, we present the Symmetric Gauss-Seidel (SGS) sweeping precondi-
tioner 𝑃SGS. This matrix can then be rewritten as 𝑃SGS ≈ (𝐼 − 𝑆𝐿) (𝐼 − 𝑆𝑈 ), We can
easily invert the matrix 𝑃−1

SGS = (𝐼 − 𝑆𝑈 )−1 (𝐼 − 𝑆𝐿)−1, with

(𝐼 − 𝑆𝑈 )−1 =
∏
𝑖

(𝐼 +𝑉𝑖−1𝑆𝑖−1,𝑖𝑉>
𝑖 ), 𝑖 = 3, . . . , 𝑁𝑔 + 1,

(𝐼 − 𝑆𝐿)−1 =
∏
𝑖

(𝐼 +𝑉𝑖𝑆𝑖,𝑖−1𝑉>
𝑖−1), 𝑖 = 𝑁𝑔 + 1, . . . , 3.

(7)

Observing Eqn. (7), we notice that it consists of a sequential process, in which there
are 2(𝑁𝑔 − 1) sequential steps in total.

6 Block Jacobi sweeping preconditioner

Let𝑊𝐿𝑖 ,𝑊𝑈 𝑖 be the 2𝑁𝑒 × 𝑠𝑖 matrix

𝑊𝐿𝑖 = (𝑒𝑚(i,j) ), 2 + (𝑖 − 1)𝑁1 ≤ |i|1 ≤ 2 + 𝑖𝑁1,

𝑊𝑈 𝑖 = (𝑒𝑚(i,j) ), (1 + 𝑁𝑔) − 𝑖𝑁1 ≤ |i|1 ≤ (1 + 𝑁𝑔) − (𝑖 − 1)𝑁1,

where 𝑠𝑖 is the number of columns (𝑒𝑚(i,j) ). Let 𝑆𝐿𝑖 , 𝑆𝑈 𝑖 be the 𝑠𝑖 × 𝑠𝑖 matrix

𝑆𝐿𝑖 = 𝑊𝐿
>
𝑖 𝑆𝐿𝑊𝐿𝑖 , 𝑆𝑈 𝑖 = 𝑊𝑈

>
𝑖 𝑆𝑈𝑊𝑈 𝑖 .

According to the additive projection processes [10], the next iterate can be defined as

𝑔 (𝑘+1/2) = 𝑔 (𝑘) +
𝑝∑︁
𝑖=1

𝑊𝐿𝑖 (𝐼𝑖 − 𝑆𝐿𝑖)−1𝑊𝐿
>
𝑖 𝑟

(𝑘) ,

𝑔 (𝑘+1) = 𝑔 (𝑘+1/2) +
𝑝∑︁
𝑖=1

𝑊𝑈 𝑖 (𝐼𝑖 − 𝑆𝑈 𝑖)−1𝑊𝑈
>
𝑖 𝑟

(𝑘+1/2) .

𝐼 − 𝑆𝐿 and 𝐼 − 𝑆𝑈 are quasi-equivalent to 𝑝 blocks 𝐼𝑖 − 𝑆𝐿𝑖 and 𝑝 blocks 𝐼𝑖 − 𝑆𝑈 𝑖 ,
respectively, which form the forward and backward block Jacobi preconditioner. The
block Jacobi preconditioner can be decomposed into a series of matrices, as stated
in Proposition 1. The forward and backward block Jacobi preconditioner consists of
the upper and lower block diagonals of 𝐼 − 𝑆 and involves 2𝑁1 sequential steps. This
decomposition enhances the parallel performance of the sweeping preconditioner.

7 Numerical results

In this part, the block Jacobi sweeping preconditioner (BSP) is studied by consid-
ering a two-dimensional benchmark with a high-order finite element method and
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(a) 1st step (b) 2nd step (c) 3rd step (d) 4th step

(e) 5th step (f) 6th step (g) 7th step (h) 8th step

Fig. 1 Scattering model in 2D (𝑘 = 2𝜋) with a snapshot of the solution at different steps of the first
GMRES iteration using the full sweeping preconditioner. Each row of subdomains is assigned to
one MPI rank, and processors are identified by the numbers on the left side. Subdomains processed
in parallel are highlighted in blue.

compared to the full sweeping preconditioner (SP). The proposed approaches and
the computational results presented in this paper are implemented in parallel by MPI
on a single multi-core computer. The linear systems arising from the sub-problems
are solved by a sparse direct solver. The mesh generation, mesh decomposition, and
post-processing are credited byGmsh [6]. The parallelism of our approach is realized
by assigning subdomains to MPI ranks in a row-based fashion such that the 𝑖-th row
of the checkerboard partition is processed by rank 𝑖.
The test case is a homogeneous scattering problem in free space within a rectan-

gle geometry (Ω = [−1.25, 2.50 · 𝑁1 − 1.25] × [−1.25, 2.50 · 𝑁2 − 1.25]), which is
decomposed into 𝑁1 × 𝑁2 rectangular subdomains. An incident plane wave is gen-
erated by a sound-soft circular cylinder of radius equal to 1 which is located at the
Origin. On the circular cylinder, the Dirichlet boundary condition 𝑢(x) = − exp𝑖𝑘𝑥 is
prescribed at the boundary of the sound-soft scatterer. The Padé-type HABC is pre-
scribed on the exterior boundaries and the interior interfaces used as the absorbing
boundary conditions and the transmission boundary conditions, respectively. The
compatibility conditions are prescribed at the corners and the cross-points treatment
is prescribed at the cross-points. The parameters of the HABC operator are 𝑁pade = 8
and 𝜙 = 𝜋/3. The following numerical setting are considered: 𝑃7 finite elements
with 3 elements per wavelength (ℎ ≈ 1/21).
Figures 1 and 2 show snapshots of the solutions at different steps of forward

sweep (sweep starts from the bottom-left corner to the top-right corner) of the 1st
GMRES iteration with different sweeping preconditioners. Although the forward
sweep in Fig. 1 goes through the whole computational domain from the bottom-left
corner to the top-right corner, it takes 8 steps. If we take the backward sweep into
account, there are 16 steps of the preconditioning procedure at each iteration. In
the second situation, it only takes 5 steps in the forward partial sweeps (see Fig. 2).
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(a) 1st step (b) 2nd step (c) 3rd step (d) 4th step

(e) 5th step

Fig. 2 Scattering model in 2D (𝑘 = 2𝜋). Snapshot of the solution at different steps of forward
sweep of 1st GMRES iteration with the block Jacobi sweeping preconditioner. The numbers at left
side are processors’ identities. Each row of subdomains is assigned to one MPI rank. Subdomains
processed in parallel have same blue and red color, which represent two partial sweeps.

Fig. 3 Scattering model in 2D (𝑘 = 2𝜋). The computational domain is decomposed into 𝑁1 ×𝑁2 =
5× 10. Residual history with SP and BSP with two cuts. In this context, two cuts imply that 𝑝 = 3.

Figure 3 shows snapshots of the solutions and residual histories of GMRES with the
different preconditioners for the partition 𝑁1 × 𝑁2 = 5 × 10. All forward/backward
(partial) sweeps of these preconditioners start from the bottom-left/top-left to the
top-right/bottom-left. The violet boxes indicate the cut location which separates
partial sweeps.
The residual histories obtained with the two different preconditioners in Fig. 3,

where the relative residual suddenly drops in residual history at the first iteration
when a full sweeping preconditioner is used. With the block Jacobi sweeping pre-
conditioner used, it happens at the third iteration, which corresponds to the number
of partial sweeps, that is to say, there are two partial sweeps.
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Table 1 Scattering model in 2D (𝑘 = 20𝜋). Number of iterations and runtime in seconds with
the two different preconditioners for different domain partitions. “ni” stands for the number of
iterations, “ns” the number of steps per iteration, and “t” time. The number of MPI ranks is equal
to 𝑁2.

𝑁1 × 𝑁2 SP (ni) SP (ns) SP (t) BSP (ni) BSP (ns) BSP (t)

5 × 5 3 16 32.6 s 3 10 25.4 s
5 × 10 3 26 49.0 s 4 10 33.0 s
5 × 15 4 36 90.8 s 6 10 51.3 s
5 × 20 5 46 147.4 s 8 10 70.9 s

The number of GMRES iterations and the runtime to reach a relative residual 10−6
with the two different preconditioners are given in Table 1. The runtime corresponds
to the GMRES resolution phase.
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Optimized Neumann-Neumann Method
for the Stokes-Darcy Problem

Marco Discacciati and Jake Robinson

1 Introduction and problem setting
The Stokes-Darcy problem [9, 15] is a good example of multi-physics problemwhere
splitting methods typical of domain decomposition naturally apply. The problem is
defined in a computational domain formed by a fluid region Ω 𝑓 and a porous-
medium region Ω𝑝 that are non-overlapping and separated by an interface Γ. In Ω 𝑓 ,
an incompressible fluid with constant viscosity and density is modelled by the
dimensionless Stokes equations:

−∇ · (2𝜇 𝑓 ∇𝑠u 𝑓 − 𝑝 𝑓 𝑰) = f 𝑓 , ∇ · u 𝑓 = 0 in Ω 𝑓 , (1)

where 𝜇 𝑓 = 𝑅𝑒−1, 𝑅𝑒 being the Reynolds number, u 𝑓 and 𝑝 𝑓 are the fluid velocity
and pressure, 𝑰 and ∇𝑠u 𝑓 = 1

2 (∇u 𝑓 + (∇u 𝑓 )𝑇 ) are the identity and the strain rate
tensor, and f 𝑓 is an external force. In the porous medium domain Ω𝑝 , we consider
the dimensionless Darcy’s model:

−∇ · (𝜼𝑝∇𝑝𝑝) = 𝑓𝑝 in Ω𝑝 , (2)

where 𝑝𝑝 is the fluid pressure in the porous medium, 𝜼𝑝 is the permeability tensor,
and 𝑓𝑝 is an external force. The two local problems are coupled through the classical
Beaver-Joseph-Saffman conditions at the interface [1, 14, 17]:

u 𝑓 · n = −(𝜼𝑝∇𝑝𝑝) · n on Γ, (3)
−n · (2𝜇 𝑓 ∇𝑠u 𝑓 − 𝑝 𝑓 𝑰) · n = 𝑝𝑝 on Γ, (4)

−((2𝜇 𝑓 ∇𝑠u 𝑓 − 𝑝 𝑓 𝑰) · n)𝜏 = 𝜉 𝑓 (u 𝑓 )𝜏 on Γ, (5)

Marco Discacciati, Jake Robinson
Department of Mathematical Sciences, Loughborough University, Epinal Way, Loughborough,
LE11 3TU, United Kingdom, e-mail: m.discacciati@lboro.ac.uk
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where 𝜉 𝑓 = 𝛼𝐵𝐽 (𝜇 𝑓 /(𝝉 ·𝜼𝑝 ·𝝉) )1/2, 𝛼𝐵𝐽 is the Beavers-Joseph constant, n denotes
the unit normal vector pointing outward of Ω 𝑓 , while (v)𝜏 indicates the tangential
component of any vector v atΓ. Finally,we imposeu 𝑓 = 0 onΓ𝐷

𝑓
, (2𝜇 𝑓 ∇𝑠u 𝑓 −𝑝 𝑓 𝑰)·

n = 0 on Γ𝑁
𝑓
, 𝑝𝑝 = 0 on Γ𝐷

𝑝 , u𝑝 · n𝑝 = 0 on Γ𝑁
𝑝 , where Γ𝐷

𝑓
∪ Γ𝑁

𝑓
= 𝜕Ω 𝑓 \ Γ and

Γ𝐷
𝑝 ∪ Γ𝑁

𝑝 = 𝜕Ω𝑝 \ Γ.
Classical Dirichlet-Neumann type methods [16] for the Stokes-Darcy problem

were studied in [7, 9, 10] where it was pointed out that their convergence can be
slow for small values of the fluid viscosity and of the porous medium permeability.
Robin-Robin methods were then proposed as an alternative [3, 4, 5, 6, 7, 11], and
they were analysed in the framework of optimized Schwarz methods in [8, 12, 13].
In this work, we focus on a Neumann-Neumann approach that allows to solve

a scalar interface problem like in the case of Dirichlet-Neumann methods. This
reduces the number of interface unknowns compared to the system associated with
Robin-Robin iterations, and it allows to use preconditioned conjugate gradient (PCG)
iterations instead of the more expensive GMRES iterations used in the Robin-Robin
context (see, e.g., [8]). However, to define effective Neumann-Neumann methods,
the contribution of each subproblem must be suitably weighted. For single-physics
problems, this is typically done using algebraic strategies that can take into account
coefficient jumps across interfaces (see, e.g., [18]). However, no clear strategies
are available for multi-physics problems. In this work, we extend techniques for
the analysis of optimized Schwarz methods with the aim of characterizing optimal
weighting parameters to define a robust Neumann-Neumann preconditioner.

2 Optimized Neumann-Neumann method
Let 𝛼 𝑓 and 𝛼𝑝 be two positive parameters: 𝛼 𝑓 , 𝛼𝑝 ∈ R, 𝛼 𝑓 , 𝛼𝑝 > 0. The Neumann-
Neumannmethod for the Stokes-Darcy problem considering the normal velocity on Γ
as interface variable reads as follows. Given 𝜆0 on Γ, for 𝑚 ≥ 1 until convergence,

1. Find u(𝑚)
𝑓
and 𝑝 (𝑚)

𝑓
such that

−∇ · (2𝜇 𝑓 ∇𝑠u(𝑚)
𝑓

− 𝑝
(𝑚)
𝑓

𝑰) = f 𝑓 , ∇ · u(𝑚)
𝑓

= 0 in Ω 𝑓 ,

−(n · (2𝜇 𝑓 ∇𝑠u(𝑚)
𝑓

− 𝑝
(𝑚)
𝑓

𝑰))𝜏 = 𝜉 𝑓 (u(𝑚)
𝑓

)𝜏 on Γ ,

u(𝑚)
𝑓

· n = 𝜆 (𝑚−1) on Γ .

(6)

2. Find 𝑝 (𝑚)
𝑝 such that

−∇ · (𝜼𝑝∇𝑝
(𝑚)
𝑝 ) = 𝑓𝑝 in Ω𝑝 ,

−(𝜼𝑝∇𝑝
(𝑚)
𝑝 ) · n = 𝜆 (𝑚) on Γ .

(7)

3. Compute

𝜎 (𝑚) = −n · (2𝜇 𝑓 ∇𝑠u(𝑚)
𝑓

− 𝑝
(𝑚)
𝑓

𝑰) · n − 𝑝
(𝑚)
𝑝 on Γ . (8)
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4. Find v(𝑚)
𝑓
and 𝑞 (𝑚)

𝑓
such that

−∇ · (2𝜇 𝑓 ∇𝑠v(𝑚)
𝑓

− 𝑞
(𝑚)
𝑓

𝑰) = 0 , ∇ · v(𝑚)
𝑓

= 0 in Ω 𝑓 ,

−(n · (2𝜇 𝑓 ∇𝑠v(𝑚)
𝑓

− 𝑞
(𝑚)
𝑓

𝑰))𝜏 = 𝜉 𝑓 (v(𝑚)
𝑓

)𝜏 on Γ ,

−n · (2𝜇 𝑓 ∇𝑠v(𝑚)
𝑓

− 𝑞
(𝑚)
𝑓

𝑰) · n = 𝜎 (𝑚) on Γ .

(9)

5. Find 𝑞 (𝑚)
𝑝 such that

−∇ · (𝜼𝑝∇𝑞
(𝑚)
𝑝 ) = 0 in Ω𝑝 ,

𝑞
(𝑚)
𝑝 = 𝜎 (𝑚) on Γ .

(10)

6. Set
𝜆 (𝑚+1) = 𝜆 (𝑚) − (𝛼 𝑓 (v(𝑚)

𝑓
· n) + 𝛼𝑝 (𝜼𝑝∇𝑞

(𝑚)
𝑝 ) · n) on Γ . (11)

Problems (6), (7), (9) and (10) are supplemented with homogeneous boundary con-
ditions on 𝜕Ω 𝑓 \ Γ and 𝜕Ω𝑝 \ Γ as indicated in Sect. 1.

2.1 Convergence analysis and optimization of the parameters

We analyse the Neumann-Neumann method (6)-(11) with the aim of characterizing
optimal parameters 𝛼 𝑓 and 𝛼𝑝 . To this purpose, we extend the methodology used
to study optimized Schwarz methods for the Stokes-Darcy problem in [8, 12, 13].
Since all the problems are linear, we can study the convergence on the error equation
to the zero solution when the forcing terms are f 𝑓 = 0 and 𝑓𝑝 = 0.
We consider the simplified setting where Ω 𝑓 = {(𝑥, 𝑦) ∈ R2 : 𝑥 < 0},

Ω𝑝 = {(𝑥, 𝑦) ∈ R2 : 𝑥 > 0}, Γ = {(𝑥, 𝑦) ∈ R2 : 𝑥 = 0}, and n = (1, 0)
and 𝝉 = (0, 1). We assume 𝜼𝑝 = diag(𝜂1, 𝜂2) with constant 𝜂1 ≠ 𝜂2, and let
u 𝑓 (𝑥, 𝑦) = (𝑢1 (𝑥, 𝑦), 𝑢2 (𝑥, 𝑦))𝑇 , v 𝑓 (𝑥, 𝑦) = (𝑣1 (𝑥, 𝑦), 𝑣2 (𝑥, 𝑦))𝑇 . In this setting, the
Neumann-Neumann algorithm (6)–(11) becomes: given 𝜆0 on Γ, for 𝑚 ≥ 1 until
convergence,

1. Solve the Stokes problem

−𝜇 𝑓

(
(𝜕𝑥𝑥 + 𝜕𝑦𝑦)𝑢 (𝑚)

1
(𝜕𝑥𝑥 + 𝜕𝑦𝑦)𝑢 (𝑚)

2

)
+

(
𝜕𝑥 𝑝

(𝑚)
𝑓

𝜕𝑦 𝑝
(𝑚)
𝑓

)
= 0, 𝜕𝑥𝑢 (𝑚)

1 + 𝜕𝑦𝑢
(𝑚)
2 = 0, in (−∞, 0) × R ,

−𝜇 𝑓 (𝜕𝑥𝑢 (𝑚)
2 + 𝜕𝑦𝑢

(𝑚)
1 ) = 𝜉 𝑓 𝑢

(𝑚)
2 , 𝑢

(𝑚)
1 = 𝜆 (𝑚) , on {0} × R .

(12)
2. Solve Darcy’s problem

−(𝜂1 𝜕𝑥𝑥 + 𝜂2 𝜕𝑦𝑦) 𝑝 (𝑚)
𝑝 = 0 in (0, +∞) × R ,

−𝜂1𝜕𝑥 𝑝 (𝑚)
𝑝 = 𝜆 (𝑚) on {0} × R .

(13)

3. Compute
𝜎 (𝑚) = −2𝜇 𝑓 𝜕𝑥𝑢

(𝑚)
1 + 𝑝

(𝑚)
𝑓

− 𝑝
(𝑚)
𝑝 on {0} × R . (14)
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4. Solve the Stokes problem

−𝜇 𝑓

(
(𝜕𝑥𝑥 + 𝜕𝑦𝑦)𝑣 (𝑚)

1
(𝜕𝑥𝑥 + 𝜕𝑦𝑦)𝑣 (𝑚)

2

)
+

(
𝜕𝑥𝑞

(𝑚)
𝑓

𝜕𝑦𝑞
(𝑚)
𝑓

)
= 0, 𝜕𝑥𝑣 (𝑚)

1 + 𝜕𝑦𝑣
(𝑚)
2 = 0 , in (−∞, 0) × R ,

−𝜇 𝑓 (𝜕𝑥𝑣 (𝑚)
2 + 𝜕𝑦𝑣

(𝑚)
1 ) = 𝜉 𝑓 𝑣

(𝑚)
2 , on {0} × R ,

−2𝜇 𝑓 𝜕𝑥𝑣
(𝑚)
1 + 𝑞

(𝑚)
𝑓

= 𝜎 (𝑚) , on {0} × R .
(15)

5. Solve Darcy’s problem
−(𝜂1 𝜕𝑥𝑥 + 𝜂2 𝜕𝑦𝑦) 𝑞 (𝑚)

𝑝 = 0 in (0, +∞) × R ,
𝑞
(𝑚)
𝑝 = 𝜎 (𝑚) on {0} × R .

(16)

6. Set
𝜆 (𝑚+1) = 𝜆 (𝑚) − (𝛼 𝑓 𝑣

(𝑚)
1 + 𝛼𝑝 𝜂1𝜕𝑥𝑞

(𝑚)
𝑝 ) on {0} × R . (17)

For the convergence analysis, we consider the Fourier transform in the direction
tangential to the interface (corresponding to the 𝑦 variable):

F : 𝑤(𝑥, 𝑦) ↦→ 𝑤(𝑥, 𝑘) =
∫
R
𝑒−𝑖𝑘𝑦𝑤(𝑥, 𝑦) 𝑑𝑦 , ∀𝑤(𝑥, 𝑦) ∈ 𝐿2 (R2) ,

where 𝑘 is the frequency variable. We quantify the error in the frequency space
between two successive approximations 𝜆𝑚+1 and 𝜆𝑚 at Γ and characterize the
reduction factor at iteration 𝑚 for each frequency 𝑘 . Finally, we identify optimal
values of 𝛼 𝑓 and 𝛼𝑝 by minimizing the reduction factor at each iteration over all the
relevant Fourier modes.

Proposition 1 Let 𝜂𝑝 =
√
𝜂1𝜂2. The reduction factor of algorithm (12)–(16) does

not depend on the iteration 𝑚, and it is given by |𝜌(𝛼 𝑓 , 𝛼𝑝 , 𝑘) | with

𝜌(𝛼 𝑓 , 𝛼𝑝 , 𝑘) = 1 − 𝛼𝑝 (1 + 2 𝜇 𝑓 𝜂𝑝 𝑘
2) − 𝛼 𝑓 (1 + (2 𝜇 𝑓 𝜂𝑝 𝑘

2 )−1) . (18)

Proof Following the same steps of the proof of Proposition 3.1 of [8], we find

𝑢̂
(𝑚)
1 (𝑥, 𝑘) =

(
𝑈

(𝑚)
1 (𝑘) + 𝑃 (𝑚) (𝑘)

2𝜇 𝑓

𝑥

)
𝑒 |𝑘 |𝑥 , 𝑝

(𝑚)
𝑝 (𝑥, 𝑘) = Φ(𝑚) (𝑘) 𝑒−

√︃
𝜂2
𝜂1

|𝑘 |𝑥
,

and 𝑝
(𝑚)
𝑓

(𝑥, 𝑘) = 𝑃 (𝑚) (𝑘) 𝑒 |𝑘 |𝑥 . The interface conditions (12)4 and (13)2 give
𝑈

(𝑚)
1 (𝑘) = 𝜆 (𝑚) and Φ(𝑚) (𝑘) = 𝜆(𝑚)

𝜂𝑝 |𝑘 | . Then, using the Fourier transform of (14),
we can obtain

𝜎̂ (𝑚) = −(2𝜇 𝑓 |𝑘 | + (𝜂𝑝 |𝑘 |)−1) 𝜆 (𝑚) .

Proceeding in analogous way, the solutions of problems (15) and (16) become

𝑣̂
(𝑚)
1 (𝑥, 𝑘) =

(
𝑃
(𝑚) (𝑘) 𝑥 − 𝜎̂ (𝑚)

|𝑘 |

)
𝑒 |𝑘 |𝑥

2𝜇 𝑓

, 𝑞
(𝑚)
𝑝 (𝑥, 𝑘) = 𝜎̂𝑚𝑒

−
√︃

𝜂2
𝜂1

|𝑘 |𝑥
,



Optimized Neumann-Neumann Method for the Stokes-Darcy Problem 161

and 𝑞 (𝑚)
𝑓

(𝑥, 𝑘) = 𝑃
𝑚 (𝑘)𝑒 |𝑘 |𝑥 . Substituting into the Fourier transform of (17), we

find 𝜆 (𝑚+1) = 𝜌(𝛼 𝑓 , 𝛼𝑝 , 𝑘)𝜆 (𝑚) with 𝜌(𝛼 𝑓 , 𝛼𝑝 , 𝑘) defined in (18). �

Using a classical approach in optimized Schwarz methods, we now aim at op-
timizing the parameters 𝛼 𝑓 and 𝛼𝑝 by minimizing the reduction factor for all the
relevant frequencies 𝑘 with 0 < 𝑘 ≤ |𝑘 | ≤ 𝑘 , where 𝑘 and 𝑘 are the minimum
and maximum relevant frequencies, respectively, with 𝑘 = 𝜋/𝐿 (𝐿 being the length
of the interface) and 𝑘 = 𝜋/ℎ (ℎ being the size of the mesh). Since the function
𝜌(𝛼 𝑓 , 𝛼𝑝 , 𝑘) is even with respect to 𝑘 , we only consider 𝑘 > 0 without loss of
generality, and we proceed to solve the min-max problem

min
𝛼 𝑓 ,𝛼𝑝>0

max
𝑘∈[𝑘,𝑘 ]

|𝜌(𝛼 𝑓 , 𝛼𝑝 , 𝑘) | . (19)

The following result holds.

Proposition 2 The solution of the min-max problem (19) is given by

𝛼𝑁𝑁
𝑓 = (2 𝜇 𝑓 𝜂𝑝 𝑘 𝑘)2 ( 1 + (2 𝜇 𝑓 𝜂𝑝 𝑘 𝑘)2 + 𝜇 𝑓 𝜂𝑝 (𝑘 + 𝑘)2 )−1 ,

𝛼𝑁𝑁
𝑝 = ( 1 + (2 𝜇 𝑓 𝜂𝑝 𝑘 𝑘)2 + 𝜇 𝑓 𝜂𝑝 (𝑘 + 𝑘)2 )−1 .

(20)

Moreover, |𝜌(𝛼𝑁𝑁
𝑓

, 𝛼𝑁𝑁
𝑝 , 𝑘) | < 1 for all 𝑘 ∈ [𝑘, 𝑘], and, asymptotically, when

ℎ → 0,

𝛼𝑁𝑁
𝑓 = 4𝜋2𝜇 𝑓 𝜂𝑝 𝐶𝑁𝑁 (1 − 2 𝐿 𝐶𝑁𝑁 ℎ) +𝑂 (ℎ2)

𝛼𝑁𝑁
𝑝 = 𝐿2 (𝜋2𝜇 𝑓 𝜂𝑝)−1𝐶𝑁𝑁 ℎ2 +𝑂 (ℎ3)

𝜌(𝛼𝑁𝑁
𝑓 , 𝛼𝑁𝑁

𝑝 , 𝑘) = −𝐿2 𝐶𝑁𝑁 + (8𝜋2𝜇 𝑓 𝜂𝑝𝐿 + 4𝐿3) 𝐶2𝑁𝑁 ℎ +𝑂 (ℎ2) ,

with 𝐶𝑁𝑁 = (4𝜋2𝜇 𝑓 𝜂𝑝 + 𝐿2)−1.

Proof For all 𝛼 𝑓 , 𝛼𝑝 > 0, lim𝑘→0 𝜌(𝛼 𝑓 , 𝛼𝑝 , 𝑘) = lim𝑘→∞ 𝜌(𝛼 𝑓 , 𝛼𝑝 , 𝑘) = −∞, and
the function 𝜌(𝛼 𝑓 , 𝛼𝑝 , 𝑘) has a local maximum at 𝑘∗ = (𝛼 𝑓 /(𝛼𝑝 (2 𝜇 𝑓 𝜂𝑝)2) )1/4
where

𝜌(𝛼 𝑓 , 𝛼𝑝 , 𝑘
∗) = 1 − (√𝛼 𝑓 + √

𝛼𝑝)2 . (21)

We distinguish two cases.
Case 1: √𝛼 𝑓 + √

𝛼𝑝 ≥ 1. In this case, 𝜌(𝛼 𝑓 , 𝛼𝑝 , 𝑘) ≤ 0 for all 𝑘 ≤ 𝑘 ≤ 𝑘 ,
and 𝜌(𝛼 𝑓 , 𝛼𝑝 , 𝑘) = 0 if √𝛼 𝑓 + √

𝛼𝑝 = 1. Taking √
𝛼 𝑓 + √

𝛼𝑝 = 1 would
result in a null convergence rate for 𝑘 = 𝑘∗, and we could then choose 𝛼 𝑓

and 𝛼𝑝 by imposing |𝜌(𝛼 𝑓 , 𝛼𝑝 , 𝑘) | = |𝜌(𝛼 𝑓 , 𝛼𝑝 , 𝑘) | (which would also en-
sure that 𝑘 < 𝑘∗ < 𝑘). This approach leads to 𝛼𝑝 = (1 + 2 𝜇 𝑓 𝜂𝑝 𝑘 𝑘)−2 and
𝛼 𝑓 = (2 𝜇 𝑓 𝜂𝑝 𝑘 𝑘)2 (1 + 2 𝜇 𝑓 𝜂𝑝 𝑘 𝑘)−2, but, unfortunately, it does not guar-
antee that |𝜌(𝛼 𝑓 , 𝛼𝑝 , 𝑘) | < 1 for all 𝑘 ∈ [𝑘, 𝑘], which would be true when
1 + 2 𝜇 𝑓 𝜂𝑝 𝑘 𝑘 >

√︁
2 𝜇 𝑓 𝜂𝑝 (𝑘 − 𝑘).
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Case 2: 0 <
√
𝛼 𝑓 + √

𝛼𝑝 < 1. In this case, 𝜌(𝛼 𝑓 , 𝛼𝑝 , 𝑘
∗) > 0, and the function

𝜌(𝛼 𝑓 , 𝛼𝑝 , 𝑘) has two positive zeros
𝑘1,2 = (1 − 𝛼 𝑓 − 𝛼𝑝 ± ( (1 − 𝛼 𝑓 − 𝛼𝑝)2 − 4𝛼 𝑓 𝛼𝑝)1/2)1/2 / (4 𝜇 𝑓 𝜂𝑝 𝛼𝑝)1/2 ,
whose position depends on the values of 𝛼 𝑓 and 𝛼𝑝 . Therefore, we proceed by
equioscillation and we look for 𝛼 𝑓 and 𝛼𝑝 such that −𝜌(𝛼 𝑓 , 𝛼𝑝 , 𝑘) = 𝜌(𝛼 𝑓 , 𝛼𝑝 , 𝑘

∗)
and −𝜌(𝛼 𝑓 , 𝛼𝑝 , 𝑘) = 𝜌(𝛼 𝑓 , 𝛼𝑝 , 𝑘

∗). This gives the values (20). Simple algebraic
manipulations permit to verify that, for such values of the parameters, 𝑘∗ = (𝑘 𝑘)1/2
so that 𝑘 < 𝑘1 < 𝑘∗ < 𝑘2 < 𝑘 . Moreover, |𝜌(𝛼 𝑓 , 𝛼𝑝 , 𝑘) | ≤ 𝜌(𝛼 𝑓 , 𝛼𝑝 , 𝑘

∗) for all
𝑘 ≤ 𝑘 ≤ 𝑘 and, owing to (21), we can conclude that |𝜌(𝛼 𝑓 , 𝛼𝑝 , 𝑘) | < 1 for all
frequencies of interest. �

3 Numerical results
We consider a finite element approximation based on the inf-sup stable Q2 − Q1
Taylor-Hood elements [2] for Stokes, and Q2 elements Darcy. Denoting by the
indices 𝐼 𝑓 , 𝐼𝑝 and Γ the degrees of freedom in Ω 𝑓 , Ω𝑝 and on Γ, respectively, the
algebraic form of the discrete Stokes-Darcy problem (1)–(5) becomes

©­­­­­­­­«
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, (22)

where u 𝑓 ,Γ denotes the vector of degrees of freedom of the normal velocity on Γ.
The Schur complement system with respect to u 𝑓 ,Γ is

(Σ 𝑓 + Σ𝑝) u 𝑓 ,Γ = bΓ (23)

where Σ 𝑓 and Σ𝑝 are the symmetric and positive definite matrices (see [7]):

Σ 𝑓 = 𝐴
𝑓

ΓΓ
−

(
𝐴

𝑓

Γ𝐼 𝑓
𝐺

𝑓

Γ

) (
𝐴

𝑓

𝐼 𝑓 𝐼 𝑓
𝐺

𝑓

𝐼 𝑓

(𝐺 𝑓

𝐼 𝑓
)𝑇 0

)−1 (
𝐴

𝑓

𝐼 𝑓 Γ

(𝐺 𝑓

Γ
)𝑇

)
,

Σ𝑝 =
(
0 𝐶 𝑓 𝑝

) (
𝐴
𝑝

𝐼𝑝 𝐼𝑝
𝐴
𝑝

𝐼𝑝Γ

𝐴
𝑝

Γ𝐼𝑝
𝐴
𝑝

ΓΓ

)−1 (
0

𝐶𝑇
𝑓 𝑝

)
.

Following a classical approach in domain decomposition (see, e.g., [7, 16]), the
Neumann-Neumann method (6)–(10) can be equivalently reformulated as a Richard-
son method for the Schur complement system (23) with preconditioner

𝑃 = 𝛼 𝑓 Σ
−1
𝑓 + 𝛼𝑝 Σ

−1
𝑝 . (24)

The PCG method with preconditioner 𝑃 can then be used to solve (23).
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We consider the computational domains Ω 𝑓 = (0, 0.5) × (1, 1.5) and Ω𝑝 =

(0, 0.5) × (0.5, 1) so that Γ = (0, 0.5) × {1}, and we choose the forces f 𝑓 and 𝑓𝑝
and the boundary conditions in such a way that the Stokes-Darcy problem has
analytic solution u 𝑓 = (√𝜂𝑝 , 𝛼𝐵𝐽 𝑥)𝑇 , 𝑝 𝑓 = 2 𝜇 𝑓 (𝑥 + 𝑦 − 1) + (3 𝜂𝑝)−1, and 𝑝𝑝 =

𝜂−1𝑝 (−𝛼𝐵𝐽 𝑥(𝑦−1) + 𝑦3/3− 𝑦2+ 𝑦) +2 𝜇 𝑓 𝑥. The computational meshes are structured
and characterized by ℎ = 0.1 × 21− 𝑗 , 𝑗 = 1, . . . , 4, with 11, 21, 41, and 81 interface
unknowns, respectively. We consider four configurations of physically significant
dimensionless problem parameters (see also [12]): (a) 𝜇 𝑓 = 10, 𝜂𝑝 = 4 × 10−10;
(b) 𝜇 𝑓 = 1, 𝜂𝑝 = 4×10−7; (c) 𝜇 𝑓 = 10, 𝜂𝑝 = 4×10−9; (d) 𝜇 𝑓 = 0.2, 𝜂𝑝 = 2×10−7.
Table 1 reports the computed values of the optimal parameters𝛼𝑁𝑁

𝑓
and𝛼𝑁𝑁

𝑝 (20)
and the number of CG iterations with preconditioner (24) and without preconditioner
(in brackets). For comparison, we indicate also the values of the optimal parameters
𝛼𝑅𝑅

𝑓
and 𝛼𝑅𝑅

𝑝 and the number of GMRES iterations obtained with the optimized
Schwarz (Robin-Robin) method studied in [8]. (Notice that 𝛼𝑁𝑁

𝑓
∼ 𝑐0

𝑓
+ 𝑐1

𝑓
ℎ and

𝛼𝑁𝑁
𝑝 ∼ 𝑐0𝑝 + 𝑐1𝑝ℎ when ℎ → 0 for suitable constants 𝑐0

𝑓
, 𝑐1

𝑓
, 𝑐0𝑝 and 𝑐1𝑝 that depend

on 𝜇 𝑓 , 𝜂𝑝 and 𝐿.)
The number of PCG iterations using optimized parameters 𝛼𝑁𝑁

𝑓
, 𝛼𝑁𝑁

𝑝 is almost
independent of both the mesh size and of the values of 𝜇 𝑓 and 𝜂𝑝 .
Moreover, the optimized Neumann-Neumann method performs better than the

Robin-Robin method with lower computational cost per iteration. We also observe
that, considering the Robin interface conditions (3.3)4 and (3.4)4 in [8] and the
values of 𝛼𝑅𝑅

𝑓
and 𝛼𝑅𝑅

𝑝 (especially, the large values of 𝛼𝑅𝑅
𝑓
), the Robin-Robin

method actually behaves like a Dirichlet-Robin method with interface condition on

Table 1 Optimal parameters 𝛼𝑁𝑁
𝑓
and 𝛼𝑁𝑁

𝑝 and number of PCG iterations, and optimal parame-
ters 𝛼𝑅𝑅

𝑓
and 𝛼𝑅𝑅

𝑝 for theRobin-Robinmethodwith correspondingGMRES iterations (tol = 10−9).

Case Mesh 𝛼𝑁𝑁
𝑓

𝛼𝑁𝑁
𝑝 PCG iter 𝛼𝑅𝑅

𝑓
𝛼𝑅𝑅
𝑝 GMRES iter

(a) ℎ1 9.97 × 10−12 1.00 × 10+0 2 (12) 7.23 × 10+7 6.91 × 10+2 4
ℎ2 3.99 × 10−11 1.00 × 10+0 2 (17) 3.79 × 10+7 1.32 × 10+3 4
ℎ3 1.60 × 10−10 1.00 × 10+0 3 (22) 1.94 × 10+7 2.58 × 10+3 4
ℎ4 6.38 × 10−10 9.99 × 10−1 3 (31) 9.83 × 10+6 5.09 × 10+3 4

(b) ℎ1 9.96 × 10−8 9.98 × 10−1 3 (12) 7.24 × 10+4 6.91 × 10+1 6
ℎ2 3.96 × 10−7 9.93 × 10−1 4 (17) 3.80 × 10+4 1.32 × 10+2 6
ℎ3 1.55 × 10−6 9.74 × 10−1 4 (24) 1.96 × 10+4 2.55 × 10+2 8
ℎ4 5.78 × 10−6 9.06 × 10−1 5 (30) 1.03 × 10+4 4.86 × 10+2 8

(c) ℎ1 9.97 × 10−10 1.00 × 10+0 3 (12) 7.23 × 10+6 6.91 × 10+2 4
ℎ2 3.99 × 10−9 9.99 × 10−1 3 (17) 3.79 × 10+6 1.32 × 10+3 4
ℎ3 1.59 × 10−8 9.97 × 10−1 3 (24) 1.94 × 10+6 2.57 × 10+3 6
ℎ4 6.32 × 10−8 9.90 × 10−1 4 (30) 9.87 × 10+5 5.06 × 10+3 6

(d) ℎ1 2.49 × 10−10 1.00 × 10+0 2 (12) 7.23 × 10+5 3.46 × 10+1 4
ℎ2 9.97 × 10−10 1.00 × 10+0 3 (17) 3.79 × 10+5 6.60 × 10+1 4
ℎ3 3.98 × 10−9 9.99 × 10−1 3 (22) 1.94 × 10+5 1.29 × 10+2 6
ℎ4 1.59 × 10−8 9.95 × 10−1 4 (29) 9.85 × 10+4 2.54 × 10+2 6
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the normal velocity u 𝑓 · n for the Stokes problem. This confirms that condition (6)3
in the Neumann-Neumann algorithm is a valid choice for the Stokes problem.
Finally, the optimal values 𝛼𝑁𝑁

𝑓
, 𝛼𝑁𝑁

𝑝 suggest that the preconditioner (24) be-
haves like 𝑃 ≈ Σ−1

𝑝 . Thus, while Σ−1
𝑓
is an effective preconditioner for large values

of 𝜇 𝑓 and 𝜂𝑝 (see [7, 10]), Σ−1
𝑝 is a much better choice for small values, which is

the case in most applications. This can lead to a Dirichlet-Neumann-type method
different from the one in [7, 10] that will be discussed in a future work.
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Finite Basis Physics-Informed Neural Networks
as a Schwarz Domain Decomposition Method

Victorita Dolean, Alexander Heinlein, Siddhartha Mishra, and Ben Moseley

1 Introduction

The success and advancement of machine learning (ML) in fields such as image
recognition and natural language processing has lead to the development of novel
methods for the solution of problems in physics and engineering. However, algo-
rithms developed in traditional fields of ML usually require a large amount of data,
which are difficult to obtain from measurements and/or traditional numerical simu-
lations. Furthermore, such algorithms can be difficult to interpret and can struggle
to generalize. To overcome these issues, a new research paradigm has emerged,
known as scientific machine learning (SciML) [1, 7], which aims to more tightly
combine ML with scientific principles to provide more powerful algorithms.
One such approach are physics-informed neural networks (PINNs) [4, 10], which

are designed to approximate the solution to the boundary value problem

N[𝑢] (x) = 𝑓 (x), x ∈ Ω ⊂ R𝑑 ,
B𝑘 [𝑢] (x) = 𝑔𝑘 (x), x ∈ Γ𝑘 ⊂ 𝜕Ω

(1)

whereN[𝑢] (x) is a differential operator, 𝑢 is the solution andB𝑘 (·) is a set of bound-
ary conditions, such that the solution 𝑢 is uniquely determined. Note that boundary
conditions are to be understood in a broad sense and the x variable can also include
time. In particular, we do not distinguish between initial and boundary conditions.
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The approximation to the solution of (1) is given by a neural network 𝑢(x, 𝜽)
(for the sake of simplicity we use the same notation for the solution of the PDE and
the neural network) where 𝜽 is a vector of all the parameters of the neural network
(i.e., its weights and biases). The network is trained via the loss function

L(𝜽) = 𝜆𝐼

𝑁𝐼

𝑁𝐼∑︁
𝑖=1
(N [𝑢] (x𝑖 , 𝜽) − 𝑓 (x𝑖))2︸                                  ︷︷                                  ︸

LPDE

+
𝑁𝑘∑︁
𝑘=1

𝜆𝑘
𝐵

𝑁 𝑘
𝐵

𝑁 𝑘
𝐵∑︁

𝑗=1
(B𝑘 [𝑢] (x𝑘

𝑗 , 𝜽) − 𝑔𝑘 (x𝑘
𝑗 ))2︸                                            ︷︷                                            ︸

LBC

.

(2)

Here, {x𝑖}𝑁𝐼

𝑖=1 is a set of collocation points sampled in the interior of the domain,

{x𝑘
𝑗
}𝑁

𝑘
𝐵

𝑗=1 is a set of points sampled along each boundary condition, and 𝜆𝐼 and 𝜆𝑘
𝐵
are

well-chosen scalar hyperparameters which ensure that the terms in the loss function
are well balanced. Intuitively, one can see that the PDE loss tries to ensure that the
solution learned by the network obeys the underlying PDE whilst the boundary loss
tries to ensure it obeys the boundary conditions.
In practice, the presence of the boundary loss in eq. (2) often slows down train-

ing as it can compete with the PDE term [12]. In a slightly different formulation,
boundary conditions can instead be enforced exactly as hard constraints by using the
neural network as part of a solution ansatz C𝑢 where C is a constraining operator
which enforces that the solution explicitly satisfies the boundary conditions [4, 8].
This turns the optimization problem into an unconstrained one, and only the PDE
loss from eq. (2) is required to train the PINN. For example, suppose we want to
enforce that 𝑢(0) = 0 when solving a one-dimensional ODE, then the ansatz and
constraining operator can be chosen as [C𝑢] (𝑥, 𝜽) = tanh(𝑥)𝑢(𝑥, 𝜽). The rationale
behind this is that the function tanh(𝑥) is null at 0, forcing the boundary condition
to be obeyed, but non-zero away from 0, allowing the network to learn the solution
away from the boundary condition.
Whilst PINNs have proven to be successful for solving many different types of

differential equations, they often struggle to scale to problems with larger domains
and more complex, multi-scale solutions [8, 11]. This is in part due to the spec-
tral bias of neural networks [9] (their tendency to learn higher frequencies much
slower than lower frequencies), and the increasing size of the underlying PINN op-
timization function. One way to alleviate these scaling issues is to combine PINNs
with a domain decomposition method (DDM); by taking a divide-and-conquer ap-
proach, one hopes that the large, global optimization problem can be turned into
a series of smaller and easier localized problems. In particular, [8] proposed finite
basis physics-informed neural networks (FBPINNs) where the global PINN is par-
titioned into many local networks that are trained to approximate the solution on
an overlapping domain decomposition. Related approaches are the deep domain de-
composition method (D3M) [5] and the deep-learning-based domain decomposition
method (DeepDDM) [6], which combine overlapping Schwarz domain decompo-
sition methods with a PINN-based discretization. Other earlier works on the use
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Fig. 1 Local FBPINN subdomains and window functions 𝑤𝑗 (left), local solutions 𝑢 𝑗 (right)

of machine learning and domain decomposition methods include the prediction of
the geometrical location of constraints in adaptive FETI-DP and BDDC methods;
see [2]. For an overview of the combination of domain decomposition methods and
machine learning, see [3].
In this work, we build upon FBPINNs by showing how Schwarz-like additive,

multiplicative and hybrid iterative training strategies for FBPINNs can be developed.
We present numerical experiments on the influence of these training strategies on
convergence and accuracy. We propose and evaluate a preliminary implementation
of a coarse space correction for FBPINNs, to further improve their efficiency.

2 Finite basis physics-informed neural networks (FBPINNs)

First we briefly present the FBPINN method introduced by [8] from a DDM per-
spective. The FBPINN method can be seen as a network architecture that allows for
a localization of the network training. Therefore, let us consider a set of collocation
points 𝑋 = {x𝑖}𝑁𝑖=1 in the global domain Ω and a decomposition into overlapping
domains Ω = ∪𝐽

𝑗=1Ω 𝑗 inducing a decomposition into subsets of collocation points

𝑋 𝑗 = {x 𝑗

𝑖
}𝑁 𝑗

𝑖=1, 𝑗 = 1, . . . , 𝐽. As usual in overlapping Schwarz methods, 𝑋 = ∪𝐽
𝑗=1𝑋 𝑗

is not disjoint. For each subdomain Ω 𝑗 , we denote N𝑗 the index set of neighboring
subdomains, Ω◦

𝑗
= ∪N𝑗

𝑙=1Ω𝑙 ∩ Ω 𝑗 the overlapping subset of Ω 𝑗 , and Ωint𝑗 = Ω 𝑗 \ Ω◦𝑗 ,
the interior part of the domain; let 𝑋◦

𝑗
and 𝑋 int

𝑗
be the corresponding sets of col-

location points, and 𝑋◦ = ∪𝐽
𝑗=1𝑋

◦
𝑗
and 𝑋 int = ∪𝐽

𝑗=1𝑋
int
𝑗
. We now define the global

network 𝑢 as the sum of local networks 𝑢 𝑗 (x, 𝜽 𝑗 ) weighted by window functions 𝜔 𝑗 :
𝑢 =

∑
𝑗 ,x𝑖 ∈Ω 𝑗

𝜔 𝑗𝑢 𝑗 . Here, the local networks have individual network parameters 𝜽 𝑗 ,
and of course, they could simply be evaluated everywhere in R𝑑 . In order to restrict
them to their corresponding overlapping subdomains, wemultiply themwith thewin-
dow functions, which have the properties supp(𝜔𝑖) ⊂ Ω𝑖 and Ω ⊂ ∪𝐽𝑗=1supp(𝜔𝑖);
the specific definition of 𝜔𝑖 employed here can be found in [8, eq. (14)]. See Fig. 1
for a graphical representation of the overlapping subdomains, their overlapping and
interior sets, window functions, and local solutions for a simple one-dimensional
example. If we insert the expression for 𝑢 into eq. (2), we see that the loss function
can be written as:
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L(𝜽1, . . . , 𝜽𝐽 ) =
1
𝑁

𝑁∑︁
𝑖=1

©­«N[C
∑︁

𝑗 ,x𝑖 ∈𝑋 𝑗

𝜔 𝑗𝑢 𝑗 ] (x𝑖 , 𝜽 𝑗 ) − 𝑓 (x𝑖)
ª®¬
2

. (3)

The contribution to the global loss function can be split into a part coming from
interior points and another one from points in the overlap, respectively:

L(𝜽1, . . . , 𝜽𝐽 ) =
1
𝑁

∑︁
x∈𝑋 int

(
N[C

∑︁
𝑙,x∈𝑋𝑙

𝜔𝑙𝑢𝑙] (x, 𝜽𝑙) − 𝑓 (x)
)2

︸                                                   ︷︷                                                   ︸
=:Lint (𝜽1 ,...,𝜽𝐽 )

+ 1
𝑁

∑︁
x∈𝑋 ◦

(
N[C

∑︁
𝑙,x∈𝑋𝑙

𝜔𝑙𝑢𝑙] (x, 𝜽𝑙) − 𝑓 (x)
)2

.

(4)

Note also that, since 𝑋 int
𝑖
∩ 𝑋 int

𝑗
= ∅ for 𝑖 ≠ 𝑗 , the interior contribution can be

simplified as follows:

Lint (𝜽1, . . . , 𝜽𝐽 ) =
1
𝑁

𝐽∑︁
𝑗=1

∑︁
x𝑖 ∈𝑋 int𝑗

(
N[C𝜔 𝑗𝑢 𝑗 ] (x𝑖 , 𝜽 𝑗 ) − 𝑓 (x𝑖)

)2
.

In [8], the authors introduce the notion of scheduling which is related to the
degree of parallelism one can consider in Schwarz domain decomposition methods.
For example in the well-know alternating Schwarz method, local solves take place
sequentially, in an alternating manner, with data being exchanged at the interfaces. In
the case of the parallel Schwarzmethod, local solutions are computed simultaneously,
but subdomains only have access to interface data at the previous iteration. As is
well-known in DDMs, the alternating method convergences in fewer iterations than
the parallel method, whereas the second methods allows the concurrent computation
of the local solutions; hence, the parallel Schwarz method is often more efficient in
a parallel implementation.
In the case of many subdomains, one can define a so-called coloring strategy, i.e.,

subdomains with the same color are computed in parallel and different colors are
processed sequentially. Here, we will consider any possible coloring scheme, allow-
ing for arbitrary combinations of additive and multiplicative coupling. In particular,
let us split the set of subdomain indices as follows {1, . . . , 𝐽} = A ∪ I, such that
subdomainsΩ 𝑗 , 𝑗 ∈ A are allocated the same ‘color’ which is different than those of
the subdomains Ω 𝑗 , 𝑗 ∈ I. In the case of training FBPINNs, the notion of coloring
is replaced by that of scheduling, that is, subdomains indexed in A are considered
to be active at a given iteration and those indexed in I are inactive. The case when
I = ∅ corresponds to the fully parallel Schwarz method, whereas the case where
only one subdomain is active at a time corresponds to a fully alternating Schwarz
iteration. Denoting a subdomain Ω 𝑗 as inactive corresponds to fixing 𝜽 𝑗 during the
optimization of L(𝜽1, . . . , 𝜽𝐽 ).
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Algorithm 1 FBPINN training step for each subdomain
if 𝑗 ∈ A (Ω 𝑗 is an active domain) then
Perform 𝑝 iterations of gradient descent on 𝜽𝑘

𝑗
(𝜽𝑘

𝑖
where 𝑖 ≠ 𝑗 are kept fixed):

𝜽𝑘+𝑙𝑗 = 𝜽𝑘+𝑙−1𝑗 − 𝜆∇𝜽 𝑗
L(𝜽𝑘1 , . . . , 𝜽

𝑘
𝑗−1, 𝜽

𝑘+𝑙−1
𝑗 , 𝜽𝑘𝑗+1, . . . , 𝜽

𝑘
𝐽 ) , 𝑙 = 1, . . . , 𝑝.

Update the solution in the overlapping regions (communicate with neighbours):

∀x ∈ Ω◦𝑗 , 𝑢 (x, 𝜽
𝑘+𝑝
𝑗
) ←

∑︁
𝑙,x∈Ω𝑙

𝜔𝑙𝑢𝑙 (x, 𝜽𝑘+𝑝𝑙
) .

end if

The FBPINN training algorithm follows the ‘coloring’ strategy described above.
Let us denote by 𝜽𝑘

𝑗
the parameter values at the 𝑘-th training step, and to simplify

the presentation, we focus on the case of a first order gradient-based optimizer. If we
start from an initial guess 𝜽0

𝑗
, then the training step for each subdomain is given by

Algorithm 1. Once all active subdomains have completed one training step, the setA
and I are updated. This whole procedure is repeated until any stopping criterion,
such as a maximum number of iterations or a tolerance for the loss, is met.
Let us note that:

• The gradient updates can be performed in parallel and are fully localized even
if the loss function is global; only in the update step are network solutions and
network gradients transferred between neighboring subdomains.

• It is not necessary to perform communication in the overlaps (here in orange)
at every iteration of gradient descent, but rather every 𝑝 iterations for a better
computational efficiency. The overall convergence can also be affected; cf. Fig.2.

• Unlike in classical domain decomposition methods, in our approach, the global
problem is not decomposed into local problems, which can be solved indepen-
dently. Instead, we always compute gradient updates with respect to the global loss
function, and the domain decomposition and hence the localization enters through
the window functions in the definition of the architecture of global network.

To illustrate the behavior of this algorithm we will consider a scaling study for its
flexible training strategy. In particular, we fix the number of global collocation points
and investigate the influence of changing the number of subdomains and the value
of 𝑝 on convergence when solving the simple 1D ODE 𝑑𝑢

𝑑𝑥
= cos𝜔𝑥, 𝑢(0) = 0, with

𝜔 = 15. All subdomains are kept active all of the time, and all other FBPINN design
choices are kept the same, including window function and local network architecture
per subdomain. We only consider the case of relatively large overlap of 70% of the
subdomain width, but the results are qualitatively the same for other sizes of overlap.
As discussed in [8] and as in classical overlapping Schwarz methods, performance
generally improves when increasing the size of the overlap; a systematic investigation
is still open.
In Figure 2, we display the convergence of the loss function when the communi-

cation between subdomains takes place every 𝑝 ∈ {1, 10, 100, 1000} epochs. We ob-
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Fig. 2 FBPINN convergence for decompositions into 8 (upper left), 16 (upper right) and 32 (lower
left) subdomains and different 𝑝 values. Each network has 2 layers and 16 hidden units per
layer. A total of 3,000 collocation points regularly sampled over the domain are used. For each
decomposition, subdomains are regularly spaced, with an overlap of 70% of the subdomain width.

serve that the case of 8 subdomains is rather special since convergence appears rather
unstable and there is no option that performs clearly best. As we increase the number
of subdomains to 16 and 32 we observe an expected behavior, that is, the conver-
gence rate improves if we communicate solutions and gradients in the overlaps every
iteration. Moreover, when increasing the number of subdomains, naturally the global
training performs less well, which is well known in domain decomposition as lack
of scalability; we observe this behavior for all values of 𝑝. This is expected because
the method above corresponds to a one-level method (meaning only neighboring
subdomains communicate and there is no global exchange of information). Surpris-
ingly, we do not see any clear difference in the convergence depending on 𝑝, that is,
depending on how often we communicate. Since, in a parallel setting, it is computa-
tionally more efficient to communicate less, the results seems to indicate that, if we
do not communicate in each step, it is beneficial to communicate as little as possible.

3 Coarse correction

Coarse spaces are instrumental in DDMs, as they ensure the robustness of a given
method with respect to the number of subdomains as well as other problem-specific
parameters, such as physical properties like frequency for wave problems or con-
ductivity for diffusion type problems. Coarse spaces are often defined based on
geometrical information (like a coarser mesh) but more sophisticated coarse spaces
can be constructed using spectral information of underlying local problems. When
training PINNs, it is not immediately clear how to define a coarse space, that is,
a coarse network model, nor how to choose the number of collocation points and pa-
rameters of the coarse model. In what follows, we propose and evaluate a preliminary
implementation of a coarse space correction for FBPINNs.
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Fig. 3 Coarse correction for FBPINNs. Each subdomain network and the coarse network has
2 layers and 16 hidden units per layer. A total of 500 collocation points regularly sampled over
the domain are used to train the coarse network, and 3,000 for the local networks. For the local
networks, the subdomains are regularly spaced, with an overlap of 70% of the subdomain width.

In particular, we exploit the spectral bias of neural networks in order to build
a coarse correction. This is the well-studied phenomenon that they tend to learn
higher frequencies much slower than lower frequencies [9], and similar effects are
observed for PINNs [8, 11]. Indeed, this effect iswhatmotivated the use of domain de-
composition in FBPINNs.More precisely, we first train a small but global network for
enough epochs to learn the low frequency component of the solution; in particular, we
employ a coarse network with the same architecture as a single local network. Then,
local subdomains are added to approximate missing higher frequency components.
The resulting FBPINN solution is given by 𝑢 = 𝑢𝑔 +

∑
𝑗 ,x𝑖 ∈Ω 𝑗

𝜔 𝑗𝑢 𝑗 , where 𝑢𝑔 (x, 𝜽𝑔)
is the coarse network and 𝑢 𝑗 (x, 𝜽 𝑗 ) are the local networks. Because of spectral bias,
low frequencies are first learned by the coarse network, and a relatively small network
is sufficient to approximate the low frequencies. Then the local networks only need
to learn the remaining higher frequencies. Since the local models only have to learn
a local part of the solution, relatively small local network models are also sufficient.
We will apply these ideas on the simple 1D ODE, 𝑑𝑢

𝑑𝑥
= 𝜔1 cos(𝜔1𝑥) +

𝜔2 cos(𝜔2𝑥), 𝑢(0) = 0, where two frequencies are present in the solution,
𝑢(𝑥) = sin(𝜔1𝑥) + sin(𝜔2𝑥). For our test case, we choose 𝜔1 = 1 as a lower
frequency and 𝜔2 = 15 as the higher frequency and we decompose the global do-
main into 30 overlapping subdomains; see Fig. 3. We note, as shown in [8] for an
ODE with a single high frequency, solving such a problem with a single PINN re-
quires a high network complexity and large number of iterations. First, we train the
global coarse network, 𝑢𝑔, until the lower frequency is learned. We illustrate this
progressive process in Fig. 3 where we see that we need roughly 3,000 epochs to
identify the lower frequency. Here, we have chosen the number of epochs by hand
based on the accuracy of the coarse solution, but in the future, we will work on
automating the training of the coarse network. Then, the coarse network is fixed
and the local networks are trained to approximate the remaining component of the
solution, with all local networks kept active at each training step. As can be seen
in Fig. 3, using our proposed approach, the coarse network approximates the coarse
component of the solution, and the local subdomain networks approximate the high
frequency components on the local subdomains.
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4 Conclusions

In this work, we provide first insights on how to incorporate techniques from classical
Schwarz domain decomposition methods into the FBPINNmethod. We show that its
algorithmic components can be translated in the language of domain decomposition
methods, and the well-established notions of additive, multiplicative and, hybrid
Schwarz iterations can be identified through the notion of the flexible scheduling
strategies introduced in [8]. Finally, we start exploring the notion of coarse space for
FBPINNs. In particular, we train a coarse network to approximate the low frequency
components of the solution and then continue by training local networks to approx-
imate the remaining high frequency components. These ideas can be extended in
a straightforward way to other, more complex boundary value problems.
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Multigrid Interpretation of a Three-Level
Parareal Algorithm

Stephanie Friedhoff, Martin J. Gander, and Felix Kwok

1 Introduction

Parallel-in-time methods, of which parareal [13] and multigrid reduction in time
(MGRIT) [3] are well-known examples, are important tools for increasing par-
allelism beyond traditional spatially parallel methods, see [6, 14] and references
therein. As a two-level method, parareal performs the fine but expensive integration
independently (and in parallel) over many short time intervals, and it uses a cheap
(but coarse) integrator to correct values across time subintervals sequentially. For
linear ODE systems, parareal iterates are known to be equivalent to two-levelMGRIT
ones for a specific choice of initial guess, restriction/prolongation operators and re-
laxation scheme, cf. [3, 9, 10]. One can thus analyze parareal convergence in two
ways: one can make hypotheses on Lipschitz constants and truncation errors, which
is typical in the ODE community, cf. [1, 8, 13], or one can use spectral information
of all-at-once matrices, as is common in the multigrid community, see [2, 3, 5, 15].
When parareal and MGRIT are used with many time subintervals, the coarse

correction step becomes a computational bottleneck. To overcome this, one can par-
allelize the coarse solution by subdividing the coarse problem and using a coarser
level to ensure global communication. For MGRIT, this leads to a multilevel vari-
ant [11]; for parareal, a three-level variant has been introduced and analyzed in [12].
In this paper, we show that there is a choice of restriction/prolongation operators and
relaxation schemes such that the resulting MGRIT method is equivalent to three-
level parareal when applied to linear problems. The existing MGRIT literature can
thus add to our understanding of three-level parareal, beyond what is shown in [12].
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2 The three-level parareal algorithm

Suppose one wishes to solve the linear system of ODEs 𝑢′ = Φ𝑢 + 𝑓 (𝑡) with initial
conditions 𝑢(0) = 𝑢0 on the interval [0, 𝑇]. To obtain the temporal grid for both
parareal and MGRIT, we subdivide the interval hierarchically as follows:1

• The interval [0, 𝑇] is subdivided into 𝑝 coarsest intervals I𝑖 = [𝑇𝑖−1, 𝑇𝑖], 𝑖 =

1, . . . , 𝑝, each of length Δ𝑇 = 𝑇/𝑝;
• Each coarsest interval I𝑖 is subdivided into 𝑚 subintervals I𝑖, 𝑗 = [𝑡𝑖, 𝑗 , 𝑡𝑖, 𝑗+1],

𝑗 = 0, 1, . . . , 𝑚 − 1, of length Δ𝑡 = Δ𝑇/𝑚;
• EachI𝑖, 𝑗 is divided into intervals [𝑡𝑖, 𝑗 ,𝑘 , 𝑡𝑖, 𝑗 ,𝑘+1] (0 ≤ 𝑘 < 𝑛) of length 𝛿𝑡 = Δ𝑡/𝑛.
We can now define the following propagators, which take an initial value at the

beginning of I𝑖 , I𝑖, 𝑗 or I𝑖, 𝑗 ,𝑘 and return the solution at the end of the interval:2

• 𝐹0 is the action of the fine integrator over one fine time step 𝛿𝑡. For a linear
problem, we have 𝐹0𝑢𝑖−1 = Φ0𝑢𝑖−1 + 𝑓𝑖 .

• 𝐹 = 𝐹𝑛
0 is the action of the fine integrator over one intermediate time step

Δ𝑡 = 𝑛𝛿𝑡. For a linear problem, we have 𝐹𝑢𝑖−𝑛 = Φ𝑛
0𝑢𝑖−𝑛 +

∑𝑛−1
𝑘=0 Φ

𝑘
0 𝑓𝑖−𝑘 .

• 𝐺 is the action of the intermediate integrator over one intermediate time step Δ𝑡.
For a linear problem, we have 𝐺𝑈𝑖, 𝑗−1 = Φ1𝑈𝑖, 𝑗−1 + 𝛾𝑖, 𝑗 .

• 𝐻 is the action of the coarse integrator over one coarse time step Δ𝑇 = 𝑚Δ𝑡. For
a linear problem, we have 𝐻𝑌𝑖−1 = Φ2𝑌𝑖−1 + 𝜂𝑖 .

The three-level parareal algorithm, as introduced in [12], iterates on the level-1
state variables𝑈𝑖, 𝑗 and level-2 state variables 𝑌𝑖 as follows:

1. Initialization (with iteration indices appearing as superscripts):

𝑌00 = 𝑢0, 𝑌0𝑖 = 𝐻𝑌0𝑖−1

𝑈0𝑖,0 = 𝑌0𝑖−1, 𝑈0𝑖, 𝑗 = 𝐺𝑈0𝑖, 𝑗−1 (1 ≤ 𝑗 ≤ 𝑚),

2. Iteration: for 𝜈 = 0, 1, 2, . . .,

𝑈𝜈+1
𝑖,0 = 𝑌 𝜈

𝑖−1, 𝑈𝜈+1
𝑖, 𝑗 = 𝐹𝑈𝜈

𝑖, 𝑗−1 + 𝐺𝑈𝜈+1
𝑖, 𝑗−1 − 𝐺𝑈𝜈

𝑖, 𝑗−1 (1 ≤ 𝑗 ≤ 𝑚), (1)

𝑌 𝜈+1
0 = 𝑢0, 𝑌 𝜈+1

𝑖 = 𝑈𝜈+1
𝑖,𝑚 + 𝐻𝑌 𝜈+1

𝑖−1 − 𝐻𝑌 𝜈
𝑖−1. (2)

This method is shown in [12] to converge to the fine solution in finitely many steps,
i.e., 𝑈𝜈

𝑖, 𝑗
= 𝐹 (𝑖−1)𝑚+ 𝑗𝑢0 for 𝜈 ≥ 𝑖(𝑚 + 1), for any choice of 𝐺 and 𝐻. Note that this

is not a nested iteration, where one needs to iterate 𝑈 or 𝑌 to sufficient accuracy
before switching levels; instead, only one parareal step on 𝑈𝑖, 𝑗 is performed before
it is used in (2), and one coarse parareal step (2) is performed before the 𝑌𝑖 are used
as new initial values in (1).

1 For ease of explanation, we assume that all subdivisions have equal length, although it is easy to
see that similar results hold for non-uniform subdivisions.
2 To lighten the notation, the time index is only indicated in the variable on which the propagators
are applied, and not in the propagators themselves.
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Algorithm 1MGRIT(ℓ, g̃(ℓ) ) (in correction form, as defined in [3])
if ℓ is the coarsest level 𝐿 then
Solve coarse grid system 𝐴𝐿u(𝐿) = g̃(𝐿)

else
Relax on 𝐴ℓu(ℓ) = g̃(ℓ) using 𝐹 -relaxation
Compute and restrict residual using injection: g̃(ℓ+1) = 𝑅ℓ+1

ℓ
(g̃(ℓ) − 𝐴ℓu(ℓ) )

Solve on the next level : MGRIT(ℓ + 1, g̃(ℓ+1) )
Correct: u(ℓ) ← u(ℓ) + 𝑃ℓ

ℓ+1u
(ℓ+1)

end if

Algorithm 2MGRIT-FAS(ℓ, u(ℓ) , g(ℓ) ) (as defined in [4])
if ℓ is the coarsest level 𝐿 then
Solve coarse grid system 𝐴𝐿 (u(𝐿) ) = g(𝐿)

else
Relax on 𝐴ℓ (u(ℓ) ) = g(ℓ) using 𝐹 -relaxation to obtain v(ℓ)
Compute FAS right hand side: g(ℓ+1) = 𝑅ℓ+1

ℓ
(g(ℓ) − 𝐴ℓ (v(ℓ) )) + 𝐴ℓ+1 (𝑅ℓ+1

ℓ
v(ℓ) )

Solve on the next level : MGRIT-FAS(ℓ + 1, u(ℓ+1) , g(ℓ+1) )
Correct: u(ℓ) ← v(ℓ) + 𝑃ℓ

ℓ+1 (u
(ℓ+1) − 𝑅ℓ+1

ℓ
v(ℓ) )

end if

3 Equivalence with the MGRIT V-cycle

The initial value problems that are solved by the propagators can also be written as
linear systems of the type 𝐴ℓu(ℓ) = g(ℓ) , where

𝐴ℓ =


𝐼

−Φℓ 𝐼

. . .
. . .

−Φℓ 𝐼


.

The index ℓ here indicates the level of coarseness of the temporal grid, with ℓ = 0
being the finest grid, and ℓ = 2 being the coarsest for a three-level method. Such
systems can be solved using the MGRIT V-cycle with F-relaxation algorithm, which
can be written in correction form [3] or as a full approximation scheme (FAS) [4], see
Algorithms 1 and 2. Here, we consider the special case of 𝐿 = 2, i.e., the three-level
algorithm. For the purpose of writing the recurrence, we will index the fine grid
(level-0) solution as 𝑢𝑖, 𝑗 ,𝑘 ≈ 𝑢(𝑡𝑖, 𝑗 ,𝑘 ). The level-1 vectors will be double indexed as
𝑢𝑖, 𝑗 ≈ 𝑢(𝑡𝑖, 𝑗 ), and level-2 vectors are singly indexed as 𝑢𝑖 ≈ 𝑢(𝑇𝑖−1). If injection is
used for 𝑃ℓ

ℓ+1 and 𝑅
ℓ+1
ℓ

= (𝑃ℓ
ℓ+1)

𝑇 in Algorithm 2, then one V-cycle of MGRIT-FAS
with F-relaxation for solving 𝐴0u = 𝑓 updates the iterate 𝑢𝑖, 𝑗 ,𝑘 as follows:

1. Relax on level 0:

𝑣𝑖, 𝑗 ,𝑘 =

{
𝑓𝑖, 𝑗 ,𝑘 +Φ0𝑣𝑖, 𝑗 ,𝑘−1, 1 ≤ 𝑘 ≤ 𝑛 − 1, ∀ 𝑖, 𝑗 ,
𝑢𝑖, 𝑗 ,0, 𝑘 = 0.
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2. Compute FAS right-hand side for level 1:

𝑔𝑖, 𝑗 =

{
𝑓𝑖, 𝑗 ,0 +Φ0𝑣𝑖, 𝑗−1,𝑛−1 −Φ1𝑢𝑖, 𝑗−1,0, 1 ≤ 𝑗 ≤ 𝑚 − 1,
𝑓𝑖,0,0 +Φ0𝑣𝑖−1,𝑚−1,𝑛−1 −Φ1𝑢𝑖−1,𝑚−1,0, 𝑗 = 0.

3. Relax on level 1 using initial guess (u(1) )𝑖, 𝑗 = 𝑣𝑖, 𝑗 ,0 = 𝑢𝑖, 𝑗 ,0 :

𝑣𝑖, 𝑗 =

{
𝑓𝑖, 𝑗 ,0 +Φ0𝑣𝑖, 𝑗−1,𝑛−1 +Φ1 (𝑣𝑖, 𝑗−1 − 𝑢𝑖, 𝑗−1,0), 1 ≤ 𝑗 ≤ 𝑚 − 1,
𝑢𝑖,0,0, 𝑗 = 0.

4. Compute FAS right-hand side for level 2:

𝑔𝑖 = 𝑓𝑖,0,0 +Φ0𝑣𝑖−1,𝑚−1,𝑛−1 +Φ1 (𝑣𝑖−1,𝑚−1 − 𝑢𝑖−1,𝑚−1,0) −Φ2𝑢𝑖−1,0,0.

5. Solve the level-2 system:

𝑢new𝑖 = 𝑓𝑖,0,0 +Φ0𝑣𝑖−1,𝑚−1,𝑛−1 +Φ1 (𝑣𝑖−1,𝑚−1 − 𝑢𝑖−1,𝑚−1,0) +Φ2 (𝑢new𝑖−1 − 𝑢𝑖−1,0,0).

6. Correct on level 1 and then on level 0, using injection for both levels: we set for
all 1 ≤ 𝑖 ≤ 𝑝

𝑢new𝑖, 𝑗 ,𝑘 =

{
𝑓𝑖, 𝑗 ,𝑘 +Φ0𝑣𝑖, 𝑗 ,𝑘−1, 1 ≤ 𝑘 ≤ 𝑛 − 1, ∀ 𝑗 ,
𝑓𝑖, 𝑗 ,0 +Φ0𝑣𝑖, 𝑗−1,𝑛−1 +Φ1 (𝑣𝑖, 𝑗−1 − 𝑢𝑖, 𝑗−1,0), 𝑘 = 0, 1 ≤ 𝑗 ≤ 𝑚 − 1,

𝑢new𝑖,0,0 = 𝑓𝑖,0,0 +Φ0𝑣𝑖−1,𝑚−1,𝑛−1 +Φ1 (𝑣𝑖−1,𝑚−1 − 𝑢𝑖−1,𝑚−1,0) +Φ2 (𝑢new𝑖−1 − 𝑢𝑖−1,0,0).

We can now prove the following equivalence theorem.

Theorem 1 For the linear problem 𝑢′ = Φ𝑢 + 𝑓 (𝑡), assume that 𝑢0
𝑖, 𝑗 ,𝑘

satisfies

𝑢01,0,0 = 𝑢0, 𝑢0𝑖,0,0 = 𝐻𝑢0𝑖−1,0,0 ∀ 𝑖 ≥ 1, 𝑢0𝑖, 𝑗 ,0 = 𝐺𝑢0𝑖, 𝑗−1,0 ∀ 𝑗 = 1, . . . , 𝑚 − 1.

Then for all 𝜈 ≥ 0, the three-level MGRIT-FAS V-cycle with 𝐹-relaxation and with
injection as the prolongation operator is equivalent to three-level parareal via

𝑢𝜈+1𝑖, 𝑗 ,𝑘 =


𝐹𝑘
0𝑈

𝜈
𝑖, 𝑗
, 1 ≤ 𝑘 ≤ 𝑛 − 1, ∀ 𝑖, 𝑗 ,

𝑈𝜈+1
𝑖, 𝑗

, 𝑘 = 0, 1 ≤ 𝑗 ≤ 𝑚 − 1, ∀ 𝑖 ≥ 1,
𝑌 𝜈+1
𝑖−1 , 𝑗 = 𝑘 = 0, ∀ 𝑖 ≥ 1.

Proof From the initialization conditions, we have for 𝜈 = 0 that 𝑢𝜈
𝑖, 𝑗,0 = 𝑈𝜈

𝑖, 𝑗
for

1 ≤ 𝑗 ≤ 𝑚 − 1, and 𝑢𝜈
𝑖,0,0 = 𝑌 𝜈

𝑖−1 for all 𝑖. We will prove by induction that these two
equalities also hold for 𝜈 ≥ 1. To do so, we rewrite 𝑢new

𝑖, 𝑗 ,𝑘
in terms of the propagators

𝐹0, 𝐹, 𝐺 and 𝐻. The update formula at step 6 leads us to consider three cases:

Case 1 (𝒌 ≠ 0). Step 1 at iteration 𝜈 reads

𝑢new𝑖, 𝑗 ,𝑘 = 𝑣𝑖, 𝑗 ,𝑘 = 𝐹0𝑣𝑖, 𝑗 ,𝑘−1 = · · · = 𝐹𝑘
0 𝑣𝑖, 𝑗 ,0 = 𝐹𝑘

0𝑈
𝜈
𝑖, 𝑗 .
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Case 2 (𝒌 = 0, 𝒋 ≠ 0). This case is given by step 3, where

𝑢new𝑖, 𝑗 ,0 = 𝑣𝑖, 𝑗 = 𝐹0𝑣𝑖, 𝑗−1,𝑛−1 +Φ1 (𝑣𝑖, 𝑗−1 −𝑈𝜈
𝑖, 𝑗−1) = 𝐹𝑛

0𝑈
𝜈
𝑖, 𝑗−1 + 𝐺𝑣𝑖, 𝑗−1 − 𝐺𝑈𝜈

𝑖, 𝑗−1.

Here, we have replaced the difference ofΦ1 by a difference of𝐺, because𝐺 is affine.
Thus, we have 𝑣𝑖, 𝑗 = 𝑈𝜈+1

𝑖, 𝑗
for 1 ≤ 𝑗 ≤ 𝑚 − 1, since both quantities are initialized

the same way (we have 𝑣𝑖,0 = 𝑢𝑖,0,0 = 𝑌 𝜈
𝑖−1 = 𝑈𝜈+1

𝑖,0 ) and satisfy the same recurrence.

Case 3 ( 𝒋 = 𝒌 = 0). Here we have 𝑢new
𝑖,0,0 = 𝑢new

𝑖
, so step 5 gives, for 𝑖 ≥ 2,

𝑢new𝑖 = 𝑓𝑖,0,0 +Φ0𝑣𝑖−1,𝑚−1,𝑛−1 +Φ1 (𝑣𝑖−1,𝑚−1 − 𝑢𝑖−1,𝑚−1,0) +Φ2 (𝑢new𝑖−1 − 𝑢𝑖−1,0,0)
= 𝐹0𝑣𝑖−1,𝑚−1,𝑛−1 +Φ1 (𝑣𝑖−1,𝑚−1 −𝑈𝜈

𝑖−1,𝑚−1) +Φ2 (𝑢
new
𝑖−1 − 𝑢𝑖−1,0,0)

= 𝐹𝑛
0𝑈

𝜈
𝑖−1,𝑚−1 + 𝐺𝑣𝑖−1,𝑚−1 − 𝐺𝑈𝜈

𝑖−1,𝑚−1 + 𝐻𝑢new𝑖−1 − 𝐻𝑢𝑖−1,0,0

= 𝑈𝜈+1
𝑖−1,𝑚 + 𝐻𝑢new𝑖−1 − 𝐻𝑌 𝜈

𝑖−2.

For 𝑖 = 1, we have 𝑢new1 = 𝑢0 = 𝑌 𝜈+1
0 ; thus, 𝑢new

𝑖
and𝑌 𝜈+1

𝑖−1 satisfy the same recurrence
with the same initial condition. This leads to 𝑢new

𝑖,0,0 = 𝑌 𝜈+1
𝑖−1 for all 𝑖, as claimed. �

We can now use the FAS formulation to deduce the equivalence in classical
(correction) form. We define the following operators:

𝐸ℓ = 𝐼 − 𝑃ℓ
ℓ+1𝑅

ℓ+1
ℓ , 𝑀ℓ = diag((𝐴ℓ)11, (𝐴ℓ)22, . . .),

where (𝐴ℓ)𝑖𝑖 are diagonal blocks of 𝐴ℓ corresponding to the 𝑖th subinterval, starting
with the coarse point and including all the fine points until (but excluding) the next
coarse point. In other words, 𝑀ℓ is the block Jacobi smoother for level ℓ, and 𝐸ℓ

blanks out the coarse points and retains the fine points when applied to a vector of
values at level ℓ. Similar operators were defined in [10], where the authors proved
the equivalence between two-level parareal and a geometric multigrid method with
block Jacobi smoothing and aggressive coarsening in the FAS setting; however, the
blocks in [10] are defined differently, with the coarse points appearing at the end of
the block rather than the beginning. We write the change in the solution at step 6 as

𝑢new𝑖, 𝑗 ,𝑘 − 𝑢𝑖, 𝑗 ,𝑘 =


𝑣𝑖, 𝑗 ,𝑘 − 𝑢𝑖, 𝑗 ,𝑘 =: (Δu(0) )𝑖, 𝑗 ,𝑘 , 𝑘 ≠ 0,
𝑣𝑖, 𝑗 − 𝑢𝑖, 𝑗 ,0 =: (Δu(1) )𝑖, 𝑗 , 𝑘 = 0, 𝑗 ≠ 0,
𝑢new
𝑖
− 𝑢𝑖,0,0 =: (Δu(2) )𝑖 , 𝑗 = 𝑘 = 0.

To compute Δu(0) , note that 𝑣𝑖, 𝑗 ,𝑘 − 𝑢𝑖, 𝑗 ,𝑘 = 0 when 𝑘 = 0; for 𝑘 ≠ 0, we have

(Δu(0) )𝑖, 𝑗 ,𝑘 = 𝑣𝑖, 𝑗 ,𝑘 − 𝑢𝑖, 𝑗 ,𝑘 = 𝑓𝑖, 𝑗 ,𝑘 + Φ0 (𝑣𝑖, 𝑗 ,𝑘−1 − 𝑢𝑖, 𝑗 ,𝑘−1) +Φ0𝑢𝑖, 𝑗 ,𝑘−1 − 𝑢𝑖, 𝑗 ,𝑘
= (f − 𝐴0u)𝑖, 𝑗 ,𝑘 +Φ0 (Δu(0) )𝑖, 𝑗 ,𝑘−1.

If we move Φ0 (Δu(0) )𝑖, 𝑗 ,𝑘−1 to the left and recall the definition of 𝑀0, we get

𝑀0Δu(0) = 𝐸0 (f − 𝐴0u) =⇒ Δu(0) = 𝑀−10 𝐸0g̃(0) ,
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where g̃(0) = f − 𝐴0u is the initial residual. This is almost the same as in [10], except
the residual is blanked before the smoothing, instead of after. Next, we calculate

(Δu(1) )𝑖, 𝑗 = 𝑣𝑖, 𝑗 − 𝑢𝑖, 𝑗 ,0 =


0, 𝑗 = 0,
𝑔𝑖, 𝑗 +Φ1 (𝑣𝑖, 𝑗−1 − 𝑢𝑖, 𝑗−1,0) +Φ1𝑢𝑖, 𝑗−1,0 − 𝑢𝑖, 𝑗 ,0,

𝑗 ≠ 0,

which implies

𝑀1Δu(1) = 𝐸1 (g(1) − 𝐴1𝑅
1
0u) = 𝐸1𝑅

1
0 (f
(0) − 𝐴0 (u + Δu(0) )).

Thus, Δu(1) = 𝑀−11 𝐸1g̃(1) , where g̃(1) = 𝑅10 (g̃
(0) − 𝐴0Δu(0) ). Finally, we have

(Δu(2) )𝑖 = 𝑢new𝑖 − 𝑢𝑖,0,0 = 𝑔𝑖 +Φ2 (𝑢new𝑖−1 − 𝑢𝑖−1,0,0) +Φ2𝑢𝑖−1,0,0 − 𝑢𝑖,0,0,

which leads to

𝐴2Δu(2) = g(2) − 𝐴2𝑅
2
0u = 𝑅21 (g

(1) − 𝐴1 (𝑅10u + Δu(1) )) = 𝑅21 (g̃
(1) − 𝐴1Δu(1) ).

We conclude, by replacing Δu(1) with 𝑀−11 𝐸1g̃(1) in the last step, that

unew − u = Δu(0) + 𝑃01Δu(1) + 𝑃02Δu(2)

= Δu(0) + 𝑃01 (Δu(1) + 𝑃12𝐴
−1
2 𝑅21 (g̃

(1) − 𝐴1Δu(1) ))
= Δu(0) + 𝑃01 ((𝐼 − 𝑃12𝐴

−1
2 𝑅21𝐴1)𝑀

−1
1 𝐸1 + 𝑃12𝐴

−1
2 𝑅21)g̃

(1)

Defining 𝑇 = (𝐼 − 𝑃12𝐴
−1
2 𝑅21𝐴1)𝑀

−1
1 𝐸1 + 𝑃12𝐴

−1
2 𝑅21, we continue to calculate

unew − u = Δu(0) + 𝑃01𝑇𝑅
1
0 (g̃
(0) − 𝐴0Δu(0) )

= (𝑃01𝑇𝑅
1
0 + (𝐼 − 𝑃01𝑇𝑅

1
0𝐴0)𝑀

−1
0 𝐸0) (f − 𝐴u) =: P(f − 𝐴u).

We conclude that the error propagator reads

S = 𝐼 − P𝐴0 = (𝐼 − 𝑃01𝑇𝑅
1
0𝐴0) (𝐼 − 𝑀−10 𝐸0𝐴0),

where the operator 𝑇 satisfies 𝐼 − 𝑇𝐴1 = (𝐼 − 𝑃12𝐴
−1
2 𝑅21𝐴1) (𝐼 − 𝑀−11 𝐸1𝐴1). Note

that the preconditioners P and 𝑇 can also be written as

P = 𝑀−10 𝐸0 + 𝑃01𝑇𝑅
1
0 (𝐼 − 𝐴0𝑀

−1
0 𝐸0), 𝑇 = 𝑀−11 𝐸1 + 𝑃12𝐴

−1
2 𝑅21 (𝐼 − 𝐴1𝑀

−1
1 𝐸1).

We can hence interpret the action of the preconditioner P as follows:

1. 𝑀−10 𝐸0: Take the fine residual, blank out the coarse points and apply block Jacobi.
2. 𝐼 − 𝐴0𝑀

−1
0 𝐸0: Update the residual after relaxation.

3. 𝑃01𝑇𝑅
1
0: Restrict the new residual, recursively solve the coarse problem, then

update the coarse points by injection.
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Since 𝑇 acts the same way but at a coarser level, the action of P corresponds to
exactly one MGRIT V-cycle with 𝐹-relaxation, written in correction form.

Remark If one replaces injection with injection plus F-relaxation (like in standard
MGRIT), then the equivalent parareal formulation at the 𝜈th iteration would be

𝑈
𝜈+1/2
𝑖,0 = 𝑌 𝜈

𝑖−1, 𝑈
𝜈+1/2
𝑖, 𝑗

= 𝐺𝑈
𝜈+1/2
𝑖, 𝑗−1 + 𝐹𝑈

𝜈
𝑖, 𝑗−1 − 𝐺𝑈𝜈

𝑖, 𝑗−1 (1 ≤ 𝑗 ≤ 𝑚),

𝑌 𝜈+1
0 = 𝑢0, 𝑌 𝜈+1

𝑖 = 𝑈
𝜈+1/2
𝑖𝑚

+ 𝐻𝑌 𝜈+1
𝑖−1 − 𝐻𝑌 𝜈

𝑖−1,

𝑈𝜈+1
𝑖,0 = 𝑌 𝜈+1

𝑖−1 , 𝑈𝜈+1
𝑖, 𝑗 = 𝐺𝑈𝜈+1

𝑖, 𝑗−1 + 𝐹𝑈
𝜈
𝑖, 𝑗−1 − 𝐺𝑈𝜈

𝑖, 𝑗−1 (1 ≤ 𝑗 ≤ 𝑚).

Note that the term 𝐹𝑈𝜈
𝑖, 𝑗−1 −𝐺𝑈𝜈

𝑖, 𝑗−1 is used twice, but it only needs to be computed
once using a fine propagation. The intermediate propagation 𝐺, however, needs to
be computed twice, since it is applied once to𝑈𝜈+1/2

𝑖, 𝑗−1 , and another time to𝑈
𝜈+1
𝑖, 𝑗−1.

4 Numerical example
We present the numerical example in [7], where the advection-diffusion equation
𝑢𝑡 = 𝑢𝑥 + 𝜅𝑢𝑥𝑥 with periodic boundary conditions 𝑢(0, 𝑡) = 𝑢(2, 𝑡), 𝑢𝑥 (0, 𝑡) =
𝑢𝑥 (2, 𝑡) is solved on 𝑡 ∈ (0, 4), with 𝜅 = 1/1024 (advection-dominated case) and
𝑢(𝑥, 0) = 𝑒−20(𝑥−1)

2 . We discretize the problem using second order finite difference
in space and backward Euler in time, with Δ𝑥 = 1/20 and 𝛿𝑡 = 1/1280. For two-level
parareal, the coarse propagator is backward Euler with Δ𝑇 = 1/2 (8 coarse steps
with 640 fine steps per coarse step). For three-level parareal, we use an intermediate
level with Δ𝑡 = 1/128 (10 fine steps per intermediate step), while keeping Δ𝑇 = 1/2
for the coarsest level (i.e., 64 intermediate steps per coarse step). In Figure 1, we
compare two-level and three-level parareal, both with and without post-smoothing.
We compare both the iteration count and the idealized running time, as measured by
the number of non-concurrent backward Euler steps taken at all levels; this cost is
normalized by that of sequential time-stepping, so that a cost of 1means the same cost
as sequential time-stepping without parallelization. We see that two-level parareal
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Fig. 1 Left: Iteration count for two-level parareal, and three-level parareal, with and without post-
smoothing. Right: Computational cost of the threemethods, asmeasured by the number of backward
Euler steps taken, normalized by the cost of sequential time-stepping.
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converges to the exact solution in 8 iterations, whereas the three-level variants take
many more iterations. However, the three-level iterations are much more parallel
and take less time to run than a two-level iteration. In particular, both three-level
versions converge with cost much lower than 1; such speedup is not possible for two-
level parareal. Finally, although post-smoothing reduces the number of three-level
iterations, the higher cost per iteration (two intermediate propagations rather than
one) makes it slower than no post-smoothing once the normalized cost is considered.
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Coupling Dispersive Shallow Water Models
by Deriving Asymptotic Interface Operators

José Galaz, Maria Kazolea, and Antoine Rousseau

1 Introduction

We are interested in coupling the linear Green-Naghdi equations (LGNE)

𝜕𝑡 𝜁 + 𝜕𝑥𝑉 = 0, (1)
𝜕𝑡𝑉 + 𝜕𝑥𝜁 = 𝜙, (2)

− 𝜇

3
𝜕2𝑥𝜙 + 𝜙 = − 𝜇

3
𝜕3𝑥𝜁 (3)

for 𝑥 < 0 and 𝑡 ∈ (0, 𝑇), with the linear shallow water equations (LSWE)

𝜕𝑡 𝜁 + 𝜕𝑥𝑉 = 0, (4)
𝜕𝑡𝑉 + 𝜕𝑥𝜁 = 0 (5)

for 𝑥 > 0 and 𝑡 ∈ (0, 𝑇) with 𝑇 > 0, to represent the 1D propagation of water
waves in shallow water. Here 𝜕𝑡 , 𝜕𝑥 denote partial derivatives in the time and space
variables 𝑡, 𝑥; 𝑉 (𝑡, 𝑥) and 𝜁 (𝑡, 𝑥) stand for the vertically-averaged velocity and the
free-surface level over its state at rest; 𝜙(𝑡, 𝑥) is an auxiliar variable for the elliptic
part of the problem; and 𝜇 > 0 is the asymptotic parameter characterizing the wave
dispersion.
In the nonlinear case, Boussinesq-type equations, such as the Green-Naghdi

equations (GNE), have been coupled with the nonlinear shallow water equations
(NSWE) to take advantage of their physical-modeling features: the dispersive terms
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in the GNE can be used to accurately represent the phase and amplitude of waves in
the shoaling zone, while shock-capturing well-balanced finite volume schemes for
the NSWE can mimic the energy dissipation of wave-breaking and provide a robust
handling of vanishing water depths without ad-hoc parametrizations. However, this
coupled model has been shown to be unstable unless dissipative terms are added [6].
Since this coupling is a "divide and conquer" type of problem, domain decomposi-

tionmethods (DDM) can help to obtain further insights. Usually, coupling conditions
have been derived for each equation on a case-by-case basis (e.g., [1, 2, 5, 9] ). Here
we explore a different approach, based on the steps of the derivation of the GNE
and NSWE [7, ch. 1 and 5]. First, a DDM of the linearized Euler equations in the
discrete level is defined, based on the Neumann-Dirichlet method. Then, recalling
that both GNE and NSWE derive from the Euler equations, we derive transmission
conditions for the children asymptotic equations by taking the vertical average of the
original operators and truncating the resulting expression according to an asymptotic
expansion of the velocity potential. We examine this approach in the homogeneous
case first, when coupling LGNE with LGNE, and then in the heterogeneous case,
coupling the LGNE with the LSWE.

2 A domain decomposition of the free-surface Euler equations

The linear Euler equations for an incompressible fluid and irrotational flow in one
horizontal dimension can be formulated as an elliptic problem for the velocity
potential Φ(𝑡, 𝑥, 𝑧) and two evolution equations for the free-surface function 𝜁 (𝑡, 𝑥)
and the trace of the potential at the surface 𝜓(𝑡, 𝑥) respectively (see [7, ch. 1.1.3]).
A finite-difference discretization of the equations for 𝜁𝑛

𝑖
= 𝜁 (𝑡𝑛, 𝑥𝑖) and 𝜓𝑛

𝑖
=

𝜓(𝑡𝑛, 𝑥𝑖), in an uniform grid 𝑥𝑖 = 𝑖Δ𝑥 and 𝑡𝑛 = 𝑛Δ𝑡, with 𝑖 ∈ N = {1 . . . 𝑁𝑥 − 2}
and 𝑛 = 1, 2, .., is given by

𝜁𝑛+1
𝑖

− 𝜁𝑛
𝑖

Δ𝑡
+
𝑉𝑛
𝑖
−𝑉𝑛

𝑖−1
Δ𝑥

= 0 for 𝑖 ∈ N , (6)

𝜓𝑛+1
𝑖

− 𝜓𝑛
𝑖

Δ𝑡
+ 𝜁𝑛𝑖 = 0 for 𝑖 ∈ N , (7)

where 𝑉𝑛
𝑖
is the discrete vertically-averaged velocity cf. [7, ch. 3.31] given by

𝑉𝑛
𝑖 =

𝑁𝑧−1∑︁
𝑗=1

Φ𝑛
𝑖+1, 𝑗 −Φ𝑛

𝑖, 𝑗

Δ𝑥
Δ𝑧. (8)

Boundary conditions at nodes 𝑖 = 0 and 𝑖 = 𝑁𝑥 − 1 can be 𝑉𝑛
𝑖
= 0 and 𝜁𝑛0 = 𝜁𝑛1 ,

𝜁𝑛
𝑁𝑥−1 = 𝜁𝑛

𝑁𝑥−2 [8, eqs. (28), (37)]. In equation (8),Φ
𝑛
𝑖, 𝑗

= Φ(𝑡𝑛, 𝑥𝑖 , 𝑧 𝑗 ) is the discrete
velocity potential computed from
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𝜇
Φ𝑛

𝑖+1, 𝑗 +Φ𝑛
𝑖−1, 𝑗 − 2Φ

𝑛
𝑖, 𝑗

Δ𝑥2
+
Φ𝑛

𝑖, 𝑗+1 +Φ𝑛
𝑖, 𝑗−1 − 2Φ

𝑛
𝑖, 𝑗

Δ𝑧2
= 0

for 𝑖, 𝑗 ∈ N × {1, . . . , 𝑁𝑧 − 1} (9)

on a grid (𝑥𝑖 , 𝑧 𝑗 ) such that 𝑧 𝑗 = 𝑗Δ𝑧 − 1 and 𝑧𝑁𝑧−1 = 0 and its boundary conditions
are Φ𝑛

𝑖,𝑁𝑧−1 = 𝜓𝑛
𝑖
, Φ𝑖,0 = Φ𝑖,1, Φ0, 𝑗 = Φ1, 𝑗 and Φ𝑁𝑥−1, 𝑗 = Φ𝑁𝑥−2, 𝑗

We decompose the domain in two components with a vertical interface located
at 𝑖 = 𝑙 ∈ N . To do this let 𝜁𝑛+1

𝑖,𝑠
, 𝜓𝑛+1

𝑖,𝑠
, Φ𝑛+1

𝑖, 𝑗 ,𝑠
, 𝑉𝑛

𝑖,𝑠
be the values of the unknowns on

each subdomain 𝑠 = 1, 2. These variables are computed from equations (6), (7), (8)
but with 𝑖 in N𝑠 instead of N , with N1 = {1, .., 𝑙 − 1} and N2 = {𝑙, . . . , 𝑁𝑥 − 2};
equation (9) is solved with 𝑖 ∈ N1 for 𝑠 = 1 and 𝑖 ∈ N2 \ {𝑙} for 𝑠 = 2. To obtain the
same solution as the monodomain problem, equations (6) and (7) are complemented
with Dirichlet transmission conditions

𝜁𝑛+1𝑙,1 = 𝜁𝑛+1𝑙,2 𝑉𝑛+1
𝑙,1 = 𝑉𝑛+1

𝑙,2 ,

𝜁𝑛+1𝑙−1,2 = 𝜁𝑛+1𝑙−1,1 𝑉
𝑛+1
𝑙−1,2 = 𝑉𝑛+1

𝑙−1,1, (10)

while equation (9) uses Neumann and Dirichlet transmission conditions

Φ𝑛
𝑙, 𝑗,1 −Φ𝑛

𝑙−1, 𝑗 ,1

Δ𝑥
− Δ𝑥

2𝜇Δ𝑧2
(
Φ𝑛

𝑙, 𝑗+1,1 +Φ𝑛
𝑙, 𝑗−1,1 − 2Φ

𝑛
𝑙, 𝑗,1

)
(11)

=
Φ𝑛

𝑙+1, 𝑗 ,2 −Φ𝑛
𝑙, 𝑗,2

Δ𝑥
+ Δ𝑥

2𝜇Δ𝑧2
(
Φ𝑛

𝑙, 𝑗+1,2 +Φ𝑛
𝑙, 𝑗−1,2 − 2Φ

𝑛
𝑙, 𝑗,2

)
,

Φ𝑛
𝑙, 𝑗,2 = Φ1𝑙, 𝑗 ,2, (12)

which include an 𝑂 (Δ𝑥) term necessary in finite-difference schemes to preserve the
monodomain solution [4]. This scheme satisfies

• Φ𝑛
𝑖, 𝑗,∗ = Φ𝑛

𝑖, 𝑗
with Φ𝑛

𝑖, 𝑗,∗ = Φ𝑛
𝑖, 𝑗,1 if 𝑖 ≤ 𝑙 and Φ𝑛

𝑖, 𝑗
= Φ𝑛

𝑖, 𝑗,2 if 𝑖 > 𝑙. This
means that the solution Φ𝑛

𝑖, 𝑗,∗ formed by both subdomains will be equal to the
monodomain solution Φ𝑛

𝑖, 𝑗

• A parallel or alternating method to solve (9) with (12) will be convergent if
𝐿1 < 𝐿2, with 𝐿1 = 𝑙Δ𝑥 and 𝐿2 = (𝑁𝑥 − 𝑙)Δ𝑥 (see [3, eq. (2.5) with 𝜃 = 1 ] for
example).

3 Asymptotic domain-decomposition method

In the first part of this section we drop the time superscript 𝑛 and introduce the
asymptotic-degree superscript (𝑘) = (1), (2), . . . . We need an asymptotic expan-
sion Φ𝑖, 𝑗 = Φ

(0)
𝑖, 𝑗

+ 𝜇Φ
(1)
𝑖, 𝑗

+ · · · + 𝜇𝑘Φ
(𝑘)
𝑖, 𝑗
of the solution to the discrete Laplace

equation (9). At first order Φ𝑖, 𝑗 = Φ
(0)
𝑖, 𝑗

+ 𝑂 (𝜇) which substituted on equation (9)
and discarding 𝑂 (𝜇) terms leads to Φ(0)

𝑖, 𝑗+1 + Φ
(0)
𝑖, 𝑗−1 − 2Φ

(0)
𝑖, 𝑗

= 0, whose solution is
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Φ
(0)
𝑖, 𝑗

= 𝜓𝑖 so the first order expansion is

Φ𝑖, 𝑗 = 𝜓𝑖 +𝑂 (𝜇). (13)

Similarly, at second order, replacing Φ𝑖, 𝑗 = Φ
(0)
𝑖, 𝑗

+ 𝜇Φ
(1)
𝑖, 𝑗

+𝑂 (𝜇2) into (9)

Φ
(1)
𝑖, 𝑗+1 +Φ

(1)
𝑖, 𝑗−1 − 2Φ

(1)
𝑖, 𝑗

Δ𝑥2
= −𝜓𝑖+1 + 𝜓𝑖−1 − 2𝜓𝑖

Δ𝑥2
, (14)

whose solution gives us the second order expansion

Φ𝑖, 𝑗 = 𝜓𝑖 − 𝜇
Δ𝑧2

2Δ𝑥2
(𝜓𝑖+1 + 𝜓𝑖−1 − 2𝜓𝑖) ( 𝑗2 − 𝑗 − (𝑁𝑧 − 1) (𝑁𝑧 − 2)) +𝑂 (𝜇2). (15)

Substituting (13) into (8) and using that (𝑁𝑧 − 1)Δ𝑧 = 1 one obtains that at first
order

𝜓𝑖+1 − 𝜓𝑖

Δ𝑥
= 𝑉𝑖 +𝑂 (𝜇). (16)

From (15) we can proceed similarly to obtain the second order expansion for 𝑉𝑖

𝑉𝑖 =
𝜓𝑖+1 − 𝜓𝑖

Δ𝑥
− 𝜈𝑇

(
𝜓𝑖+1 − 𝜓𝑖

Δ𝑥

)
+𝑂 (𝜇2), (17)

where 𝑇𝑉𝑖 = −(𝑉𝑖+1 +𝑉𝑖−1−2𝑉𝑖)/(3Δ𝑥2) and 𝜈 = 𝜇(1−Δ𝑧/2) (1−Δ𝑧). We can now
substitute the first order approximation (16) into (17) and isolate (𝜓𝑖+1 − 𝜓𝑖)/Δ𝑥 to
obtain

𝜓𝑖+1 − 𝜓𝑖

Δ𝑥
= 𝑉𝑖 + 𝜈𝑇𝑉𝑖 +𝑂 (𝜇2). (18)

To substitute (18) into (7) let us apply a forward finite-difference in 𝑥 to equation (7).
Introducing the notation 𝐷+

𝑥 𝑓𝑖 = ( 𝑓𝑖+1− 𝑓𝑖)/Δ𝑥, 𝐷+
𝑧 𝑓 𝑗 = ( 𝑓 𝑗+1− 𝑓 𝑗 )/Δ𝑧 and 𝐷−

𝑧 𝑓 𝑗 =

( 𝑓 𝑗 − 𝑓 𝑗−1)/Δ𝑧, and the time superscript 𝑛, (8) becomes 𝑉𝑛
𝑖

=
∑𝑁𝑧−1

𝑗=1 𝐷+
𝑥Φ

𝑛
𝑖, 𝑗
Δ𝑧.

Using the asymptotic expansion (18), discarding terms of size𝑂 (𝜇2) and rearranging
one finally obtains the discrete momentum equation of the LGNE

𝑉𝑛+1
𝑖

−𝑉𝑛
𝑖

Δ𝑡
+
𝜁𝑛
𝑖+1 − 𝜁𝑛

𝑖

Δ𝑥
= 𝜙𝑛

𝑖

(1 + 𝜈𝑇)𝜙𝑛
𝑖 = 𝜈𝑇 (𝐷+

𝑥𝜁
𝑛
𝑖 ) (19)

with 𝜙𝑛
𝑖
an auxiliar variable for the new elliptic problem. And discarding all 𝑂 (𝜇)

terms the discrete momentum equation of the LSWE reads

𝑉𝑛+1
𝑖

−𝑉𝑛
𝑖

Δ𝑡
+
𝜁𝑛
𝑖+1 − 𝜁𝑛

𝑖

Δ𝑥
= 0. (20)

We can proceed in a similar fashion to derive asymptotic versions of the Neumann
boundary condition. To do this let us multiply equation (12) by Δ𝑧 and sum it up
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from 𝑗 = 1 to 𝑗 = 𝑁𝑧 − 2. Using the formula for 𝑉𝑖 and simplifying, one obtains
that (12) can be written as

𝑉𝑛
𝑙−1,1 − 𝐷+

𝑥Φ
𝑛
𝑙−1,𝑁𝑧−1,1Δ𝑧 −

Δ𝑥

2𝜇
𝐷−

𝑧Φ
𝑛
𝑙,𝑁𝑧−1,1

= 𝑉𝑛
𝑙,2 − 𝐷+

𝑥Φ
𝑛
𝑙,𝑁𝑧−1,2Δ𝑧 +

Δ𝑥

2𝜇
𝐷−

𝑧Φ
𝑛
𝑙,𝑁𝑧−1,2. (21)

To further simplify the remainingΦ termswewill use that 𝜕𝑧Φ𝑧=0/𝜇 = 𝜕𝑥𝑉+𝑂 (𝜀)
(from Ref. [7, eqs. (1.29) and Proposition 3.35]), and substitute the discrete
derivatives to finally obtain 1/𝜇𝐷−

𝑧Φ𝑖,𝑁𝑧−1 = −𝐷 𝑝
𝑥𝑉𝑖 + 𝑂 (𝜀,Δ𝑧/𝜇,Δ𝑥𝑝), where

𝐷
𝑝
𝑥𝑉𝑖 = 𝜕𝑥𝑉|𝑥=𝑥𝑖 +𝑂 (Δ𝑥𝑝) is a finite-difference operator to be defined. If we replace
this back into the equation, use equation (13) written as 𝐷𝑥Φ𝑖,𝑁𝑧−1 = 𝑉𝑖 + 𝑂 (𝜇),
and replace 𝐷 𝑝

𝑥 with the backward finite difference 𝐷−
𝑥 in the left-hand-side of the

equation and a forward finite difference 𝐷+
𝑥 in the right-hand-side, we can write the

original Neumann boundary condition as

1
2
(𝑉𝑛

𝑙,1 +𝑉
𝑛
𝑙−1,1) −𝑉𝑛

𝑙−1,1Δ𝑧 =
1
2
(3𝑉𝑛

𝑙,2 −𝑉𝑛
𝑙+1,2) −𝑉𝑛

𝑙,2Δ𝑧. (22)

Substituting the auxiliar variable for the LGNE, 𝜙𝑛
𝑖,𝑠

= 𝐷+
𝑡𝑉

𝑛
𝑖,𝑠

+ 𝐷+
𝑥𝜁

𝑛
𝑖,𝑠
.

1
2
(𝜙𝑛

𝑙,1 + 𝜙𝑛
𝑙−1,1) − 𝜙𝑛

𝑙−1,1Δ𝑧 =
1
2
(3𝜙𝑛

𝑙,2 − 𝜙𝑛
𝑙+1,2) − 𝜙𝑛

𝑙,2Δ𝑧

−
(
3Δ𝑥2

2
𝑇 (𝐷+

𝑥𝜁
𝑛
𝑙 ) − (𝐷+

𝑥𝜁
𝑛
𝑙 − 𝐷+

𝑥𝜁
𝑛
𝑙−1)Δ𝑧

)
. (23)

Summarizing, for the homogeneous case, the domain decomposition of the LGNE
reads, for each subdomain 𝑠 = 1, 2,

𝜁𝑛+1
𝑖

− 𝜁𝑛
𝑖

Δ𝑡
+
𝑉𝑛
𝑖
−𝑉𝑛

𝑖−1
Δ𝑥

= 0 for 𝑖 ∈ N𝑠

𝑉𝑛+1
𝑖

−𝑉𝑛
𝑖

Δ𝑡
+
𝜁𝑛
𝑖+1 − 𝜁𝑛

𝑖

Δ𝑥
= 𝜙𝑖 for 𝑖 ∈ N𝑠 (24)

𝜙𝑛
𝑖,𝑠 + 𝜈𝑇𝜙𝑛

𝑖,𝑠 = 𝜈𝑇 (𝐷+
𝑥𝜁𝑖) for 𝑖 ∈ N𝑠

𝜙𝑛
0,1 = 𝜙𝐿𝑒 𝑓 𝑡

𝜙𝑛
𝑁𝑥−1,2 = 𝜙𝑅𝑖𝑔ℎ𝑡

and at the interface 𝑖 = 𝑙 equation (10) holds for 𝑉𝑛
𝑙,𝑠
and 𝜁𝑛

𝑙,𝑠
, while for 𝜙𝑛

𝑙,𝑠

1
2
(𝜙𝑛

𝑙,1 + 𝜙𝑛
𝑙−1,1) − 𝜙𝑛

𝑙−1,1Δ𝑧 =
1
2
(3𝜙𝑛

𝑙,2 − 𝜙𝑛
𝑙+1,2) − 𝜙𝑛

𝑙,2Δ𝑧

−
(
3Δ𝑥2

2
𝑇 (𝐷+

𝑥𝜁
𝑛
𝑙 ) − (𝐷+

𝑥𝜁
𝑛
𝑙 − 𝐷+

𝑥𝜁
𝑛
𝑙−1)Δ𝑧

)
𝜙𝑛
𝑙,2 = 𝜙𝑛

𝑙,1. (25)
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To test this asymptotic domain decomposition method with an additive iterative
scheme we compare the monodomain solution with the DDM solution for 𝑥 ∈ (0, 1),
𝜙𝐿𝑒 𝑓 𝑡 = 0, 𝜙𝑅𝑖𝑔ℎ𝑡 = −0.5, 𝜕3𝑥𝜁𝑛 = −1, 𝜇 = 3, Δ𝑥 = 0.05, Δ𝑧 = Δ𝑥2. These
parameters are convenient to avoid overflow in intermediate calculations in the
formula of the analytical solution. Figure 1 (left) shows the 𝐿2 distance between the
discrete monodomain solution and each subdomain solution at each iteration for an
interface located at 𝑥 = 0.4 where we can see that the DDM diverges.

Fig. 1 L2 distance to monodomain of the solution on each subdomain as a function of the iteration
number when using (25) and (26) respectively.

To fix this situation we can substract 𝜙𝑛
𝑙,1 from each side of the first equation

of (25), use that 𝜙𝑛
𝑙,1 = 𝜙𝑛

𝑙,2, and multiply the equation by − 2
Δ𝑥
. The coupling

conditions become

𝜙𝑛
𝑙,1 − 𝜙𝑛

𝑙−1,1
Δ𝑥

+ 2Δ𝑧
Δ𝑥

𝜙𝑛
𝑙−1,1 =

𝜙𝑛
𝑙+1,2 − 𝜙𝑛

𝑙,2

Δ𝑥
+ 2Δ𝑧

Δ𝑥
𝜙𝑛
𝑙,2

+3Δ𝑥𝑇 (𝐷+
𝑥𝜁

𝑛
𝑙 ) − 2

(𝐷+
𝑥𝜁

𝑛
𝑙
− 𝐷+

𝑥𝜁
𝑛
𝑙−1)

Δ𝑥
Δ𝑧 (26)

𝜙𝑛
𝑙,2 = 𝜙𝑛

𝑙,1.

As before, Figure 1 (right) shows the L2 distance to the monodomain solu-
tion at each iteration of the DDM. In contrast with the previous case now the
algorithm converges. This happens because (26) is also consistent at 𝑂 (Δ𝑥) with
a Neumann boundary condition. To see this notice that 3Δ𝑥𝑇 (𝐷+

𝑥𝜁
𝑛
𝑙
) = 𝑂 (Δ𝑥)

and (𝐷+
𝑥𝜁

𝑛
𝑙
− 𝐷+

𝑥𝜁
𝑛
𝑙−1)Δ𝑧/Δ𝑥 = 𝑂 (Δ𝑧), so if Δ𝑧 = 𝑂 (Δ𝑥2), when taking the limit

Δ𝑥 → 0, equation (26) will satisfy 𝜕𝑥𝜙𝑛
1 = 𝜕𝑥𝜙

𝑛
2 + 𝑂 (Δ𝑥) at 𝑥 = 𝑥𝑙 , with 𝜙𝑛

𝑠 the
limit of 𝜙𝑛

𝑖,𝑠
when Δ𝑥 → 0. However, solutions of the subdomains are different from

the monodomain discrete solution, since the 𝑂 (Δ𝑥) terms in equation (26) lead to
a linear system that is not equivalent to the monodomain’s.
Defining 𝜙∗

𝑖
as 𝜙∗

𝑖
= 𝜙1

𝑖
if 𝑖 ≤ 𝑙 and 𝜙∗

𝑖
= 𝜙2

𝑖
if 𝑖 > 𝑙, we conclude that in the

homogeneous case the asymptotic domain decomposition method:
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• Similarly to its parent DDM, it also corresponds to the Neumann-Dirichlet
method, so the additive scheme will be convergent when 𝐿1 < 𝐿2, with 𝐿1 = 𝑙Δ𝑥

and 𝐿2 = (𝑁𝑥 − 𝑙)Δ𝑥.
• The monodomain solution 𝜙𝑖 is different than 𝜙∗

𝑖
, the solution formed by each

subdomain solution. This is because the asymptotic boundary condition in-
cludes 𝑂 (Δ𝑥) terms that induce a different linear system than the monodomain.
Additional 𝑂 (Δ𝑥) terms must be added to fix this situation.

The heterogeneous case. Now we want to use (26) to couple the LGNE with the
LSWE. To do this we can add the constraint 𝜙2

𝑖
= 0 for 𝑖 ≥ 𝑙 +1 to impose the LSWE

on the right side of the domain, and 𝜙1
𝑖
satisfying the third equation of system (24),

to impose the LGNE on the left side of the domain. If we write the Neumann
boundary condition (26) as (𝜙𝑛

𝑙,1 − 𝜙𝑛
𝑙−1,1)/Δ𝑥 = (𝜙𝑛

𝑙+1,2 − 𝜙𝑛
𝑙,2)/Δ𝑥 + 𝑂 (Δ𝑥), use

the LSWE 𝜙𝑛
𝑙+1,2 = 0 and the Dirichlet boundary condition 𝜙𝑛

𝑙,2 = 𝜙𝑛
𝑙,1, we arrive

to the condition 𝜙𝑛
𝑙,1 =

1
2𝜙

𝑛
𝑙−1,1 + 𝑂 (Δ𝑥2). An interpretation of this formula is that

the Neumann-Dirichlet condition becomes a linear interpolation between 𝜙𝑛
𝑙−1,1 and

𝜙𝑛
𝑙+1,2 = 0 plus the 𝑂 (Δ𝑥) term.
To test this heterogeneous DDM we manufacture the solitary wave of the GNE

into the LGNE and LSWE 𝜁 (𝑡, 𝑥) = 𝑠𝑒𝑐ℎ2 (𝑥− 𝑡 +3),𝑉 (𝑡, 𝑥) = 𝜁 (𝑡, 𝑥)/(1+𝜀𝜁 (𝑡, 𝑥))
with 𝜀 = 0.2, for (𝑥, 𝑡) ∈ (−11, 11) × (−3, 3), and an interface located at 𝑥 = 0. By
definition any change on its shape must be due to the influence of the asymptotic
transmission conditions. Figure 2 shows the results for Δ𝑥 = 0.05, 0.02, 0.01, when
half of the solitarywave has crossed the interface at 𝑡 = 0 and later at 𝑡 = 3.We see that
the interface boundary conditions have introduced oscillations and a discontinuity at
the interface whose amplitudes grow as Δ𝑥 decreases. This is similar to the results
reported by [6].

Fig. 2 Comparison of the free surface of a solitary wave calculated with the asymptotic heteroge-
neous DDM at two time steps and different grids.

4 Conclusions

Transmisison conditions have been derived for the LGNE and LSWE by taking a ver-
tical average and truncating an asymptotic expansion of the transmission conditions
of a DDM of the discrete linear free-surface Euler equations. This DDM uses the
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Neumann-Dirichlet method on the elliptic problem for the velocity potential. In the
homogeneous case, when the LGNE are solved on both sides of the interface, we
recover the Neumann-Dirichlet method of the elliptic part of the LGNE, plus an
𝑂 (Δ𝑥) term. The method has the same convergence property as its parent method
but the 𝑂 (Δ𝑥) terms make the limit of the subdomain iterations different from the
monodomain solution, even though this was imposed on the parent DDM. Also,
using more than 2 subdomains could be handled with a relaxation parameter as in [3,
section 4.]. In the heterogeneous case the Neumann-Dirichlet method corresponds
to a linear interpolation of the elliptic variable between its last value in the LGNE
domain and 0, the condition that defines the LSWE, plus an𝑂 (Δ𝑥2) term. Numerical
results show that this induces an unstable scheme, due to oscillations and disconti-
nuities in the interface that grow in amplitude as Δ𝑥 decreases. The next steps could
be the introduction of a free parameter in the boundary conditions to optimize the
convergence of the method, for example through a Robin boundary condition, and
the analysis of this approach in the continuous case.
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Piece-wise Constant, Linear and Oscillatory:
a Historical Introduction to Spectral Coarse
Spaces with Focus on Schwarz Methods

Martin J. Gander and Laurence Halpern

1 Classical coarse spaces

In 1987, Roy Nicolaides introduced what we would now call a coarse space cor-
rection for the conjugate gradient method [30]:

“In this paper, another way of improving the convergence of conjugate gradients is used.
It can be used alone or in conjunction with preconditioners. Used alone, it is at least as
efficient as the standard preconditioners on model problems. Used with preconditioning it
appears from numerical experiments to give a method considerably better than either used
separately–it seems that the approaches are in some sense complementary.”

The idea of Nicolaides for an example Poisson problem is to deflate piece-wise
constant functions on subdomains from the residual at each CG iteration (“we shall
systematically interpret E’s columns as being a basis for a subspace of certain slowly
varying residual components”). From the quote above we see that he advocates to use
this technique together with another preconditioner, realizing the two-level character
this provides:

“The method has something in common with a two-level multigrid scheme, although neither
smoothing nor subgrids is explicitly used.”

There was however no theoretical understanding yet at this point:

“No theoretical predictions are available at present on the rate of convergence to be expected
with preconditioned versions.”

Deflation was also introduced independently by Zdeněk Dostál in [7] under the
name of ’preconditioning by projector’, and the special case of deflating eigenvectors
was studied; see also [8] for a relation to Schur complement preconditioning.
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Ω1 Ω2 Ω3 Ω4

𝛼1 𝛼2 𝛼3 𝛼4𝛽1 𝛽2 𝛽3 𝛽4

Fig. 1 One-dimensional overlapping domain decomposition.

In order to illustrate the performance of this piece-wise constant coarse space in
the context of domain decomposition, we show a numerical experiment for the 1D
Laplace problem in Ω = (0, 1),

𝜕𝑥𝑥𝑢 = 0, 𝑢(0) = 0 and 𝑢(1) = 1,

using the parallel Schwarz method introduced by Pierre-Louis Lions [26] at the
first international conference on domain decomposition methods (DD1),

𝜕𝑥𝑥𝑢
𝑛
𝑖
= 0 in Ω𝑖 , 𝑖 = 1, .., 𝐼,

𝑢𝑛
𝑖
(𝛼𝑖) = 𝑢𝑛−1

𝑖−1 (𝛼𝑖), 𝑢𝑛
𝑖
(𝛽𝑖) = 𝑢𝑛−1

𝑖+1 (𝛽𝑖),
(1)

for the decomposition shown in Figure 1 for 𝐼 = 4. When this method is discretized,
it is equivalent to Restricted Additive Schwarz (RAS) by Xiao-Chuan Cai and
Markus Sarkis [4] for the linear system 𝐴u = f,

u𝑛 := u𝑛−1 +
𝐼∑︁
𝑖=1

𝑅̃𝑇 𝐴−1
𝑖 𝑅(f − 𝐴u𝑛−1), (2)

where 𝑅𝑖 are restrictionmatrices ofu𝑛 to the subdomainΩ𝑖 , 𝐴𝑖 := 𝑅𝑖𝐴𝑅
𝑇
𝑖
, and 𝑅̃𝑖 are

restriction matrices for a non-overlapping partition; see [15] for more details and
the proof of equivalence. In order to combine this with a piece-wise constant coarse
correction, we use the u𝑛 fromRAS in (2) and then coarse correct them by computing
u𝑛 := u𝑛 + 𝑅𝑇 𝐴−1

𝑐 𝑅(f − 𝐴u𝑛), where 𝑅 is a restriction to the piece-wise constant
coarse space functions and 𝐴𝑐 := 𝑅𝐴𝑅𝑇 is the coarse correctionmatrix on that space.
We show in Figure 2 the iterates without Krylov acceleration for RAS without

and with piece-wise constant coarse correction in the top two rows. We see that the
coarse correction indeed changes the iterates, but not by much. To see the true benefit
from the coarse correction, we need to use more subdomains. We show the decay of
the error for more and more subdomains in Figure 3 (left). We see that indeed with
the piece-wise constant coarse space we obtain a scalable method1, which would be
termed “optimal” because of this, but are there better coarse spaces?
Max Dryja and Olof Widlund introduced in the same year as Nicolaides their

seminal additive Schwarz method [34] which includes a different coarse space:

“The first subspace 𝑉 ℎ
0 , which we also call 𝑉

𝐻 , is special. It is the space of continuous,
piece-wise linear functions on the coarse mesh defined by the substructures Ω𝑖 .”

1 Iteration numbers do not deteriorate when using more and more subdomains.
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Fig. 2 First three parallel Schwarz iterates without coarse correction (top row), with piece-wise
constant coarse correction (second row), with P1 coarse correction aligned with the subdomains
(third row), with P1 coarse correction centered in the subdomains (fourth row) and optimal (best
possible) coarse correction (last row).

Here theΩ𝑖 correspond to triangles forming a non-overlapping decomposition of the
domain, and in contrast to Nicolaides, the coarse functions are linear, not constant,
on the subdomains. The results for this coarse space and our model problem are
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Fig. 3 Error of the parallel Schwarz method with and without piece-wise constant coarse space for
increasing number of subdomains (left) and for various coarse spaces and four subdomains (right).

shown in Figure 2 (third row), and we see the coarse space works much better than
the Nicolaides coarse space. At the first international conference on domain decom-
position methods a year later, Olof Widlund presented an iterative substructuring
variant for the piece-wise linear coarse correction on triangles [35], and Max Dryja
an extension to three-dimensional problems [9], also in the context of substructuring.
Jan Mandel and Marian Brezina then studied the balancing domain decom-

position method in [27]:

“The Balancing Domain Decomposition (BDD)was introduced byMandel [1993] by adding
a coarse problem to an earlier method of De Roeck and Le Tallec [19912], known as the
Neumann-Neumann method . . . ”
“. . . a global coarse problem with one or few unknowns for each subdomain . . . ”
“The presence of the coarse problemnowguarantees that the possibly singular local problems
are consistent.”

They transformed the bug of the classical Neumann-Neumann method to have float-
ing subdomains with all Neumann conditions around that made the method not well
posed into a feature: they determine the constant (in the Laplace case) by a coarse
problem, which leads to a piece-wise constant coarse space aligned with the sub-
domains. The FETI method invented by Charbel Farhat and François-Xavier
Roux in [12] also contains naturally the piece-wise constant modes in the projection
step as a coarse space; for a theoretical analysis, see [11, 28]. Note that all these
coarse spaces were developed independently of the work by Nicolaides.
Max Dryja, Barry Smith and Olof Widlund emphasize in [10] the great

importance and challenge of good coarse space constructions:

“ The design, analysis, and implementation of the coarse space problem pose the most
challenging technical problems in work of this kind.”

They consider several richer coarse spaces than just a constant per substructure
and compare them for primal Schur complement substructuring methods. A first

2 Also at the first international conference on domain decomposition methods!
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variant is using piece-wise linear coarse basis functions aligned with triangular
substructures, and then additional piece-wise constant edge and face coarse functions
are considered, harmonically extended into the subdomains, keeping the vertex
functions. For all variants, detailed condition number estimates are provided, and
compared to the earlier piece-wise constant coarse space.
We see that all these early coarse spaces were aligned with subdomain bound-

aries of the domain decomposition method. A generalization of the analysis that
permits coarse spaces not aligned with the subdomains, also using ideas from non-
overlapping methods, can be found in the book by Andrea Toselli and Olof
Widlund [33]:

“ We introduce a shape-regular coarse mesh T𝐻 on the domain Ω and the finite element
space [. . . ] of continuous, piece-wise linear functions on T𝐻 [. . . ] We stress that the fine
mesh T need not be a refinement of T𝐻 .”

Such general coarse spaces were studied at the continuous level in [18] with accurate
estimates of the constants involved in the resulting condition number estimate. We
show the performance of such a P1 non-aligned coarse space in Figure 2 (fourth
row) with coarse points in the middle of the subdomains for our model problem.
A comparison of the convergence as a function of the iterations is shown in Figure 3
on the right, where we see that the general position of the coarse points in the middle
of the subdomains performs best so far. But is there an even better option?

2 Optimal coarse spaces and spectral approximations

It was first observed in [16] and then analyzed in more detail in [17, 19] that the
position of the coarse nodes has indeed an important impact on the performance of the
coarse space. For a large scale implementation of various coarse node positionings for
Schwarz methods, see [23]. We show in Figure 2 in the last row the performance of a
coarse spacewhose nodes are located to the left and right of the RAS non-overlapping
interface. We see that this P1 coarse space transforms the two-level method into
a direct solver, the solution is obtained within the subdomains after the coarse
correction. This is also visible in the convergence curves in Figure 3 (right). Such
coarse spaces are called optimal in the sense of better is not possible, not in the sense
of scalable, and the idea is related to the algebraic multigrid construction in [3, 32].
New coarse spaces in domain decomposition methods are approximations of this

optimal coarse space; see the Spectral Harmonically Enriched Multiscale (SHEM)
coarse space [21, 20] for such a construction in a multiscale context. In higher spatial
dimensions, this optimal coarse space simply needs to contain all discrete harmonic
functions (functions that solve the homogeneous equation) in each subdomain, and
is thus of the size of the number of interface variables of the subdomains. A first
approximation for a decomposition into square subdomains is to add the historically
successful Q1 functions aligned with each subdomain; see e.g. Figure 4 (left) for
one of them. One can then enrich this coarse space by adding harmonically extended
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Fig. 4 First Q1 coarse space functions and two spectral enrichments.

sine functions; see Figure 4 (middle and right) to get a spectral coarse space. This
construction is not restricted to square subdomains; see [21, 20, 5].
A seemingly different construction of a new coarse space was proposed by

Frédéric Nataf, Hua Xiang, Victorita Dolean and Nicole Spillane in [29]
for high contrast problems:

“An effective two-level preconditioner is highly dependent on the choice of the coarse-grid
subspace. We will now focus on the choice of the coarse space Z in the context of DDMs
for problems of type (1.1) with heterogeneous coefficients.”

“Moreover, a fast decay for this value corresponds to a large eigenvalue of the DtN map,
whereas a slow decay corresponds to small eigenvalues of this map because the DtN operator
is related to the normal derivative at the interface and the overlap is thin.”

From the drawing in their manuscript above, eigenmodes of the Dirichlet-to-
Neumann (DtN) map with large eigenvalues will converge fast (left), while eigen-
modes with small eigenvalues will converge slowly (right). Hence the idea is to use
eigenmodes of the DtN map with small eigenvalues on each subdomain as coarse
space. We show in Figure 5 the first four DtN modes for a square subdomain, and
also mode 5 and 9. The first four modes look like they span the same space as the
four Q1 coarse modes from before. Mode 5 contains a first sine component on the
boundary like the enrichment mode in Figure 4 (middle); modes 6-8 (not shown) are
similar. Mode 9 contains the second sine mode on the boundary, like the enrichment
mode in Figure 4 (right), and modes 10-12 (not shown) are again similar. So the DtN
coarse space seems to be related to the SHEM coarse space. This relation becomes
even more evident if one uses eigenmodes of the DtN operator computed for each
of the four boundaries of the square subdomain separately, since then they coincide
with the modes shown in Figure 4 (middle, right)!
A highly successful coarse space, also for high contrast problems, was intro-

duced byNicole Spillane, VictoritaDolean, Patrice Hauret, Frédéric Nataf,
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Fig. 5 DtN modes 1-4, 5, and 9.

Fig. 6 GenEO modes 1-4, 5, and 9.

Clemens Pechstein and Robert Scheichl in [31], namely GenEO (Generalized
Eigenvalue Problems in the Overlaps). The powerful idea of GenEO is to directly
improve the Additive Schwarz convergence estimate by adding the corresponding
slow modes from the estimate to the coarse space. The modes are also computed in
each overlapping subdomain, following [6], by solving the eigenvalue problem

𝐵𝑖u = 𝜆𝐷𝐴𝑖𝐷u, (3)

where 𝐵𝑖 is the Neumann subdomain matrix, 𝐴𝑖 is the Dirichlet subdomain matrix,
and 𝐷 is a diagonal weighting matrix representing a partition of unity. We show
the first 4 modes, and then also mode 5 and 9 in Figure 6. We see that they are
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Fig. 7 GenEO modes 1-4, 5, and 9 without the partition of unity.

very similar to the DtN eigenmodes (mode 3, 4 and 9 just need to be multiplied
by −1). If we remove the partition of unity in the eigenvalue problem (3), we get
the modes shown in Figure 7. These are now very close to the DtN modes (up to
multiplications by −1) in Figure 5, and we are working to prove that they in fact
span the same coarse space. A comparison of the numerical performance of these
coarse spaces can be found in [22]; this comparison was made before these relations
were known. In [22], there is also a comparison with the coarse spaces introduced
by Juan Galvis and Yalchin Efendiev in [13, 14], which are based on subdomain
eigenfunctions in volume and thus not harmonic in the subdomains. Note that such
volume eigenvalue coarse spaces have been already introduced for non-overlapping
domain decomposition methods by Petter Bjørstad and Piotr Krzyżanowski
almost a decade earlier [2], and this in an adaptive fashion (see also [1]):

“It appears that this paper is the first to propose an adaptive algorithm that can construct an
effective coarse space for problems of this kind”.

Techniques from multiscale finite element methods were also used to construct
coarse spaces for Schwarz methods: the ACMS (Approximate Component Mode
Synthesis) coarse space by Alexander Heinlein, Axel Klawonn, Jascha Knep-
per andOliver Rheinbach in [25] is using Schur complement eigenvalue problems
on subdomain edges in order to construct coarse basis functions. This approach is
in the simple Laplace case related to the SHEM enrichment functions shown in
Figure 4 in the middle and on the right. The early coarse space from [10] for non-
overlapping domain decomposition methods based on piece-wise constant edge (and
face) functions became also the basis for a spectrally enriched coarse space under the
name adaptive GDSW (Generalized Dryja Smith Widlund) coarse space, see [24],
where the authors use for the enrichment Dirichlet to Neumann eigenfunctions at the
interfaces, extended harmonically into the subdomains.



Historical Introduction to Spectral Coarse Spaces with Focus on Schwarz Methods 197

3 Conclusions

We gave a short historical and personal introduction to the fascinating research area
of coarse space construction for domain decomposition methods. This is currently
a very active field of research, and a complete understanding of best coarse spaces in
terms of performance even for Laplace problems is only emerging. Corresponding
intrinsic coarse space components for Schwarz methods can be found in [5], and
their analysis is currently our focus.
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A New Nodal Integration Method for Helmholtz
Problems Based on Domain Decomposition
Techniques

Martin J. Gander and Niteen Kumar

1 Introduction

Wave field simulations have many applications, from seismology over radiation to
acoustics. The Helmholtz equation is used to model many of these phenomena, and
several numerical schemes were developed for this, see e.g. [5, 8, 7] and references
therein. However, to capture the accurate wave behavior, in general these schemes
need very fine meshes, because of the so called pollution effect, see [1]. The fine
mesh requirement results in large system matrices with bad condition number, and
thus requires a huge computational effort, since Helmholtz problems are notoriously
difficult to solve using iterative methods [4]. Also, due to the high condition number,
often these schemes have numerical problems for large wave numbers.
We present in this short note a new Nodal Integration Method (NIM) based on

domain decomposition techniques for the Helmholtz equation

∇2𝑢(x) + 𝑘2𝑢(x) = 𝑓 (x), (1)

where x is the spatial position, 𝑘 is the wave number, 𝑢 represents the wave field,
typically a pressure perturbation, and 𝑓 is the source term. NIM is a coarse mesh
numerical scheme based on the transverse integration process (TIP) and analytical
solutions of the ODEs resulting from TIP [10]. NIM has an edge over other schemes
due to the inbuilt semi-analytical approach in the scheme development process,
which closely relates the scheme to the physical problem compared to predefined
basis-function based methods such as finite-element methods. NIM schemes are
related to Trefftz methods [12] going back to Erich Trefftz in 1926 as a counterpart
of the classical Ritz method [11] from 1909. Trefftz methods use basis functions
that satisfy the homogeneous equations exactly within elements, see also [8] and
references therein, whereas NIMs satisfy only one dimensional averaged equations.

Martin J. Gander, Niteen Kumar
Section de Mathématiques, Université de Genève, e-mail: martin.gander@unige.ch,
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Fig. 1 Arrangement of elements in 2D called nodes in NIM.

The first NIM scheme was developed for simulations in nuclear industry [6], and
NIM found its acceptance in other engineering domains as well, due to high accuracy
with coarser meshes, see e.g. [9] and references therein. The discretization of PDEs
is also often plagued with numerical dispersion, and NIM schemes show minimal
dispersion compared to other schemes, see [10], and [2] and references therein for
more information about dispersion correction. We propose here a new NIM scheme
for the Helmholtz equation to improve the conditioning of the resulting system
matrix, and further reduce dispersion. Our new approach uses impedance (or Robin)
conditions in its construction, in contrast to the classical Dirichlet and Neumann
conditions in earlier NIMs for Helmholtz problems.

2 Classical NIM for the Helmholtz problem

In order to derive the classical NIM scheme for the Helmholtz equation (1) in 2D, the
domain is divided into 𝑛 rectangular elements of size ℎ called nodes, see Figure 1.
For each node, a local coordinate system is defined with its origin at the node center.
The Helmholtz Equation (1) can be written with reference to node ( 𝑗 , 𝑙) as

∇2𝑢 𝑗 ,𝑙 (𝑥, 𝑦) + 𝑘2𝑢 𝑗 ,𝑙 (𝑥, 𝑦) = 𝑓 𝑗 ,𝑙 (𝑥, 𝑦), (𝑥, 𝑦) ∈
(
− ℎ

2
,
ℎ

2
)
)
×

(
− ℎ

2
,
ℎ

2

)
. (2)

In NIM, the PDE is first averaged within a node to remove the dependency in one
spatial directions, which results in an approximate ODE. This is called the transverse
integration process (TIP). To perform the TIP, Equation (2) is averaged using the
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operator 1
ℎ

∫ +ℎ/2
−ℎ/2 d𝑥 in x-direction and the operator

1
ℎ

∫ +ℎ/2
−ℎ/2 d𝑦 in y-direction. On

performing the TIP (averaging) for example in the 𝑥-direction,

1
ℎ

∫ +ℎ/2

−ℎ/2

(
d2𝑢 𝑗 ,𝑙 (𝑥, 𝑦)
d𝑥2

+
d2𝑢 𝑗 ,𝑙 (𝑥, 𝑦)
d𝑦2

+ 𝑘2𝑢 𝑗 ,𝑙 (𝑥, 𝑦) = 𝑓 𝑗 ,𝑙 (𝑥, 𝑦)
)
d𝑥, (3)

we get x-averaged ODEs whose solutions are a function of 𝑦 only as given in
equation (4) below. Similarly, performing TIP on equation (2) in the 𝑦-direction
gives us y-averaged ODEs whose solutions are a function of 𝑥 only,

d2𝑢𝑥𝑗,𝑙 (𝑦)
d𝑦2

+ 𝑘2𝑢𝑥𝑗,𝑙 (𝑦) = 𝑆
𝑥

𝑗,𝑙 (𝑦),
d2𝑢𝑦

𝑗,𝑙
(𝑥)

d𝑥2
+ 𝑘2𝑢

𝑦

𝑗,𝑙
(𝑥) = 𝑆

𝑦

𝑗,𝑙 (𝑥). (4)

Here the solution variables represent averaged quantities,

𝑢𝑥𝑗,𝑙 (𝑦) :=
1
ℎ

∫ +ℎ/2

−ℎ/2
𝑢 𝑗 ,𝑙 (𝑥, 𝑦)d𝑥, 𝑢

𝑦

𝑗,𝑙
(𝑥) := 1

ℎ

∫ +ℎ/2

−ℎ/2
𝑢 𝑗 ,𝑙 (𝑥, 𝑦)d𝑦, (5)

and also the source term 𝑓 𝑗 ,𝑙 was averaged including the remaining transverse term,

𝑆
𝑥

𝑗,𝑙 (𝑦) :=
1
ℎ

∫ +ℎ/2

−ℎ/2

(
𝑓 𝑗 ,𝑙 (𝑥, 𝑦) −

𝜕2𝑢 𝑗 ,𝑙 (𝑥, 𝑦)
𝜕𝑥2

)
d𝑥, (6)

𝑆
𝑦

𝑗,𝑙 (𝑥) :=
1
ℎ

∫ +ℎ/2

−ℎ/2

(
𝑓 𝑗 ,𝑙 (𝑥, 𝑦) −

𝜕2𝑢 𝑗 ,𝑙 (𝑥, 𝑦)
𝜕𝑦2

)
d𝑦. (7)

After the TIP, the set of approximate ODEs given in Equation (4) is solved analyti-
cally within two consecutive nodes, using an appropriate approximation of the source
term to make this analytical integration possible (for example a truncated Legendre
expansion). After the integration, the two analytical solutions are connected using
coupling conditions, classically Dirichlet continuity is imposed by imposing a com-
mon (unknown) value, which is then determined imposing Neumann continuity, like
in a substructuring domain decomposition method. This results in two three point
schemes, one in the 𝑥-direction and the other in the 𝑦-direction. From these three
point schemes, the pseudo source is finally eliminated using constraint conditions,
which results in the final set of algebraic equation for the scheme, see [6, 9, 10] for
more details, and below for a simple example.
While this NIM scheme for Helmholtz is working, the resulting matrix elements

can have a strong dependence on the wave number 𝑘 . We show in Table 1 an
example of the dependence of the system matrix norm on the wave number 𝑘 of
the 2D NIM scheme described above. This strong dependence is numerically not
desirable, especially when the mesh resolution is not changed as in our example,
there is toomuch sensitivity with respect to thewave number in this discrete problem.
In order to better understand this strong dependence on the wave number 𝑘 of

the classical NIM system matrix for the Helmholtz equation, we now study in more
detail the one dimensional case,
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Table 1 Dependence of the system matrix norm on the wave number 𝑘 for the classical NIM
scheme in 2D for the Helmholtz equation.

Wave number (𝑘) NIM matrix norm (2D-Helmholtz)
150 14800
151 32170
152 214350
153 25180
154 13500

𝑥
j+1jj-1

Fig. 2 Arrangement of elements in 1D.

𝜕𝑥𝑥𝑢 𝑗 (𝑥) + 𝑘2𝑢 𝑗 (𝑥) = 𝑓 𝑗 (𝑥), 𝑥 ∈
(
− ℎ

2
,
ℎ

2

)
, (8)

see also Figure 2. In one dimension, the TIP is not necessary, except for the right
hand side function 𝑓 𝑗 (𝑥). Here we expand 𝑓 𝑗 (𝑥) in Legendre polynomials and
truncate to the first term, i.e. the constant, which we call 𝑆 𝑗 . This approximation to
a constant term leads to second order accuracy in the scheme. We can then directly
solve Equation (8) analytically with 𝑓 𝑗 (𝑥) replaced by 𝑆 𝑗 on each node, and using
Dirichlet boundary conditions, which are

𝑢𝑎𝑗 (𝑥)
���
−ℎ/2

= 𝑢 𝑗−1

𝑢𝑎𝑗 (𝑥)
���
ℎ/2

= 𝑢 𝑗

 for node 𝑗 ,
𝑢𝑎𝑗+1 (𝑥)

���
−ℎ/2

= 𝑢 𝑗

𝑢𝑎𝑗+1 (𝑥)
���
ℎ/2

= 𝑢 𝑗+1

 for node 𝑗 + 1. (9)

The analytical solution for node 𝑗 and 𝑗 + 1 is then given by

𝑢𝑎𝑗 (𝑥) =
2𝑆 𝑗+(−2𝑆 𝑗+𝑘2 (𝑢 𝑗+𝑢 𝑗−1)) cos 𝑘𝑥 sec ℎ𝑘

2 +𝑘2 (𝑢 𝑗−𝑢 𝑗−1) csc ℎ𝑘
2 sin 𝑘𝑥

2𝑘2 ,

𝑢𝑎𝑗+1 (𝑥) =
2𝑆 𝑗+1+(−2𝑆 𝑗+1+𝑘2 (𝑢 𝑗+𝑢 𝑗+1)) cos 𝑘𝑥 sec ℎ𝑘

2 +𝑘2 (𝑢 𝑗+1−𝑢 𝑗 ) csc ℎ𝑘
2 sin 𝑘𝑥

2𝑘2 .
(10)

Now in order to connect consecutive nodes, the matching of Neumann traces is
imposed, i.e. (

𝑑𝑢𝑎𝑗 (𝑥)
𝑑𝑥

) �����
ℎ/2

=

(
𝑑𝑢𝑎𝑗+1 (𝑥)

𝑑𝑥

) �����
−ℎ/2

. (11)

This leads to a finite difference like stencil for the unknown Dirichlet values 𝑢 𝑗 ,
which contains in its coefficients information about the physical problem that is
solved, namely

𝑘

sin 𝑘ℎ
𝑢 𝑗+1 −

2𝑘
tan 𝑘ℎ

𝑢 𝑗 +
𝑘

sin 𝑘ℎ
𝑢 𝑗−1 =

tan ℎ𝐾2
𝑘

(𝑆 𝑗 + 𝑆 𝑗+1). (12)
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Fig. 3 Norms of the systemmatrix of the classical Helmholtz NIM from the stencils (12), (14), (15)
for varying wave number 𝑘 and three mesh sizes: 0.1 (left), 0.05 (middle) and 0.025 (right).

To complete the linear system, we have to use on the first node, 𝑗 = 1, and the last
node, 𝑗 = 𝐽, the original boundary conditions imposed on the problem, which we
assume to be of impedance type,(

−
𝑑𝑢𝑎1 (𝑥)
𝑑𝑥

+ 𝑖𝑘𝑢𝑎1 (𝑥)
) �����

−ℎ/2
= 0,

(
𝑑𝑢𝑎𝐽 (𝑥)
𝑑𝑥

+ 𝑖𝑘𝑢𝑎𝐽 (𝑥)
) �����
ℎ/2

= 0. (13)

This leads for the first and last NIM matrix equations to the stencils(
𝑖𝑘 + 𝑘2 cot ℎ𝑘

𝑘

)
𝑢1 − (𝑘 csc ℎ𝑘)𝑢2 =

(
cot ℎ𝑘 − csc ℎ𝑘

𝑘

)
𝑆2, (14)(

𝑖𝑘 + 𝑘2 cot ℎ𝑘
𝑘

)
𝑢𝐽 − (𝑘 csc ℎ𝑘)𝑢𝐽−1 =

(
cot ℎ𝑘 − csc ℎ𝑘

𝑘

)
𝑆𝐽 . (15)

Collecting these stencils in the associated systemmatrix of theHelmholtzNIM in 1D,
and computing its norm, we find the results shown in Figure 3. Clearly the norm is
extremely sensitive to the wave number 𝑘 , and this does not improve when the mesh
is refined. We can now also see the reason for this looking at the stencil entries: in
the interior stencil in (12), the stencil coefficients contain a division by sin 𝑘ℎ, and
this quantity becomes zero for 𝑘 = ℓ𝜋/ℎ, ℓ = 1, 2, . . ., which explains the poles in
Figure 3 and more generally the sensitivity of the classical Helmholtz NIM matrix
norm on the wave number. We can now also explain the reason for this sensitivity: in
the construction of the classical Helmholtz NIM, we solved 1D Helmholtz problems
on each node, imposing Dirichlet boundary conditions, and if 𝑘2 corresponds to an
eigenvalue of the one dimensional Laplacian, then this problem is not well posed,
a fact that manifests itself in the division by zero in the stencil coefficients.
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3 Derivation of the new NIM scheme

To address the issue of division by zero for some values of 𝑘 , we must design a new
Helmholtz NIM that avoids in its construction the solution of Helmholtz problems
with Dirichlet conditions that can become ill-posed. This can be achieved by using
impedance conditions instead, like it was proposed in the seminal work of Després
and his non-overlapping Schwarz method for Helmholtz problems [3]. We thus
replace in the construction of our new Helmholtz NIM the conditions (9) for nodes 𝑗
and 𝑗 + 1 by the conditions(

− 𝜕𝑢𝑎𝑗 (𝑥)
𝜕𝑥

+ 𝑖𝑘𝑢𝑎𝑗 (𝑥)
)���
−ℎ/2

= 𝜎𝑗−1(
𝜕𝑢𝑎𝑗 (𝑥)
𝜕𝑥

+ 𝑖𝑘𝑢𝑎𝑗 (𝑥)
)���
ℎ/2

= 𝜆 𝑗

 for node 𝑗 , (16)

(
− 𝜕𝑢𝑎𝑗+1 (𝑥)

𝜕𝑥
+ 𝑖𝑘𝑢𝑎𝑗+1 (𝑥)

)���
−ℎ/2

= 𝜎𝑗(
𝜕𝑢𝑎𝑗+1 (𝑥)
𝜕𝑥

+ 𝑖𝑘𝑢𝑎𝑗+1 (𝑥)
)���
ℎ/2

= 𝜆 𝑗+1

 for node 𝑗 + 1. (17)

Instead of the unknown Dirichlet values 𝑢 𝑗 in the original Helmholtz NIM, now
the unknowns are the impedance traces 𝜆 𝑗 and 𝜎𝑗 , which means that we construct
directly a right preconditioned system in this new Helmholtz NIM design. The
analytical solution of the Helmholtz equation (8) with constant source term 𝑆 𝑗 and
node impedance boundary conditions (16) on node 𝑗 is

𝑢𝑎𝑗 (𝑥) =
2𝑆 𝑗 + 𝑒

−𝑖𝑘 (ℎ+2𝑥)
2 (−𝑆 𝑗 − 𝑒2𝑖𝑘𝑥 (𝑆 𝑗 + 𝑖𝑘𝜆 𝑗 ) − 𝑖𝑘𝜎𝑗

2𝑘2
, (18)

and similarly we find on node 𝑗 + 1

𝑢𝑎𝑗+1 (𝑥) =
2𝑆 𝑗+1 + 𝑒

−𝑖𝑘 (ℎ+2𝑥)
2 (−𝑆 𝑗+1 − 𝑒2𝑖𝑘𝑥 (𝑆 𝑗+1 + 𝑖𝑘𝜆 𝑗+1) − 𝑖𝑘𝜎𝑗+1

2𝑘2
. (19)

In order to obtain the new Helmholtz NIM scheme, we use impedance condition
matching at the interface,

𝜎𝑗+1 =

(
−
𝑑𝑢𝑎𝑗 (𝑥)
𝑑𝑥

+ 𝑖𝑘𝑢𝑎𝑗 (𝑥)
) �����
ℎ/2

, 𝜆 𝑗 =

(
𝑑𝑢𝑎𝑗 (𝑥)
𝑑𝑥

+ 𝑖𝑘𝑢𝑎𝑗 (𝑥)
) �����

−ℎ/2
. (20)

This leads to the new finite difference type stencil

𝜎𝑗+1−𝑒−𝑖ℎ𝑘𝜎𝑗 =

(
− 𝑖

𝑘
+ 𝑖𝑒−𝑖𝑘ℎ

𝑘

)
𝑆 𝑗 , 𝜆 𝑗 −𝑒−𝑖ℎ𝑘𝜆 𝑗+1 =

(
− 𝑖

𝑘
+ 𝑖𝑒−𝑖𝑘ℎ

𝑘

)
𝑆 𝑗+1. (21)

For the first and last equation in the system, we need to use again the original
boundary conditions in (13), which leads for 𝑗 = 1 to
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Fig. 4 Norms of the system matrix of the new Helmholtz NIM from the stencils (21), (22), (23),
for varying wave number 𝑘 and three mesh sizes: 0.1 (left), 0.05 (middle) and 0.025 (right).

(
𝑒𝑖ℎ𝑘 (𝑘 − 1)
2𝑘

)
𝜆1 +

(
𝑘 + 1
2𝑘

)
𝜎1 =

(
−𝑖(𝑘 − 1) + 𝑖𝑒𝑖ℎ𝑘 (𝑘 − 1)

2𝑘2

)
𝑆1. (22)

Similarly the equation on the right boundary, 𝑗 = 𝐽, is

−
(
𝑒−𝑖ℎ𝑘 (𝑘 − 1)

2𝑘

)
𝜎𝐽 +

(
𝑘 + 1
2𝑘

)
𝜆𝐽 =

(
−𝑖(𝑘 − 1) + 𝑖𝑒−𝑖ℎ𝑘 (𝑘 − 1)

2𝑘2

)
𝑆𝐽 . (23)

Now we can see from the stencil coefficients in Equation (21) of the new
Helmholtz NIM that there is no singularity present any more, and thus the sys-
tem matrix norms should not have this sensitive dependence on the wave num-
ber 𝑘 any longer. This is confirmed in Figure 4, where we plot the system ma-
trix norm of our new Helmholtz NIM for three different mesh sizes as a func-
tion of the wave number 𝑘 . We see that the norm stays nicely bounded below 3,
whereas for the classical NIM the matrix norms we observed were of the or-
der of 1𝑒5.

4 Conclusions

Wepresented a newnodal integrationmethod (NIM) based on domain decomposition
techniques for theHelmholtz equation. In our newHelmholtz NIM, instead ofDirich-
let and Neumann transmission conditions that are usually used in the construction of
the NIM, we used impedance (or Robin) transmission conditions. This modification
changes the coefficients as well as the resulting system matrix structure, and we
observe that the new system matrix has nicely bounded norms for all wave numbers,
while the original NIM system matrix norm presented singularities. However, the
new system matrix is now twice the size of the old system matrix, since we are solv-
ing for the Robin traces as unknowns. We gain stability at the cost of a bigger system
matrix.We are currently developing our newHelmholtz NIM in two and three spatial
dimensions, and also investigate if it is possible to use impedance conditions without



206 Martin J. Gander and Niteen Kumar

increasing the systemmatrix size.We are also studying the dispersion relation proper-
ties of our newHelmholtzNIM, and investigate its potential for dispersion correction.
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Dirichlet-Neumann and Neumann-Neumann
Methods for Elliptic Control Problems

Martin J. Gander and Liu-Di Lu

1 Introduction

Consider the state 𝑦(x) governed by the elliptic partial differential equation (PDE)

−div (𝜅(x)∇𝑦(x)) = 𝑢(x), x ∈ Ω, 𝑦(x) = 0, x ∈ 𝜕Ω, (1)

where Ω ⊂ R𝑛, 𝑛 = 1, 2, 3 is a bounded domain and 𝜕Ω its boundary. Here 𝑢 is
a control variable from an admissible set 𝑈ad, which drives the state 𝑦 to a target
state 𝑦̂. Problem (1) originates from the stationary heat conduction equation. In
this setting, 𝜅(x) denotes the thermal conductivity of Ω, 𝑦(x) is the temperature at
a particular position x and 𝑢(x) represents a controlled heat source. The goal is to
find the optimal control variable 𝑢∗ which minimizes the cost functional for 𝜈 ∈ R+,

𝐽 (𝑦, 𝑢) = 1
2

∫
Ω

|𝑦(x) − 𝑦̂(x) |2 dx + 𝜈

2
‖𝑢‖2𝑈ad , (2)

subject to the constraint (1). The term 𝜈
2 ‖𝑢‖

2
𝑈ad
can be considered as the cost of

applying such a control 𝑢. It is said that the control is expensive if 𝜈 is large. From
a mathematical viewpoint, the presence of this term with 𝜈 ∈ R+ has a regularizing
effect on the optimal control.
The analysis of Domain Decomposition methods (DDMs) for the elliptic PDE (1)

is well established, see for instance [12]. Much less is known for DDmethods applied
to PDE-constrained optimal control problems, see for instance [5, 6]. Although the
admissible set 𝑈ad is often considered as 𝐿2 (Ω) for such elliptic control problems,
a recent study shows that the energy space 𝐻−1 (Ω) can also be used for the reg-
ularization [10]. Moreover, this space can be expanded with 𝐿2 (0, 𝑇 ;𝐻−1 (Ω)) to
treat parabolic control problems [7]. From an analytical point of view, the first-order
optimality system can be simplified to a Poisson type equation by using the energy
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space 𝐻−1 (Ω), whereas a biharmonic type problem still needs to be treated for the
usual 𝐿2 (Ω) regularization. Moreover, applications of the energy norm can also be
found in electrical engineering, fluid mechanics [9], etc.
Inspired by this approach, we study in this paper DDMs applied to the optimal

control problem (1)-(2) using the energy norm. More precisely, we introduce in
Section 2 the use of the energy norm 𝐻−1 for the elliptic control problem, and
compare the optimality system with that of the 𝐿2 norm. Although we consider for
simplicity an unconstrained control, this can be extended to problems with state
or control constraints, see also [13]. We then provide in Section 3 a convergence
analysis of the Dirichlet-Neumann (DN) [1] and the Neumann-Neumann (NN) [2]
methods applied to the optimality system. Some numerical experiments are given in
Section 4, where we conclude with some comments.

2 Regularization: 𝑳2 vs 𝑯−1

We assume that both the control 𝑢 and the target state 𝑦̂ are in 𝐿2 (Ω), and consider
first 𝑈ad = 𝐿2 (Ω) as the set of all feasible controls. Using the Lagrange multiplier
approach [13], we get for the first-order optimality system for problem (1)–(2)

−div (𝜅(x)∇𝑦(x)) = 𝑢(x), x ∈ Ω, 𝑦(x) = 0, x ∈ 𝜕Ω,

−div (𝜅(x)∇𝑝(x)) = 𝑦(x) − 𝑦̂(x), x ∈ Ω, 𝑝(x) = 0, x ∈ 𝜕Ω,

𝑝(x) + 𝜈𝑢(x) = 0, x ∈ Ω,

(3)

where 𝑝 is the Lagrange multiplier (or adjoint state). Inserting the third equation
of (3) into the first equation, and the result into the second equation, we can rewrite
the optimality system (3) with one single variable, for instance, with respect to the
state variable 𝑦 as

𝜈div
(
𝜅(x)∇

(
div (𝜅(x)∇𝑦(x))

) )
+ 𝑦(x) = 𝑦̂(x), x ∈ Ω,

div (𝜅(x)∇𝑦(x)) = 𝑦(x) = 0, x ∈ 𝜕Ω.
(4)

In particular, we identify in (4) a biharmonic operator by taking the conductivity
𝜅(x) = 1 everywhere over the domain.
We consider now 𝑈ad = 𝐻−1 (Ω) in (2) as the set of all feasible controls. As

proposed in [10], we can define the norm in 𝐻−1 (Ω) by

‖𝑢‖2
𝐻−1 (Ω) := ‖

√
𝜅∇𝑦‖2

𝐿2 (Ω) , (5)

which is the energy norm. Note that the conductivity 𝜅 is positive. On the other hand,
following the same reasoning as in the 𝐿2 (Ω) case to derive the optimality system,
we obtain

−𝜈div (𝜅(x)∇𝑦(x)) + 𝑦(x) = 𝑦̂(x), x ∈ Ω, 𝑦(x) = 0, x ∈ 𝜕Ω. (6)
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Comparing (6) with the reduced optimality system under 𝐿2 regularization (4), we
observe that indeed only a Laplace type operator needs to be solved in (6).

Remark 1 We need to be careful when comparing solutions of the two reduced
optimality systems (4) and (6), since we penalize the control in different norms and
solve different equations. In the 𝐿2 case, the control can be determined by 𝑢 = − 1

𝜈
𝑝

which is proportional to the adjoint state variable, while it is proportional to the
state variable in the 𝐻−1 case, since 𝑢 = 1

𝜈
( 𝑦̂ − 𝑦). Furthermore, the solution is less

regular in the 𝐻−1 case as shown in [10].

Remark 2 Depending on the value of 𝜈, (6) is a singularly perturbed PDE. Standard
numericalmethods can performpoorly, we refer to themonograph [11] for a review of
robust numerical methods for such problems. In the recent work [8], the authors use
an algebraic multigrid method and a balancing domain decomposition by constraints
preconditioner for a finite element discretization to treat the problem (6). They
observed that optimal convergence is ensured with 𝜈 = ℎ2, ℎ being the mesh size.

3 Convergence analysis of DD methods

We now provide a convergence analysis for the DN and the NN methods applied to
solve the reduced optimality system (6), and then compare with DN and NNmethods
applied to (4) from [5].
Without loss of generality, the analysis is given under the assumption that the

target state 𝑦̂ = 0, meaning that we focus on the error equation related to (6).
Moreover, we assume that the conductivity coefficient 𝜅(𝑥) = 1 everywhere over the
domain for the following analysis, although the DN and NN methods are defined
for a general 𝜅(𝑥). Let us first consider the one-dimensional case with the domain
Ω = (0, 1). We decompose it into two non-overlapping subdomains Ω1 = (0, 𝛼) and
Ω2 = (𝛼, 1) with 𝛼 the interface. We denote by 𝑒𝑖 the error in domainΩ𝑖 for 𝑖 = 1, 2.
For the DNmethod, the error equations for (6) are for iteration index 𝑛 = 1, 2, . . .,

𝜕𝑥𝑥𝑒
𝑛
1 − 𝜈−1𝑒𝑛1 = 0, 𝑒𝑛1 (0) = 0, 𝑒𝑛1 (𝛼) = 𝑒𝑛−1𝛼 ,

𝜕𝑥𝑥𝑒
𝑛
2 − 𝜈−1𝑒𝑛2 = 0, 𝑒𝑛2 (1) = 0, 𝜕𝑥𝑒

𝑛
2 (𝛼) = 𝜕𝑥𝑒

𝑛
1 (𝛼),

(7)

with 𝑒𝑛𝛼 := (1 − 𝜃)𝑒𝑛−1𝛼 + 𝜃𝑒𝑛2 (𝛼) and 𝜃 ∈ (0, 1) a relaxation parameter. We notice
that the error equations (7) are similar to the ones in [4, Equation (2.4)] for applying
the Dirichlet-Neumann waveform relaxation (DNWR) method to the heat equation.
Indeed, after a Laplace transform, the error equations for the DNWR method in the
one dimensional case are like (7), where 𝜈−1 is replaced by 𝑠. For this reason, we
follow the same calculations as in [4] and find the convergence factor

𝜌DN :=
���1 − 𝜃

[
1 + tanh

(√︁
𝜈−1 (1 − 𝛼)

)
coth

(√︁
𝜈−1𝛼

)] ��� . (8)

This leads us to the following convergence results.
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Theorem 1 The DN method with 𝜃 = 1 applied to Problem (6) converges if and only
if the interface is closer to the right boundary (i.e., 𝛼 > 1

2 ).

Proof Taking 𝜃 = 1 in (8), we obtain the convergence factor

𝜌DN = tanh
(√︁

𝜈−1 (1 − 𝛼)
)
coth

(√︁
𝜈−1𝛼

)
,

that is smaller than 1 if and only if 𝛼 > 1
2 which can be seen by studying the function

𝑓 (𝑥) = sinh(1 − 𝑥) cosh(𝑥) − cosh(1 − 𝑥) sinh(𝑥) for 𝑥 ∈ [0, 1]. �

Theorem 2 For symmetric subdomains (i.e., 𝛼 = 1
2 ), the convergence of the DN

method for Problem (6) is linear and is independent of the value of the regularization
parameter 𝜈. It converges in two iterations if 𝜃 = 1

2 .

Proof We just have to take 𝛼 = 1
2 in (8) and finds 𝜌DN = |1 − 2𝜃 |. �

Theorem 3 For asymmetric subdomains (i.e., 𝛼 ≠ 1
2 ), the DN method converges for

Problem (6) if and only if

0 < 𝜃 < 2𝜃★DN, 𝜃★DN :=
1

1 + tanh
(√

𝜈−1 (1 − 𝛼)
)
coth

(√
𝜈−1𝛼

) . (9)

Moreover, it converges in two iterations if and only if 𝜃 = 𝜃★DN.

Proof From the convergence factor (8), the interior part of the absolute value is
smaller than 1, since 𝜃 ∈ (0, 1) and 1 + tanh

(√
𝜈−1 (1 − 𝛼)

)
coth

(√
𝜈−1𝛼

)
is strictly

positive. We then just need to ensure that

𝜃

[
1 + tanh

(√︁
𝜈−1 (1 − 𝛼)

)
coth

(√︁
𝜈−1𝛼

)]
< 2,

which leads to the inequality in (9). On the other hand, we find directly 𝜃★DN by
equating (8) to zero. �

Remark 3 As expected, we find similar results in the symmetric case as for the 𝐿2
regularization. However, we have an optimal relaxation parameter for asymmetric
decompositions, which is strictly smaller than 1, whereas a pair of parameters is
needed for the 𝐿2 regularization which can be greater than one in some cases,
see [5]. This is due to the fact that two transmission conditions need to be considered
for a biharmonic type problem.

The error equations for the NN method, for iteration index 𝑛 = 1, 2, · · · , are

𝜕𝑥𝑥𝑒
𝑛
𝑗 − 𝜈−1𝑒𝑛𝑗 = 0, 𝑒𝑛1 (0) = 0, 𝑒𝑛2 (1) = 0, 𝑒𝑛𝑗 (𝛼) = 𝑒𝑛−1𝛼 , (10)

where the transmission condition is given by 𝑒𝑛𝛼 := 𝑒𝑛−1𝛼 − 𝜃
(
𝜓𝑛
1 (𝛼) +𝜓

𝑛
2 (𝛼)

)
and 𝜓𝑛

𝑗

satisfies the correction step
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𝜕𝑥𝑥𝜓
𝑛
𝑗 −𝜈−1𝜓𝑛

𝑗 = 0, 𝜓𝑛
1 (0) = 0, 𝜓𝑛

2 (1) = 0, 𝜕𝑛 𝑗
𝜓𝑛

𝑗 (𝛼) = 𝜕𝑛1𝑒
𝑛
1 (𝛼)+𝜕𝑛2𝑒

𝑛
2 (𝛼).
(11)

Solving (10)-(11) on each domain Ω 𝑗 and applying the boundary conditions at
𝑥 = 0 and 𝑥 = 1, we find the solutions with 𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝐷𝑛 four coefficients to
be determined for 𝑒𝑛1 , 𝑒

𝑛
2 , 𝜓

𝑛
1 and 𝜓

𝑛
2 . Evaluating then 𝑒𝑛

𝑗
at 𝑥 = 𝛼, and using the

transmission condition 𝑒𝑛
𝑗
(𝛼) = 𝑒𝑛−1𝛼 , we can determine the two coefficients 𝐴𝑛, 𝐵𝑛

and get

𝑒𝑛1 (𝑥) = 𝑒𝑛−1𝛼

sinh(
√
𝜈−1𝑥)

sinh(
√
𝜈−1𝛼)

, 𝑒𝑛2 (𝑥) = 𝑒𝑛−1𝛼

sinh
(√

𝜈−1 (1 − 𝑥)
)

sinh
(√

𝜈−1 (1 − 𝛼)
) . (12)

Similarly, we evaluate 𝜕𝑛 𝑗
𝜓𝑛

𝑗
at 𝑥 = 𝛼, and using the transmission condition

𝜕𝑛 𝑗
𝜓𝑛

𝑗
(𝛼) = 𝜕𝑛1𝑒

𝑛
1 (𝛼) + 𝜕𝑛2𝑒

𝑛
2 (𝛼) with the help of (12), we can determine the

remaining two coefficients 𝐶𝑛, 𝐷𝑛 and get,

𝜓𝑛
1 (𝑥) = 𝑒𝑛−1𝛼

sinh(
√
𝜈−1𝑥)

cosh(
√
𝜈−1𝛼)

(
coth(

√︁
𝜈−1𝛼) + coth(

√︁
𝜈−1 (1 − 𝛼))

)
,

𝜓𝑛
2 (𝑥) = 𝑒𝑛−1𝛼

sinh
(√

𝜈−1 (1 − 𝑥)
)

cosh(
√
𝜈−1 (1 − 𝛼))

(
coth(

√︁
𝜈−1𝛼) + coth(

√︁
𝜈−1 (1 − 𝛼))

)
.

Using finally the definition of the transmission condition 𝑒𝑛𝛼, we find the convergence
factor

𝜌NN :=
���1 − 𝜃

(
tanh(

√︁
𝜈−1𝛼) + tanh

(√︁
𝜈−1 (1 − 𝛼)

) )
×

(
coth(

√︁
𝜈−1𝛼) + coth(

√︁
𝜈−1 (1 − 𝛼))

)���. (13)

We obtain the following convergence results.

Theorem 4 For symmetric subdomains (i.e., 𝛼 = 1
2 ), the convergence of the NN

method for Problem (6) is linear and is independent of the value of the regularization
parameter 𝜈. It converges in two iterations if 𝜃 = 1

4 .

Proof We just have to take 𝛼 = 1
2 in (13) and find 𝜌NN = |1 − 4𝜃 |. �

Theorem 5 For asymmetric subdomains (i.e., 𝛼 ≠ 1
2 ), the NN method converges for

Problem (6) if and only if

0 < 𝜃 < 2𝜃★NN, 𝜃★NN :=
1(

tanh(
√
𝜈−1𝛼)+tanh

(√
𝜈−1 (1−𝛼)

)) (
coth(

√
𝜈−1𝛼)+coth(

√
𝜈−1 (1−𝛼))

) .
(14)

Furthermore, it converges in two iterations if and only if 𝜃 = 𝜃★NN.

Proof Following the same steps as in the proof of Theorem 3, we obtain the inequal-
ity (14), and we find directly 𝜃★NN by equating (13) to zero. �
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Remark 4 As shown in Theorem 3 and in Theorem 5, both the DN and the NN
methods converge in two iterations to the exact solution. Moreover, we have a bound
for the relaxation parameter 𝜃 of each method for which the convergence of the
method is guaranteed.

The above analysis can also be extended to the two-dimensional case. More
precisely, we assume that the domain Ω is now given by [0, 1] × [0, 1], which
is then divided into two non-overlapping subdomains Ω1 = (0, 𝛼) × [0, 1] and
Ω2 = (𝛼, 1) × [0, 1], with the interface at 𝑥1 = 𝛼 denoted by Γ := {𝛼} × [0, 1]. In
addition, we keep the assumption that 𝑦̂ = 0 and 𝜅(𝑥) = 1. The two-dimensional
analysis is often carried out by using a Fourier expansion in one direction, in our
case, the 𝑥2 direction 𝑒𝑛𝑖 (𝑥1, 𝑥2) =

∑∞
𝑘=0 𝑒𝑖 (𝑥1, 𝑘) sin(𝑘𝜋𝑥2). In this way, the error

function related to 𝑒𝑖 (𝑥1, 𝑥2) passes to 𝑒𝑖 (𝑥1, 𝑘), and for instance, in the DN case is
governed by

𝜕𝑥1𝑥1𝑒
𝑛
1 −

𝜈𝑘2𝜋2 + 1
𝜈

𝑒𝑛1 = 0, 𝑒𝑛1 (0, 𝑘) = 0, 𝑒𝑛1 (𝛼, 𝑘) = 𝑒𝑛−1𝛼 ,

𝜕𝑥1𝑥1𝑒
𝑛
2 −

𝜈𝑘2𝜋2 + 1
𝜈

𝑒𝑛2 = 0, 𝑒𝑛2 (1, 𝑘) = 0, 𝜕𝑥1𝑒
𝑛
2 (𝛼, 𝑘) = 𝜕𝑥1𝑒

𝑛
1 (𝛼, 𝑘),

(15)

with 𝑒𝑛𝛼 := (1 − 𝜃)𝑒𝑛−1𝛼 + 𝜃𝑒𝑛2 (𝛼, 𝑘) and 𝜃 ∈ (0, 1). We observe that (15) has the
same structure as in the one-dimensional case (7), where 𝜈−1 is replaced by 𝜈𝑘2 𝜋2+1

𝜈
.

Therefore, the same type of reasoning can be applied to analyze this iteration, and
we have the following results.

Theorem 6 For symmetric subdomains (i.e., 𝛼 = 1
2 ), the convergence of the DN and

the NN methods for Problem (6) are both linear and independent of the value of 𝜈. It
converges in two iterations if 𝜃 = 1

2 for the DN method and 𝜃 = 1
4 for the NN method.

Theorem 7 For asymmetric subdomains (i.e., 𝛼 ≠ 1
2 ), the DN method converges for

Problem (6) whenever

𝜌DN2d := sup
𝑘∈N

�����1 − 𝜃

[
1 + tanh

(√︂
𝜈𝑘2𝜋2 + 1

𝜈
(1 − 𝛼)

)
coth

(√︂
𝜈𝑘2𝜋2 + 1

𝜈
𝛼

)]����� < 1.
(16)

The NN method converges for Problem (6) whenever

𝜌NN2d := sup
𝑘∈N

�����1 − 𝜃

(
tanh(

√︂
𝜈𝑘2𝜋2 + 1

𝜈
𝛼) + tanh

(√︂
𝜈𝑘2𝜋2 + 1

𝜈
(1 − 𝛼)

))
·
(
coth(

√︂
𝜈𝑘2𝜋2 + 1

𝜈
𝛼) + coth

(√︂
𝜈𝑘2𝜋2 + 1

𝜈
(1 − 𝛼)

))����� < 1.
(17)
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4 Numerical experiments

In this section, we provide numerical experiments to illustrate the convergence rate
of the DN and the NN methods for Problem (1)-(2) with 𝜈 = 1 and 𝑦̂ = 0. Figure 1
(top) shows the one-dimensional convergence behaviour of these two methods for
different choices of 𝜃 with an asymmetric decomposition 𝛼 = 1

3 . The best choices of
the relaxation parameter are given by 𝜃★DN ≈ 0.355 and 𝜃★NN ≈ 0.229. In particular,
we observe some divergence behavior in the case of the NN method for 𝜃 = 0.5 and
𝜃 = 0.7. Indeed, this corresponds to the result in Theorem 5, since these two values
are greater than 2𝜃★NN which is the upper bound for the relaxation parameter 𝜃.
Furthermore, we observe the convergence to the exact solution in two iterations
for a non-symmetric domain decomposition, whereas a three-step convergence is
needed for the 𝐿2 regularization [5]. Figure 1 (bottom) presents the behavior of
the convergence factors (16) and (17) in the two-dimensional case. The interface
here is chosen to be asymmetric Γ = { 13 } × [0, 1]. We observe good convergence
behaviors for some tested relaxation parameters 𝜃. Furthermore, the NN method
does not converge for 𝜃 = 0.5 and 𝜃 = 0.7 as in the one-dimensional case. We obtain
that 𝜌DN2d ≈ 0.173 for 𝜃★DN2d ≈ 0.414 and 𝜌NN2d ≈ 0.046 for 𝜃

★
NN2d ≈ 0.239. These

two optimal relaxation parameters can also be found by equioscillating the value of
the convergence factor both at 𝑘 = 0 and 𝑘 → ∞. Moreover for each method, we find
that these optimal relaxation parameters stay very close between the one-dimensional
and the two-dimensional case.

Fig. 1 Error decay in 1D w.r.t. the number of iterations for the DN method (top-left) and the NN
method (top-right) with the interface at 𝛼 = 1

3 . Convergence factors (16) and (17) in 2D w.r.t. the
value of 𝑘 ∈ [0, 40] for the DN method (bottom-left) and the NN method (bottom-right) with the
interface at Γ = { 13 } × [0, 1].
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To conclude, we presented a convergence analysis of the DN and the NNmethods
for elliptic optimal control problems using the energy norm for regularization. Only
one Poisson type equation needs to be solved, whereas a biharmonic type equation
is required for 𝐿2 regularization. Under the energy norm, we found similar results
in the symmetric case as for the Poisson problem. Therefore, we can expect similar
convergence behavior formany subdomains as presented in [3]. Furthermore, explicit
formulations along with an upper bound are also given for the optimal relaxation
parameters with a non-symmetric decomposition, for which the methods converge
still in two iterations in the one-dimensional case.
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An Introduction to Heterogeneous Domain
Decomposition Methods for Multi-Physics
Problems

Martin J. Gander and Véronique Martin

1 Mono-physics and multi-physics problems

In order to understand research problems inmulti-physics, it is instructive to first look
at coupling conditions for mono-physics problems, which arise naturally in domain
decomposition. To do so, we consider the model problem L𝑢 := (𝜂 − Δ)𝑢 = 𝑓 in
a domainΩ, with suitable boundary conditions. In this case, the solution 𝑢wewant to
compute is well defined, and domain decompositionmethods provide two techniques
to couple solutions of such mono-physics problems: the first one comes from the
alternating Schwarz method [20], see Figure 1 (left) for the historical domain and its
decomposition. The alternating Schwarz method solves for 𝑛 = 1, 2, . . .

L𝑢𝑛1 = 𝑓 in Ω1, 𝑢𝑛1 = 𝑢𝑛−12 on Γ1, L𝑢𝑛2 = 𝑓 in Ω2, 𝑢𝑛2 = 𝑢𝑛1 on Γ2, (1)

starting with some 𝑢02. At convergence, this method defines naturally coupling con-
ditions that involve an overlap, namely the two subdomain solutions must satisfy
𝑢1 = 𝑢2 on Γ1 and 𝑢2 = 𝑢1 on Γ2. We thus found the classical overlapping coupling
conditions for second order mono-physics problems. The second coupling technique
comes from historical substructuring methods introduced by Przemieniecki in [19].

Ω1 Ω2

Ω

𝜕Ω

Γ1Γ2 Ω1 Ω2

Ω

𝜕Ω

Γ

Fig. 1 Left: Schwarz coupling. Right: Przemieniecki or Schur coupling.

Martin J. Gander
Section de Mathématiques, Université de Genève, e-mail: martin.gander@unige.ch

Véronique Martin
UMR CNRS 7352, Université de Picardie Jules Verne, e-mail: veronique.martin@u-picardie.fr
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Structure FluidΩ1 Γ Ω2

airfoil

Ω1

Ω2

Γ

1

Fig. 2 Left: Fluid-structure interaction. Right: Flow around an airfoil.

For a Schwarz like example, see Figure 1 (right), but now with subdomains that do
not overlap, Przemieniecki posed directly the coupled problem with Dirichlet and
Neumann conditions,

L𝑢1 = 𝑓 in Ω1, 𝑢1 = 𝑢2 on Γ, L𝑢2 = 𝑓 in Ω2, 𝜕𝑛𝑢2 = 𝜕𝑛𝑢1 on Γ. (2)

He solved it by first assuming the Dirichlet condition to be known, eliminating then
the interior unknowns in the subdomains, and finally by imposing the Neumann
coupling conditions obtained as equation for the Dirichlet traces, see [12] for more
details. The equations on Γ in (2) are the classical non-overlapping coupling condi-
tions for second order mono-physics problems. These conditions can also be used to
obtain an iterative algorithm, namely the Dirichlet-Neumann method, by solving

L𝑢𝑛1 = 𝑓 in Ω1, 𝑢𝑛1 = 𝑢𝑛−12 on Γ, L𝑢𝑛2 = 𝑓 in Ω2, 𝜕𝑛𝑢
𝑛
2 = 𝜕𝑛𝑢

𝑛
1 on Γ, (3)

which however needs a relaxation parameter for convergence, see [3, Section 4.7].
This naturally raises the question if these physical coupling conditions are good to
obtain rapid convergence. One could consider for example Robin conditions in (3),

(𝜕𝑛1 + 𝑝)𝑢𝑛1 = (𝜕𝑛1 + 𝑝)𝑢𝑛−12 on Γ1, (𝜕𝑛2 + 𝑝)𝑢𝑛2 = (𝜕𝑛2 + 𝑝)𝑢𝑛1 on Γ2, (4)

where 𝑝 can be a number, a function or even an operator as advocated by Lions [18].
One can now use both overlapping and non-overlapping (Γ1 = Γ2 = Γ) configu-
rations, since the Robin conditions imply the coupling conditions on Γ in (2) at
convergence (just take the sum and difference of the Robin conditions). We call the
Robin conditions transmission conditions, since they must transmit information as
effectively as possible for fast convergence, a research field that led to optimized
Schwarz methods, see [7] for an introduction.
For Multi-Physics Problems, we have to distinguish two situations. The first one

is where the physics is truly different in different regions, as for example in fluid
structure interaction, see Figure 2 (left). Here the solution 𝑢 we want to compute is
also well defined, the coupling conditions are given by the physics of the problem
along the interface Γ between the fluid and the structure, and only non-overlapping
techniques make sense. Once good physical coupling conditions are found, the
question is what are good transmission conditions for fast convergence when one
solves alternatingly the structure and fluid problems in Ω1 and Ω2, and which imply
the coupling conditions on Γ at convergence.
The second situation is when in principle we have a mono-physics problem in Ω,

but different physical models are used in different regions for computational savings,
see Figure 2 (left) for a flow around an airfoil. Here one wants to use an expensive
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model only where it is necessary, in Ω1 close to the airfoil, and far away a cheaper
model suffices in Ω2 to save computation time. The question is then what are good
coupling conditions to get close to the expensive solution everywhere. For this one
can consider non-overlapping techniques with one interface Γ, or also overlapping
ones with two interfaces Γ1 and Γ2 at an overlapping distance, see Figure 1. Once
good coupling conditions are found, again the question arises on what are good
transmission conditions for fast iterative convergence when solving alternatingly
onΩ1 the expensive and onΩ2 the cheap model, which also imply the good coupling
conditions at convergence.

2 Truly multi-physics problems

A typical example of a truly multi-physics problem can be found in [4]:

“In a second circumstance, one may be obliged to consider truly different models to account
for the presence of distinct physical problems within the same global domain. This case is
usually indicated as multi-physics or multi-field problem.”

The problem considered is the deformation of an artery. The fluid equations for the
velocity field u and the pressure 𝑝 are

The solid equations for the displacement d𝑠 are

and the physical coupling conditions are (“Dirichlet” and “Neumann”)

imposing the matching of the interface displacements from the fluid and solid subdo-
mains, the continuity of the velocities and the normal stresses. The authors propose
to use directly these coupling conditions also as transmission conditions and study
the following methods:
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Our interest for such multiphysics problems mainly focused on developing trans-
mission conditions for fast convergence. In [8] we developed a non-overlapping
optimized Schwarz method for jumping coefficient diffusion problems that con-
verges independently of the mesh parameter, and faster and faster the bigger the
jump becomes: the method truly benefits from the multi-physics nature of the prob-
lem. In [13] we designed and studied heterogeneous optimized Schwarz methods
for coupling Helmholtz and Laplace equations; for more general elliptic problems,
see [14, 15], for Stokes-Darcy see [16], and for a new technique to automatically
obtain such transmission conditions through probing, see [11].

3 Multi-physics problems for computational savings

The classical mathematical approach for such problems is the technique of matched
asymptotic expansions. For the model problem of advection diffusion with 𝑎 > 0,

𝜈𝜕𝑥𝑥𝑢 + 𝑎𝜕𝑥𝑢 − 𝜂𝑢 = 0 in (0, 1), 𝑢(0) = 0, 𝑢(1) = 1, (5)

a regular expansion for 𝜈 small, 𝑢 = 𝑢0 + 𝜈𝑢1 + . . ., gives

𝑎𝜕𝑥𝑢0 − 𝜂𝑢0 + 𝜈(𝜕𝑥𝑥𝑢0 + 𝑎𝜕𝑥𝑢1 − 𝜂𝑢1) + . . . = 0,

and therefore by matching terms 𝑢0 (𝑥) = 𝑒
𝜂

𝑎
(𝑥−1) , 𝑢1 (𝑥) = − 𝜂2

𝑎3
𝑒

𝜂

𝑎
(𝑥−1) (𝑥 − 1) etc,

which can not capture the zero boundary condition at 𝑥 = 0. One thus introduces the
stretched variable 𝑥 := 𝜖𝜉, 𝑢̃(𝜉) := 𝑢(𝜖𝜉), which yields 𝜕𝜉 𝑢̃(𝜉) = 𝜕𝑥𝑢(𝜖𝜉)𝜖 and

𝜈

𝜖2
𝜕𝜉 𝜉 𝑢̃ + 𝑎

𝜖
𝜕𝑥 𝑢̃ − 𝜂𝑢̃ = 0 =⇒ 𝜕𝜉 𝜉 𝑢̃ + 𝑎𝜕𝑥 𝑢̃ − 𝜈𝜂𝑢̃ = 0,

where we multiplied by 𝜖 and choose 𝜖 := 𝜈. A regular expansion for 𝜈 small,
𝑢̃ = 𝑢̃0 + 𝜈𝑢̃1 + . . . now gives for the first term with 𝑢̃0 (0) = 0

𝜕𝜉 𝜉 𝑢̃0 + 𝑎𝜕𝜉 𝑢̃0 = 0 =⇒ 𝑢̃0 (𝜉) = 𝐶 (𝑒−𝑎𝜉 − 1).

The constant 𝐶 is then determined by asymptotic matching, lim𝜉=∞ 𝑢̃0 (𝜉) = −𝐶 =

𝑒−
𝜂

𝑎 = lim𝑥=0 𝑢0 (𝑥). We obtain the inner and outer solutions 𝑢̃0 (𝑥) = 𝑒−
𝜂

𝑎 (1−𝑒− 𝑎𝑥
𝜈 ),

𝑢0 (𝑥) = 𝑒
𝜂

𝑎
(𝑥−1) , and the composite solution by summation, and subtraction of the

common limit,
𝑢𝑎0 (𝑥) = −𝑒−

𝜂

𝑎 𝑒−
𝑎𝑥
𝜈 + 𝑒

𝜂

𝑎
(𝑥−1) .

The exact solution of the problem is 𝑢(𝑥) = 𝑒𝜆1𝑥−𝑒𝜆2𝑥
𝑒𝜆1−𝑒𝜆2 , with 𝜆1 :=

−𝑎+
√
𝑎2+4𝜂𝜈
2𝜈 =

𝜂

𝑎
− 𝜂2

𝑎3
𝜈 + 𝑂 (𝜈2), 𝜆2 :=

−𝑎−
√
𝑎2+4𝜂𝜈
2𝜈 = − 𝑎

𝜈
− 𝜂

𝑎
+ 𝜂2

𝑎3
𝜈 + 𝑂 (𝜈2). We show in

Figure 3 (left) the difference between the matched asymptotic solution and the exact
one. Using asymptotic analysis, one can show
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Fig. 3 Example for 𝑎 = 1, 𝜂 = 1, 𝜈 = 0.1. Left: matched asymptotic expansions. Right: overlapping
coupling from [5] with overlap 𝛾1,2 = (0.2, 0.3) .

Fig. 4 Navier-Stokes and potential flow coupling from [5].

Proposition 1 (Matched asymptotic expansion) For 𝜈 small, the matched asymp-
totic expansion approximation satisfies for 𝑥 = 𝑂 (𝜈𝛼) the error estimate

‖𝑢 − 𝑢𝑎0 ‖𝐿∞ (0,𝑥) =

{
O(𝜈) 0 < 𝛼 < 1,
O(𝜈𝛼) 𝛼 ≥ 1. (6)

An optimal control method for such a coupled solution was given in [5]:

In order to achieve this coupling, the authors use an overlapping decomposition as
in Figure 4 (left), and then impose on the Navier-Stokes equation the velocity u = v
on the interface 𝛾1, and on the potential flow the Dirichlet condition 𝜙 = 𝜓 on the
interface 𝛾2. They then determine v and 𝜓 that minimize the functional

𝐽 (v, 𝜓) := 1
2

∫
Ω12

|u − ∇𝜙|2,
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Fig. 5 Example for 𝑎 = 𝜂 = 1, 𝜈 = 0.1. Left: 𝜒-method with 𝛿 = 5. Right: variational coupling
with 𝐿 = 0.1.

where u solves the Navier-Stokes equation in Ω2 and 𝜙 the potential equation in Ω1.
For the model problem of the matched asymptotic expansion we solve for 𝛾2 < 𝛾1

𝜈𝜕𝑥𝑥𝑢𝑎𝑑 + 𝑎𝜕𝑥𝑢𝑎𝑑 − 𝜂𝑢𝑎𝑑 = 0 in (0, 𝛾1), 𝑎𝜕𝑥𝑢𝑎 − 𝜂𝑢𝑎 = 0 in (𝛾2, 1),

𝑢𝑎𝑑 (0) = 0, 𝑢𝑎 (1) = 1, and 𝑢𝑎𝑑 (𝛾1) = 𝜓 with 𝜓 which minimizes the norm
‖𝑢𝑎𝑑 − 𝑢𝑎‖𝐿2 (𝛾1 ,𝛾2) . We get with this approach the results shown in Figure 3 (right).
Using asymptotic analysis, we obtain

Proposition 2 (Advection error estimate, valid for all methods) At 𝑥 = O(𝜈𝛼),
the advection approximation satisfies the error estimate

𝑢(𝑥) − 𝑢𝑎 (𝑥) =
{
𝑂 (𝜈) 0 ≤ 𝛼 < 1,
𝑂 (1) 𝛼 ≥ 1. (7)

Proposition 3 (Optimal control method) For 𝛾1 = 𝑂 (𝜈𝛼), 𝛼 ≥ 0, the optimal
control method satisfies for the advection diffusion approximation the error estimate

‖𝑢 − 𝑢𝑎𝑑 ‖𝐿∞ (0,𝛾1) =


𝑂 (𝜈) 0 ≤ 𝛼 < 1,
𝑂 (𝜈1−𝛽) 𝛼 ≥ 1, 𝛾2 = 𝑂 (𝜈𝛽), 0 ≤ 𝛽 < 1,
𝑂 (1) otherwise.

(8)

The 𝜒-method from [1] is a different such coupling method. The idea is to add in the
advection reaction diffusion equation a cut-function for the diffusion,

−𝜈𝜒𝛿 (Δ𝑢) + a · ∇𝑢 + 𝑏𝑢 = 𝑓 in Ω, 𝜒
𝛿 (𝑠) :=

{
0, |𝑠 | ≤ 𝛿,

𝑠, |𝑠 | > 𝛿.

The authors say: “We remark that the perturbed equation is at least as difficult to
solve as the imperturbed equation”, but conceptually think it is better to solve the
same equation on the entire domain. For our model problem, we obtain the results
in Figure 5 (left). Using asymptotic analysis, one can show
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Proposition 4 (𝜒-method) For 𝛿 = 𝑂 (𝜈−𝛼), 𝛼 ≥ 0, the 𝜒−method for (5) satisfies
in the advection diffusion region the error estimate

‖𝑢 − 𝑢𝑎𝑑 ‖𝐿∞ (0,𝛾1) =


𝑂 (𝜈) 0 ≤ 𝛼 < 1,
𝑂 (𝜈2−𝛼) 1 ≤ 𝛼 ≤ 2,
𝑂 (1) 𝛼 > 2.

(9)

A non-overlapping DD coupling technique (𝛾 := 𝛾1 = 𝛾2) was proposed in [17]:

“We deal with the coupling of hyperbolic and parabolic systems in a domain Ω divided into
two disjoint subdomains Ω+ and Ω− [. . . ] The justification of the interface conditions is
based on a singular perturbation analysis, that is, the hyperbolic system is rendered parabolic
by adding a small artificial “viscosity”. As this goes to zero, the coupled parabolic-parabolic
problem degenerates into the original one, yielding some conditions at the interface. These
we take as interface conditions for the hyperbolic-parabolic problem. Actually, we discuss
two alternative sets of interface conditions according to whether the regularization procedure
is variational or nonvariational.”

For our model problem, the variational condition is (𝜈𝜕𝑥 + 𝑎)𝑢𝑣
𝑎𝑑

(𝛾) = 𝑎𝑢𝑎 (𝛾),
and the non-variational condition is 𝑢𝑛𝑣

𝑎𝑑
(𝛾) = 𝑢𝑎 (𝛾). We show in Figure 5 (right)

a computational result for the variational and non-variational conditions.

Proposition 5 (DD coupling technique) For 𝛾 = 𝑂 (𝜈𝛼), 𝛼 ≥ 0, we obtain in the
advection diffusion region for the variational and non-variational approach

‖𝑢 − 𝑢𝑣
𝑎𝑑

‖𝐿∞ (0,𝛾) =

{
𝑂 (𝜈) 0 ≤ 𝛼 < 1,
𝑂 (𝜈𝛼) 𝛼 ≥ 1, ‖𝑢 − 𝑢𝑛𝑣

𝑎𝑑
‖𝐿∞ (0,𝛾) =

{
𝑂 (𝜈) 0 ≤ 𝛼 < 1,
𝑂 (1) 𝛼 ≥ 1.

(10)

In the PhD thesis [6], a fundamental new optimization based methodwas introduced:

“L’objectif est alors d’essayer des conditions de transmission adéquates à la frontière de
façon à minimiser l’erreur entre la solution du problème de transmission et celle de Navier
Stokes complet dans tout le domaine.”

The new idea is to find coupling conditions s.t. | |𝑢 − 𝑢approx | | −→ min! Based
on absorbing boundary condition techniques, this gives variational coupling con-
ditions for our model problem, and non-variational ones for the inverse flow di-
rection (𝑎 < 0). We introduced in [9, 10] a method based on the factorization
−𝜈(𝜕𝑥 − 𝜆2) (𝜕𝑥 − 𝜆1)𝑢 = 0, 𝜆1 ≥ 0, 𝜆2 ≤ 0. The idea consists in first solving the
modified advection equation 𝑢′ma − 𝜆1𝑢ma = 0 on (𝛾, 1) with the boundary con-
dition 𝑢ma (1) = 𝑔 where 𝑔 is an approximation at order 𝑚 of a function of 𝑢(1)
and 𝑢′(1). We solve then the advection-diffusion equation with the boundary condi-
tion (−𝜈(𝑢factad ) ′+𝜈𝜆2𝑢factad ) (𝛾) = 𝑎𝑢ma (𝛾) and we obtain the following error estimate:

Proposition 6 (Factorization method) For 𝛾 = 𝑂 (𝜈𝛼), 𝛼 ≥ 0,

‖𝑢 − 𝑢factad ‖𝐿∞ (0,𝛾) =

{
𝑂 (𝜈𝑚) 0 ≤ 𝛼 < 1,
𝑂 (𝜈𝑚+𝛼−1) 𝛼 ≥ 1,

A further technique using partition of unity methods can be found in [2].
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Substructuring of Arbitrary Domain
Decomposition Methods

Martin J. Gander and Frédéric Nataf

1 History of substructuring in domain decomposition

Substructuring domain decompositionmethods and iterative substructuringmethods
referred originally to a few specific methods, see e.g. [13]. The purpose of this note is
to briefly present this historical development, and then to show that in fact all domain
decomposition methods with exact subdomain solves can be written in substructured
form, see e.g. [4] for two level- and [1] for non-linear Schwarz methods, and this
can be beneficial for the run-time of domain decomposition methods when Krylov
acceleration is used, because the memory requirements are drastically reduced [3].
In Civil Engineering, Hardy Cross introduced in 1930 an interesting iterative

method for solving structural problems [5], see Figure 1 for the physical intuition
he had. The unknowns in the method are the moments 𝑚 𝑗 at joints, and the method
corresponds to a Gauss-Seidel iteration to update one moment after the other, e.g.

Fig. 1 The Hardy Cross method from 1932.
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Fig. 2 Example of Hardy Cross from 1932.

[
𝐴11 𝐴12
𝐴21 𝐴22

] [
𝑚1
𝑚2

]
=

[
𝑓1
𝑓2

]
=⇒

[
𝐴11
𝐴21 𝐴22

] [
𝑚𝑛+11
𝑚𝑛+12

]
=

[
−𝐴12

] [
𝑚𝑛1
𝑚𝑛2

]
+
[
𝑓1
𝑓2

]
, (1)

if there were only two moments in the system. In Figure 2, we show an original
example of Hardy Cross with many moments, and how he computed the corrections.
He starts with initial moment estimates, e.g. 0 at 𝐴, (0,−100) at 𝐵 etc., and then
computes in alternating fashion how moments at joints have to be updated until
convergence. The moment corrections are tabulated, and then summed. The Hardy
Cross method is therefore an iterative method, and one has to know how beams
(subdomains) react to loads to execute it, the beams themselves are not simulated.
In Aerospace Engineering, Janusz Przemieniecki introduced in 1963 a sub-

structuring method where now also the substructures (subdomains) must be simu-
lated [12], see also Figure 3:

Fig. 3 Substructures of Przemieniecki from 1963.
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“The necessity for dividing a structure into substructures arises either from the requirement
that different types of analysis have to be used on different components, or because the
capacity of the digital computer is not adequate to cope with the analysis of the complete
structure.”

We see that the motivation is now quite different from Hardy Cross, including
local solvers and distributed computing, and Przemieniecki describes his methods
as follows:

“In the present method each substructure is first analyzed separately, assuming that all
common boundaries with adjacent substructures are completely fixed: these boundaries are
then relaxed simultaneously and the actual boundary displacements are determined from
the equations of equilibrium of forces at the boundary joints. The substructures are then
analyzed separately again under the action of specified external loading and the previously
determined boundary displacements.”

In the notation of Przemieniecki, from the finite element system for the entire struc-
ture 𝐾𝑈 = 𝑃, unknowns are reordered into interior subdomain unknowns (’i’), and
interface unknowns (’b’ for ’boundary’),[

𝐾𝑏𝑏 𝐾𝑏𝑖
𝐾𝑖𝑏 𝐾𝑖𝑖

] [
𝑈𝑏
𝑈𝑖

]
=

[
𝑃𝑏
𝑃𝑖

]
. (2)

Fixing the interface unknowns 𝑈𝑏 , one obtains for the interior unknowns 𝑈𝑖 =

𝐾−1
𝑖𝑖
(𝑃𝑖 − 𝐾𝑖𝑏𝑈𝑏). Introducing this into the equations for interface unknowns yields

(𝐾𝑏𝑏 − 𝐾𝑏𝑖𝐾−1
𝑖𝑖 𝐾𝑖𝑏)𝑈𝑏 = 𝑃𝑏 − 𝐾𝑏𝑖𝐾−1

𝑖𝑖 𝑃𝑖 , (3)

which is simply the Schur complement system. This system is then solved by a direct
method by Przemieniecki, and once the interface values are known, the substructures
can be computed, see the above quote. The method is therefore not iterative.
Wlodzimierz Proskurowski andOlofWidlund then introduced in 1976 a new

Schur complement technique for capacitance matrix methods [11]:

“This new formulation leads to well-conditioned capacitance matrix equations which can
be solved quite efficiently by the conjugate gradient method.”

The key point here is that now the Schur complement system is solved by a Krylov
method, not by a direct method, and thus the method is iterative.
Soon thereafter, in 1982, Max Dryja, the first winner of the Olof Widlund prize

in domain decomposition, then introduced the seminal idea of preconditioning this
Schur complement system in substructuring domain decomposition [7]:

“The system is solved by generalized conjugate gradient method with 𝐾 1/2 as the precondi-
tioning.”

Max Dryja used an L-shaped domain Ω decomposed into two rectangles Ω1 :=
(0, 𝑎1) × (0, 𝑏2) and Ω1 := (𝑎1, 𝑎2) × (0, 𝑏1), see Figure 4, and the key matrix 𝐾
here is the discrete Laplacian operator on the subdomain interface, whose square
root allowed Max Dryja to get a condition number estimate which does not depend
on the mesh size!
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Fig. 4 Max Dryja inventing preconditioned iterative substructuring in 1982.

Bruno Després introduced in 1991 in his seminal PhD thesis [6] on what we call
now optimized Schwarz methods a substructured formulation of a non-overlapping
Schwarz method with Robin transmission conditions for Helmholtz problems; we
quote directly from his PhD thesis in French:

Equation (7.36) is the Schwarz substructured system, and the last equation is Schwarz
for the first time written as an iteration on interface unknowns 𝑥𝑛 only.
Only three years later, Frédéric Nataf, François Rogier and Eric De Sturler

introduced substructured overlapping optimized Schwarz methods [10]. They con-
sidered a domain decomposition into strips, see Figure 5, and an optimized Schwarz
method which can be made nil-potent, a groundbreaking result they prove in two
ways, as seen directy from their manuscript:

Fig. 5 Strip decomposition considered for substructured optimized Schwarz.
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The second proof uses a substructured formulation of the Schwarz method, using
the letter ℎ𝑖,𝑟 or 𝑙 for the interface unknowns, which gives in their manuscript

The authors even show the Schur complement like system to which the substructured
overlapping Schwarz method at the limit corresponds, which is simply obtained by
taking the limit in the above system as the iteration index 𝑛 goes to infinity, see
also (4) and (5) below. For a first substructured optimized Schwarz method with
coarse correction, see [9].
The key ideas for substructuring a domain decomposition method are therefore to

decompose, like in all domain decompositionmethods, the domain of computationΩ
into subdomains Ω 𝑗 , which were historically non-overlapping for substructuring.
The domain decomposition iteration is then reformulated as an iteration on inter-
face unknowns only, which were historically moments, then Dirichlet traces, and
then Robin or more generalized traces. The resulting interface systems are solved
by iteration, historically Gauss-Seidel, then by Conjugate Gradients, possibly with
a preconditioner for Dirichlet coupling, and finally by Schwarz iterations.

2 General concepts and examples

Domain decomposition methods for linear problems can all be written as stationary
iterations of the form (see e.g. [13, Section 1.3 and 1.4], and also the examples
below)

u𝑛+1 = u𝑛 + 𝑀−1 (f − 𝐴u𝑛), (4)

where u𝑛 can be interface values or subdomain volume solutions, and 𝑀 represents
the domain decomposition method, which can contain also a coarse space. This
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𝑥

𝑦

Ω

Ω1 Ω2

Γ

𝑥

𝑦

Ω

Ω1 Ω2

Γ2 Γ1

Fig. 6 Non-overlapping decomposition (left) and overlapping one (right).

iteration can be accelerated by a Krylov method: one then solves the DD iterative
system (4) at the fixed point using a Krylov method. The system at the fixed point,
i.e., when 𝑛→ ∞ and thus u𝑛+1 and u𝑛 cancel, is simply the preconditioned system

𝑀−1𝐴u = 𝑀−1f. (5)

Solving this with a Krylov method gives much better convergence than the stationary
domain decomposition iteration (4), since the error e𝑛 := u − u𝑛 for (4) satisfies

e𝑛+1 = e𝑛 − 𝑀−1𝐴e𝑛 = (𝐼 − 𝑀−1𝐴)𝑛+1e0, (6)

and a Krylov method finds a much better residual polynomial than (𝐼 − 𝑀−1𝐴)𝑛+1,

e𝑛+1 = 𝑝𝑛+1 (𝑀−1𝐴)e0, (7)

with 𝑝𝑛+1 (𝑀−1𝐴) much smaller than (𝐼 − 𝑀−1𝐴)𝑛+1. For example Conjugate Gra-
dients minimizes the energy norm | |e𝑛 | |𝑀−1/2𝐴𝑀−1/2 , and GMRES minimizes the
residual | |𝑀−1 (f − 𝐴u𝑛) | |2, see e.g. [2, Chapter 4.1].
Note that this same idea of acceleration also applies to non-linear problems:

to accelerate a non-linear domain decomposition iteration u𝑛+1 = 𝐺 (u𝑛) (or any
non-linear fixed point iteration), one simply solves the fixed point equation 𝐹 (u) :=
u − 𝐺 (u) = 0 by Newton’s method, which is called non-linear preconditioning [8].
We now show several examples on how domain decomposition iterations can be

substructured and then accelerated by Krylov methods. We start with the Dirichlet-
Neumann method for a Poisson problem and two subomains, as shown in Figure 6
on the left. The method solves alternatingly Dirichlet and Neumann problems,

Δ𝑢𝑛1 = 𝑓 in Ω1, Δ𝑢𝑛2 = 𝑓 in Ω2,
𝑢𝑛1 = 𝑢

𝑛−1
Γ

on Γ, 𝜕𝑥𝑢
𝑛
2 = 𝜕𝑥𝑢

𝑛
1 on Γ,

𝑢𝑛1 = 𝑔 on 𝜕Ω ∩ 𝜕Ω1, 𝑢𝑛2 = 𝑔 on 𝜕Ω ∩ 𝜕Ω2,
(8)

and uses a relaxation to update the Dirichlet transmission condition,

𝑢𝑛Γ = 𝜃𝑢𝑛−1Γ + (1 − 𝜃)𝑢𝑛2 (Γ). (9)
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Using the Dirichlet to Neumann operator DtN, and the Neumann to Dirichlet oper-
ator NtD, we can write this method in substructured form, namely

𝑢𝑛Γ = 𝜃𝑢𝑛−1Γ + (1 − 𝜃)NtD2 ( 𝑓 , 𝑔,DtN1 ( 𝑓 , 𝑔, 𝑢𝑛−1Γ )). (10)

To use Krylov acceleration, we would solve this iteration at the fixed point using
a Krylov method. By linearity the iteration at the fixed point yields the linear system

(𝐼 − NtD2 (0, 0,DtN1 (0, 0, ·))𝑢Γ = NtD2 ( 𝑓 , 𝑔,DtN1 ( 𝑓 , 𝑔, 0)). (11)

Similarly, the Neumann-Neumann method for this example would be

Δ𝑢𝑛
𝑖
= 𝑓 in Ω𝑖 , Δ𝜓𝑛

𝑖
= 0 in Ω𝑖 ,

𝑢𝑛
𝑖
= 𝑢𝑛−1

Γ
on Γ, 𝜕𝑛𝑖𝜓

𝑛
𝑖
= 𝜕𝑛1𝑢

𝑛
1 + 𝜕𝑛2𝑢

𝑛
2 on Γ,

𝑢𝑛
𝑖
= 𝑔 on 𝜕Ω ∩Ω𝑖 , 𝜓𝑛

𝑖
= 0 on 𝜕Ω ∩Ω𝑖 ,

(12)

with the interface updating relaxation

𝑢𝑛Γ = 𝑢𝑛−1Γ − 𝜃 (𝜓1 (Γ) + 𝜓2 (Γ)). (13)

This iteration can be written in the substructured form,

𝑢𝑛Γ = 𝑢𝑛−1Γ − 𝜃
2∑︁
𝑖=1
NtD𝑖

©­«
2∑︁
𝑗=1
DtN 𝑗 ( 𝑓 , 𝑔, 𝑢𝑛−1Γ )ª®¬ , (14)

and the solution can again be accelerated by solving with a Krylov method the
Neumann-Neumann system at the fixed point,

2∑︁
𝑖=1
NtD𝑖

©­«
2∑︁
𝑗=1
DtN 𝑗 (0, 0, ·)

ª®¬ 𝑢Γ = −
2∑︁
𝑖=1
NtD𝑖

©­«
2∑︁
𝑗=1
DtN 𝑗 ( 𝑓 , 𝑔, 0)

ª®¬ . (15)

Finally, a Schwarz method for this problem and the overlapping decomposition
in Figure 6 (right) would be

Δ𝑢𝑛1 = 𝑓 in Ω1, Δ𝑢𝑛2 = 𝑓 in Ω2,
𝑢𝑛1 = 𝑢

𝑛−1
2 on Γ1, 𝑢𝑛2 = 𝑢

𝑛
1 on Γ2,

𝑢𝑛1 = 𝑔 on 𝜕Ω ∩ 𝜕Ω1, 𝑢𝑛2 = 𝑔 on 𝜕Ω ∩ 𝜕Ω2.

To obtain a substructured formulation, we introduce the interface unknowns
𝜆𝑛 := 𝑢𝑛2 |Γ1 , and then obtain the substructured iteration

𝜆𝑛 = DD21 ( 𝑓 , 𝑔,DD12 ( 𝑓 , 𝑔, 𝜆𝑛−1)),

where DD𝑖 𝑗 is the name for the subdomain solves and Dirichlet traceing. This
iteration can again be accelerated by applying a Krylov method to the preconditioned
substructured system
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(𝐼 − DD21 (0, 0,DD12 (0, 0, ·))𝜆 = DD21 ( 𝑓 , 𝑔,DD12 ( 𝑓 , 𝑔, 0)).

For a more general substructured formulation of Schwarz methods, see [1, 3, 4].

3 Conclusions

We have seen that classical iterative domain decomposition methods can all be
written in substructured form, and iterations in substructured form or in volume
form are equivalent, provided exact subdomain solvers are used, see e.g. [1, 4].
Krylov acceleration in substructured form is cheaper with Krylov methods that do
not have short recurrences (e.g. GMRES), because then the Krylov vectors to be
stored are only of the dimension of the interfaces, not the volume unknowns [3]. It is
easy to generate a substructured domain decomposition method from a volume one,
one just has to apply restrictions and prolongations with interface data, see e.g. [1].
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Spectral Q1-Based Coarse Spaces for Schwarz
Methods

Martin J. Gander and Serge Van Criekingen

1 Introduction

The Q1 coarse space [7, 8] is based on coarse Q1 bilinear finite element functions on
rectangular elements which are here the subdomains. Hence the coarse grid points
are placed (in 2-D) around each cross point of the non-overlapping decomposition. It
was studied by the authors in [9] and [10], together with several of its variants, in the
context of the Restricted Additive Schwarz (RAS) method [4] with optimized Robin-
type transmission conditions [11]. Encouraging numerical results were obtained
in that the resulting method, implemented in PETSc [1, 2, 3], showed computing
times competitive with multigrid approaches on a 2-D Laplace test case, for both
symmetric and non-symmetric (i.e., with advection) problems. Among the different
options invesitigated in [10], the so-called Half_Q1 (see also [6]) appeared most
promising, in that it halves the coarse space dimension compared to Q1 by using
a selected combination of its basis functions, while causing only a moderate increase
in iteration count, resulting in our best observed computing times. We therefore
pursue here the investigation around this Half_Q1 coarse space and, more generally,
Q1-based spectral coarse spaces [5], that is, coarse spaces based on the study of
the eigenvectors of the underlying iteration operator, in our case the RAS iteration
operator. Note however that we here do not compute a spectrum specific to each
problem (as for instance in [5]): we define our coarse spaces based on the observation
of the eigenmodes of the non-overlapping symmetric Laplace test case and hope that
the resulting method will apply succesfully to a broader set of problems, as was the
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case in [10] adding overlap and advection. Note that we here restrict our analysis to
homogeneous Dirichlet boundary conditions.
As already pointed out in [10], the largest two eigenvalues (i.e. closest to 1 in

modulus) of the RAS iteration operator for the 2-D symmetric Laplace model prob-
lem appear to be equal in modulus and of opposite signs, while the corresponding
eigenvectors appear to be one continuous (for the positive eigenvalue) and one dis-
continuous (for the negative one). We display these eigenmodes1 in Fig. 1 for various
square domain decompositions in the algebraically non-overlapping case (RAS then
reduces to Block Jacobi), as obtained using the SLEPc [12] eigenproblem companion
package to PETSc, with the traditional 5-point finite difference discretization. These
modes appear to be piecewise Q1 functions.
The Q1 basis functions at a cross point will be denoted by 𝑞1, 𝑞2, 𝑞3, 𝑞4 (i.e., bi-

linear with value 1 at the cross point and 0 at the other corners of the subdomain - see
Fig. 2a), the four of them building up a “hat” around the cross point. (Note that we
do not need to solve eigenproblems to use these Q1 functions.) The Half_Q1 coarse
space is based on the observation of the 2 × 2 eigenmodes (Fig. 1a and 1b): these
modes appear to be particular combinations of the Q1 basis functions at the cross
point, namely 𝑞1 + 𝑞2 + 𝑞3 + 𝑞4 (the “hat” itself) and 𝑞1 − 𝑞2 + 𝑞3 − 𝑞4. The
Half_Q1 coarse space is therefore obtained by taking these 2 combinations as basis
functions, thus with 2 basis functions per cross point instead of 4 in the Q1 case.
This is equivalent to taking the combinations 𝑞1 + 𝑞4 and 𝑞2 + 𝑞3 at each cross point.
By construction, the Half_Q1 space contains the first two eigenmodes of the

non-overlapping RAS iteration operator in the case of a 2 × 2 decomposition. In
turn, taking one of these first two RAS eigenmodes as initial guess of a coarse
corrected (i.e., two-level) RAS iteration process, we obtain convergence at iteration 1
using the Half_Q1 coarse space (with square subdomains and a non-overlapping
decomposition). For more than 2×2 subdomains, convergence at iteration 1 does not
hold, but it still holds (with the same restrictions) for square decompositions using
the Q1 coarse space, and it is moreover possible to define a Half_Q1+ coarse space,
larger than Half_Q1 but smaller than Q1, so as to include the first two modes, i.e.,
so that this convergence at iteration 1 is verified. This will be described in section 2.
Another new Q1-based coarse space, named Checkerboard, is introduced in

section 3. Based on the first two modes of the decomposition considered (not only
the 2 × 2 one), it can be applied to non-square decompositions.

2 The Half_Q1+ coarse space

The Half_Q1+ coarse space is built by adding a minimal number of extra basis
functions to the Half_Q1 coarse space so as to contain the first two eigenmodes of
the RAS iteration operator. It is meant to be smaller than the Q1 coarse space.

1 The problem solved here in thus 𝐺𝑥 = 𝜆𝑥 where 𝐺 := 𝐼 −
(∑𝐽

𝑗=1 𝑅̃
𝑇
𝑗
𝐴−1

𝑗
𝑅̃ 𝑗

)
𝐴, and 𝑅 𝑗 are

restriction operators to the 𝐽 non-overlapping subdomains decomposing the global domain.
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(a) 2 × 2 continuous (b) 2 × 2 discontinuous

(c) 3 × 3 continuous (d) 3 × 3 discontinuous

(e) 4 × 4 continuous (f) 4 × 4 discontinuous

(g) 5 × 5 continuous (h) 5 × 5 discontinuous

Fig. 1 Eigenmodes of the non-overlapping RAS iteration operator corresponding to the two largest
eigenvalues in modulus for the 2 × 2 to 5 × 5 decompositions, for a global 256x256 fine mesh
resolution.
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(f) 7 × 7

Fig. 2 In red, basis functions to be added to the Half_Q1 coarse space to obtain the Half_Q1+ one,
for various decompositions. 𝑞𝑖

1, 𝑞
𝑖
2, 𝑞

𝑖
3, 𝑞

𝑖
4 are the Q1 basis functions at cross point 𝑖 and qC

represents a constant function in the considered subdomain. For the 5 × 5 to 7 × 7 decompositions,
only a schematic view is given, with c representing a constant and x a Q1 basis function.

For the 2 × 2 decomposition, the Half_Q1+ coarse space is the same as the
Half_Q1 one. This is not the case anymore for the 3 × 3 decomposition: starting
from one of the first two modes of the RAS iteration operator (Figs. 1c and 1d),
convergence of the Half_Q1 coarse-corrected RAS iteration process is not obtained
at iteration 1, while it is the case with Q1. But what is missing in Half_Q1 to achieve
convergence at iteration 1? Observing Figs. 1c and 1d, one can intuitively infer that
adding a constant coarse function in the central subdomain to the Half_Q1 coarse
space will greatly improve convergence. Our numerical implementation showed that
this is actually sufficient to obtain convergence at iteration 1. The Half_Q1+ coarse
space is thus obtained from Half_Q1 by adding one single constant coarse function
in the central subdomain (qC in Fig. 2b) and is of size 9 (8 for Half_Q1 and 16
for Q1).
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For the 4×4 decomposition, the first two RASmodes are given in Figs. 1e and 1f.
In this case, the minimal function set we found to add to Half_Q1 to resolve the first
two modes is made out of one constant coarse function on each inner subdomain
as well as the extra Q1 basis functions located at the four “inner corners” one
subdomain away from the boundary, namely 𝑞14, 𝑞

3
3, 𝑞

7
2, 𝑞

9
1 in Fig. 2c. Thus, for this

decomposition, Half_Q1+ is of size 26 (18 for Half_Q1 and 36 for Q1).
We pursued our investigations for larger 𝑁 × 𝑁 decompositions and observed

that the extra basis functions to be added to the Half_Q1 coarse space to build
Half_Q1+ remain of two types, namely constants on each non-boundary subdomain
and extra Q1 basis functions located one subdomain away from the boundary, as
described schematically in Figs. 2d, 2e and 2f. Note that for 𝑁 odd, the extra basis
functions on the “middle" subdomain on each side (one subdomain away from the
boundary) appear not to be needed (see Figs. 2d and 2f). However, these appear to be
needed in the case 𝑁 = 11, 15, 19, 23, ... This was tested numericallly up to 𝑁 = 50,
i.e., 2500 subdomains. Note that, while the size of Q1 and Half_Q1 asymptotically
grow as 4𝑁2 and 2𝑁2 respectively, the size of Half_Q1+ grows as 3𝑁2.

(a) Square decompositions up to 32 × 32. (b) Square decompositions up to 64 × 64.

(c) With 4 × 2, 8 × 4 and 16 × 8 decompositions.

𝑞11

𝑞14 𝑞23

𝑞22

𝑞13

𝑞12 𝑞21

𝑞24

(d) 3 × 2 Checkerboard

Fig. 3 (a) to (c): Weak scaling experiment for overlapping RAS2 (256x256 fine mesh per subdo-
main) for various decompositions. Solid: number of iterations, dashed: computing times. (d): 3× 2
Checkerboard coarse basis function definition.
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(a) 3 × 2 continuous (b) 3 × 2 discontinuous

Fig. 4 Eigenmodes of the non-overlapping RAS iteration operator corresponding to the two largest
eigenvalues in modulus in the case of 3× 2 subdomains, for a global 256x256 fine mesh resolution.

Once defined, the Half_Q1+ coarse space can be used in a general context: weak
scaling experiment results for RAS with overlap 1 (in the PETSc sense, i.e, algebraic
overlap of 2) are given in Fig. 3a. Starting from a random initial guess, the number of
iterations and computing times necessary to bring the relative tolerance below 1.e-8
are given. In terms of iterations, Half_Q1+ tends to behave asymptotically like Q1,
while using only 3𝑁2 coarse functions instead of 4𝑁2. In terms of computing time,
Half_Q1+ yields scalable timings very close to Q1 and better than Half_Q1.
Note that the Half_Q1+ coarse space is not defined in the general rectangular case

since then even the Q1 coarse space does not resolve the first two non-overlapping
RAS eigenmodes. This is the case for instance for the 3 × 2 subdomain case whose
eigenmodes are depicted in Figs. 4a and 4b. A close observation of these plots
reveals that what appears as a horizontal edge at 𝑦 = .5 (assuming three subdomains
in 𝑥 and two in 𝑦) is in fact slightly curved, giving an intuitive explanation to the
non-inclusion of these modes into the Q1 coarse space.

3 The Checkerboard coarse space

The Checkerboard coarse space is based on the first two modes of the decompo-
sition considered, not only the 2 × 2 one as in the Half_Q1 case. It is defined for
square and rectangular decompositions, and contains 2 modes. For the 3×2 case and
as illustrated in Fig. 3d these two modes are 𝑞11 + 𝑞14 + 𝑞23 + 𝑞22 and 𝑞

1
3 + 𝑞12 + 𝑞21 + 𝑞24.

This definition comes from the observation of Fig. 4a and 4b. Starting from one of
these two modes, we observed that the Checkerboard coarse space gives the exact
same iterates as Half_Q1 but with 2 coarse functions instead of 4.
For the 3 × 3 case, the two Checkerboard modes are defined to be (using the

numbering in Fig. 2b and not including the constants) 𝑞11+𝑞
2
2+𝑞

3
3+𝑞

4
4+𝑞

1
4+𝑞

2
3+𝑞

3
2+𝑞

4
1

for the first mode and the sum of the 8 other 𝑞𝑖
𝑗
for the second mode. This comes

from the observation of Figs. 1c and 1d. It again produces the same iterates as
Half_Q1 but with 2 coarse functions instead of 8.
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For the 4 × 4 case, the observation of Figs. 1e and 1f leads us to define the
first Checkerboard coarse basis functions as (using the numbering in Fig. 2c and
grouping the 𝑞𝑖

𝑗
functions by subdomain) 𝑞11 + (𝑞22 + 𝑞31) + (𝑞14 + 𝑞23 + 𝑞42 + 𝑞51) +

(𝑞34 + 𝑞62) + (𝑞43 + 𝑞71) + (𝑞54 + 𝑞63 + 𝑞82 + 𝑞91) + (𝑞74 + 𝑞83) + 𝑞94 and the second one as
made out of the other 𝑞𝑖

𝑗
. Here these two Checkerboard coarse functions do not

produce the same iterates as the Half_Q1 coarse functions (18 in this case). This is
not surprising since no scalability can be achieved with only two coarse functions.
Nevertheless, it is still possible to obtain a scalable - at least in terms of iterations -

two-level method based on the two Checkerboard functions, by adding the constant
function in each subdomain, yielding a coarse space of size 𝑁2+2 that will be named
Nicolaides-Checkerboard since it is the same as theNicolaides coarse space [13]
but with two extra basis functions. Fig. 3b presents the sameweak scaling experiment
as Fig. 3a, but extended up to 4096 cores and also to other coarse spaces defined
in [10], namely Middle (classical coarse space with one coarse point in the middle
of each subdomain) and Q1_fair (same number of coarse mesh points as Q1, but
equally distributed in space). The two extra Checkerboard functions yield a major
improvement to the Nicolaides coarse space in terms of number of iterations, and this
improvement is scalable in that it remains as effective when increasing the number of
subdomains. In terms of computing time, the new coarse space appears not scalable
above 1024 cores: the coarse solve (performed here with a parallel direct solver)
remains a challenge, the two extra functions implying the whole domain.
Fig. 3c includes non-square decompositions up to 16 subdomains in one direction.

These appear to require more iterations (and computing time) than their square
counterparts. For the Half_Q1 coarse space, this can be related to the absence of
affine modes for non-square subdomains pointed out in [6].

4 Conclusions

We introduced two new Q1-based coarse spaces. Firstly, the Half_Q1+ coarse space
is built from Half_Q1 (thus from the first twoRASmodes of the 2×2 decomposition)
so as to contain the first two RAS modes of the considered (square) decomposition
while using a minimal set of coarse functions in order to remain smaller than Q1.
It was shown to behave asymptotically like Q1 in terms of number of iterations,
but using 3𝑁2 coarse functions instead of 4𝑁2. Secondly, the Checkerboard coarse
space is built as the first two RASmodes of the decomposition considered and can be
defined for square and rectangular decompositions. Combined with Nicolaides into
the Nicolaides-Checkerboard coarse space, it yields a significant improvement
in terms of number of iterations. Its scalability in time is still under investigation.
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Optimized Schwarz Methods for Stokes-Darcy
Flows: the Brinkman Equations

Martin J. Gander, Yiying Wang, and Yingxiang Xu

1 Introduction

The Brinkman equations model a combination of Darcy’s law and the Navier-Stokes
equations, see [3]. They describe the incompressible viscous flow of a fluid in
complex porous media with a high-contrast permeability coefficient such that the
flow is dominated by Darcy in porous media regions and by Stokes in fluid regions,
which naturally defines a decomposition of the domain by the physics of the problem,
see for example [4, 7].
LetΩ ⊂ R𝑑 (𝑑 = 2, 3) be a bounded convex domain with Lipschitz boundary 𝜕Ω;

the Brinkmanmodel for the unknown velocity vector function u : Ω → R𝑑 , the scalar
pressure function 𝑝 : Ω → R and some given force term f : Ω → R𝑑 is

−𝜈Δu + 𝜈

𝜅
u + ∇𝑝 = f in Ω,

∇ · u = 0 in Ω, (1)
u = g on 𝜕Ω,

where 𝜈 denotes the viscosity and 𝜅 is the permeability coefficient of the porous
media which occupies the domain Ω.
We present here a new non-overlapping Schwarz method [5, 10] for solving the

Brinkman equation (1)with fully-coupledRobin-like transmission conditions [1, 12].
We derive a general expression for the iteration operator, and study the correspond-
ing min-max problems for local approximations to optimize performance using
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asymptotic analysis, which we also illustrate with numerical results. For the sake of
simplicity, we will consider the 2-D case with g = 0 and 𝜈 = 1 (we can always scale
the solution with 𝜈) in two spatial dimensions.

2 Iteration operator of a non-overlapping Schwarz algorithm

We consider (1) on a bounded domain Ω in R2 formed by two non overlapping
subregions: the porous mediumΩ1, the fluid domainΩ2, separated by an interface Γ.
We split the domain Ω into two subdomains determined by the porous media:
Ω = Ω1 ∪ Ω2, and the permeability coefficient 𝜅 is a corresponding piecewise
constant function. On the two subdomains Ω 𝑗 ( 𝑗 = 1, 2), we use a parallel Schwarz
iteration with generic Robin-like transmission conditions,

−Δu𝑛
𝑗 + ∇𝑝𝑛𝑗 + 𝜅−1𝑗 u𝑛

𝑗 = f in Ω 𝑗 ,

∇ · u𝑛
𝑗 = 0 in Ω 𝑗 , (2)

u𝑛
𝑗 = g on 𝜕Ω 𝑗 \ Γ,

𝜎𝑛
𝑗 · nj + 𝑆 𝑗u𝑛

𝑗 = 𝜎𝑛−1
3− 𝑗 · nj + 𝑆 𝑗u𝑛−1

3− 𝑗 on Γ = Ω1 ∩Ω2,

where 𝜎𝑛
𝑗
:= ∇u𝑛

𝑗
− 𝑝𝑛

𝑗
𝐼 is the stress tensor [4, 7, 2] in domain Ω 𝑗 (𝐼 represents

the 2×2 identity matrix), n 𝑗 is the outward normal vector, 𝑆 𝑗 is a general 2×2-matrix
of linear operators, and 𝑛 is the iteration index of the Schwarz algorithm.

Subdomain solutions: In order to study solutions of (2), we consider a model
problem on the infinite plane Ω = R2, with the two subdomains Ω1 = R × (−∞, 0),
and Ω2 = R × (0,∞).
We use the Fourier transform in the 𝑥 (horizontal) variable for the error equations

of (2), i.e. f = g = 0. In Fourier space, the PDE in Ω 𝑗 becomes an ODE in 𝑦 (for
each fixed frequency 𝑘),

−
(
−𝑘2ê𝑛𝑗 +

𝑑2ê𝑛𝑗
𝑑𝑦2

)
+

(𝑖𝑘𝜂𝑛
𝑗

𝑑 𝜂̂𝑛
𝑗

𝑑𝑦

)
+ 𝜅−1𝑗 ê𝑛𝑗 = 0 in Ω 𝑗 , (3)

𝑖𝑘𝑒𝑛𝑗,1 +
𝑑𝑒𝑛

𝑗,2

𝑑𝑦
= 0 in Ω 𝑗 , (4)

ê𝑛𝑗 → 0 when |𝑦 | → ∞, (5)

𝜎̂𝑛
𝑗 · n 𝑗 + 𝑆 𝑗 ê𝑛𝑗 = 𝜎̂𝑛−1

𝑗′ · n 𝑗 + 𝑆 𝑗 ê𝑛−1𝑗′ on Γ, 𝑗 ′ = 3 − 𝑗 , (6)

where 𝜂 𝑗 := 𝑝 |Ω 𝑗
− 𝑝𝑛

𝑗
and ê𝑛𝑗 := û|Ω 𝑗

− û𝑛
𝑗 = (𝑒𝑛

𝑗,1, 𝑒
𝑛
𝑗,2)

𝑇 . Here 𝑒𝑛
𝑗,1 and 𝑒

𝑛
𝑗,2 denote

the horizontal component and the vertical component of ê𝑛𝑗 .



OSMs for Stokes-Darcy Flows: the Brinkman Equation 241

As in [8] and [6], we seek solutions using the ansatz

E𝑛
𝑗 :=

(
ê𝑛𝑗
𝜂𝑛
𝑗

)
(𝑦) = Φ𝑛

𝑗 𝑒
𝜉 𝑦 .

This leads to a system for Φ𝑛
𝑗
, namely

©­«
𝑘2 + 𝜅−1

𝑗
− 𝜉2 0 𝑖𝑘

0 𝑘2 + 𝜅−1
𝑗

− 𝜉2 𝜉

𝑖𝑘 𝜉 0

ª®®¬Φ𝑛
𝑗 = 0. (7)

In order to get a non-trivial solution to system (7), a necessary and sufficient condition
is that the matrix is singular, which leads to four possible values for 𝜉, 𝜉1 = |𝑘 |,
𝜉2 = 𝜆1, 𝜉3 = −|𝑘 |, and 𝜉4 = −𝜆2, with 𝜆 𝑗 :=

√︃
𝑘2 + 𝜅−1

𝑗
.

The solutions of (7) are linear combinations of four terms,

E𝑛
𝑗 =

4∑︁
𝑚=1

𝜸𝑛
𝑗,𝑚Φ𝑚𝑒

𝜉𝑚𝑦 ,

where ((Φ𝑚)1≤𝑚≥4) are the eigenvectors (corresponding to the eigenvalue 0), asso-
ciated with each of the 𝜉𝑚,

Φ1 =
©­«
−𝑖𝑘
−|𝑘 |
𝜅−11

ª®¬ , Φ2 =
©­«
𝜆1
−𝑖𝑘
0

ª®¬ , Φ3 =
©­«
−𝑖𝑘
|𝑘 |
𝜅−12

ª®¬ , Φ4 =
©­«
𝜆2
𝑖𝑘

0

ª®¬.
Due to the condition (5), 𝜉1, 𝜉2 ≥ 0 and 𝜉3, 𝜉4 ≤ 0, only two terms are possible in
the expression of E𝑛

𝑗
in each of the subdomain Ω 𝑗 , and we obtain for the subdomain

errors

E𝑛
1 (𝑦) =

2∑︁
𝑚=1

𝜸𝑛
1,𝑚Φ𝑚𝑒

𝜉𝑚𝑦 , E𝑛
2 (𝑦) =

4∑︁
𝑚=3

𝜸𝑛
2,𝑚Φ𝑚𝑒

𝜉𝑚𝑦 . (8)

Iteration operator: To obtain the iteration operator, we need to apply the trans-
mission conditions (6) to (8). Using the horizontal component of equation (3), we
can simplify the error in the pressure as

𝜂𝑛𝑗 =
𝑖

𝑘
((𝑘2 + 𝜅−1𝑗 )ê𝑛𝑗 −

𝑑2ê𝑛𝑗
𝑑𝑦2

) · (1, 0)𝑇 . (9)

Inserting the gradient of ê𝑛𝑗 and (9) into the transmission condition

∇ê𝑛𝑗 · n 𝑗 − 𝜂𝑛𝑗 𝐼 · n 𝑗 + 𝑆 𝑗 ê𝑛𝑗 = ∇ê𝑛−1𝑗′ · n 𝑗 − 𝜂𝑛−1𝑗′ 𝐼 · n 𝑗 + 𝑆 𝑗 ê𝑛−1𝑗′ ,
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and using that the normal vector n 𝑗 = (0, (−1) 𝑗−1)𝑇 at the interface, we obtain

𝑀
𝑑2 ê𝑛1
𝑑𝑦2

+ 𝑑ê𝑛1
𝑑𝑦

+ 𝑃1ê𝑛1 + 𝑆1ê𝑛1 = 𝑀
𝑑2 ê𝑛−12
𝑑𝑦2

+ 𝑑ê𝑛−12
𝑑𝑦

+ 𝑃2ê𝑛−12 + 𝑆1ê𝑛−12 ,

−𝑀 𝑑2 ê𝑛2
𝑑𝑦2

− 𝑑ê𝑛2
𝑑𝑦

− 𝑃2ê𝑛2 + 𝑆2ê𝑛2 = −𝑀 𝑑2 ê𝑛−11
𝑑𝑦2

− 𝑑ê𝑛−11
𝑑𝑦

− 𝑃1ê𝑛−11 + 𝑆1ê𝑛−11 ,
(10)

with 𝑀 :=
(
0 0
𝑖
𝑘
0

)
, and 𝑃 𝑗 :=

(
0 0
𝜆2
𝑗

𝑖𝑘
0

)
, 𝑗 = 1, 2. Using (8), we then get

ê𝑛1 (𝑦) = 𝑀12𝑒
𝜉12𝑦𝜸𝑛

12 , ê𝑛2 (𝑦) = 𝑀34𝑒
𝜉34𝑦𝜸𝑛

34 , with

𝑀12 :=
(
−𝑖𝑘 𝜆1
−|𝑘 | −𝑖𝑘

)
, 𝑒 𝜉12𝑦 :=

(
𝑒 𝜉1𝑦 0
0 𝑒 𝜉2𝑦

)
, 𝜸𝑛

12 :=
(
𝛾𝑛1,1
𝛾𝑛1,2

)
,

𝑀34 :=
(
−𝑖𝑘 𝜆2
|𝑘 | 𝑖𝑘

)
, 𝑒 𝜉34𝑦 :=

(
𝑒 𝜉3𝑦 0
0 𝑒 𝜉4𝑦

)
, 𝜸𝑛

34 :=
(
𝛾𝑛2,3
𝛾𝑛2,4

)
.

Therefore (10) becomes 𝐻11𝜸
𝑛
12 = 𝑤𝑖𝑑𝑒ℎ𝑎𝑡𝐻12𝜸

𝑛−1
34 , 𝐻22𝜸

𝑛
34 = 𝐻21𝜸

𝑛−1
12 ,

where, with 𝑑𝑀12𝑒
𝜉12𝑦𝜸𝑛

12
𝑑𝑦

= 𝑀12𝜉12𝑒
𝜉12𝑦𝜸𝑛

12 and
𝑑2𝑀12𝑒

𝜉12𝑦𝜸𝑛
12

𝑑𝑦
= 𝑀12𝜉

2
12𝑒

𝜉12𝑦𝜸𝑛
12,

we have

𝐻11 = 𝑀𝑀12

(
𝜉21 0
0 𝜉22

)
+ 𝑀12

(
𝜉1 0
0 𝜉2

)
+ 𝑃1𝑀12 + 𝑆1𝑀12,

𝐻12 = 𝑀𝑀34

(
𝜉23 0
0 𝜉24

)
+ 𝑀34

(
𝜉3 0
0 𝜉4

)
+ 𝑃2𝑀34 + 𝑆1𝑀34,

𝐻22 = −𝑀𝑀34

(
𝜉23 0
0 𝜉24

)
− 𝑀34

(
𝜉3 0
0 𝜉4

)
− 𝑃2𝑀34 + 𝑆2𝑀34,

𝐻21 = −𝑀𝑀12

(
𝜉21 0
0 𝜉22

)
− 𝑀12

(
𝜉1 0
0 𝜉2

)
− 𝑃1𝑀12 + 𝑆2𝑀12.

Assuming that 𝐻11 and 𝐻22 are invertible ,we thus get for the error coefficients 𝜸𝑛
12

the recurrence relation 𝜸𝑛
12 = 𝐻−1

11 𝐻12𝐻
−1
22 𝐻21𝜸

𝑛−2
12 . Hence, the convergence factor

of the error in the Schwarz method (2) is determined by the spectral radius of the
iteration operator given by

𝐻 (𝑘, 𝑆1, 𝑆2) := 𝐻−1
11 𝐻12𝐻

−1
22 𝐻21. (11)

Convergence factor: In order to ensure fast convergence of the Schwarz algorithm
for all possible frequencies 𝑘 ∈ R, we have to choose operators 𝑆 𝑗 ( 𝑗 = 1, 2) that
make the convergence factor small [9, 5, 2]. The convergence factor is

𝜌OSM (𝑘, 𝑆1, 𝑆2) := 𝜌(𝐻 (𝑘, 𝑆1, 𝑆2)) < 1, (12)

where 𝜌(𝐻) is the spectral radius of 𝐻 for a fixed 𝑘 and 𝑆 𝑗 ( 𝑗 = 1, 2).
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Optimal operators: The symbols 𝑆 𝑗 (or equivalently operators 𝑆 𝑗 ) are still free
to be chosen at this point. It is possible to make the right hand of the transmission
conditions (10) vanish, and to obtain an algorithm that converges in two iterations,
if we choose

𝑆∗1 := −𝑀𝑀34

(
𝜉23 0
0 𝜉21

)
𝑀−1
34 − 𝑀34

(
𝜉3 0
0 𝜉4

)
𝑀−1
34 − 𝑃2,

𝑆∗2 := 𝑀𝑀12

(
𝜉21 0
0 𝜉21

)
𝑀−1
12 + 𝑀12

(
𝜉1 0
0 𝜉2

)
𝑀−1
12 + 𝑃1,

and a lengthy calculation permits to simplify the preceding expressions, yielding

𝑆∗1 =

(
|𝑘 | + 𝜆2 (𝑘) 𝑖𝑘

|𝑘 |𝜆2 (𝑘)
−𝑖𝑘
|𝑘 | 𝜆2 (𝑘)

𝜆2 (𝑘)
|𝑘 | ( |𝑘 | + 𝜆2 (𝑘))

)
, 𝑆∗2 =

(
|𝑘 | + 𝜆1 (𝑘) −𝑖𝑘

|𝑘 | 𝜆1 (𝑘)
𝑖𝑘
|𝑘 |𝜆1 (𝑘)

𝜆1 (𝑘)
|𝑘 | ( |𝑘 | + 𝜆1 (𝑘))

)
.

(13)
Some terms in these operators are not polynomials in 𝑖𝑘 , and thus the corresponding
operators 𝑆 𝑗 = F −1

𝑥 (𝑆 𝑗 ) in real space are nonlocal in 𝑥, which is not convenient for
implementations, since it requires convolution computations.

3 Optimized Schwarz methods and asymptotic performance

We would therefore like to approximate 𝑆∗
𝑗
by local operators that still give very

fast convergence of the Schwarz iteration. The idea is to find local operators 𝑆 𝑗 that
minimize the convergence factor (12) uniformly over a relevant range of frequencies,
which leads to the min-max problem

min
𝑆̂ 𝑗

(
max

𝑘∈[𝑘min ,𝑘max ]
𝜌OSM (𝑘, 𝑆1, 𝑆2)

)
. (14)

Although the problem we considered before is a continuous model on the infinite
plane, the range of frequencies can be bounded by incorporating information about
the actual discretized problem we intend to solve. In (14), 𝑘min can in general be
negative, but when the optimized 𝑆 𝑗 lead to an even convergence factor in 𝑘 , as we
will see later, we can equivalently assume 𝑘min > 0. Thus the minimal frequency
component of the solution can be estimated by 𝑘min = 𝜋

𝐿
for an interface of length 𝐿,

and 𝑘max = 𝜋
ℎ
with grid spacing ℎ, see for example [9, 6].

Let 𝑆 𝑗 ( 𝑗 = 1, 2) keep the sign, symmetry and parity of the optimal operator

in (13), and let us denote 𝑆 𝑗 :=
(
S 𝑗

11 (𝑘) S
𝑗

12 (𝑘)
S 𝑗

21 (𝑘) S
𝑗

22 (𝑘)

)
,withS 𝑗

21 (𝑘) = −S 𝑗

12 (𝑘) ( 𝑗 = 1, 2).

We first study properties of 𝐻 (𝑘, 𝑆1, 𝑆2) for these 𝑆 𝑗 , which can be obtained by
a lengthy technical computation that will appear elsewhere [11].
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Lemma 1 Assuming that S 𝑗

12 = 𝑖𝑘 · 𝑓0 𝑗 (𝑘) and S 𝑗

𝑙𝑙
and 𝑓0 𝑗 (𝑘) (𝑙, 𝑗 = 1, 2) are even

functions of 𝑘 , then 𝐻 (𝑘, 𝑆1, 𝑆2) is always of the form

𝐻 (𝑘, 𝑆1, 𝑆2) =
(
𝑓1 (𝑘) 𝑖𝑔1 (𝑘)
𝑖𝑔2 (𝑘) 𝑓2 (𝑘)

)
,

where 𝑓𝑙 (𝑘) are even functions and 𝑔𝑙 (𝑘) are odd functions of 𝑘 for 𝑘 ∈ R (𝑙 = 1, 2).
Furthermore, this implies that

- the eigenvalues of 𝐻 (𝑘, 𝑆1, 𝑆2) are even functions of 𝑘 for 𝑘 ∈ R,
- the optimized problem in (14) is equivalent to restricting 𝑘 ∈ R+.

Now, we derive optimized Robin-like transmission conditions for continuous and
discontinuous coefficients 𝜅.

The continuous case, 𝜅1 = 𝜅2 := 𝜅: In this case, 𝜆 𝑗 (𝑘) =
√︃
𝑘2 + 1

𝜅
= 𝜆(𝑘), and

we introduce the structurally consistent approximations replacing 𝑘 by the constant 𝑝
for the non-local terms 𝑘 and 𝜆 𝑗 (𝑘), c.f. (13),

𝑆𝑐1 :=

(
𝑝 + 𝜆(𝑝) 𝑖𝑘

𝑝
𝜆(𝑝)

−𝑖𝑘
𝑝
𝜆(𝑝) 𝜆(𝑝)

𝑝
(𝑝 + 𝜆(𝑝))

)
, 𝑆𝑐2 :=

(
𝑝 + 𝜆(𝑝) −𝑖𝑘

𝑝
𝜆(𝑝)

𝑖𝑘
𝑝
𝜆(𝑝) 𝜆(𝑝)

𝑝
(𝑝 + 𝜆(𝑝))

)
,

with one free parameter 𝑝, where 𝑝, 𝑘 > 0 (using superscript 𝑐 for continuous to
distinguish from the following discontinuous case). With 𝑆 𝑗 = 𝑆𝑐

𝑗
, the convergence

factor 𝜌OSM (𝑘, 𝑆1, 𝑆2) only depends on 𝑘 and 𝑝, so we denote it by 𝜌OSM (𝑘, 𝑝).
A lengthy computation shows that 𝐻−1

11 𝐻12 = 𝐻−1
22 𝐻21, and we obtain the following

property to choose the maximum of the two eigenvalues of 𝐻.

Lemma 2 The eigenvalues 𝜇± (𝑘, 𝑝) of 𝐻 (𝑘, 𝑆𝑐1 , 𝑆
𝑐
2 ) are always positive, and

sign(𝜇+ (𝑘, 𝑝) − 𝜇− (𝑘, 𝑝)) = sign(𝑝 − 𝑘).

From Fig.1 (left), we find that the optimized parameter 𝑝∗ for continuous 𝜅 is
characterized by an equioscillation property: 𝜌OSM (𝑘min, 𝑝∗) = 𝜌OSM (𝑘max, 𝑝∗).
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Fig. 1 Left: Optimized 𝜌OSM (𝑘, 𝑝) for 𝜅1 = 𝜅2. Right: Optimized 𝜌OSM (𝑘, 𝑝, 𝑞) for 𝜅1 ≠ 𝜅2.
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Theorem 1 The optimized parameter 𝑝∗ solved from 𝜇+ (𝑘min, 𝑝) = 𝜇− (𝑘max, 𝑝) is

𝑝∗ ∼ 𝐶𝑝ℎ
− 12 , 𝐶𝑝 :=

√︄
𝐿2 − 𝐷2

4𝜅 𝐷2

𝐿

, 𝐷 := 𝜋
√
𝜅 −

√︁
𝐿2 + 𝜅𝜋2,

when 𝑘min =
𝜋
𝐿

and 𝑘max =
𝜋
ℎ

. Furthermore, the asymptotic convergence factor of
the resulting one-side optimized Schwarz method is

min
𝑘∈[𝑘min ,𝑘max ]

𝜌OSM (𝑘, 𝑝∗) ∼ 1 − 𝐶 · ℎ 12 , 𝐶 :=
4𝐶𝑝

𝜋
.

Proof We make the ansatz 𝑝∗ := 𝐶𝑝 · ℎ− 12 . Expanding for small ℎ, we obtain

𝜇+ (𝑘min, 𝑝∗) = 1 −
𝐿 (𝐿2 − 𝐷2)
𝐶𝑝𝜅𝜋𝐷

2

√
ℎ +𝑂 (ℎ), where 𝐷 = 𝜋

√
𝜅 −

√︁
𝐿2 + 𝜅𝜋2,

𝜇− (𝑘max, 𝑝∗) = 1 −
4𝐶𝑝

𝜋

√
ℎ +𝑂 (ℎ)

Solving 𝜇+ (𝑘min, 𝑝) = 𝜇− (𝑘max, 𝑝) asymptotically then determines 𝑝∗. �

The discontinuous case, 𝜅1 ≠ 𝜅2: For 𝑝 and 𝑞 (𝑝, 𝑞 > 0) two free parameters, we
introduce the structurally consistent approximations (superscript 𝑑 for discontinuous)

𝑆𝑑1 =

(
𝑝 + 𝜆2 (𝑝) 𝑖𝑘

𝑝
𝜆2 (𝑝)

−𝑖𝑘
𝑝
𝜆2 (𝑝) 𝜆2 (𝑝)

𝑝
(𝑝 + 𝜆2 (𝑝))

)
, 𝑆𝑑2 =

(
𝑞 + 𝜆1 (𝑞) −𝑖𝑘

𝑞
𝜆1 (𝑞)

𝑖𝑘
𝑞
𝜆1 (𝑞) 𝜆1 (𝑞)

𝑞
(𝑞 + 𝜆1 (𝑞))

)
,

and study the associated convergence factor 𝜌OSM (𝑘, 𝑝, 𝑞) numerically. We show in
Fig.1 (right) that

• the optimized parameters 𝑝∗ and 𝑞∗ are characterized by an equioscillation prop-
erty: 𝜌OSM (𝑘min, 𝑝∗, 𝑞∗) = 𝜌OSM (𝑘max, 𝑝∗, 𝑞∗) = 𝜌OSM ( 𝑘̄ , 𝑝∗, 𝑞∗),
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Fig. 2 Log–log plot of the convergence factor and the optimized parameters for 𝜅1 = 10−5 and
𝜅2 = 5 × 10−3.
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• high contrast 𝜅 leads to fast convergence,
• the two parameters (two-sided Robin) give better convergence than the one pa-
rameter (one sided Robin) case earlier.

Numerically, we observe in Fig. 2 that the asymptotic performance is given by

𝑝∗ = 𝐶1ℎ
− 14 , 𝑞∗ = 𝐶2ℎ

− 34 , 𝑘̄ = 𝐶3ℎ
− 12 , 𝜌OSM (𝑘, 𝑝∗, 𝑞∗) = 1 − 𝐶0ℎ

1
4 +𝑂 (ℎ 12 ),

(15)
where 𝐶0, 𝐶1, 𝐶2 and 𝐶3 are constants.
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Parareal Algorithms for the Cahn-Hilliard
Equation

Gobinda Garai and Bankim C. Mandal

1 Introduction

In this work we are interested in designing time parallel algorithm for the Cahn-
Hilliard (CH) equation. The CH equation

∂u
∂ t

= ∆ f (u)− ε
2
∆

2u for (x, t) ∈Ω(⊂ R)× (0,T ],

∂u
∂n

=
∂ (∆u)

∂n
= 0 for (x, t) ∈ ∂Ω × (0,T ],

u(x,0) = u0(x) for x ∈Ω ,

(1)

is a prototype to display the evolution of a binary melted alloy below the critical
temperature; see [2, 3]. The nonlinear function f (u) satisfies f (u) = F ′(u), where
F(u) = 0.25(u2−1)2 is the homogeneous free energy. As the solution u of (1) takes
values in [−1,1], the function f (u) becomes Lipschitz with Lipschitz constant 2.
The solution of (1) involves two different dynamics, one being the phase separation
which is rapid in time and phase regions are separated by the interface of width
ε(0< ε� 1). Another is phase coarsening which is slower in time, during this stage
the solution lean towards an equilibrium state which reduces the internal energy. The
energy associated with the CH equation is

E (u) :=
∫

Ω

(
F(u)+

ε2

2
|∇u|2

)
dx,

known as the Ginzburg-Landau free energy functional. The energy functional E (u)
and total mass

∫
Ω

u satisfy the following
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d
dt

E (u)≤ 0,
d
dt

∫
Ω

u = 0.

And the energy minimization and mass conservation property of (1) is expected to
be preserved by numerical method. To deal with that, Eyre proposed an uncondi-
tionally gradient stable scheme in [4, 5]. The idea is to split the homogeneous free
energy F(u) into the sum of a convex and a concave term, and then treat the convex
term implicitly and the concave term explicitly to obtain a nonlinear approximation
for the CH equation (1) in 1D as:

un+1
j −un

j = ∆ tA(un+1
j )3−∆ tAun

j − ε
2
∆ tA2un+1

j , (2)

where ∆ t is the time step and A is the discrete Laplacian and the scheme is
O(∆ t +∆x2) accurate [4, 5]. To get a linear approximation of (1) the term (un+1

j )3

in (2) is rewritten as (un
j)

2un+1
j to get the following

un+1
j −un

j = ∆ tA(un
j)

2un+1
j −∆ tAun

j − ε
2
∆ tA2un+1

j , (3)

which is also an unconditionally gradient stable scheme and has the same accuracy
as the nonlinear scheme (2), see [4]. This is known as linearly stabilized splitting
scheme (LSS). We also use the following semi-implicit Euler (SIE) approximation
of (1)

un+1
j −un

j = ∆ tA(un
j)

3−∆ tAun
j − ε

2
∆ tA2un+1

j , (4)

though it is not a physically relevant approximation as the scheme is not gradient
stable [5]. The solution of (1) involves long time dynamics, namely phase coarsen-
ing stage, thus the CH equation (1) needs to be simulated over long time window
to get the solution. Therefore it is of great importance to develop efficient time par-
allel method for (1) to speed-up the computation. To achieve this we construct the
Parareal methods [9] for (1). The Parareal method has been successfully applied to:
fluid-structure interaction in [6], Navier-Stokes equation in [7], molecular-dynamics
in [1]. The main objective of this work is to adapt the Parareal algorithm for the CH
equation (1) and study the convergence behaviour.

We introduce the Parareal algorithm in one spatial dimension for the CH equa-
tion in Section 2. In Section 3 we discuss stability and convergence property of the
Parareal method. To illustrate our theoretical findings, the accuracy and robustness
of the proposed algorithms, we present the numerical results in Section 4.

2 Parareal method
To solve the following system of ODEs

du
dt

= f (u), u(0) = u0, t ∈ (0,T ], (5)

Lions et al. proposed the Parareal algorithm in [9], where f : R+ ×Rd → Rd is
Lipschitz. The method constitutes of the following strategy: first a non-overlapping
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decomposition of time domain (0,T ] into N smaller subintervals of uniform size,
i.e., (0,T ] =∪N

n=1[Tn−1,Tn] with Tn−Tn−1 = ∆T = T/N, secondly one divides each
time slice [Tn−1,Tn] into J smaller time slices with ∆ t = ∆T/J, then a fine propa-
gator F which is expensive but accurate, and a coarse propagator G which is cheap
but may be inaccurate are assigned to compute the solution in fine grid and coarse
grid, respectively. Then the Parareal algorithm for (5) starts with an initial approxi-
mation U0

n at Tn’s, obtained by the coarse operator G and solve for k = 0,1, . . .

Uk+1
0 = u0,

Uk+1
n+1 = G(Tn+1,Tn,Uk+1

n )+F(Tn+1,Tn,Uk
n )−G(Tn+1,Tn,Uk

n ),
(6)

where S(Tn+1,Tn,Uk
n ) provides solution at Tn+1 by taking the initial solution Un at Tn

for the k-th iteration for S = For G. The Parareal solution Uk+1
n+1 converges towards

the fine resolution in finite step. To get a practical parallel algorithm we should have
k� N.
Now to employ discrete Parareal method for the CH equation (1) we discretize (1)
as shown earlier and denote Uk

n as u( jh,Tn), j = 1,2, . . . ,Nx in (6) for k-th iteration,
where h is spatial mesh size and Nx is number of nodes in spatial domain. We fix the
fine propagator F to be the LSS scheme (3) in (6). For the coarse operator G in (6)
we consider the following three choices:

(i) The coarse propagator G is given by the LSS scheme in (3).
(ii) The coarse propagator G is given by the SIE scheme in (4).

(iii) The coarse propagator G is given by the implicit scheme of the heat equation

ut = 2∆u, (7)

which is a linearization of (1) with respect a constant solution and then truncate
the fourth order derivative term as ε is small.

The third choice of coarse operator is interesting as the equation (7) does not
represent the underlying physics of the equation (1). Here we study the conver-
gence behaviour of the Parareal algorithm corresponding to the coarse operators (ii)
and (iii). The coarse operator corresponding to (ii) and (iii) can be written as

GSI(U) =
(
I + ε

2
∆TA2)−1

(U +∆TA f (U)) , U ∈ RNx , (8a)

GIH(U) = (I−2∆TA)−1 U, U ∈ RNx (8b)

respectively, and A = 1
h2 [1 −2 1] ∈RNx×Nx with A(1,2) = 2 = A(Nx,Nx−1) is the

discrete Laplacian with homogeneous Neumann boundary conditions.
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3 Stability and convergence result

In this section, we discuss the stability and convergence issues related to the coarse
operators in (8). We start with a few auxiliary results.

Lemma 1 (Growth of coarse operators)
The coarse operators in (8) satisfy the growth condition

‖ GSI(U) ‖ ≤‖U ‖, ∀U ∈ RNx (9a)

‖ GIH(U) ‖ ≤‖U ‖, ∀U ∈ RNx . (9b)

Proof The eigenvalues of A are λp =
2
h2

{
cos
(
(p−1)π
Nx−1

)
−1
}
, p= 1, · · · ,Nx. Clearly,

λp’s are distinct and satisfy λp ≤ 0,∀p. By taking norm on (8a) and using Lip-

schitz condition on f we get ‖ GSI(U) ‖≤ max
λp

∣∣∣ 1+2∆T λp
1+ε2∆T λ 2

p

∣∣∣ ‖ U ‖. Now the func-

tion g(x) = 1−2∆T x
1+ε2∆T x2 ≤ 1, ∀x ≥ 0. Hence, we have (9a). Now ‖ (I−2∆TA)−1 ‖=

1
min
λp
{1−2∆T λp} = 1. Then by taking norm on (8b) we have (9b). �

Lemma 2 (Lipschitz property of G)
The coarse operators in (8) satisfy the Lipschitz condition

‖ GSI(Tn+1,Tn,U)−GSI(Tn+1,Tn,V ) ‖ ≤‖U−V ‖, ∀U,V ∈ RNx (10a)

‖ GIH(Tn+1,Tn,U)−GIH(Tn+1,Tn,V ) ‖ ≤‖U−V ‖, ∀U,V ∈ RNx . (10b)

Proof The results are straight forward. �

Lemma 3 (Local truncation error (LTE) differences)
Let F(Tn+1,Tn,U) be the fine operator in (3). For any coarse operators among

GSI(Tn+1,Tn,U),GIH(Tn+1,Tn,U) in (8), the following LTE differences hold

F(Tn+1,Tn,U)−GSI(Tn+1,Tn,U) = c2(U)∆T 2 + c3(U)∆T 3 + · · · , (11a)

F(Tn+1,Tn,U)−GIH(Tn+1,Tn,U) = c′1(U)∆T + c′2(U)∆T 2 + · · · , (11b)

where c j(U), c′j′(U) are continuously differentiable function for j = 2,3, . . . , j′ =
1,2, . . .

Proof Let S(Tn+1,Tn,U) be the exact solution of (1). Since F and GSI have LTE
of O(∆T 2), we have

F(Tn+1,Tn,U)−GSI(Tn+1,Tn,U)

=F(Tn+1,Tn,U)−S(Tn+1,Tn,U)+S(Tn+1,Tn,U)−GSI(Tn+1,Tn,U)

=c̃2(U)∆T 2 + c̃3(U)∆T 3 + · · ·+ ĉ2(U)∆T 2 + ĉ3(U)∆T 3 + · · ·
=c2(U)∆T 2 + c3(U)∆T 3 + · · · .

Similarly one can obtain LTE differences for GIH. �
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Theorem 1 (Stability) Let GSI(Tn+1,Tn,Un) be the coarse operator in (8a), then the
corresponding Parareal method is stable, i.e., for each n and k, there exist a con-
stant C such that

‖Uk+1
n+1 ‖≤‖ u0 ‖+C∆T 2(n+1)

(
max

0≤ j≤n
‖Uk

j ‖
)
.

Proof Taking norm in the correction step (6) we have

‖Uk+1
n+1 ‖ ≤‖ GSI(Tn+1,Tn,Uk+1

n ) ‖+ ‖ F(Tn+1,Tn,Uk
n )−GSI(Tn+1,Tn,Uk

n ) ‖
≤‖Uk+1

n ‖+C∆T 2 ‖Uk
n ‖,

(12)

where in the 2nd inequality we use (9a) and (11a). Taking the sum over n on the
recurrence relation (12) we have

‖Uk+1
n+1 ‖ − ‖Uk+1

0 ‖≤C∆T 2
n

∑
j=0
‖Uk

j ‖≤C∆T 2(n+1)
(

max
0≤ j≤n

‖Uk
j ‖
)
.

Now using Uk+1
0 = u0 we get the stated result. �

Theorem 2 (Stability) Let GIH(Tn+1,Tn,Un) be the coarse operator in (8b), then the
corresponding Parareal method is stable, i.e., for each n and k, there exist a con-
stant C such that

‖Uk+1
n+1 ‖≤‖ u0 ‖+C∆T (n+1)

(
max

0≤ j≤n
‖Uk

j ‖
)
.

Proof Proof can be obtained by following Theorem 1. �

Theorem 3 (Convergence) Let F(Tn+1,Tn,Un) be the fine operator in (3) and
GSI(Tn+1,Tn,Un) be the coarse operator in (8a). The propagator F and GSI satisfy
LTE differences (11a) and GSI satisfies Lipschitz condition (10a), then the corre-
sponding Parareal method satisfies the following error estimation

‖U(Tn)−Uk
n ‖≤

C′3
C′1

(C′1∆T 2)k+1

(k+1)!

k

∏
j=0

(n− j),

where the constants C′1, C′3 are related to LTE.

Theorem 4 (Convergence) Let F(Tn+1,Tn,Un) be the fine operator in (3) and
GIH(Tn+1,Tn,Un) be the coarse operator in (8b). The propagator F and GIH satisfy
LTE differences (11b) and GIH satisfies Lipschitz condition (10b), then the corre-
sponding Parareal method satisfies the following error estimation

‖U(Tn)−Uk
n ‖≤

C′′3
C′′1

(C′′1 ∆T )k+1

(k+1)!

k

∏
j=0

(n− j),

where the constants C′′1 , C′′3 are related to LTE.
The proof of Theorems 3 & 4 is followed by the argument of the proof of Theo-

rem 1 in [8].
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4 Numerical illustration

We now show numerical experiments of Parareal method for (1) corresponding to
three different coarse operators. We consider the random initial condition for (1).
The Parareal error is measured in L∞(0,T ;L2), and we fix the spatial domain
Ω = (0,2).

4.1 F = LSS, G = LSS

We first run the numerical experiments of Parareal method corresponding to fine
and coarse operator as LSS scheme (3). We plot the error curves for short as well
as long time window on the left panel in Figure 1 with ε2 = 0.01, J = 40 and
h = 1/64. The method converges in four iterations to the fine solution of tempo-
ral accuracy O(10−4) for different T . For T = 1 we can see that the Parareal method
20 times faster than the serial method on single processor. To see the dependency
of the parameter ε , we plot the error curve on the right in Figure 1 for different ε

by fixing T = 1, N = 80, J = 40. We observe that the method behaves similar ir-
respective of any choice of ε . On the left of the Figure 2 we plot error curves for
more refined solution for T = 1, N = 80, J = 40, ε2 = 0.01. We observe that the
convergence is independent of mesh parameters.
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Fig. 1 On the left: different T and N; On the right: different choice of ε .

4.2 F = LSS, G = SIE

Now we run experiments of Parareal method corresponding to fine operator as LSS
scheme (3) and coarse operator as SIE scheme (4). We plot the error curves on the
right panel in Figure 2 for short as well as long time window with the parameters
ε2 = 0.01, h = 1/64, J = 40. Ignoring the cost of computing the coarse operator, it
is visible that a reasonable speed up is possible; for example to get the solution at
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Fig. 2 On the left: different h,∆ t for LSS; On the right: different T,N for SIE.
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Fig. 3 On the left: different ε; On the right: different h,∆ t.

T = 4 with an accuracy of O(10−4) the method needs four iterations and this implies
that the solution can be obtained 80 times faster than serial method on a single
processor. We plot the error curves on the left in Figure 3 for different ε by taking
T = 1, N = 80, J = 40 and we see that the convergence is independent of the choice
of ε . On the right of the Figure 3 we plot error curves for more refined solution for
T = 1, N = 80, J = 40, ε2 = 0.01. We see that the convergence is independent of
mesh parameters.

4.3 F = LSS, G = IH

We finally take the fine operator as LSS scheme (3) and coarse operator as implicit
scheme of (7).We plot the error curves on the left in Figure 4 for short as well as
long time window with the parameters ε2 = 0.01, h = 1/64, J = 40 and small ∆T .
We observe the convergence but it is not immediate. Even if we take reasonably
large ∆T we obtain convergence but with very less speed up, see on the right of
Figure 4. Even though the heat equation (7) as coarse operator provide solution we
need further investigation to obtain the speed up.
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Fig. 4 On the left: small ∆T ; On the right: large ∆T .

5 Conclusions

We formulated and studied the Parareal methods for the CH equation in 1D. We gave
stability and convergence estimates of the Parareal method for different choices of
coarse operator. Lastly we presented numerical experiments for all the proposed
algorithms.
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A Parallel Space-Time Finite Element Method
for the Simulation of an Electric Motor

Peter Gangl, Mario Gobrial, and Olaf Steinbach

1 Introduction

Shape and topology optimization of electrical machines [3] as well as the optimal
control [4] subject to parabolic evolution equations require an efficient solution of
the direct simulation problem which is forward in time, and in most cases also of the
adjoint problem which is backward in time. Space-time discretization methods [8]
are therefore a method of choice to solve the overall system at once, and also to
allow for adaptive refinements and a parallel solution simultaneously in space and
time. In the case of a fixed spatial domain the numerical analysis of a space-time
finite element method was given, e.g., in [7], see also the review article [8] and the
references given therein. In this note we present an extension of this approach in order
to simulate an electric motor where one part, the rotor, is rotating in time, while the
stator is fixed. In addition to the stator and the rotor we have to include an air domain
which is non-conducting. Hence we have to deal with an elliptic-parabolic interface
problem for the eddy current approximation of the Maxwell system in two space
dimensions. In this paper we present its space-time finite element discretization and
provide first numerical results using parallel solution strategies in order to handle the
overall system in the space-time domain. More details on the numerical analysis of
the proposed method and further numerical results will be given in our forthcoming
paper [2].
This paper is structured as follows: In Section 2 we describe the mathematical

model and its space-time variational formulation. Unique solvability is based on the
Babuška–Nečas theorem, i.e., on injectivity and surjectivity of the operator which is
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associated to the bilinear form of the variational formulation. The space-time finite
element discretization is given in Section 3, which also provides an a priori error
estimate, i.e., Cea’s lemma, for the numerical solution. Numerical results are given in
Section 4, and finally we provide some conclusions and comment on ongoing work.

2 Mathematical model and space-time variational formulation

To model the electromagnetic fields in a rotating electric machine, we consider the
eddy current approximation of the Maxwell equations,

curl𝑦𝐻 (𝑦, 𝑡) = 𝑗 (𝑦, 𝑡), curl𝑦𝐸 (𝑦, 𝑡) = −𝜕𝑡𝐵(𝑦, 𝑡), div𝑦𝐵(𝑦, 𝑡) = 0,

subject to the constitutive equations

𝐵(𝑦, 𝑡) = 𝜇(𝑦)𝐻 (𝑦, 𝑡) +𝑀 (𝑦, 𝑡), 𝑗 (𝑦, 𝑡) = 𝑗𝑖 (𝑦, 𝑡) +𝜎(𝑦)
[
𝐸 (𝑦, 𝑡) +𝑣(𝑦, 𝑡)×𝐵(𝑦, 𝑡)

]
,

with thematerial dependentmagnetic permeability 𝜇, the electric conductivity𝜎, and
an impressed electric current 𝑗𝑖 . Moreover, 𝑀 is the magnetization which vanishes
outside permanent magnets. For a reference point 𝑥 ∈ R3 we consider the trajectory
𝑦(𝑡) = 𝜑(𝑡, 𝑥), where the deformation 𝜑 is assumed to be bijective and sufficiently
regular for all 𝑡 ∈ (0, 𝑇), satisfying 𝜑(0, 𝑥) = 𝑥. Here, 𝑇 > 0 is a given time
horizon. Finally, we introduce the velocity 𝑣(𝑦, 𝑡) = 𝑑

𝑑𝑡
𝑦(𝑡). In addition we consider

appropriate boundary and initial conditions to be specified.
When using the vector potential ansatz 𝐵(𝑦, 𝑡) = curl𝑦𝐴(𝑦, 𝑡), and following the

standard approach to consider a spatially two-dimensional reference domainΩ ⊂ R2
describing the cross section of the electric machine, this gives an evolution equation
to find 𝑢(𝑦, 𝑡) as third component of 𝐴 = (0, 0, 𝑢)> such that

𝜎(𝑦) 𝑑

𝑑𝑡
𝑢(𝑦, 𝑡) − div𝑦 [𝜈(𝑦)∇𝑦𝑢(𝑦, 𝑡)] = 𝑗𝑖 (𝑦, 𝑡) − div𝑦 [𝜈(𝑦)𝑀⊥ (𝑦, 𝑡)] (1)

is satisfied in the space-time domain

𝑄 :=
{
(𝑦, 𝑡) ∈ R3 : 𝑦 = 𝜑(𝑡, 𝑥) ∈ Ω(𝑡), 𝑥 ∈ Ω ⊂ R2, 𝑡 ∈ (0, 𝑇)

}
.

Note that in (1) we use the reluctivity 𝜈 = 1/𝜇, and the total time derivative

𝑑

𝑑𝑡
𝑢(𝑦, 𝑡) := 𝜕𝑡𝑢(𝑦, 𝑡) + 𝑣(𝑦, 𝑡) · ∇𝑦𝑢(𝑦, 𝑡).

Moreover,𝑀⊥ = (−𝑀2, 𝑀1)> is the perpendicular of the first two components of the
magnetization 𝑀 . In addition to (1) we consider homogeneous Dirichlet boundary
conditions 𝑢 = 0 on Σ := 𝜕Ω × (0, 𝑇), and the homogeneous initial condition
𝑢(𝑥, 0) = 0 whenever 𝜎(𝑥) > 0 is satisfied for 𝑥 ∈ Ω.
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The electric motor consists of a rotor in Ω𝑟 (𝑡), the stator in Ω𝑠 , and the air
domain Ω𝑎𝑖𝑟 which is non-conducting, i.e., 𝜎 = 0 in Ω𝑎𝑖𝑟 . This shows that we can
formulate (1) as an elliptic-parabolic interface problem. While the stator domain Ω𝑠

is fixed in time, i.e., 𝑣 ≡ 0, the rotating subdomain Ω𝑟 (𝑡) can be described, when
using polar coordinates, as

𝑥 = 𝑟

(
cos 𝜑
sin 𝜑

)
, 𝑦(𝑡) = 𝜑(𝑡, 𝑥) = 𝑟

(
cos(𝜑 + 𝛼𝑡)
sin(𝜑 + 𝛼𝑡)

)
∈ Ω𝑟 (𝑡), 𝑡 ∈ (0, 𝑇),

with 𝛼 > 0 describing the velocity

𝑣(𝑦, 𝑡) = 𝑑

𝑑𝑡
𝑦(𝑡) = 𝛼𝑟

(
− sin(𝜑 + 𝛼𝑡)
cos(𝜑 + 𝛼𝑡)

)
= 𝛼

(
−𝑦2
𝑦1

)
.

The variational formulation of the parabolic-elliptic interface problem (1) is to find
𝑢 ∈ 𝑋 such that

𝑏(𝑢, 𝑧) :=
∫ 𝑇

0

∫
Ω(𝑡)

[
𝜎

𝑑

𝑑𝑡
𝑢 𝑧 + 𝜈 ∇𝑦𝑢 · ∇𝑦𝑧

]
𝑑𝑦 𝑑𝑡 (2)

=

∫ 𝑇

0

∫
Ω(𝑡)

[
𝑗𝑖 𝑧 + 𝜈 𝑀⊥ · ∇𝑦𝑧

]
𝑑𝑦 𝑑𝑡

is satisfied for all 𝑧 ∈ 𝑌 , where 𝑌 := 𝐿2 (0, 𝑇 ;𝐻10 (Ω(𝑡))) and

𝑋 :=
{
𝑢 ∈ 𝑌 : 𝜎

𝑑

𝑑𝑡
𝑢 ∈ 𝑌 ∗, 𝑢(𝑥, 0) = 0 for 𝑥 ∈ Ω : 𝜎(𝑥) > 0

}
.

Related norms are given by

‖𝑧‖2𝑌 :=
∫ 𝑇

0

∫
Ω(𝑡)

𝜈 |∇𝑦𝑧 |2 𝑑𝑦 𝑑𝑡, ‖𝑢‖2𝑋 := ‖𝑢‖2𝑌 + ‖𝑤𝑢 ‖2𝑌 ,

where 𝑤𝑢 ∈ 𝑌 is the unique solution of the variational formulation∫ 𝑇

0

∫
Ω(𝑡)

𝜈 ∇𝑦𝑤𝑢 · ∇𝑦𝑧 𝑑𝑦 𝑑𝑡 =

∫ 𝑇

0

∫
Ω(𝑡)

𝜎
𝑑

𝑑𝑡
𝑢 𝑧 𝑑𝑦 𝑑𝑡 for all 𝑧 ∈ 𝑌 . (3)

The bilinear form 𝑏(·, ·) as defined in (2) is bounded and satisfies an inf-sup stability
condition, see [2, 7], i.e., for all 𝑢 ∈ 𝑋 and 𝑧 ∈ 𝑌 there holds

|𝑏(𝑢, 𝑧) | ≤
√
2 ‖𝑢‖𝑋 ‖𝑧‖𝑌 ,

1
√
2
‖𝑢‖𝑋 ≤ sup

0≠𝑧∈𝑌

𝑏(𝑢, 𝑧)
‖𝑧‖𝑌

.

Moreover, the bilinear form 𝑏(·, ·) is surjective, i.e., for any 𝑧 ∈ 𝑌 there exists
a 𝑢𝑧 ∈ 𝑋 such that 𝑏(𝑢𝑧 , 𝑧) > 0 is satisfied, see [2]. Hence, all assumptions of the
Babuška–Nečas theorem [1, 5] are satisfied, i.e. we conclude unique solvability of
the space-time variational formulation (2).
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3 Space-time finite element discretization

For the space-time finite element discretization of the variational formulation (2)
we introduce conforming finite dimensional spaces 𝑋ℎ ⊂ 𝑋 and 𝑌ℎ ⊂ 𝑌 where
we assume as in the continuous case 𝑋ℎ ⊂ 𝑌ℎ . For our specific purpose we even
consider 𝑋ℎ = 𝑌ℎ := 𝑆1

ℎ
(𝑄ℎ) ∩ 𝑋 = span{𝜑𝑘 }𝑀𝑘=1 as the space of piecewise linear

and continuous basis functions 𝜑𝑘 which are defined with respect to some admissible
locally quasi-uniform decomposition Tℎ = {𝜏ℓ }𝑁ℓ=1 of the space-time domain 𝑄 into
shape-regular simplicial finite elements 𝜏ℓ of mesh size ℎℓ , see, e.g., [6].
The Galerkin space-time finite element variational formulation of (2) reads to

find 𝑢ℎ ∈ 𝑋ℎ , such that

𝑏(𝑢ℎ , 𝑧ℎ) =
∫ 𝑇

0

∫
Ω(𝑡)

[
𝑗𝑖 𝑧ℎ + 𝜈 𝑀⊥ · ∇𝑦𝑧ℎ

]
𝑑𝑦 𝑑𝑡 for all 𝑧ℎ ∈ 𝑌ℎ . (4)

Unique solvability of (4) is based on the discrete inf-sup stability condition

1
√
2
‖𝑢ℎ ‖𝑋ℎ

≤ sup
0≠𝑧ℎ ∈𝑌ℎ

𝑏(𝑢ℎ , 𝑧ℎ)
‖𝑧ℎ ‖𝑌

for all 𝑢ℎ ∈ 𝑋ℎ ,

which follows as in the continuous case [2, 7], but makes use of the discrete norm

‖𝑢ℎ ‖2𝑋ℎ
:= ‖𝑢ℎ ‖2𝑌 + ‖𝑤𝑢ℎℎ ‖2𝑌 ≤ ‖𝑢ℎ ‖2𝑌 + ‖𝑤𝑢ℎ ‖2𝑌 = ‖𝑢ℎ ‖2𝑋 ,

where 𝑤𝑢ℎℎ ∈ 𝑌ℎ is the unique solution of the variational formulation

〈𝜈∇𝑦𝑤𝑢ℎℎ ,∇𝑦𝑧ℎ〉𝐿2 (𝑄) = 〈𝜎 𝑑

𝑑𝑡
𝑢ℎ , 𝑧ℎ〉𝑄 for all 𝑧ℎ ∈ 𝑌ℎ . (5)

As in [7] we can then derive Cea’s lemma,

‖𝑢 − 𝑢ℎ ‖𝑋ℎ
≤ 3 inf

𝑧ℎ ∈𝑋ℎ

‖𝑢 − 𝑧ℎ ‖𝑋 ,

from which we conclude optimal order of convergence when assuming sufficient
regularity for the solution. In particular we obtain linear convergence in the space-
time mesh size ℎ when assuming 𝑢 ∈ 𝐻2 (𝑄), see [2, 7].

4 Numerical results

As numerical example we consider an electric motor, where both the rotor and the
stator are made of iron, with 16 magnets and 48 coils, see Fig. 1.
The motor is pulled up in time, where the rotation of the rotating parts, i.e., the rotor,
the magnets and the air around the magnets, is already considered within the mesh
for a 90 degree rotation. The time component is treated as the third spatial dimension



A Parallel Space-Time Finite Element Method for the Simulation of an Electric Motor 259

Fig. 1 The unstructured mesh of the bottom of the motor, showing the different materials.

Fig. 2 The full space-time cylinder of the motor for a 90 degree rotation with 333, 288 nodes and
1, 978, 689 elements. The time is treated as the third spatial component divided into 30 time slices.
The rotating parts are already considered within the mesh.

with a time span (0, 𝑇), 𝑇 = 0.015 seconds. Moreover, 30 time slices are inserted in
order to have a good temporal resolution, where the mesh is differently unstructured
at every time 𝑡 ∈ (0, 𝑇), see Figure 2.
The electricmotor consists of isotropicmaterials, hencewe choose the linearmaterial
parameters as given in Table 1.

Table 1 Material parameters
material 𝜎 𝜈

air 0 107/(4𝜋)
coils 5.8 · 107 107/(4𝜋)
magnets 106 107/(4𝜋)
iron 107 107/(20400𝜋)
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Fig. 3 Space-time mesh decomposition into 5 subdomains.

Fig. 4 The computation times
for solving the linear system
using the MUMPS solver and
GMRES solver.

We solve the resulting linear system in parallel, using a mesh decomposition method
provided by the finite element library Netgen/NGSolve1, see Fig. 3. For our purpose,
MPI parallelization is used, however the computations are done on one computer
with 384 GiB RAM and two Intel Xenon Gold 5218 CPU’s.
We use MUMPS2 supported by PETSc3, to solve the linear system. Figure 4 shows
the time for solving the linear system in relation to the number of processors used for
the parallel computation. For comparison, the GMRES solver provided by PETCs is
used to solve the same linear systems with an error tolerance of 10−6 and a maximum
of 1000 iterations.
The solution of the Galerkin space-time finite element formulation (4) for the time
span (0, 𝑇) with 𝑇 = 0.015 is not sufficient to visualize, since in this short time the
solution is close to zero due to the zero initial condition. Instead, one may consider

1 https://www.ngsolve.org
2 http://mumps-solver.org
3 https://petsc.org
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Solution at 𝑡 = 0 Solution at 𝑡 = 0.005

Solution at 𝑡 = 0.01 Solution at 𝑡 = 0.015

Fig. 5 The solution of the static problem visualized on different time slices.

periodic conditions 𝑢(𝑥, 𝑇) = 𝑢(𝑥, 0) for 𝑥 ∈ Ω, see [2]. Here, we also present the
results for the quasi-static problem using 𝜎 = 0 for all material regions at any time,
see Fig. 5 for the solution at different time slices. Note that this corresponds to the
problem of magnetostatics which is widely used in practical applications together
with time-stepping methods.

5 Conclusions

In this note we have described a space-time finite element discretization of an
elliptic-parabolic interface problem to model an electric motor. The computed elec-
tromagnetic fields can be used to compute other characteristic quantities such as the
torque and iron losses in order to optimize the shape and the topology of electric ma-
chines. Instead of initial conditions and a linear description of the involved materials
one can easily include periodic conditions in time and a nonlinear material model.
Although we have provided first results for a parallel solution of the resulting linear
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system of algebraic equations also using mesh decomposition algorithms, further
work is required in the design of more efficient solution strategies using appropriate
preconditioning and domain decomposition methods.
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Reynolds-Blended Weights for BDDC
in Applications to Incompressible Flows

Martin Hanek, Jakub Šístek, and Marek Brandner

1 Introduction

We investigate the applicability of the Balancing Domain Decomposition by Con-
straints (BDDC) method to numerical solution of problems of incompressible flows.
In particular, we use BDDC to solving linear systems with a nonsymmetric ma-
trix arising from discretization of the Navier–Stokes equations by the finite element
method.
The BDDC method was introduced by Dohrmann in [1] for the Poisson prob-

lem and linear elasticity. The underlying theory for the condition number bound of
𝑂

(
log2 (1 + 𝐻/ℎ)

)
was presented by Mandel and Dohrmann in [5]. By discretizing

and linearizing the Navier-Stokes equations, we get saddle-point systems with non-
symmetric matrices. An application of the BDDCmethod to nonsymmetric matrices
arising from advection-diffusion problems was presented by Tu and Li [9], where
the method was formulated without building and solving an explicit coarse problem.
Finding explicit coarse basis functions and forming an explicit coarse problem of
BDDC was presented by Yano for nonsymmetric problems arising from the Euler
equations in [10]. A three-level extension of BDDC was presented by Tu [8], while
a general multilevel method was introduced and analysed for symmetric positive def-
inite problems by Mandel et al. [6]. We have extended the multilevel BDDC method
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to nonsymmetric matrices in [3]. A theoretically supported approach for handling
continuous pressure in the Stokes problem was introduced in [4].
An important building block of BDDC as well as other nonoverlapping domain

decomposition methods is the choice of weights used for averaging a discontinuous
solution at the interface between subdomains. Standard types of weights include an
arithmetic average (also known as cardinality scaling), or weighted average based
on diagonal entries of subdomain matrices. In [3], we have also presented a novel
averaging operator tailored to Navier-Stokes equations. The main idea behind it
is using the current approximation of velocity for preferring information opposite
the flow. Due to the similarity of this idea with numerical methods for convection
dominated flows, we called this choice as the upwind scaling.
In this contribution, we present a modification of the upwind scaling. While

the upwind scaling is superior for flows at higher Reynolds numbers, the simple
arithmetic scaling tends to perform better for flows at lower Reynolds numbers. For
this reason, we ‘blend’ the arithmetic and upwind scalings with the ratio based on
the local Reynolds number, and we call the proposed method as Reynolds-blended
(Re-blended) weights.
The rest of the paper is organized as follows. In Section 2, we recall the basics

of iterative substructuring and BDDC for the nonsymmetric saddle-point systems
arising from the finite element method (FEM). The new weights are proposed in
Section 3. Section 4 presents results of numerical experiments showing the benefits
of the 𝑅𝑒-blended weights, while Section 5 is devoted to the summary.

2 FEM and BDDC for Navier-Stokes equations

Weconsider a stationary incompressible flow in a bounded three-dimensional domain
Ω ⊂ R3 with its boundary 𝜕Ω consisting of two disjoint parts 𝜕Ω𝐷 and 𝜕Ω𝑁 ,
governed by the Navier-Stokes equations (see e.g. [2]),

(𝒖 · ∇)𝒖 − 𝜈Δ𝒖 + ∇𝑝 = 𝒇 in Ω, (1)
∇ · 𝒖 = 0 in Ω, (2)

where 𝒖 is the velocity vector of the fluid, 𝜈 is the kinematic viscosity of the fluid, 𝑝 is
the kinematic pressure, and 𝒇 is the vector of body forces. In addition, we consider the
following boundary conditions: prescribed velocity on 𝜕Ω𝐷 and −𝜈(∇𝒖)𝒏 + 𝑝𝒏 = 0
on 𝜕Ω𝑁 , with 𝒏 being the unit outer normal vector of 𝜕Ω.
We consider Taylor-Hood Q2-Q1 elements, and after substituting linear combi-

nations of the basis functions, we get the following system of algebraic equations[
𝜈A + N(u) 𝐵𝑇

𝐵 0

] [
u
p

]
=

[
f
g

]
. (3)

Details can be found in [3].
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System (3) is nonlinear due to the matrix N(u), and we consider the Picard
iteration for its linearization. This leads to solving a sequence of linear systems of
equations in the form [

𝜈A + N(u𝑝) 𝐵𝑇

𝐵 0

] [
u𝑝+1

p𝑝+1

]
=

[
f
g

]
. (4)

Linear system (4) is solved by means of iterative substructuring (see, e.g., [7]).
In order to use the BDDC method, we decompose the solution domain Ω into 𝑁

nonoverlapping subdomains. Then we reduce the system (4) to the interface to get

𝑆

[
uΓ

pΓ

]
= 𝑔, (5)

where 𝑆 is the Schur complement of the interior unknowns and 𝑔 is the reduced
right-hand side.
Problem (5) is solved by the BiCGstab method using one step of BDDC as the

preconditioner. In each action of the BDDC preconditioner, a coarse problem and
independent subdomain problems are solved. Before solving it in each iteration, we
need to set-up the preconditioner. This is performed by solving two saddle-point
systems [

𝑆𝑖 𝐶
𝑇
𝑖

𝐶𝑖 0

] [
Ψ𝑖

Λ𝑖

]
=

[
0
𝐼

] [
𝑆𝑇
𝑖
𝐶𝑇
𝑖

𝐶𝑖 0

] [
Ψ∗
𝑖

Λ𝑇
𝑖

]
=

[
0
𝐼

]
(6)

where 𝑆𝑖 is the Schur complement with respect to the interface of the 𝑖-th subdomain,
𝐶𝑖 is the matrix defining coarse degrees of freedom, which has as many rows as is the
number of coarse degrees of freedom defined at the subdomain. The solution Ψ𝑖 is
the matrix of coarse basis functions with every column corresponding to one coarse
unknown on the subdomain. These functions are equal to one in one coarse degree
of freedom, and they are equal to zero in the remaining local coarse unknowns.
The solution Ψ∗

𝑖
is the matrix of adjoint coarse basis functions which is needed

for nonsymmetric problems as was shown in [10]. The coarse problem matrix is
assembled in the setup of the BDDC preconditioner as 𝑆𝐶 =

∑𝑁
𝑖=1 𝑅

𝑇
𝐶𝑖
Ψ∗𝑇
𝑖

𝑆𝑖Ψ𝑖𝑅𝐶𝑖 .
One step of the BDDC preconditioner 𝑀𝐵𝐷𝐷𝐶 : r𝑙 → u𝑙

Γ
proceeds as follows:

𝑟 𝑙𝑖 = 𝑊𝑖𝑅𝑖𝑟
𝑙

coarse problem

𝑟 𝑙𝐶 =

𝑁∑︁
𝑖=1

𝑅𝑇
𝐶𝑖Ψ

∗𝑇
𝑖 𝑟 𝑙𝑖

𝑆𝐶𝑢𝐶 = 𝑟 𝑙𝐶

𝑢𝐶𝑖 = Ψ𝑖𝑟
𝑙
𝐶𝑖𝑢𝐶

subdomain problems

[
𝑆𝑖 𝐶

𝑇
𝑖

𝐶𝑖 0

] [
𝑢𝑖
𝜆

]
=

[
𝑟 𝑙
𝑖

0

]

𝑢𝑙Γ =

𝑁∑︁
𝑖=1

𝑅𝑇
𝑖 𝑊𝑖 (𝑢𝑖 + 𝑢𝐶𝑖),
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where 𝑅𝑖 is an operator restricting a global interface vector to the 𝑖-th subdomain,
𝑅𝐶𝑖 is the restriction of the global vector of coarse unknowns to those present at the
𝑖-th subdomain, and matrix𝑊𝑖 applies weights to satisfy the partition of unity, which
will be elaborated in the next section. Details of the application of this method to
Navier-Stokes equations can be found in [3].

3 Weight operators

Let us now discuss several particular choices of the matrix of weights 𝑊𝑖 . An
important class of these matrices is represented by diagonal matrices

𝑊𝑖 =
©­­«
𝑊1

𝑖𝑁

𝑊2
𝑖𝑁

. . .

ª®®¬ , (7)

where𝑊 𝑘
𝑖𝑁
denotes the weight matrix for the unknowns in the 𝑘-th (with respect to

the subdomain interface) node of the 𝑖-th subdomain. These matrices differ for nodes
with just velocity unknowns and those containing also a pressure unknown ordered
after the velocity ones. For example, in 3D the former and latter looks respectively as

𝑊 𝑘
𝑖𝑁 =

©­«
𝑤𝑘
𝑖

𝑤𝑘
𝑖

𝑤𝑘
𝑖

ª®¬ , 𝑊 𝑘
𝑖𝑁 =

©­­­«
𝑤𝑘
𝑖

𝑤𝑘
𝑖

𝑤𝑘
𝑖
1
𝑁𝑆

ª®®®¬ , (8)

where 𝑁𝑆 is the number of subdomains sharing the node.
A general scheme for constructing these matrices satisfying the partition of unity

can be described in the following way. Every subdomain first generates a nonnegative
weight 𝑤𝑘

𝑖
. These values are then shared with all neighbouring subdomains, and the

normalized weight 𝑤𝑘
𝑖
satisfying the partition of unity is obtained by dividing the

local weight with the sum of contributions from all neighbours,

𝑤𝑘
𝑖 =

𝑤𝑘
𝑖∑𝑁𝑆

𝑗=1 𝑤
𝑘
𝑗

. (9)

The first type of weights is based on the cardinality (card) of the set of subdomains
sharing the node. Hence, 𝑤𝑘

𝑖
= 1, and

𝑤𝑘
𝑖 =

1
𝑁𝑆

. (10)

For example, the weight is simply 𝑤𝑘
𝑖
= 1/2 if the node is shared by two subdomains.
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The second type of weights was introduced in [3], and it is inspired by numerical
schemes for flow problems, namely by upwinding. The underlying idea is that for
dominant advection, it should be beneficial to consider the subdomain from which
the fluid flows with a higher weight than for the one where the node is a part of an
inflow boundary.
More specifically, these upwind weights are based on the inner product of the

vector of velocity at the 𝑘-th interface node 𝒖𝑘 and the unit vector of the outer
normal to the 𝑖-th subdomain boundary 𝒏𝑘

𝑖
, therefore

𝑝𝑘𝑖 =
𝒖𝑘 · 𝒏𝑘

𝑖

𝒖𝑘



2
.

The values of the 𝑝𝑘
𝑖
are from the interval [−1, 1]. To derive a nonnegative weight,

these values are mapped to the interval [0, 1] by taking 𝑤𝑘
𝑖
=

𝑝𝑘
𝑖
+1
2 , which is used

for all velocity unknowns. More details, such as the discrete construction of 𝒏𝑘
𝑖
, can

be found in [3].
The third type is the new approach obtained by linear interpolation of the previous

two weights. For this method, we choose a critical Reynolds number Re𝐶 , and then
the resulting Reynolds-blended (Reblended) weight is defined according to the local
Reynolds number Reloc = |𝒖𝑘 |𝐿/𝜈 as

𝑤𝑘
𝑖 =


𝑤𝑘
card for Reloc ≤ 1,
Reloc
Re𝐶 𝑤𝑘

upwind +
(
1 − RelocRe𝐶

)
𝑤𝑘
card for 1 < Reloc < Re𝐶 ,

𝑤𝑘
upwind for Reloc ≥ Re𝐶 .

(11)

Here 𝐿 corresponds to the characteristic length of the problem. Thus for small local
Reynolds numbers, the scaling behaves as cardinality weights and for high Reynolds
number as upwind weights depending on the chosen critical Reynolds number Re𝐶 .
Note that these weights are updated after each nonlinear iteration.

4 Numerical results

In this section, we compare the behaviour of the 2-level BDDC method for dif-
ferent types of interface weights described in Section 3, namely the cardinality
scaling (card), upwind, and the proposed Reblended weights. We assume two prob-
lems, namely the lid-driven cavity and the backward facing step problems. First we
look at the cavity problem. We consider unit cube with unit velocity on the top wall
as in [2]. For Reblended, we consider two critical Reynolds numbers, Re𝐶 = 100 and
Re𝐶 = 200. For these simulations, the number of subdomains is 125 with 8 elements
per subdomain edge. The decomposed solution domain can be seen in Fig. 1. For
this problem, Reynolds number is defined as Re = |𝒖top |𝐿/𝜈, where |𝒖top | = 1 is the
velocity at the lid, and 𝐿 = 1 is the cube size. We compare Re = 1 and Re = 200
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monitoring the number of nonlinear iterations, the minimal, maximal, and mean
number of linear iterations over all nonlinear iterations, the mean setup time of the
BDDC preconditioner, the mean time for the Krylov subspace method with the mean
time for one linear iteration, the mean time for one nonlinear iteration, and the time
for all nonlinear iterations.
The computations are performed on the Karolina supercomputer at the IT4I Na-

tional Supercomputing Centre in Ostrava, Czech Republic. The computational nodes
are equipped with two 64-core AMD 7H12 2.6 GHz processors, and 256 GB RAM.
The values are presented in Tables 1 and 2.

Table 1 Re = 1. Number of nonlinear iterations, number of linear iterations (minimal, maximal,
and mean), mean setup time, time for the BiCGstab iterations, time for one linear iteration, time for
one nonlinear iteration, and the total time for solving the nonlinear problem.

weights type nonl linear solve time [s]
min max mean setup BiCGstab iter (one iter) nonl total

card 4 13.5 13.5 13.5 4.50 4.07 (0.30) 8.57 32.28
upwind 4 13.5 18.5 17.3 4.53 5.20 (0.30) 9.73 38.92

Re-blended (Re𝐶 = 100) 4 13.5 13.5 13.5 4.58 4.09 (0.30) 8.67 34.68
Re-blended (Re𝐶 = 200) 4 13.5 13.5 13.5 4.51 4.10 (0.30) 8.61 34.44

Table 2 Re = 200. Number of nonlinear iterations, number of linear iterations (minimal, maximal,
and mean), mean setup time, time for the BiCGstab iterations, time for one linear iteration, time for
one nonlinear iteration, and the total time for solving the nonlinear problem.

weights type nonl linear solve time [s]
min max mean setup BiCGstab iter (one iter) nonl total

card 29 14 91.5 86.2 5.01 27.99 (0.32) 33.0 1517.2
upwind 29 14 85.5 34.2 4.99 10.79 (0.32) 15.78 1029.1

Re-blended (Re𝐶 = 10) 29 14 85.5 34.0 4.99 10.76 (0.32) 15.75 1028.6
Re-blended (Re𝐶 = 100) 29 14 89 137.8 4.99 12.15 (0.32) 17.14 1069.5
Re-blended (Re𝐶 = 200) 29 14 137.5 58.1 5.05 18.22 (0.31) 23.27 1240.44

From Tables 1 and 2, we can see that for small Reynolds numbers, the cardinality
weight is slightly more efficient and for the high Reynolds number the same stands
for the upwind weight. The critical Reynolds weight seems to benefit from both
depending on the Reynolds number. For Re = 1, it inclines to the cardinality and for
Re = 200 to the upwind weight.
Let us now explore the effect of the Reynolds-blended weight on the backward

facing step problem. This problem was investigating in [2] in 2D. The solution
domain is shown in Fig. 1 with prescribed unit inlet velocity, zero velocity on the
top and bottom walls, and symmetry boundary condition on the side walls. With the
𝑥-axis aligned with the flow, the step occurs for 𝑥 = 1, where the height changes
from 1 to 2. The length of the domain is 5, and its width is 1. The solution domain
consists of 37 thousand elements which correspond to 978 thousand unknowns. The
mesh is decomposed into 32 subdomains using a vertical partitioner, which cuts
the domain along the 𝑥 direction (see Fig. 1). The Reynolds number is defined as
Re = |𝒖inlet |𝐿/𝜈, where |𝒖inlet | = 1 is the input velocity, and 𝐿 = 1 is the size of the
narrow part.
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Fig. 1 Decomposed solution domain for the cavity problem (left) and for the backward facing step
problem (right).

We set the critical Reynolds number for our new weight to 20 and plot the
mean number of linear iterations and the average time for solving one linearized
problem (4) depending on Reynolds number in Fig. 2.
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Fig. 2 Number of BiCGstab iterations (left) and average time for solving one linearized problem
(right) for different Reynolds numbers for cardinality, upwind, and Re-blended operators.

From these plots we can see that up to a certain Re, cardinality performs better
while for larger Re, the upwind is more effective. The Reynolds-blended weight
operator with a suitably chosen critical Reynolds number Re𝐶 provides the best
results for almost every Re, and therefore it again combines advantages of cardinality
and upwind weight operator. Interestingly, it even outperforms the upwind weight
operator. This positive effect is attributed to the fact that the blending based on the
local Reynolds number Reloc reduces the effect of upwinding in zones with reduced
velocity such as in boundary layers.

5 Conclusions

We have presented a new scaling operator for the BDDC method in applications to
saddle-point linear systems arising from discretization of the Navier-Stokes equa-
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tions. It can be seen as a correction of the recent upwind operator when applied
to flows with low Reynolds numbers, for which arithmetic scaling is superior. We
have compared the relevant weight operators on the cavity and the backward facing
step problems. The results demonstrate the intended behaviour of the new scaling,
namely mimicking the arithmetic averaging for low Re and the upwind scaling for
high Re. Although our simulations show promising results for the considered small
and moderate Reynolds numbers, for larger Re some kind of stabilization of the
discretization would be needed. Investigating the performance of the new method
for other flow problems and the choice of the Re𝐶 parameter will be a matter of our
future research.
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Neural Network Interface Condition
Approximation in a Domain Decomposition
Method Applied to Maxwell’s Equations

Tobias Knoke, Sebastian Kinnewig, Sven Beuchler, and Thomas Wick

1 Introduction

The time-harmonicMaxwell equations are of great interest in current research fields,
e.g., [7, 8, 10, 14, 16]. As their numerical solution is challenging due to their ill-
posed nature, e.g., [2], suitable techniques need to be applied. The most prominent
technique in literature is based on domain decomposition techniques [5, 17]. The
work of Hiptmair [10] can only be applied for the problem in the time domain
(i.e., the well-posed problem).
In this work, we design a proof of concept to approximate the interface operator

with the help of a feedforward neural network [3, 9, 12]. To this end, a two-domain
problem is designed, which is then trained by exchanging data from a modern finite
element library deal.II [1] and the well-known PyTorch [15] library. Our main aim is
to showcase that our approach is feasible and can be a point of departure for detailed
future investigations. An extended version with more technical details and additional
computations is [13].
The outline of this work is as follows: In Section 2we introduce the time-harmonic

Maxwell’s equations and our notation. Next, in Section 3, domain decomposition
and neural network approximations are introduced. Afterward, we address in detail
the training process in Section 4. In Section 5, numerical tests demonstrate our proof
of concept.
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and Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across
Disciplines), Leibniz Universität Hannover, Germany
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2 Equations

Let Ω ⊂ R2 (here dimension 2, but usually we deal with dimension 3 in Maxwell’s
equations) be a bounded domain with sufficiently smooth boundary Γ. The latter is
partitioned into Γ = Γ∞ ∪ Γinc. Furthermore, the time-harmonic Maxwell equations
are then defined as follows: Find the electric field 𝐸 such that

curl
(
𝜇−1curl (𝐸)

)
− 𝜔2𝐸 = 0 in Ω

𝜇−1𝛾𝑡 (curl (𝐸)) − 𝑖𝜔𝛾𝑇 (𝐸) = 0 on Γ∞

𝛾𝑇 (𝐸) = 𝛾𝑇
(
𝐸 inc

)
on Γinc,

(1)

where 𝐸 inc : R2 → C2 is some given incident electric field, 𝜔 > 0 is the
wave number, 𝜇 is the relative permeability and 𝑖 denotes the imaginary num-
ber. For the weak form and corresponding definitions, we seek 𝐸 ∈ 𝐻 (curl,Ω) :=
{𝑣 ∈ L2 (Ω) | curl(𝑣) ∈ L2 (Ω)}. The traces 𝛾𝑡 : 𝐻 (curl,Ω) → 𝐻

−1/2
× (div, Γ) and

𝛾𝑇 : 𝐻 (curl,Ω) → 𝐻
−1/2
× (curl, Γ) are defined by

𝛾𝑡 (𝑣) = 𝑛 × 𝑣 and 𝛾𝑇 (𝑣) = 𝑛 × (𝑣 × 𝑛),

where 𝑛 ∈ R2 is the normal vector of Ω, 𝐻−1/2
× (div, Γ) := {𝑣 ∈𝐻−1/2 (Γ) | 𝑣 · 𝑛=0,

divΓ𝑣 ∈ 𝐻−1/2 (Γ)} is the space of well-defined surface divergence fields and
𝐻 (curl, Γ) := {𝑣 ∈ 𝐻−1/2 (Γ) | 𝑣 · 𝑛 = 0, curlΓ (𝑣) ∈ 𝐻−1/2 (Γ)} is the space of
well-defined surface curls. System (1), as well as its weak form (not shown here),
is called time-harmonic, because the time dependence can be expressed by 𝑒𝑖𝜔𝜏 ,
where 𝜏 ≥ 0 denotes the time.
For the implementation with the help of a Galerkin finite element method (FEM),

we need the discrete weak form. Based on the De-Rham cohomology, we need to
choose our basis functions out of the Nédélec space N 𝑝

ℎ
(Ω). For the description of

the Nédélec space we refer to [4]. The discrete form is given by, find 𝐸ℎ ∈ N 𝑝

ℎ
(Ω)

such that∫
Ω

𝜇−1curl (𝐸ℎ) curl (Φℎ) − 𝜔2𝐸ℎΦℎ d𝑥 +
∫
Γ∞

𝑖𝜔𝛾𝑇 (𝐸ℎ) 𝛾𝑇 (Φℎ) d𝑠

=

∫
Γ∞

𝛾𝑇 (𝐸 𝑖𝑛𝑐
ℎ )𝛾𝑇 (Φℎ) d𝑠 ∀Φℎ ∈ N 𝑝

ℎ
(Ω).

(2)

For a more in-depth derivation of equations (1) and their discretization see [14].
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3 Numerical approach

3.1 Domain decomposition

Since the solution of theMaxwell equation system (1) is challenging, we apply a non-
overlapping domain compositionmethod (DDM) in which the domain is divided into
subdomains as follows

Ω =

𝑛dom⋃
𝑖=0

Ω𝑖 with

Ω𝑖 ∩Ω 𝑗 = ∅ ∀𝑖 ≠ 𝑗 ,

in such a way, that every subdomain Ω𝑖 becomes small enough, so it can be handled
with a direct solver. The global solution of the electric field 𝐸 is obtained via an
iterative method, where we solve the time-harmonic Maxwell’s equations on each
subdomain with suitable interface conditions between the different subdomains. So
we obtain a solution 𝐸 𝑘

𝑖
for every subdomain Ω𝑖 , where 𝑘 denotes the 𝑘-th iteration

step. The initial interface condition is given by

𝑔𝑘=0𝑗𝑖 := −𝜇−1𝛾𝑡𝑖
(
curl

(
𝐸 𝑘=0
𝑖

))
− 𝑖𝑘𝑆

(
𝛾𝑇𝑖

(
𝐸 𝑘=0
𝑖

))
= 0, (3)

where 𝑆 describes the surface operator [6]. Please note that in 𝑖𝑘𝑆, 𝑖 denotes the imag-
inary number, while as subscript, 𝑖 is an index. Afterwards, the electric-field 𝐸 𝑘+1

𝑖
is

computed at each step by solving the following system
curl

(
𝜇−1curl

(
𝐸 𝑘+1
𝑖

) )
− 𝜔2𝐸 𝑘+1

𝑖
= 0 in Ω𝑖

𝜇−1𝛾𝑡
𝑖

(
curl

(
𝐸 𝑘+1
𝑖

) )
− 𝑖𝜔𝛾𝑇

𝑖

(
𝐸 𝑘+1
𝑖

)
= 0 on Γ∞

𝑖

𝛾𝑇
𝑖

(
𝐸 𝑘+1
𝑖

)
= 𝛾𝑇

𝑖

(
𝐸 inc
𝑖

)
on Γinc

𝑖

𝜇−1𝑆
(
𝛾𝑡
𝑖

(
curl

(
𝐸 𝑘+1
𝑖

) ) )
− 𝑖𝜔𝛾𝑇

𝑖

(
𝐸 𝑘+1
𝑖

)
= 𝑔𝑘

𝑗𝑖
on Σ𝑖 𝑗 ,

(4)

where Σ𝑖 𝑗 = Σ 𝑗𝑖 := 𝜕Ω𝑖 ∩ 𝜕Ω 𝑗 denotes the interface of two neighbouring elements
and the interface condition is updated by

𝑔𝑘+1𝑗𝑖 = −𝜇−1𝛾𝑡𝑖
(
curl

(
𝐸 𝑘+1
𝑖

))
− 𝑖𝑘𝑆

(
𝛾𝑇𝑖

(
𝐸 𝑘+1
𝑖

))
= −𝑔𝑘𝑖 𝑗 − 2𝑖𝑘𝑆

(
𝛾𝑇𝑖

(
𝐸 𝑘+1
𝑖

))
.

(5)

In case of success we obtain lim𝑘→∞ 𝐸 𝑘
𝑖

= 𝐸 |Ω𝑖
, but this convergence depends

strongly on the chosen surface operator 𝑆 (see [5, 6]).
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3.2 Neural network approximation

Since the computation of a good approximation of 𝑆 is challenging, we examine
a new approach in which we attempt to approximate this operator with the help of
a neural network (NN). For a first proof of concept, we choose a prototype example
and explore whether at all an NN can approximate the values on the interfaces. As it
is not feasible to compute the exact surface operator 𝑆, we aim to compute 𝑔𝑘+𝑙

𝑖 𝑗
, 𝑙 > 0

with an NN, where we use 𝑔𝑘
𝑖 𝑗
and 𝐸 𝑘+1

𝑖
as input. Another benefit of this approach is

that we can generate easily a training data set from a classical domain decomposition
method, as described in section 4.3. For simplicity, we choose 𝑆 = 1 inside of our
classical domain decomposition method. Hence, the advantage of this approach is
that the interface condition can be updated without recomputing the system (4) at
each step, rising hope to reducing the computational cost.

4 Neural network training

In this section,we describe the training process. Besides themathematical realization,
we also need to choose the software libraries. For computing the time-harmonic
Maxwell equations with the finite element method (FEM), we utilize deal.II [1]. The
neural network is trained with PyTorch [15].

4.1 Decomposing the domain

Before we construct the NN, we choose the domain, the decomposition and the
grid on which the system (4) is solved to obtain the training values, because they
will influence the size of the network. The domain in our chosen example, given
by Ω = (0, 1) × (0, 1) is divided into two subdomains Ω0 = (0, 1) × (0, 0.5) and
Ω1 = (0, 1) × (0.5, 1), see Figure 1 and the grid (obtained from two times uniform

Ω0

Ω1

Γinc

Γ∞

Σ01 = Σ10
𝑔01

𝑔10

Fig. 1 Visualization of the domainΩwith
the chosen decomposition

refinement) on which the FEM is applied is
a mesh of 32 × 32 elements with quadratic
Nédélec elements.
Hence, 32 elements with each 4 degrees

of freedom (dofs) are located on the interface
in both subdomains. We evaluate the inter-
face condition and the solution on each dof
and use the values as the input and the tar-
get of the NN. Therefore the input contains
4 · dim(𝑔𝑖 𝑗 ) + 4 · dim(𝐸𝑖) = 16 values and
the output consists of 4 · dim(𝑔 𝑗𝑖) = 8 values
and we obtain 32 input-target pairs with one
computation.
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4.2 Neural network construction

Regarding the previous considerations, we need an input layer with 16 neurons and an
output layer with 8 neurons. Furthermore, we use one hidden layer with 500 neurons.
Our tests revealed, that this is a sufficent and reasonable size for our purpose, since it
leads to more effective networks in terms of error minimization and training duration
than other sizes we tested (e.g. 50, 100 and 300 neurons in the hidden layer). The
activation functions used are the sigmoid function given by 𝑓 (𝑥) = (1 + 𝑒−𝑥)−1 in
the hidden layer, which turned out to be the most effective among those we tested
(e.g. tanh(𝑥), log

(
(1 + 𝑒−𝑥)−1

)
and max(0, 𝑥) + min(0, 𝑒𝑥 − 1)) and the identity in

the other layers. Moreover, we apply separate networks 𝑁01 and 𝑁10 of the same
shape for both interface conditions 𝑔01 and 𝑔10, since it turned out that they are
approximated differently fast and accurately.

4.3 Training

To obtain enough training data, we vary the boundary condition 𝐸 inc and create a set
of training values and a set of test values to control the network during the training
and avoid overfitting. The training set and the test set are generated by the boundary
values that are displayed in Table 1.

Table 1 Boundary values for generating the training set and the test set

𝐸 inc for the training set 𝐸 inc for the test set(
𝑒

−(𝑥−0.7)2
0.008

0

) (
cos(𝜋2𝑦) + sin(𝜋2𝑥)𝑖
sin(𝜋2𝑦) + 0.5 cos(𝜋2𝑥)𝑖

) (
𝑒

−(𝑥−0.5)2
0.003

0

)
(
𝑒

−(𝑥−0.2)2
0.002

1

) (
sin(𝜋2𝑥) + sin(𝜋2𝑥)𝑖
sin(𝜋2𝑦) + 0.5 cos(𝜋2𝑥)𝑖

) (
cos(𝜋2𝑦) + sin(𝜋2𝑥)𝑖
cos(𝜋2𝑦) + 0.5 cos(𝜋2𝑥)𝑖

)
(
𝑒

−(𝑥−0.7)2
0.003

1

) (
sin(𝜋2𝑥) + sin(𝜋2𝑥)𝑖
sin(𝜋2𝑥) + 0.5 cos(𝜋2𝑥)𝑖

)
(
𝑒

−(𝑥−0.8)2
0.003

sin(𝜋2𝑥)

) (
cos(𝜋2𝑦) + sin(𝜋2𝑥)𝑖
cos(𝜋2𝑥) + 0.5 cos(𝜋2𝑥)𝑖

)
(
𝑒

−(𝑥−0.5)2
0.003

cos(𝜋2𝑥)

) (
cos(𝜋2𝑥) + sin(𝜋2𝑥)𝑖
cos(𝜋2𝑦) + 0.5 cos(𝜋2𝑥)𝑖

)

Since we choose 10 different boundary values for the training set and 2 for the
test set and each of them generates a set of 32 training/test values (one per element
on the interface), we obtain all in all a set of 32 · 10 = 320 input-target pairs (each
with with a total of 16 + 8 = 24 values) for the training and a test set of 32 · 2 = 64
input-target pairs for both networks. To keep the computations simple, we choose a
small wave number 𝜔 = 𝜖 2𝜋3 , where 𝜖 denotes the relative permittivity, and compute
the sets with the iterative DDM in 4 steps. Afterwards we use the results

(
𝑔1
𝑖 𝑗
, 𝐸2

𝑖

)
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and 𝑔3
𝑗𝑖
as the input and the targets to train our NNs with the application of the mean

squared error as the loss function and the Adam algorithm [11] as the optimizer. The
network 𝑁01 is trained with the learning rate 10−5. The initial training error 3.12
and the test error 5.87 are reduced to 1.7 · 10−4 and 3 · 10−3 after 29 843 steps of the
optimization method. At 𝑁10 the initial training error 0.72 and the test error 1.28 are
reduced to 3 · 10−4 and 4 · 10−3 after 20 326 steps with learning rate 10−5 and after
further training with learning rate 10−6 in 3706 steps, we finally achieve the training
error 2.9 · 10−4 and the test error 3 · 10−3.

5 Numerical tests

In this section, we apply the implemented and trained NNs for different numerical
examples. For the first example, we choose the following boundary condition

𝐸 inc (𝑥, 𝑦) =
(
cos

(
𝜋2 (𝑦 − 0.5)

)
+ sin

(
𝜋2𝑥

)
𝑖

cos
(
𝜋2𝑦

)
+ 0.5 sin

(
𝜋2𝑥

)
𝑖

)
,

and compute the first interface conditions 𝑔110 and 𝑔
1
01 and the solutions 𝐸

1
1 and 𝐸

1
0 by

solving (4) and (5) once. Afterwards, these values are passed on to the networks 𝑁01

Fig. 2 First example: Real part (above) and imaginary part (below) of the NN solution (left) and
the DDM solution (right)
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Fig. 3 Second example: Real part (above) and imaginary part (below) of the NN solution (left) and
the DDM solution (right)

and 𝑁10. The output they return is then handled as our new interface condition which
we use to solve system (4) one more time. With that, we obtain the final solution.
Moreover, we compute the same example with the DDM in 4 steps. The results that
are displayed in Figure 2 show excellent agreement.
As a second example, we increase the wave number, which leads to a more

complicated problem. Therefore we repeat the same computation with 𝜔 = 𝜖𝜋 and
leave the other parameters (especially the networks) unchanged. In contrast to the
previous example, the results that are displayed in Figure 3 show differences. While
the imaginary part is still well approximated, the real part of the NN solution differs
significantly from the DDM solution and shows a discontinuity on the interface.

6 Conclusion

In this contribution, we provided a proof of concept and feasibility study for a neu-
ral network approximation of the interface conditions in domain decomposition.
Analyzing our numerical tests, it can be inferred that the approach works for two
subdomains. Ongoing work is the extension to more subdomains.
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Learning Adaptive FETI-DP Constraints
for Irregular Domain Decompositions

Axel Klawonn, Martin Lanser, and Janine Weber

1 Introduction

Adaptive, that is, problem-dependent coarse spaces provide a robust condition num-
ber estimate and thus a robust convergence behavior for FETI-DP (Finite Element
Tearing and Interconnecting - Dual Primal) and BDDC (Balancing Domain De-
composition by Constraints) methods for highly heterogeneous model problems;
see, e.g., [7, 10] for a condition number indicator and a related proof for a specific
adaptive coarse space in two spatial dimensions. In general, the setup of an adaptive
coarse space usually requires the solution of local eigenvalue problems on edges,
faces, or local parts of the domain decomposition interface. Even though the setup
and the solution of these eigenvalue problems can be parallelized in a parallel im-
plementation, it can take up the largest part of the overall time to solution, especially
for three-dimensional problems. Thus, in [2], we have proposed to train a supervised
classification model in form of a dense feedforward neural network to make an a pri-
ori decision, which of the eigenvalue problems are actually necessary for a robust
FETI-DP coarse space. By testing our approach for different realistic heterogeneous
model problems as, e.g., arising from a dual-phase steel in solid mechanics, we have
shown that it is possible to drastically reduce the number of necessary eigenvalue
problems while still maintaining the robustness of the iterative solver.
In [6], we have extended these results by directly learning the adaptive edge

constraints themselves. Hence, we have trained different regression neural network
models to compute an a priori approximation of the first 𝑘 ∈ N adaptive edge con-
straints, which are then used to enhance the classic FETI-DP method. In particular,
this approach does not require the setup or the solution of any eigenvalue problems
at all. In [6], we have trained the regression neural network models exclusively with

Axel Klawonn, Martin Lanser, and Janine Weber
Department of Mathematics and Computer Science, University of Cologne, Weyertal 86-
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training data obtained from straight edges and consequently evaluated the trained
network for test problems based on a regular domain decomposition only. Note that
the approach of learning the adaptive constraints in an offline phase is in general of
interest if a number of problems of the same class has to be solved, for example,
diffusion or elasticity problems with different material coefficient distributions.
In this paper, we extend our idea from [6] by training regression neural networks

which can be applied to both, regular domain decompositions as well as irregular
decompositions as obtained by METIS [4]. To generalize our approach to arbitrary
edge structures, we also train the network models with training data obtained from ir-
regular edges and, additionally, with a set of randomized coefficient distributions.We
provide numerical results for different heterogeneous stationary diffusion problems
in two spatial dimensions for both, regular and irregular domain decompositions,
and the adaptive coarse space from [10, 11].

2 Test problem and adaptive FETI-DP

As a test problem, we consider a stationary diffusion problem in two spatial dimen-
sions

− div (𝜌∇𝑢) = 1 in Ω
𝑢 = 0 on 𝜕Ω, (1)

where 𝜌 : Ω := [0, 1] × [0, 1] → R denotes a heterogeneous coefficient function. Its
weak formulation is discretized with piecewise linear conforming finite elements.
In this paper, we consider a hybrid, adaptive FETI-DP method which uses su-

pervised machine learning to setup a robust and efficient coarse space. Thus, we
decompose our domain Ω ⊂ R2 into a number of nonoverlapping subdomains Ω𝑖 ,
𝑖 = 1, . . . , 𝑁 . Due to space limitations, we refrain from explaining the classic, that is,
the non-adaptive FETI-DP method in detail. For a detailed description of the classic
FETI-DP method, we refer to, e.g., [9]. Let us note that in our implementation,
we always choose the vertices of the subdomains as primal variables. Additionally,
we implement adaptive, that is, problem-dependent edge constraints to enhance the
robustness of our methods; see the following discussion. For the remainder of the
paper, we denote by E𝑖 𝑗 the edge shared by the two neighboring subdomains Ω𝑖

and Ω 𝑗 .
The classic FETI-DP condition number bound using exclusively primal vertex

constraints is only robust under fairly restrictive assumptions on the coefficient
function 𝜌; see, for example, [8]. Thus, we enhance the FETI-DP method with a very
specific adaptive coarse space which was originally introduced in [10, 11].
Here, the main idea is to add selected eigenvectors to the coarse space, which are

obtained from the solution of the following generalized local eigenvalue problem for
each edge E𝑖 𝑗 : find 𝑤𝑖 𝑗 ∈

(
ker 𝑆𝑖 𝑗

)⊥ such that
〈𝑃𝐷𝑖 𝑗

𝑣𝑖 𝑗 , 𝑆𝑖 𝑗𝑃𝐷𝑖 𝑗
𝑤𝑖 𝑗〉 = 𝜇𝑖 𝑗 〈𝑣𝑖 𝑗 , 𝑆𝑖 𝑗𝑤𝑖 𝑗〉 ∀ 𝑣𝑖 𝑗 ∈

(
ker 𝑆𝑖 𝑗

)⊥
. (2)
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Ω𝑖 Ω 𝑗

E𝑖 𝑗
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Input
layer

Hidden
layers

Output
layer

Learned
constraint

𝜌(𝑥1)

𝜌(𝑥2)

𝜌(𝑥𝑘 )

𝜌(𝑥𝑀 )

Fig. 1 Visualization of our network models 𝑁𝑙 and 𝑁𝑙 , 𝑙 ≤ 3. As input data for the neural network,
we use samples of the coefficent function for the two neighboring subdomains of an edge (left).
Here, dark red corresponds to a high coefficient and white corresponds to a low coefficient. The
output of the network is a discretized egde constraint (right). Figure taken from [6, Fig. 1].

Here, 𝑆𝑖 𝑗 = diag(𝑆 (𝑖) , 𝑆 ( 𝑗) ) denotes a local Schur complement matrix with 𝑆 (𝑖)
and 𝑆 ( 𝑗) being the Schur complements of 𝐾 (𝑖) and 𝐾 ( 𝑗) , respectively, and 𝑃𝐷𝑖 𝑗

=

𝐵𝑇
𝐷,E𝑖 𝑗

𝐵E𝑖 𝑗
is a local jump operator, with 𝐵𝐷,E𝑖 𝑗

=

(
𝐵
(𝑖)
𝐷,E𝑖 𝑗

, 𝐵
( 𝑗)
𝐷,E𝑖 𝑗

)
being a local

submatrix of
(
𝐵
(𝑖)
𝐷
, 𝐵

( 𝑗)
𝐷

)
obtained by exclusively taking the rows corresponding

to the edge E𝑖 𝑗 ; see [10] for more details. The matrix 𝐵E𝑖 𝑗
is obtained by taking

the same rows from
(
𝐵 (𝑖) , 𝐵 ( 𝑗) ) . We assume that 𝑅 eigenvectors 𝑤𝑟

𝑖 𝑗
, 𝑟 = 1, ..., 𝑅,

belong to eigenvalues which are larger than a user-defined tolerance 𝑇𝑂𝐿 and then
enhance the FETI-DP coarse space with the edge constraint vectors

(𝑐𝑟𝑖 𝑗 )𝑇 := 𝐵𝐷,E𝑖 𝑗
𝑆𝑖 𝑗𝑃𝐷𝑖 𝑗

𝑤𝑟
𝑖 𝑗 , 𝑟 = 1, ..., 𝑅 (3)

using projector preconditioning; see [7, Sections 3,5] for more details. In the follow-
ing we refer to the constraint vectors as constraints. When enhancing the FETI-DP
coarse space with these adaptive constraints one can prove a robust condition number
bound, which exclusively depends on the user-defined tolerance 𝑇𝑂𝐿 and some geo-
metrical constants; see, e.g., [7, Theorem 5.1]. On the one hand, this ensures a robust
convergence behavior of the resulting FETI-DP algorithm, but, as a drawback, one
has to setup and solve the eigenvalue problems in Eq. (2) for all edges belonging to
the interface of our domain decomposition. Hence, in [6], we have proposed a hy-
brid FETI-DP method which uses a supervised regression model to directly learn
approximations of the adaptive edge constraints resulting from Eq. (3) such that the
solution of any eigenvalue problems is not necessary.

3 Learning coarse constraints in adaptive FETI-DP

The aim of our work is to compute discrete approximations of the first 𝑘 adaptive
edge constraints resulting from the local eigenvalue problem in Eq. (2) and to use the
learned constraints to enhance the classic FETI-DP coarse space; see [6]. In partic-
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ular, for each of the first 𝑘 adaptive edge constraints, we train a separate regression
neural network model that we denote by 𝑁𝑙 , 𝑙 ≤ 𝑘 . In the following, we always con-
sider 𝑘 = 3 and thus, train 3 different network models 𝑁𝑙 , 𝑙 ≤ 3, to obtain 3 discrete
approximations of the constraints resulting from the first 3 eigenmodes; see also [6].
As explained in more detail in [6], we additionally train separate neural network
models for edges which have direct contact to the Dirichlet boundary 𝜕Ω𝐷 of the
domain and for edges without any contact to 𝜕Ω𝐷 since both cases result in different
edge constraints due to the influence of the Dirichlet boundary condition on the local
Schur complement matrices 𝑆𝑖 𝑗 in Eq. (2). To distinguish between these different
network models, we denote the respective regression networks for edges with direct
contact to 𝜕Ω𝐷 by 𝑁𝑙 , 𝑙 ≤ 3; see also [6].
As input data for all neural network models 𝑁𝑙 , 𝑙 ≤ 3, we use a mesh-independent

image representation of the underlying coefficient function 𝜌 within the two subdo-
mains Ω𝑖 and Ω 𝑗 adjacent to the edge E𝑖 𝑗 . The concrete details of the computation
of this image representation are described in [2] such that, in the following, we
only briefly sketch the main idea. First, we compute an auxiliary grid of points
which we denote by sampling grid and which is independent of the finite element
grid. Then, we evaluate the coefficient function 𝜌 for each of these sampling points
within the sampling grid and use the corresponding 𝜌 values as input data for the
neural networks. In order to make sure that the input data always have the same
length and a consistent structure, we define a concrete order within our sampling
grid and encode sampling points with the dummy value −1 if they fall outside the
two neighboring subdomains for a given edge E𝑖 𝑗 . Let us note that this is especially
relevant for irregular decompositions of the domain as obtained by METIS [4]. In
particular, all trained network models 𝑁𝑙 and 𝑁𝑙 , 𝑙 ≤ 3, share the same input data
and only differ by their output data in order to define the concrete regression tasks.
As specific output data for the different network models, we use discrete values
of the adaptive edge constraints resulting from the local edge eigenvalue problems
in Eq. (2). For the training of the 𝑙-th network 𝑁𝑙 , we hence use a discretized version
of the respective edge constraint resulting from the eigenvector 𝑤𝑙

𝑖 𝑗
belonging to

the eigenvalue 𝜇𝑙
𝑖 𝑗
. All in all, we use 3200 sampling points as input data for the

neural networks and 19 output nodes, that is, 19 discrete values to approximate the
adaptive edge constraints. In principle, the output space of our networks corresponds
to an edge length defined by 𝐻/ℎ = 20. However, in order to be able to evaluate the
trained network for different finite element discretizations, we use an interpolation
technique to generalize our approach to different mesh sizes and thus only use the
number of 19 degrees of freedom for each edge as the basis for the interpolation. In
case we want to apply the approximated constraints for finer or coarser finite element
meshes, we linearly interpolate the obtained regression values by using the finite el-
ement mesh points as the interpolation points and the finite element basis functions
as interpolation basis. An exemplary visualization of our network models 𝑁𝑙 and 𝑁𝑙

is given in Fig. 1.
Other than in [6], where we have trained and tested the different network mod-

els exclusively for regular edges, in this paper, we generalize these results also to
irregular decompositions obtained by METIS [4]. Therefore, we train the different
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Fig. 2 Examples of three different randomly distributed coefficient functions obtained by using the
same randomly generated coefficient for a horizontal (left) or vertical (middle) stripe of a maximum
length of four finite element pixels, as well as by pairwise superimposing (right).

networks 𝑁𝑙 and 𝑁𝑙 , 𝑙 ≤ 3, with both, regular and irregular edges. Additionally, in
contrast to [6], we do not train the networks with our manually constructed set of
coefficient distributions that we have denoted by smart training data in [6], but use
a set of randomized coefficient distributions. In [3], we have shown that it is possible
to achieve comparable accuracy results for the classification model as defined in [3]
when using randomized training data with a slight structure compared to the smart
training data. Considering these results and with regard to better expected general-
ization properties in three spatial dimensions, here, we have decided to also train our
regression neural networks with randomized coefficient distributions. Three exem-
plary randomized coefficient distributions where we have additionally controlled the
ratio of high versus low coefficient values are shown in Fig. 2. To obtain the entire
set of training and validation data, we have generated various randomized coefficient
distributions and combined them with pairs of subdomains adjacent to both, straight
edges and edges resulting from the respective decompositions obtained by METIS.
In particular, to generate the input and output data for the networks, we have used
a regular decomposition of the unit square into 4 × 4 subdomains and a mesh size
defined by 𝐻/ℎ ∈ {10, 20, 40} as well as the corresponding irregular decomposi-
tions obtained by METIS. All in all, this results in 4800 training and validation data
configurations. In all coefficient configurations, we always set the high coefficient
to 𝜌1 = 1𝑒6 and the low coefficient to 𝜌2 = 1. For the selection of the necessary
adaptive constraints, we always choose the tolerance 𝑇𝑂𝐿 = 100.
Finally, for each of the network models 𝑁𝑙 and 𝑁𝑙 , 𝑙 ≤ 3, we train a separate

dense feedforward regression neural network [1] with 4 hidden layers and 50 neurons
per layer. For each layer, we use the ReLU activation function and 20% dropout for
each layer. For the optimization process, we have chosen the stochastic gradient
descent (SGD) method using the Adam optimizer [5] with its default parameters,
the initial learning rate of 0.001, and a batch size of 32. As loss function, we use the
MSE (mean squared error) between the true adaptive and the predicted constraint
vectors at the output grid points. For the final model, we obtain a MSE of 9.77𝑒-03
for the training data and a MSE of 4.62𝑒-02 for the validation data.
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4 Numerical results

In this section, we provide numerical results for our proposed hybrid FETI-DP
method using the approximated edge constraints as learned by the neural networks
in direct comparison with the adaptive coarse space from [10].
To test our approach, we consider both, a regular decomposition and an irregular

METIS decomposition of basically the same test problem. In both cases, the un-
derlaying problem is a heterogeneous stationary diffusion problem, which we have
already used in [6, Sect. 3]; see also Fig. 3 for a visualization. Only the underlying
finite element discretization differs in both cases. Let us remark that this test con-
figuration was of course not included in the training or validation data used for the
training of the networks. For the test case with regular subdomains, we decompose
our domainΩ = [0, 1]2 into 4×4 square subdomains and use a regular finite element
mesh defined by 𝐻/ℎ = 10. We choose all vertices as primal variables and consider
a coefficient contrast of 𝜌1/𝜌2 = 1𝑒6. In particular, we compare the robustness of the
resulting coarse space when implementing our trained edge constraints to the adap-
tive coarse space from [10] and the condition and iteration numbers from [6, Sect. 3]
where we have trained the regression networks exclusively with training data from
straight edges. Note again that in this paper, we train the networks with both, training
data from straight edges and from irregular edges resulting from a decomposition by
METIS. In Fig. 4 (top), we show the two adaptive edge constraints resulting from the
local eigenvalue problem in Eq. (2) for the tolerance 𝑇𝑂𝐿 = 100, that is, the ground
truth as well as the learned approximations from our regression neural networks.
As we can see from Fig. 4 (top), for an exemplary straight edge E𝑖 𝑗 between two
floating subdomains, both approximations using either just straight edges for the
training or using both, straight and irregular edges, result in quantitatively similar
approximations of the two adaptive edge constraints. Using the approximated edge
constraints in our hybrid FETI-DP method leads to an iteration number of 14 and
a condition number estimate of 35.5 when training the network with straight edges
only while training the network with both straight and irregular edges results in an
iteration number of 17 and a condition number estimate of 57.9; see also Table 1.
In particular, both approximate coarse spaces result in robust condition number es-
timates independent of the coefficient contrast and using both, straight and irregular
edges for the training of the network models provides qualitatively similar results as
we have obtained in [6].
To test the performance of our approach with a METIS decomposition, we con-

sider a decomposition of the unit square into 4×4 irregular subdomains computed by
METIS [4] and we choose 3200 finite elements for each subdomain; see also Fig. 3
(right). Again, we consider a coefficient contrast of 𝜌1/𝜌2 = 1𝑒6. We evaluate our
regression neural networks 𝑁𝑙 and 𝑁𝑙 , 𝑙 ≤ 3, trained with straight and irregular
edges for all 34 irregular edges resulting from the domain decomposition obtained
by METIS in Fig. 3 (right), and integrate the learned edge constraints into the FETI-
DP coarse space. The resulting iteration number and condition number estimate are
given in Table 1, wherewe also show the corresponding values for the adaptive coarse
space from [10] and the tolerance 𝑇𝑂𝐿 = 100. As we can observe from Table 1,



Learning Adaptive FETI-DP Constraints for Irregular Domain Decompositions 285

Fig. 3 Heterogeneous test problem: Stationary diffusion problem, coefficient contrast 1𝑒6, Ω =

[0, 1]2 decomposed into 4 × 4 subdomains. Left: Regular decomposition, mesh size defined by
𝐻/ℎ = 10. Right: Irregular decomposition computed by METIS with 3200 FEs per subdomain.

Fig. 4 Results for a straight edge of the regular decomposition (top row) and for an exemplary
edge of the irregular decomposition (bottom row) of the test problem; see Fig. 3. Green, solid line:
ground truth for the tolerance TOL = 100. Blue, dashed line: prediction as obtained by the neural
networks in [6]. Red, dashed-dotted line: prediction as obtained by the neural networks trained with
both, straight and irregular edges. See Table 1 for the resulting condition and iteration numbers.

using the learned constraints leads to a condition number estimate of 67.64 that is
clearly independent of the coefficient contrast and in a quantitatively similar order
of magnitude as the respective condition number for the adaptive FETI-DP coarse
space. Thus, the learned coarse space seems to serve as a good approximation of
the respective adaptive FETI-DP coarse space. Furthermore, in Fig. 4 (bottom), we
show the learned constraints as well as the ground truth for an exemplary edge within
the irregular decomposition. We can see that the learned constraints when training
the networks with both, straight and irregular edges, are quantitatively similar to the
ground truth. However, evaluating our networks from [6], which were only trained
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Table 1 Condition number estimates (cond) and iteration numbers (iter) for the adaptive FETI-DP
coarse space and the hybrid coarse spaces as learned by the regression neural networks for the
coefficient distributions in Fig. 3. We denote by METIS nets the neural networks that are trained
with both, straight and irregular edges.

Regular METIS
decomposition decomposition
iter cond iter cond

Classic FETI-DP 55 32443 79 375020
Adaptive FETI-DP 10 2.81 19 3.32
Learned constraints from [6] 14 35.56 41 7055.95
Learned constraints from METIS nets 17 57.97 26 67.64

with straight edges, for an irregular edge, provides a relatively poor approximation
of the constraints. Note again that the setup of the learned coarse space does not
require the solution of any eigenvalue problems at all and the training of the differ-
ent network models can be executed in parallel and in an apriori offline phase. In
particular, in this work, we have shown that it is possible to generalize our results
from [6] also to non-straight edges as, e.g., resulting from METIS [4].
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Adaptive Three-Level BDDC Using Frugal
Constraints

Axel Klawonn, Martin Lanser, and Janine Weber

1 Introduction

The convergence rate of both the FETI-DP (Finite Element Tearing and Intercon-
necting - Dual Primal) and the BDDC (Balancing Domain Decomposition by Con-
straints) domain decomposition methods strongly depend on the spectrum, i.e., the
eigenvalues of the preconditioned system [7, 2]. To obtain a robust condition num-
ber estimate which is independent of the coefficient or material distribution, several
adaptive coarse spaces have been developed which rely on the solution of local
eigenvalue problems and use selected eigenvectors to enhance the coarse space; see,
e.g., [9]. Besides the robustness of the considered domain decomposition method, its
computational efficiency and parallel scalability is also of major interest. However,
for an increasing number of subdomains, the exact solution of the coarse problem
can become a scaling bottleneck within a parallel implementation. For the BDDC
method, the coarse problem has the same structure as the original problem. Thus,
it is straightforward to apply the BDDC preconditioner recursively either once or
several times to the coarse problem, leading to a three-level [14] or a multilevel
BDDC method [1, 10].
In the present work, we combine the three-level BDDC approach from [14] with

the choice of adaptive constraints from [9] and, other than in the adaptive multilevel
BDDC method in [12, 13], additionally with the frugal constraints from [3]. Since
the computation of the frugal edge constraints is fairly cheap, we aim to reduce
the computational effort of the adaptive three-level BDDC method by replacing the
eigenvalue problems either on the subdomain or on the subregion level by frugal
constraints while still retaining a satisfactory convergence behavior. We compare
the robustness of the resulting different three-level BDDC methods using frugal
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and/or adaptive edge constraints on either the second and/or the third level for
different heterogeneous stationary diffusion problems with high contrasts in two
spatial dimensions.

2 Problem and three-level BDDC

We consider a stationary diffusion problem in two spatial dimensions, i.e., the weak
formulation of

− div (𝜌∇𝑢) = 1 in Ω
𝑢 = 0 on 𝜕Ω. (1)

Here, 𝜌 : Ω := [0, 1] × [0, 1] → R denotes the coefficient function and in Section 4,
we will consider various heterogeneous coefficient functions 𝜌.
In this paper, we numerically investigate different coarse spaces and approximate

solvers for the BDDC domain decomposition method. Thus, we decompose the
domain Ω into 𝑁 ∈ N nonoverlapping subdomains Ω𝑖 , 𝑖 = 1, . . . , 𝑁 . For each of
these subdomains, we then compute a conforming finite element triangulation and
compute local stiffness matrices 𝐾 (𝑖) and local load vectors 𝑓 (𝑖) , 𝑖 = 1, . . . , 𝑁 . Due
to space limitations, we refrain from explaining the classic two-level BDDC method
in detail and focus instead on the description of the different approximate coarse
spaces and a specific adaptive BDDC coarse space. For a detailed description of the
two-level BDDC method, we refer to [2].
In a parallel implementation of the two-level BDDCmethod, the exact solution of

the coarse problem in form of the primally coupled Schur complement matrix 𝑆−1
ΠΠ

can become a scaling bottleneck; see, e.g., [4, 5] for related parallel numerical exper-
iments in a linear and a nonlinear framework, respectively. One possible approach to
delay the related scaling bottleneck is to apply the BDDC preconditioner recursively
and to compute only an approximation 𝑆−1

ΠΠ
of the coarse problem 𝑆−1

ΠΠ
, leading

to a three-level BDDC method [14]. Here, the main idea is to introduce a third
level of the domain decomposition by additionally decomposing the domain Ω into
a number of nonoverlapping subregions Ω 𝑗 , 𝑗 = 1, . . . , 𝑁 . In particular, each of the
subregions Ω 𝑗 comprises a given number of subdomains Ω𝑖 , 𝑖 = 1, . . . , 𝑁 𝑗 . Then,
all primal variables on the second level are again partitioned into inner, primal, and
dual variables on the subregion level. We denote the respective index sets on the
subregion level by 𝐼, Π, and Δ, respectively; see also Fig. 1 for an exemplary visu-
alization. On the subregion level, analogously to the subdomain level, all inner and
dual variables are eliminated, leading to a primal Schur complement system on the
third level which is, generally, of much smaller size than the respective system on the
second level depending on the number of subdomains per subregion. Hence, only
a smaller coarse problem on the third level has to be solved compared to the classic,
i.e., the two-level BDDC method. A complete mathematical description as well as
the related theory and a condition number bound for the three-level BDDC method
for stationary diffusion problems can be found in [14]. Parallel numerical results and
a weak scaling study for the three-level BDDC method in comparison with other
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Fig. 1 Example of a three-level domain decomposition into 16 regular subdomains (bottom)
and 4 regular subregions (top). We mark in blue the interface Γ between subdomains and in red the
interface Γ between subregions. Primal nodesΠ on the third level and primal nodesΠ on the second
level are visualized as red and blue circles, respectively. Inner or dual nodes on the third level, i.e., 𝐼
or Δ, are visualized as green triangles or red squares, respectively. Figure taken from [15, Fig. 5.1].

approximate coarse solvers can, e.g., be found in [5]. Let us note that besides adding
a third level of the domain decomposition, also further additional levels can be added
leading to a recursive multilevel BDDC method; see, e.g., [1, 10].

3 Adaptive three-level BDDC combined with frugal edge
constraints

In general, we are interested in BDDC coarse spaces which can efficiently be com-
puted on a parallel computer and which are, preferably, robust for different hetero-
geneous problems. Unfortunately, the classic condition number bounds both for the
FETI-DP and the BDDCmethod are only independent of the coefficient contrast un-
der fairly restrictive assumptions on the coefficient distribution; see, e.g., [7, 8, 11]
for a closer discussion for FETI-DP and BDDC, respectively. A similar theoretical
condition number bound has also been derived for the three-level BDDC method;
see [14]. As a remedy, different adaptive, i.e., problem-dependent coarse spaces
have been developed. In the following, we will focus on a specific adaptive coarse
space strategy which has been originally introduced in [9]. Here, the main idea
is to solve a local generalized eigenvalue problem for each edge E𝑖 𝑗 between two
subdomains Ω𝑖 and Ω 𝑗 which is of the general form: find 𝑤𝑖 𝑗 ∈

(
ker 𝑆𝑖 𝑗

)⊥ such that
〈𝑃𝐷𝑖 𝑗

𝑣𝑖 𝑗 , 𝑆𝑖 𝑗𝑃𝐷𝑖 𝑗
𝑤𝑖 𝑗〉 = 𝜇𝑖 𝑗 〈𝑣𝑖 𝑗 , 𝑆𝑖 𝑗𝑤𝑖 𝑗〉 ∀𝑣𝑖 𝑗 ∈

(
ker 𝑆𝑖 𝑗

)⊥
. (2)
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Here, 𝑆𝑖 𝑗 =
(
𝑆 (𝑖)

𝑆 ( 𝑗)

)
is a local Schur complement matrix where 𝑆 (𝑖) and 𝑆 ( 𝑗) are

the Schur complements of 𝐾 (𝑖) and 𝐾 ( 𝑗) , respectively, and 𝑃𝐷𝑖 𝑗
= 𝐵𝑇

𝐷,E𝑖 𝑗
𝐵E𝑖 𝑗

is
a local jump operator; see [9] for more details. Assuming that 𝑅 eigenvectors 𝑤𝑟

𝑖 𝑗
,

𝑟 = 1, . . . , 𝑅 belong to eigenvalues which are larger than a user-defined tolerance
𝑇𝑂𝐿, we then enhance the BDDC coarse space with the edge constraints

𝐵𝐷,E𝑖 𝑗
𝑆𝑖 𝑗𝑃𝐷𝑖 𝑗

𝑤𝑟
𝑖 𝑗 , 𝑟 = 1, . . . , 𝑅, (3)

with 𝐵𝐷,E𝑖 𝑗
=

(
𝐵
(𝑖)
𝐷,E𝑖 𝑗

, 𝐵
( 𝑗)
𝐷,E𝑖 𝑗

)
being a local submatrix of

(
𝐵
(𝑖)
𝐷
, 𝐵

( 𝑗)
𝐷

)
obtained

by taking the rows corresponding to the edge E𝑖 𝑗 . In particular, for two-dimensional
problems and primal subdomain vertices, enhancing the BDDC coarse space with
these adaptive constraints leads to a robust condition number which exclusively
depends on the chosen tolerance 𝑇𝑂𝐿 and some geometrical constants; see [6].
In order to benefit both from the robustness of the described adaptive coarse

space as well as from the increased parallel scalability of a three-level BDDC
method, we combine both approaches and also implement adaptive edge constraints
on the subregion level within a three-level BDDC method. To compute the local
eigenvalue problem for edges between two neighboring subregions Ω𝑖 and Ω 𝑗 ,
both the local Schur complement matrices 𝑆 (𝑖) and 𝑆 ( 𝑗) as well as the local jump
operator 𝑃𝐷𝑖 𝑗

in Eq. (2) are replaced by recursive versions with respect to the
primal variables on the subregion level. This leads to an adaptive three-level BDDC
approach; see also [12, 13] for previous work on adaptive multilevel BDDC. Due to
the implementation of adaptive constraints within each level, here, a robust condition
number estimate can be obtained.
As a drawback, we have to set up and solve local eigenvalue problems on both

the subdomain and the subregion level, which can be computationally expensive,
especially for three-dimensional problems. Hence, we propose a modified approach
of the adaptive multilevel approach presented in [12, 13] by replacing the eigenvalue
problems either on the second and/or the third level by frugal edge constraints as
introduced in [3]. The resulting frugal edge constraints serve as a low-dimensional
approximation of the adaptive coarse space defined in [9] and have been shown to
be robust for a range of different heterogeneous coefficient or material distributions
both in two and three spatial dimensions; see [3] for detailed experiments. For
two-dimensional stationary diffusion problems, the frugal edge constraints on the
subdomain level are defined as follows. We denote by 𝜔(𝑥) the support of the finite
element basis functions associated with a finite element node 𝑥 ∈ (Ω𝑖 ∪ Ω 𝑗 ). Then,
for each 𝑥 on 𝜕Ω𝑖 or 𝜕Ω 𝑗 , respectively, we compute 𝜌̂ (𝑖) (𝑥) = max

𝑦∈𝜔 (𝑥)∩Ω𝑖

𝜌(𝑦) and

𝜌̂ ( 𝑗) (𝑥) = max
𝑦∈𝜔 (𝑥)∩Ω 𝑗

𝜌(𝑦). We define 𝑣 (𝑙)
𝐸𝑖 𝑗
on 𝜕Ω𝑙 for 𝑙 = 𝑖, 𝑗 by

𝑣
(𝑙)
𝐸𝑖 𝑗

(𝑥) :=
{
𝜌̂ (𝑙) (𝑥), 𝑥 ∈ 𝜕Ω𝑙\Π (𝑙) ,
0, 𝑥 ∈ Π (𝑙) (4)
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and 𝑣𝑇
𝐸𝑖 𝑗
:= (𝑣 (𝑖)𝑇

𝐸𝑖 𝑗
,−𝑣 ( 𝑗)𝑇

𝐸𝑖 𝑗
); see also Fig. 2 for an exemplary illustration. Here, Π (𝑙)

denotes the index set of all local primal variables. Finally, we obtain the frugal
edge constraint by 𝑐𝐸𝑖 𝑗

:= 𝐵𝐷,E𝑖 𝑗
𝑆𝑖 𝑗𝑃𝐷𝑖 𝑗

𝑣𝐸𝑖 𝑗
in direct analogy to the adaptive edge

constraints in Eq. (3). Let us note that on the subregion level, the subdomains take over
the role of the finite elements on the subdomain level and thus, the 𝜌-coefficient is
not uniquely defined for each subdomain, i.e., each element on the third level. Hence,
for the additional construction of frugal edge constraints on the subregion level, we
use the stiffness, i.e., the diagonal entries of the local subregion Schur complement
matrices instead of using the maximum 𝜌-coefficient to construct 𝑣 (𝑙)

𝐸𝑖 𝑗
(𝑥) in Eq. (4).

In Table 1, we summarize the different coarse spaces presented here as well as
their main benefits and drawbacks. The overall goal of this paper is to combine
the different BDDC methods discussed above to benefit from the robustness of the
presented adaptive constraints, a reduced computational effort when using frugal
constraints, and the increased parallel scalability of a three-level BDDC method.
In the following, we consider four different possibilities of how to combine the

presented BDDCmethods fromTable 1. In particular, we consider three-level BDDC
with:

i) Frugal constraints on the second and the third level.
ii) Frugal constraints on the second and adaptive constraints on the third level.
iii)Adaptive constraints on the second and the third level.
iv)Adaptive constraints on the second and frugal constraints on the third level.

Furthermore, variants i) and ii) can be slightly modified by using the stiffness
instead of the maximum 𝜌-coefficient values for the construction of the frugal sub-
domain edge constraints. We denote these variants by i a/b) and ii a/b), respectively,
in the experiments in Section 4.

Ω𝑖 Ω 𝑗
E𝑖 𝑗

𝑥𝜔 (𝑥) ∩Ω𝑖 𝜔 (𝑥) ∩Ω 𝑗

E𝑖 𝑗

𝑣
(𝑖)
𝐸𝑖 𝑗 |E𝑖 𝑗

E𝑖 𝑗

−𝑣 ( 𝑗)
𝐸𝑖 𝑗 |E𝑖 𝑗

Fig. 2 Visualization of the construction of a frugal edge constraint in two dimensions for a given
heterogeneous coefficient distribution. Left/Right:Maximum coefficient per finite element node of
E𝑖 𝑗 with respect to Ω𝑖 and Ω 𝑗 , respectively, for the coefficient distribution in the middle.Middle:
Exemplary heterogeneous coefficient distribution for two neighboring subdomains Ω𝑖 and Ω 𝑗

sharing the edge E𝑖 𝑗 . High coefficients are marked in grey and low coefficients are marked in white.
Figure taken from [15, Fig. 6.1].



292 Axel Klawonn, Martin Lanser, and Janine Weber

Table 1 Non-exhaustive overview of benefits and drawbacks of the different BDDC algorithms
considered in this paper.

Coarse space Benefits Drawbacks
Adaptive Theoretical proof of robustness Expensive setup
Frugal Cheap setup Limited robustness
3-Level, Classic Increased parallel scalability Robust only for moderate heterogeneities

4 Numerical results

In this section, we compare different BDDC methods using varying coarse spaces
for different heterogeneous stationary diffusion problems in two dimensions. All
shown computations were performed using MATLAB and a transformation-of-basis
approach to implement the different coarse space enhancements. For all presented
results, we choose all vertices as primal variables and we always use 𝜌-scaling unless
explicitly mentioned otherwise. In Fig. 3, we show three different heterogeneous
coefficient distributions which we use to evaluate the robustness of the four presented
BDDCmethods. Here, we always consider 𝜌 = 1𝑒6 in the dark blue pixels and 𝜌 = 1
otherwise. Note that for the coefficient distribution in Fig. 3 (right), the ratio 𝐻/ℎ
has to be a multiple of five. Hence, we choose 𝐻/ℎ = 20 for this case.
In Table 2 (top), we compare the iteration numbers and condition number esti-

mates for the coefficient distribution in Fig. 3 (right) with coefficient jumps along
and across both, subdomain and subregion edges. As we can observe from the results
in Table 2, implementing adaptive constraints on both levels, i.e., algorithm iii) leads
to the lowest iteration counts and lowest condition number estimates. However, all
other BDDC variants using frugal edge constraints on the second and/or the third
level also show condition numbers which are independent of the coefficient contrast
and thus are robust. In particular, using frugal constraints on the subdomain level and
computing adaptive constraints exclusively on the subregion level, i.e., algorithm ii),
delivers results which are fairly similar to the fully adaptive approach. Hence, in this

Fig. 3 Examples of three different heterogeneous coefficient functions. We set 𝜌 = 1𝑒6 in the dark
blue pixels and 𝜌 = 1 elsewhere. Left: Shifted boxes of a high coefficient with jumps along and
across vertical edges; see Table 2 (top).Middle: One straight channel of a high coefficient crossing
each vertical edge; see Table 2 (middle).Right: Two straight channels of a high coefficient crossing
each vertical edge; see Table 2 (bottom).
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Table 2 Iteration numbers (it) and condition numbers (cond) for a stationary diffusion problem
with heterogeneous coefficient distributions as in Fig. 3. Decomposition of the domain into 4 × 4
subdomains and 2 × 2 subregions.

2𝒏𝒅 level 3𝒓𝒅 level it cond
Shifted boxes; see Fig. 3 (left). 𝐻/ℎ = 16.

i a) frugal, stiffness frugal, stiffness 24 108.59
i b) frugal, rho-max frugal, stiffness 18 35.58
ii a) frugal, stiffness adaptive 19 24.78
ii b) frugal, rho-max adaptive 18 30.11
iii) adaptive adaptive 18 21.73
iv) adaptive frugal, stiffness 25 65.73
One straight channel; see Fig. 3 (middle). 𝐻/ℎ = 16.
i a) frugal, stiffness frugal, stiffness 17 11.11
i b) frugal, rho-max frugal, stiffness 19 36.87
ii a) frugal, stiffness adaptive 15 11.11
ii b) frugal, rho-max adaptive 14 33.97
iii) adaptive adaptive 16 34.53
iv) adaptive frugal, stiffness 20 35.93
Two straight channels; see Fig. 3 (right). 𝐻/ℎ = 20.
i a) frugal, stiffness frugal, stiffness 41 19 376
i b) frugal, rho-max frugal, stiffness 42 54 582
ii a) frugal, stiffness adaptive 34 19 355
ii b) frugal, rho-max adaptive 28 55 009
iii) adaptive adaptive 22 42.92
iv) adaptive frugal, stiffness 26 141.02

case, variant ii) would be our favored approach since it requires only the solution
of smaller eigenvalue problems on the subregion level whereas the construction of
frugal constraints on the subdomain level is computationally cheap.
For the coefficient distribution in Fig. 3 (middle) which is symmetric with respect

to all edges and which has only a single channel crossing each subdomain edge,
the numerical results for frugal and adaptive edge constraints are even more similar;
see Table 2 (middle). This can be interpreted as an indicator that for this specific case,
the computed frugal constraint is indeed a good approximation of the corresponding
adaptive constraint. This will be further investigated in future research.
For the coefficient distribution in Fig. 3 (right) where we have more coefficient

jumps along and across the subdomain and subregion edges, only adaptive three-
level BDDC, i.e., algorithm iii) is robust with respect to the coefficient contrast;
see Table 2 (bottom). However, also the remaining variants which use three-level
BDDC with frugal constraints show satisfactory iteration numbers, indicating that
we obtain only a few outliers within the spectrum of the preconditioned system.
As a conclusion, for completely arbitrary coefficient distributions with numerous

jumps along and across the subdomain and subregion edges, only adaptive three-level
BDDC ensures a robust condition number independent of the coefficient contrast.
However, for rathermoderate heterogeneities, also replacing the eigenvalue problems
on either the second or the third level by frugal edge constraints can deliver a robust
algorithm.With respect to computational efficiency, variant ii), i.e., frugal constraints
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on the subdomain level and adaptive constraints on the subregion level would be our
favored choice due to the smaller size of the eigenvalue problems exclusively on
the subregion level. For future research, we plan to fully integrate all proposed
approaches into our parallel BDDC software and to test it more extensively with
respect to parallel scalability for both, two- and three-dimensional problems.
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Efficient Adaptive Elimination Strategies
in Nonlinear FETI-DP Methods in Combination
with Adaptive Spectral Coarse Spaces

Axel Klawonn and Martin Lanser

1 Introduction

Nonlinear domain decomposition methods (DDMs) are based on a decomposition
of a discretized nonlinear partial differential equation instead of applying a linear
DDM to the tangential systems in a Newton-type iteration. The advantages are
a faster convergence and an improved ratio of local work to communication, at least
for many problems. We focus on nonlinear FETI-DP (Finite Element Tearing and
Interconnecting - Dual Primal) methods here, which build a class of nonlinear two-
level approaches. These methods can have a (partially) nonlinear coarse level and
the integrated nonlinear right-preconditioner is based on a partial elimination of
arbitrary degrees of freedom collected in an index set 𝐸 . In [2], it was shown that
the combination of nonlinear FETI-DP with an adaptive coarse space [9], which was
implemented with a transformation of basis approach, improves the convergence.
Additionally, in [6] the concept of choosing an index set 𝐸 adaptively based on
the residual was investigated. Finally, in [3], both ideas are combined to a nonlinear
FETI-DP algorithm iterating in the transformed space, whichwe abbreviate withNL-
FETI-DP-XT here. Additionally, also in [3], an efficient implementation iterating in
the original finite element space is suggested using local saddle point problems [8]
instead of an explicit transformation of basis; this method is abbreviated by NL-
FETI-DP-X here. For the latter approach, modifications have to be made to the
elimination set 𝐸 . We will compare different strategies to modify 𝐸 and finally
suggest and numerically test a completely new and more efficient and robust strategy
for NL-FETI-DP-X based on an approximation of the transformed residual.
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2 Nonlinear FETI-DP

Let us briefly recall the unified framework of nonlinear FETI-DP methods. For
a detailed description, we refer to [5]. Throughout this article, we assume that we
have a computational domain Ω ⊂ R𝑑 , 𝑑 = 2, 3, which is divided into 𝑁 non-
overlapping subdomainsΩ𝑖 , i.e.,Ω =

⋃𝑁
𝑖=1Ω𝑖 . Each subdomain is the union of finite

elements and the associated finite element spaces are denoted by 𝑊 (𝑖) . We denote
the product space of all finite element spaces as 𝑊 = 𝑊 (1) × · · · ×𝑊 (𝑁 ) . In FETI-
DP methods, we partition all variables into interior (𝐼), dual (Δ), and primal (Π)
variables, where only continuity in the primal variables is prescribed and continuity
in the dual variables is enforced by Lagrange multipliers 𝜆 iteratively. Therefore,
we further introduce a subspace 𝑊 ⊂ 𝑊 of all finite element functions from 𝑊

that are continuous in the primal variables. A simple choice of primal variables are
subdomain vertices. More advanced strategies are based on enforcing continuity in
certain weighted averages over the degrees of freedoms of an edge or face. The
weights can, for example, be computed adaptively by solving localized eigenvalue
problems related to edges. This approach results in provably robust linear FETI-DP
methods; see, e.g., [7, 9]. For nonlinear FETI-DPmethods, the adaptive coarse space
can be computed using the tangential matrix linearized in the initial value; see [2].
We use this specific adaptive coarse space in all computations in this article.
For completeness, we also introduce the subspace 𝑊 ⊂ 𝑊 , which contains all

finite element functions that are continuous across the complete interface and it
holds 𝑊 ⊂ 𝑊 ⊂ 𝑊 . Let us introduce the primal assembly operator 𝑅̌𝑇 : 𝑊 → 𝑊

and the nonlinear function 𝐾 (𝑢) : 𝑊 → 𝑊 obtained by a finite element discretization
of a nonlinear partial differential equation. Let us note that 𝐾 (𝑢) is not necessarily
continuous on the interface.
As it was shown in [4], finding the solution of the fully assembled finite element

problem is equivalent to solving the nonlinear FETI-DP saddle point system

𝐴(𝑢̃, 𝜆) =
[
𝐾 (𝑢̃) + 𝑅̌𝑇 𝐵𝑇 𝜆 − 𝑅̌𝑇 𝑓

𝐵𝑅̌𝑢̃

]
=

[
0
0

]
, 𝑢̃ ∈ 𝑊, 𝐾 (𝑢̃) := 𝑅̌𝑇 𝐾 (𝑅̌𝑢̃) ∈ 𝑊. (1)

This system is the basis for all nonlinear FETI-DP methods. Here, the linear con-
straints 𝐵𝑅̌𝑢̃ = 0 together with Lagrange multipliers 𝜆 ∈ 𝑉 := range(𝐵) enforce
continuity in all dual variables.
To implement arbitrary coarse constraints, as, e.g., adaptive constraints, one can

use a transformation of basis approach. The underlying idea is to transform the
complete system into a space 𝑊𝑇 , where all primal constraints are again point-
wise constraints and can be enforced by a simple assembly operator as before.
A transformation matrix 𝑇 : 𝑊𝑇 → 𝑊 with orthonormal rows, that is, with 𝑇𝑇𝑇 = 𝐼,
can be computed for all coarse spaces based on edge and face averages; see [3] for
details. Then, the transformed nonlinear FETI-DP saddle point system writes
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𝐴𝑇 (𝑢̃𝑇 , 𝜆) =
[
𝐾𝑇 (𝑢̃𝑇 ) + 𝑅̌𝑇𝑇𝑇 𝐵𝑇 𝜆 − 𝑅̌𝑇𝑇𝑇 𝑓

𝐵𝑇 𝑅̌𝑢̃𝑇

]
=

[
0
0

]
, 𝐾𝑇 (𝑢̃𝑇 ) := 𝑅̌𝑇𝑇𝑇 𝐾 (𝑇 𝑅̌𝑢̃).

(2)

As introduced in [5], we use a nonlinear right-preconditioner 𝑀𝑇 (𝑢̃𝑇 , 𝜆) that is
nonlinear in 𝑢̃𝑇 and linear in 𝜆; see [5] for some desirable properties of 𝑀𝑇 . Instead
of 𝐴𝑇 (𝑢̃𝑇 , 𝜆) = 0, we now solve 𝐴𝑇 (𝑀𝑇 (𝑢̃𝑇 , 𝜆)) = 0with a Newton-Krylovmethod.
Following [5], the application of a nonlinear right-preconditioner can be interpreted
as a (partial) nonlinear elimination process, where different choices of 𝑀𝑇 lead to
different elimination sets. With this interpretation, it is obvious to divide the overall
set of variables into two different subsets 𝐸 and 𝐿, where 𝐸 contains all variables
that should be nonlinearly eliminated by the preconditioner 𝑀𝑇 , and 𝐿 contains the
remaining variables in which will be linearized.
After an appropriate rearrangement, we can split Eq. (2) according to the subsets 𝐸

and 𝐿. We can write the nonlinear saddle point system (Eq. (2)) as

𝐴𝑇 (𝑢̃𝑇 ,𝐸 , 𝑢̃𝑇 ,𝐿 , 𝜆) =

𝐴𝑇 ,𝐸 (𝑢̃𝑇 ,𝐸 , 𝑢̃𝑇 ,𝐿 , 𝜆)
𝐴𝑇 ,𝐿 (𝑢̃𝑇 ,𝐸 , 𝑢̃𝑇 ,𝐿 , 𝜆)

𝐵𝑇 𝑅̌𝑢̃𝑇

 =

0
0
0

 .
With the application of the nonlinear right-preconditioner, we now aim to eliminate
all variables 𝑢̃𝐸 , which correspond to the subset 𝐸 . Thus, our preconditioner is
implicitly defined by solving the nonlinear equation

𝐴𝑇 ,𝐸 (𝑀𝑇 ,𝑢̃𝑇 ,𝐸
(𝑢̃𝑇 ,𝐿 , 𝜆), 𝑢̃𝑇 ,𝐿 , 𝜆) = 0, (3)

where we have 𝑀𝑇 (𝑢̃𝑇 ,𝐸 , 𝑢̃𝑇 .𝐿 , 𝜆) := (𝑀𝑇 ,𝑢̃𝑇 ,𝐸
(𝑢̃𝐿 , 𝜆), 𝑢̃𝐿 , 𝜆), since, by construc-

tion, 𝑀𝑇 is linear in 𝑢̃𝑇 ,𝐿 and 𝜆. After we have computed the nonlinear precondi-
tioner 𝑀𝑇 by solving Eq. (3) with Newton’s method, we obtain the nonlinear Schur
complement system [

𝐴𝑇 ,𝐿 (𝑀𝑇 ,𝑢̃𝑇 ,𝐸
(𝑢̃𝑇 ,𝐿 , 𝜆), 𝑢̃𝑇 ,𝐿 , 𝜆)

𝐵𝑇 𝑅̌𝑢̃𝑇

]
=

[
0
0

]
.

This can be solved with the traditional Newton-Krylov-FETI-DP approach; see [5].
Putting it all together, in each of these (outer) Newton iterations, 𝑀𝑇 has to be
recomputed, which is typically done by an inner Newton iteration.
Both Newton loops iterate in the transformed space, that is, all outer Newton

updates 𝛿𝑢̃𝑇 and inner Newton updates 𝛿𝑢̃𝑇 ,𝐸 have to be projected back to the
original space after convergence. As in linear FETI-DP methods, the explicit usage
of 𝑇 leads to denser linear systems and thus, especially in three dimensions using
rich coarse spaces, to a higher memory demand and a slower time to solution. As in
the linear case, it is possible to reformulate nonlinear FETI-DP in the original nodal
space using local saddle point systems and some further tricks; see [3] for details.
It is possible to get rid of the matrix 𝑇 in all computations of nonlinear FETI-DP
without changing the nonlinear and linear convergence. Unfortunately, the additional
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assumption has to be made that 𝑇 has the block structure

𝑇 =

[
𝑇𝐸 0
0 𝑇𝐿

]
;

see [3] for details. To enforce this, all primal edges or faces, i.e., edges or faces
with at least one primal constraint, have to be either included in 𝐸 or 𝐿 completely.
In contrast, iterating in the transformed space, 𝐸 can be chosen arbitrarily. In this
article, we discuss different strategies of how to choose an appropriate 𝐸 adaptively
and compare nonlinear FETI-DP in the iterating in the nodal space (NL-FETI-DP-X)
with nonlinear FETI-DP iterating in the transformed space (NL-FETI-DP-XT).

3 Adaptive selection of 𝑬

NL-FETI-DP-XT allows for completely arbitrary elimination sets 𝐸 . For the more
efficient NL-FETI-DP-X we will fulfill the necessary assumption on 𝑇 by either
choosing an edge to be part of 𝐸 or, respectively, 𝐿 completely, i.e., we will not
split any edge. More precisely, in theory, it is sufficient to not split faces or edges
which carry primal constraints. The adaptive selection of 𝐸 used in this article is
a modification of the procedure suggested in [6]. This heuristic strategy is based on
the assembled nonlinear residual and is inspired by [1].
We first define the nonlinear residual in the 𝑘-th outer Newton iteration

𝑟 (𝑘) := 𝐾 (𝑢 (𝑘) ) + 𝐵𝑇 𝜆 (𝑘) − 𝑓 = 𝐾 (𝑇 𝑅̌𝑢̃ (𝑘)
𝑇

) + 𝐵𝑇 𝜆 (𝑘) − 𝑓

and the assembled and transformed residual by

𝑟
(𝑘)
𝑇
:= 𝑅𝑇𝑇𝑇 𝑟 (𝑘) ,

where 𝑅𝑇 : 𝑊 → 𝑊 assembles all degrees of freedom on the interface. We now
eliminate all variables, where the residual is comparably high, that is, if for the 𝑖-th
component 𝑟 (𝑘)

𝑇 ,𝑖
of 𝑟 (𝑘)

𝑇
the inequality

𝑟
(𝑘)
𝑇 ,𝑖

≥ 𝜌𝐸 | |𝑟 (𝑘)𝑇
| |∞

holds, the 𝑖-th degree of freedom is eliminated. That means, the index 𝑖 is added
to the elimination set 𝐸 . Let us remark that we only describe the scalar case here.
A procedure for systems of equations with more degrees of freedom in each physical
node, e.g., elasticity problems, is discussed in [6] and out of the scope of this article.
Here, 𝜌𝐸 < 1 is a user defined parameter and smaller values immediately result in
larger elimination sets 𝐸 . To avoid single and isolated physical points in the elimina-
tion set, 𝛿𝐸 layers of finite element nodes surrounding 𝐸 are added to the preselected
set 𝐸 . This is comparable to the procedure of selecting an overlap of a nonoverlap-
ping subdomain. The resulting 𝐸 can immediately be used within NL-FETI-DP-XT
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and we denote this procedure to find 𝐸 by basic strategy. Nonetheless, the resulting
𝐸 can not be used in NL-FETI-DP-X, where we are not allowed to split edges. We
suggest two different strategies to overcome this issue.

Strategy 1: After choosing 𝐸 with the basic algorithm, all edges which have
a nonempty intersection with 𝐸 are added to 𝐸 completely. Around these edges, 𝛿𝐸
layers of finite element nodes belonging to the interior of the adjacent subdomains
are also added to 𝐸 . We refer to Fig. 1 for a visualization of this strategy.
A disadvantage of strategy 1 and the basic approach is the need for computing 𝑇

which is used to compute 𝑟 (𝑘)
𝑇
. We will introduce a third strategy avoiding 𝑇 , since,

in the efficient implementation NL-FETI-DP-X, 𝑇 is not necessary at all. Only the
rows of 𝑇𝑇 belonging to primal variables are usually known. Sorting the variables
properly, we have

𝑇𝑇 =

[
𝑇𝑇
ΠΠ

𝑇𝑇
Π𝐵

𝑇𝑇
𝐵Π

𝑇𝑇
𝐵𝐵

]
and only the block 𝐶 :=

[
𝑇𝑇
ΠΠ

𝑇𝑇
Π𝐵

]
is available. Let us note that 𝑇𝑇

𝐵,:
= [𝐼 0], where

𝐵 := [𝐼 Δ̂] and Δ̂ is the index set of all dual variables belonging to edges which do
not carry primal constraints. Therefore, we have

𝑟
(𝑘)
𝑇 ,𝐵

=

(
𝑅𝑇 𝑟 (𝑘)

)���
𝐵

which can be computed without knowing 𝑇 . For the computation of the primal
part 𝑟 (𝑘)

𝑇 ,Π
solely 𝐶 is necessary. Only the part related to the dual part of the primal

edges 𝑟 (𝑘)
𝑇 ,Δ\Δ̂

cannot be computed without using 𝑇𝑇 . In NL-FETI-DP-X, all edges
carrying primal constraints have to be either completely part of 𝐸 or, respectively, 𝐿.
Assuming to have an appropriate coarse space and that all important information
about the primal edges are transformed to the coarse space and thus to the vector 𝑟 (𝑘)

𝑇 ,Π
,

we can rely on 𝑟 (𝑘)
𝑇 ,Π
for the decision if an edge, which is part of Δ \ Δ̂, is chosen to

be part of 𝐸 or 𝐿. We therefore suggest the following modification.
Strategy 2: Choose the initial set 𝐸 applying the basic algorithm to 𝑟 (𝑘)

𝑇
:=

[𝑟 (𝑘)𝑇
𝑇 ,𝐵

, 𝑟
(𝑘)𝑇
𝑇 ,Π

, 0
Δ\Δ̂] instead of 𝑟

(𝑘)
𝑇
. Then proceed as in Strategy 1.

4 Problem and numerical results

We consider the nonlinear problem

−𝛼Δ𝑝𝑢 = 1 in Ω,
𝑢 = 0 on 𝜕Ω, (4)

with the scaled 𝑝-Laplace operator 𝛼Δ𝑝𝑢 := div(𝛼 |∇𝑢 |𝑝−2∇𝑢). Within this article,
we use 𝑝 = 4 and a coefficient function 𝛼 : Ω → Rwith jumps. Moreover, we always
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Fig. 1 Illustration of Strategy 1 to compute the elimination set 𝐸 with 𝛿𝐸 = 2. The starting point
or initial set 𝐸 is obtained based on the residual. In Strategy 1, first two layers are added, then all
necessary edges are included in 𝐸 , and finally an overlap of 𝛿𝐸 layers is added in the interior of
the subdomains adjacent to those edges. The result of the basic algorithm can solely be used in
NL-FETI-DP-XT.

Fig. 2 Coefficient distributions and domain decompositions used in the numerical computations.
Left: Channels with 𝛼 = 1𝑒3 crossing material with 𝛼 = 1, zoomed in to a quarter of the unit
square. Right: Randomly generated distribution with 𝛼 = 1𝑒6 in the small yellow stripes.

use the unit square Ω = [0, 1] × [0, 1] as the computational domain, a discretization
with piecewise linear finite elements, and a structured domain decomposition into
square subdomains. We consider two different coefficient distributions, which can
be found in Fig. 2. We always choose 𝑢 (0) (𝑥, 𝑦) = 𝑥(1 − 𝑥)𝑦(1 − 𝑦) as initial value
in all computations.
For all edges we compute the adaptive coarse constraints introduced in [9] using

the first linearized system and a tolerance of 𝑡𝑜𝑙 = 10 for the localized eigenvalue
problems. For linear problems, there is a provable condition number bound of 𝑁2E ·𝑡𝑜𝑙
for FETI-DP using this coarse space, where 𝑁E is the maximum number of edges
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Table 1 Results for model problems with randomly generated coefficients and channels; always
using vertices plus adaptive edge constraints; outer it. gives the total number of global Newton
iterations and in brackets the number of Newton-Krylov-FETI-DP steps used for stability is shown;
inner it. gives the number of inner Newton iterations summed up over the outer Newton iterations;
PCG it. gives the number of PCG iterations summed up over the outer Newton iterations; |𝐸𝑎𝑣𝑔 |
gives the average size of the elimination set in percentage of the number of degrees of freedom;
NL-FETI-DP-X and NL-FETI-DP-XT stand for the adaptive selection of the elimination set;
NL-FETI-DP-2 stands for eliminating all variables, i.e., 𝐸 = [𝐵 Π ]; NK-FETI-DP stands for
Newton-Krylov-FETI-DP. The best results are marked in bold.

𝑝-Laplace random; see Fig. 2 (right)
𝑝 = 4; 𝐻/ℎ = 25; 25 subdomains; 𝑡𝑜𝑙 = 10

Stra- outer inner PCG
method tegy 𝛿𝐸 𝜌𝐸 |𝐸 |𝑎𝑣𝑔 it. it. it. (sum)
NL-FETI-DP-2 - - - 37.5% 8(5) 57 142
NK-FETI-DP - - - - 15(15) - 284
NL-FETI-DP-XT basic 2 0.01 6.9% 13(10) 36 254
NL-FETI-DP-XT basic 5 0.01 33.3% 4(0) 53 81
NL-FETI-DP-X 1 2 0.01 11.1% 11(2) 74 200
NL-FETI-DP-X 1 5 0.01 41.1% 4(0) 55 78
NL-FETI-DP-X 2 2 0.01 8.3% 13(6) 68 237
NL-FETI-DP-X 2 5 0.01 38.7% 4(0) 53 77

𝑝-Laplace channels; see Fig. 2 (left)
𝑝 = 4; 𝐻/ℎ = 32; 36 subdomains; 𝑡𝑜𝑙 = 10

Stra- outer inner PCG
method tegy 𝛿𝐸 𝜌𝐸 |𝐸 |𝑎𝑣𝑔 it. it. it. (sum)
NL-FETI-DP-2 - - - 71.4% 7(2) 43 80
NK-FETI-DP - - - - 19(19) - 237
NL-FETI-DP-XT basic 2 0.01 5.2% 16(12) 61 197
NL-FETI-DP-XT basic 5 0.01 7.5% 14(9) 101 180
NL-FETI-DP-X 1 2 0.01 20.2% 6(0) 53 72
NL-FETI-DP-X 1 5 0.01 43.8% 4(0) 45 54
NL-FETI-DP-X 2 2 0.01 19.9% 6(0) 53 73
NL-FETI-DP-X 2 5 0.01 43.8% 4(0) 45 54

a subdomain can have; see [7] for the proof. In our computations, the outer Newton
iteration is stopped if a relative reduction of 10−5 of the globally assembled residual
is reached. The inner iteration is stopped, if the inner Newton update is smaller
than 10−5 in the 𝑙2-norm. Let us finally note that, for stability reasons, we will always
switch to a Newton-Krylov-FETI-DP approach, if no further reduction of the residual
is reached in the outer loop. We never switch back to nonlinear FETI-DP.
We always compute the average size of the elimination set 𝐸 to give a rough

estimate on the computational cost of the elimination process in the inner loop. We
therefore compute the value

|𝐸 |𝑎𝑣𝑔 :=
1
𝑁𝑜

𝑁𝑜∑︁
𝑘=1

|𝐸 (𝑘) |
𝑁𝑑𝑜 𝑓

· 100%,
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where |𝐸 (𝑘) | is the number of degrees of freedom in the elimination set of the 𝑘-th
outer iteration, 𝑁𝑑𝑜 𝑓 is the number of total degrees of freedom, and 𝑁𝑜 the number
of outer iterations. Let us remark that |𝐸 (𝑘) | = 0 for each Newton-Krylov iteration
and thus |𝐸 |𝑎𝑣𝑔 can be small if many Newton-Krylov steps have to be made.
The results for both model problems can be found in Table 1. It can be observed

that NL-FETI-DP-X can compete with NL-FETI-DP-2 in terms of nonlinear and
linear convergence; at least if appropriate elimination sets are chosen. Let us remark
that NL-FETI-DP-X has in all setups less than 44% of the local computational cost.
Additionally, both approaches outperform classical NK-FETI-DP. Strategies 1 and 2
have only been introduced in order to implement the theoretical need for edges
not being split up in the efficient implementation of NL-FETI-DP-X. Nonetheless,
splitting edges, which happens often in the basic strategy used in NL-FETI-DP-XT,
actually deteriorates the performance, which was not expected. The most efficient
Strategy 2, which does not need𝑇 explicitly, is competitive to Strategy 1 and therefore
it is our suggestion to use this approach in NL-FETI-DP-X. Of course more tests and
also three dimensional problems have to be investigated in the future.
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On the Use of Hybrid Coarse-Level Models
in Multilevel Minimization Methods

Alena Kopaničáková

1 Introduction
We consider the following minimization problem:

min
x∈R𝑛

𝑓 (x), (1)

where 𝑓 : R𝑛 → R is a bounded, twice continuously differentiable objective function
and 𝑛 ∈ N is typically very large. Our goal is to minimize (1) using a nonlinear
multilevel minimization (NMM) method, e.g., MG-OPT [11] or RMTR [7]. The
main idea behind NMM methods is to employ a hierarchy of so-called coarse-
level objective functions, denoted by { 𝑓 ℓ }𝐿

ℓ=1, where 𝐿 > 1. These functions are
typically obtained by exploring the structure of the underlyingminimization problem,
e.g., by discretizing the underlying infinite-dimensional problem with a varying
discretization parameter. During the solution process, the functions { 𝑓 ℓ }𝐿

ℓ=1 are
utilized in order to construct the search-directions for the minimization problem at
hand in a computationally efficient manner.
The overall efficiency of NMM methods relies on the ability of the coarse-level

objective functions { 𝑓 ℓ }𝐿
ℓ=1 to approximate the function 𝑓 well. Indeed, the con-

vergence theory of the majority of NMM methods requires that the local behavior
of the coarse-level objective functions is at least first-order coherent with the local
behavior of 𝑓 . The coherence is commonly ensured by employing the so-called
𝜏-correction [1], which corrects the coarse-level objective function 𝑓 ℓ in an additive
manner. Although this approach is almost universally employed in the multilevel
literature, other approaches were also considered, e.g., a second-order additive cor-
rection approach [7, 12], or Galerkin-based coarse-level models [7, 9]. In this work,
we explore techniques from the surrogate-based/multi-fidelity optimization [4] in or-
der to construct the first-order coherent coarse-level models in the context of NMM
methods. In particular, we discuss how to correct functions { 𝑓 ℓ }𝐿

ℓ=1 using additive,
multiplicative, and hybrid approaches.

Alena Kopaničáková
Brown University, USA, e-mail: alena.kopanicakova@brown.edu
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2 Nonlinear multilevel minimization framework

In this work, we minimize (1) using the NMM method. To this aim, we con-
sider a hierarchy of 𝐿 levels. Each level ℓ = 1, . . . , 𝐿 is associated with some
model ℎℓ : R𝑛ℓ → R, where we assume that ℎℓ−1 is computationally cheaper to
minimize than ℎℓ and that 𝑛ℓ−1 < 𝑛ℓ . As we will discuss in Section 3, the
models {ℎℓ }𝐿

ℓ=1 are constructed during the minimization process by correcting
the objective functions { 𝑓 ℓ }𝐿

ℓ=1 by taking into account the knowledge of the
current iterate. Through this work, we assume that ℎ𝐿 := 𝑓 𝐿 := 𝑓 . Trans-
fer of the data between different levels of the multilevel hierarchy is performed
using the prolongation operator Iℓ+1

ℓ
: R𝑛ℓ → R𝑛ℓ+1 , and the restriction opera-

tor Rℓ
ℓ+1 : R

𝑛ℓ+1 → R𝑛ℓ , where Rℓ
ℓ+1 = (Iℓ+1

ℓ
)𝑇 . Moreover, we also employ the pro-

jection operator Pℓ
ℓ+1 : R

𝑛ℓ+1 → R𝑛ℓ to transfer iterates from the level ℓ + 1 to ℓ. The
operator Pℓ

ℓ+1 is constructed such that x
ℓ = Pℓ

ℓ+1 (I
ℓ+1
ℓ

xℓ), for any xℓ ∈ R𝑛ℓ .
Using the aforementioned definitions, we now describe a generic NMM method

in the form of a V-cycle, summarized in Algorithm 1. During the description, we use
a superscript to denote the level and a subscript to denote the iteration index. Starting
from the finest level, ℓ = 𝐿, and initial guess xℓ0, the NMM method performs 𝜇𝑠
nonlinear smoothing steps to approximately minimize model ℎℓ . The choice of the
nonlinear smoother depends on the particular choice of the NMM method. For
instance, one can employ a first-order method equipped with a line-search or trust-
region globalization strategy if a variant of multilevel line-search or trust-region
method is considered. The outcome of this minimization process, iterate xℓ𝜇𝑠 , is then
used to construct a coarse-level model ℎℓ−1 and initial guess xℓ−10 = Pℓ−1

ℓ
xℓ𝜇𝑠 . This

process is repeated recursively until the coarsest level is reached.
On the coarsest level, ℓ = 1, an NMM method approximately minimizes ℎℓ

using 𝜇𝑐 steps of a nonlinear solution strategy, giving rise to xℓ∗ . Afterwards, the
prolongated coarse-level correction sℓ+1

𝜇𝑠+1 := Iℓ+1
ℓ

(xℓ∗ − xℓ0) is used to update the
current iterate xℓ+1𝜇𝑠

on level ℓ + 1. However, before this update is performed, the
correction sℓ

𝜇𝑠+1 has to undergo some convergence control. The type of convergence
control again depends on the particular type of the NMMmethod. For example, if the
multilevel trust-region method is used, then sℓ+1

𝜇𝑠+1 is required to provide a decrease in
ℎℓ+1 to be accepted by the algorithm. If a variant of a line-searchmethod is used, then
an appropriate step size has to be determined. In the end, the algorithm performs 𝜇𝑠
post-smoothing steps, starting from xℓ+1

𝜇𝑠+1 and giving rise to xℓ+1∗ . This process is
again repeated on all levels until the finest level is reached.

3 Construction of coarse-level models

Oneach level ℓ, theNMMmethodsminimize themodel ℎℓ : R𝑛ℓ → R approximately.
The result of this minimization, the iterate xℓ∗ , is then used to construct the search
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Algorithm 1 NMM(ℓ, ℎℓ , xℓ0)
Require: ℓ ∈ N, ℎℓ : R𝑛ℓ → R, xℓ0 ∈ R𝑛ℓ and 𝜇𝑠 , 𝜇𝑐 ∈ N
1: xℓ𝜇𝑠

= Nonlinear_smoothing(ℎℓ , xℓ0 , 𝜇𝑠)
2: Construct ℎℓ−1 using xℓ𝜇𝑠

, and ∇ℎℓ (xℓ𝜇𝑠
)

3: if ℓ = 2 then
4: xℓ−1∗ = Nonlinear_solve(ℎℓ−1, Pℓ−1

ℓ
xℓ𝜇𝑠

, 𝜇𝑐)
5: else
6: xℓ−1∗ = NMM(ℓ − 1, ℎℓ−1, Pℓ−1

ℓ
xℓ𝜇𝑠
)

7: end if
8: xℓ

𝜇𝑠+1 = Convergence_control(ℎ
ℓ , xℓ𝜇𝑠

, 𝑰ℓ
ℓ−1 (xℓ−1∗ − Pℓ−1

ℓ
xℓ𝜇𝑠

))
9: xℓ∗ = Nonlinear_smoothing(ℎℓ , xℓ

𝜇𝑠+1, 𝜇𝑠)
10: return xℓ∗

direction for the minimization on the next finer level. As a consequence, the overall
efficiency of NMM methods depends on the capabilities of the models {ℎℓ }𝐿

ℓ=1 to
approximate 𝑓 as accurately as possible.
Given an initial guess xℓ0 = Pℓ

ℓ+1x
ℓ+1
𝜇𝑠
, the model ℎℓ is constructed during each

V-cycle by correcting the function 𝑓 ℓ , such that the following condition holds:

∇ℎℓ (xℓ0) = Rℓ
ℓ+1∇ℎ

ℓ+1 (xℓ+1𝜇𝑠
). (2)

This ensures that ℎℓ and ℎℓ+1 are locally first-order coherent and that the follow-
ing relation holds: 〈∇ℎℓ (xℓ0), s

ℓ〉 = 〈∇ℎℓ+1 (xℓ+1𝜇𝑠
), Iℓ+1

ℓ
sℓ〉. In this work, we discuss

three different approaches for constructing models {ℎℓ }𝐿
ℓ=1, namely additive, multi-

plicative and hybrid. Our discussion considers only the first-order coherent models,
constructed using the Taylor approximation of the associated correction function.
However, models enforcing higher-order coherency as well as different approxima-
tions of the correction function could also be considered.

3.1 An additive approach

Using the additive approach, the coarse-level model ℎℓadd : R
𝑛ℓ → R is obtained by

correcting the low-cost function 𝑓 ℓ as follows

ℎℓadd (x
ℓ) = 𝑓 ℓ (xℓ) + 𝛾ℓadd (x

ℓ), (3)

where the additive correction function 𝛾ℓadd : R
𝑛ℓ → R accounts for the difference

between the value of 𝑓 ℓ and the fine-level model ℎℓ+1, i.e.,

𝛾ℓadd (x
ℓ) := ℎℓ+1 (Iℓ+1ℓ xℓ) − 𝑓 ℓ (xℓ). (4)
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Unfortunately, the evaluation of 𝛾ℓadd at any given xℓ requires an evaluation of
the fine-level model ℎℓ+1 at Iℓ+1

ℓ
xℓ . As a consequence, numerical computations

involving ℎℓadd are computationally more demanding than computations performed
using ℎℓ+1 directly. To ease the computational burden, we evaluate 𝛾ℓadd exactly only
at the initial coarse-level iterate xℓ0 = Pℓ+1

ℓ
xℓ+1𝜇𝑠
. Thus, we impose

𝛾ℓadd (x
ℓ
0) := ℎℓ+1 (xℓ+1𝜇𝑠

) − 𝑓 ℓ (xℓ0),

only at xℓ0. For any other xℓ , we approximate the correction function 𝛾ℓadd by means
of the first-order Taylor approximation, defined around xℓ0 as follows

𝛾̃ℓadd (x
ℓ) = 𝛾ℓadd (x

ℓ
0) + 〈∇𝛾ℓadd (x

ℓ
0), xℓ − xℓ0〉.

Replacing 𝛾ℓadd with 𝛾̃
ℓ
add in (3) gives rise to

ℎℓadd (x
ℓ) := 𝑓 ℓ (xℓ) + ℎℓ+1 (xℓ+1𝜇𝑠

) − 𝑓 ℓ (xℓ0) + 〈∇𝛾ℓadd (x
ℓ
0), x

ℓ − xℓ0〉, (5)

where

∇𝛾ℓadd (x
ℓ
0) := Rℓ

ℓ+1∇ℎ
ℓ+1 (xℓ+1𝜇𝑠

) − ∇ 𝑓 ℓ (xℓ0). (6)

Note, the quantity ℎℓ+1 (xℓ+1𝜇𝑠
)− 𝑓 ℓ (xℓ0) enforces zeroth-order coherence between ℎ

ℓ+1

and ℎℓadd at x
ℓ+1
𝜇𝑠
and xℓ0, respectively, i.e., ℎ

ℓ
add (x

ℓ
0) = ℎℓ+1 (xℓ+1𝜇𝑠

). However, this term
does not affect the evaluation of the derivatives of ℎℓadd, and therefore it is often
neglected in practice. We also point out that the term ∇𝛾ℓadd (x

ℓ
0), known in the

multilevel literature as 𝜏-correction, ensures that condition (2) holds.

3.2 A multiplicative approach

Optimization methods that exploit multiple fidelities often employ multiplicative
correction functions [4]. In this case, the low-cost approximation 𝑓 ℓ associated with
level ℓ is made coherent with the model ℎℓ+1 as follows:

ℎℓmult (x
ℓ) = 𝛾ℓmult (x

ℓ) 𝑓 ℓ (xℓ). (7)

Here, the multiplicative correction function 𝛾ℓmult : R
𝑛ℓ → R is given as

𝛾ℓmult (x
ℓ) :=

ℎℓ+1 (Iℓ+1
ℓ

xℓ) + 𝜅

𝑓 ℓ (xℓ) + 𝜅
, (8)

where 𝜅 ≈ 𝜖 ensures numerical stability as the value of 𝑓 ℓ (xℓ) approaches zero.
Similar to the additive approach, evaluating 𝛾ℓmult precisely at all coarse-level

iterates is computationally expensive. Therefore, we impose (8) only at xℓ0, i.e.,
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𝛾ℓmult (x
ℓ
0) :=

ℎℓ+1 (xℓ+1𝜇𝑠
) + 𝜅

𝑓 ℓ (xℓ0) + 𝜅
,

where we explored that xℓ+1𝜇𝑠
= Iℓ+1

ℓ
xℓ0. At any other iterate xℓ , we approximate 𝛾ℓmult

by means of the first-order Taylor approximation, defined around xℓ0 as

𝛾̃ℓmult (x
ℓ) = 𝛾ℓmult (x

ℓ
0) + 〈∇𝛾ℓmult (x

ℓ
0), xℓ − xℓ0〉. (9)

Replacing 𝛾ℓmult with 𝛾̃
ℓ
mult in (7) then gives rise to the first-order coherent model

ℎℓmult (x
ℓ) := 𝛾̃ℓmult (x

ℓ) 𝑓 ℓ (xℓ). (10)

The numerical evaluation of 𝛾̃ℓmult amounts to

𝛾̃ℓmult (x
ℓ) :=

ℎℓ+1 (xℓ+1𝜇𝑠
) + 𝜅

𝑓 ℓ (xℓ0) + 𝜅
+ 〈∇𝛾ℓmult (x

ℓ
0), xℓ − xℓ0〉,

where ∇𝛾ℓmult (x
ℓ
0) is given by

∇𝛾ℓmult (x
ℓ
0) :=

1
𝑓 ℓ (xℓ0) + 𝜅

(
Rℓ
ℓ+1∇ℎ

ℓ+1 (xℓ+1𝜇𝑠
)
)
−

ℎℓ+1 (xℓ+1𝜇𝑠
) + 𝜅

( 𝑓 ℓ (xℓ0) + 𝜅)2
∇ 𝑓 ℓ (xℓ0).

Straightforward calculations show that model ℎℓmult, defined by (10), is zeroth-order
and first-order coherent with ℎℓ+1 at xℓ0 and xℓ+1𝜇𝑠

, respectively.

3.3 A hybrid approach

From a computational point of view, additive and multiplicative approaches are
comparable. However, their behavior is very different. The additive approach adds
new terms to 𝑓 ℓ , which can be interpreted as uniform translation (zeroth-order),
and rotation (first-order) of the function graph; see also Fig. 1. In contrast, the
multiplicative approach introduces skewing, whichmight not be desirable if 𝑓 and 𝑓 ℓ
are in good agreement, at least locally. However, if functions 𝑓 ℓ and 𝑓 are not in
good agreement, then additional skewing can be beneficial [3], e.g., if the polynomial
order of 𝑓 is higher than the polynomial order of 𝑓 ℓ . Moreover, multiplication of 𝑓 ℓ
with 𝛾̃ℓmult can introduce new minima on level ℓ, where ℓ < 𝐿. For instance, let us
suppose that 𝑓 ℓ is a second-order polynomial. Its multiplication with 𝛾̃ℓmult increases
the order of the polynomial, i.e., we obtain a model ℎℓmult which is quartic and has,
in general, more minima than quadratic function.
In general, it is not known a priori whether the additive or the multiplicative

model is more suitable for a given optimization problem. To overcome this difficulty,
a hybrid approach [6] can be employed. A coarse-level model ℎℓmix is then obtained
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Fig. 1 Coarse-level models constructed around 𝑥𝐿−1
0 = 2.5 and 𝑥𝐿−1

0 = 6.0.

as a convex combination of the additive ℎℓadd and the multiplicative ℎ
ℓ
mult models, i.e.,

ℎℓmix (x
ℓ) := 𝑤ℓ

add ℎ
ℓ
add (x

ℓ) + 𝑤ℓ
mult ℎ

ℓ
mult (x

ℓ), (11)

where 𝑤ℓ
add/mult ∈ R and 𝑤

ℓ
add + 𝑤ℓ

mult = 1. In order to maximize the approximation
properties of ℎℓmix, the weights 𝑤

ℓ
add, 𝑤

ℓ
mult have to be chosen carefully. Below, we

describe two different strategies for selecting the values 𝑤ℓ
add and 𝑤

ℓ
mult.

3.3.1 Matching function values (MFV) at the previously evaluated fine-level
iterate

Following [2], the weights 𝑤ℓ
add, 𝑤

ℓ
mult can be selected by matching the function value

at the previously evaluated fine-level iterate, denoted by xℓ+1𝑝 , as in

𝑤ℓ
add =

ℎℓ+1 (xℓ+1𝑝 ) − ℎℓmult (x
ℓ
0)

ℎℓadd (x
ℓ
0) − ℎℓmult (x

ℓ
0)

and 𝑤ℓ
mult = 1 − 𝑤ℓ

add. (12)

From a computational point of view, evaluating (12) is cheap as ℎℓ+1 (xℓ+1𝑝 ) is readily
available, for instance from the 𝜇𝑠 − 1 pre-smoothing step performed on level ℓ + 1.

3.3.2 Bayesian updating approach

To maximize the approximation properties of ℎℓmix, it might be beneficial to take into
account the history of the 𝑑ℓ previously evaluated fine-level iterates [3]. Therefore,
we consider the dataset Dℓ = {(ℎℓ+1 (xℓ+1𝑝 ), ℎℓadd (P

ℓ
ℓ+1x

ℓ+1
𝑝 ), ℎℓmult (P

ℓ
ℓ+1x

ℓ+1
𝑝 )}𝑑ℓ

𝑝=1,
where each sample contains the function value of ℎℓ+1 at xℓ+1𝑝 , as well as the function
values of the coarse-level models ℎℓadd/mult obtained at Pℓ

ℓ+1x
ℓ+1
𝑝 . In this work, we

construct Dℓ by taking into account the last 𝑑ℓ iterates which were transferred from
level ℓ + 1 to level ℓ. For example, if 𝑑ℓ = 3, then Dℓ is constructed by taking into
account the iterate xℓ+1𝑝 = xℓ+1𝜇𝑠

, obtained as a result of the pre-smoothing step during
the previous three V-cycles. For simplicity, we use the notation 𝑑ℓ = ∞ to denote all
previous V-cycles.
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Having constructed the datasetDℓ , we can now employ the Bayesian posterior up-
dating approach [3] to determine the values of𝑤ℓ

add/mult. Starting from𝑤ℓ
add/mult = 0.5,

the weights are updated every time the model ℎℓ is constructed as follows:

𝑤ℓ
add/mult =

𝑤ℓ
add/mult𝜓

ℓ
add/mult

𝑤ℓ
mult/add𝜓

ℓ
mult/add + 𝑤ℓ

add/mult𝜓
ℓ
add/mult

. (13)

The model likelihoods 𝜓ℓ
add/mult in (13) are evaluated as

𝜓ℓ
add/mult =

(
2𝜋𝜎2add/mult

)−𝑑ℓ/2 exp(−𝑑ℓ/2), (14)

and the maximum likelihood estimator of the model variance is given by

𝜎2add/mult =
1
𝑑ℓ

𝑑ℓ∑︁
𝑝=1

(ℎℓ+1 (xℓ+1𝑝 ) − ℎℓadd/mult (P
ℓ
ℓ+1x

ℓ+1
𝑝 )). (15)

4 Numerical results and discussion
In this section,we investigate the influence of different coarse-levelmodels on the per-
formance of theNMMmethod using numerical examples from the field of supervised
learning, namely classification using ResNets [8]. Given a dataset S = {(z𝑠 , c𝑠)}𝑛𝑠𝑠=1,
where z𝑠 ∈ R𝑛𝑖𝑛 and c𝑠 ∈ R𝑛𝑜𝑢𝑡 , our goal is to find parameters x ∈ R𝑛 of a ResNet,
defined as RN: R𝑛𝑖𝑛 × R𝑛 → R𝑛𝑜𝑢𝑡 , by solving the followingminimization problem:

min
x∈R𝑛

𝑓 (x) := 1
𝑛𝑠

𝑛𝑠∑︁
𝑠=1

𝑔(RN(z𝑠 , x), c𝑠), (16)

where 𝑔 denotes the cross-entropy loss function.
Since (16) is a non-convex function, we choose the NMMmethod to be a variant

of the RMTR method [7]. The multilevel hierarchy and transfer operators are con-
structed by leveraging the fact that the ResNet can be interpreted as a forward Euler
discretization of an ordinary differential equation; see [10, 5] for details. Here, we
construct a hierarchy of ResNets by uniformly refining a ResNet with three layers
three times. Fig. 4 demonstrates the number of effective gradient evaluations1 of
the RMTR method with respect to different coarse-level models for three different
datasets.
As we can observe, the choice of the coarse-level model has a significant impact

on the overall efficiency of the multilevel method. For all three examples, hybrid
approaches outperform purely additive and multiplicative ones. In terms of hybrid

1 The number of effective gradient evaluations is obtained as
∑𝐿

ℓ=1 2ℓ−𝐿𝑊ℓ𝐶𝐿 , where𝐶𝐿 represents
a cost associatedwith an evaluation of the gradient on the level 𝐿,𝑊ℓ describes a number of gradient
evaluations performed on a level ℓ, and 2ℓ−𝐿 is a coarsening factor in 1D.
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Model/Example Blobs Smiley Spiral
ℎadd 29 ± 5.3% 676 ± 11.2% 203 ± 12.3%
ℎmult 32 ± 6.1% 485 ± 15.1% 153 ± 15.9%
ℎmix (𝑤 = 0.5) 38 ± 4.8% 404 ± 10.3% 297 ± 11.3%
ℎmix (MFV) 25 ± 4.2% 352 ± 6.5% 123 ± 7.1%
ℎmix (𝑑ℓ = 5) 25 ± 3.4% 514 ± 6.3% 197 ± 6.8%
ℎmix (𝑑ℓ = 20) 24 ± 2.9% 471 ± 7.7% 156 ± 7.4%
ℎmix (𝑑ℓ = ∞) 25 ± 3.8% 301 ± 6.9% 126 ± 9.9%

Fig. 2 Left: Blobs, Smiley, and Spiral datasets (Top to Down). Each class is illustrated by different
color. Right: The average number of effective gradient evaluations of the RMTRmethod (4 levels).
Averages are obtained from 5 independent runs.

models, we observe that the Bayesian approach performs similar, or superior toMFV,
especially if all prior fine-level iterates are considered (𝑑ℓ = ∞).
Given our (limited) numerical experience, we believe that employing hybrid,

and possibly other types of novel coarse-level models, provides a promising future
direction for improving the efficiency and the reliability of NMM methods.
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Nonlinear Schwarz Preconditioning
for Quasi-Newton Methods

Hardik Kothari

1 Introduction

In thiswork,we consider a nonlinear preconditioning strategy forQuasi-Newton (QN)
methods. QN methods are a class of root-finding methods, where the full Jacobian
is replaced with an approximation. In the context of this work, we consider secant
methods, which take into account a variable number of secant equations at each
nonlinear iteration. These types of methods are mostly used if the Jacobian of the
nonlinear system is expensive to evaluate, requires more storage, or is simply un-
available. Such scenarios are often encountered while solving coupled multiphysics
problems that require higher-order discretization, inverse problems, optimal control
problems, training of deep neural networks, etc.
To this aim, we consider the following abstract nonlinear minimization problem:

Find 𝑥∗ ∈ V that minimizes Ψ(𝑥), (1)

where Ψ : V → R denotes a bounded, twice continuously differentiable objective
function. The objective functionΨ is obtained by a finite element (FE) discretization
of a nonlinear optimization problem, and V denotes some FE space. To solve (1),
we can consider the first-order optimality condition for the function Ψ(𝑥), and then
a nonlinear iterative method can be employed to find the root of the nonlinear
equation 𝐹 (𝑥∗) = 0, where 𝐹 : V → V ′ is defined as 𝐹 (·) ≡ ∇Ψ(·). We also note
that the Hessian of the objective function ∇2Ψ is equivalent to the Jacobian 𝐹 ′.
Depending on the properties of the objective function Ψ, multiple approaches can
be considered to solve (1), for example, Newton’s method and its variants; nonlinear
Krylov methods; secant methods [11].
Among all these methods, Newton’s method is one of the most popular methods

to solve such problems due to its locally quadratic convergence property. However,
its convergence might suffer if the objective function is highly nonlinear with lo-
cally stiff or unbalanced nonlinearities and/or if the initial guess is far from a local
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minimizer. In recent years, some nonlinear preconditioning strategies have been de-
veloped to accelerate the convergence of Newton’s method, e.g.: Additive Schwarz
Preconditioned Inexact Newton (ASPIN) [1]; Nonlinear Elimination Preconditioned
Inexact Newton (NEPIN) [2]; Restricted Additive Schwarz Preconditioned Exact
Newton (RASPEN) [5]. Similarly, in the context of optimization methods, nonlin-
ear preconditioning strategies have been considered to improve the convergence of
a nonlinear Krylov method [3] and a quasi-Newton (QN) method [4]. To the best
of our knowledge, unlike the ASPIN, NEPIN, and RASPEN methods, the nonlin-
ear domain decomposition-based preconditioners have not yet been considered for
nonlinear Krylov methods and QN methods.
In this work, we apply the nonlinear Schwarz preconditioning strategies to ac-

celerate the convergence of the standard QN methods. We explore the “left” and
“right” nonlinear preconditioning strategies and discuss the necessary modifications
to the QN framework. Finally, we examine the efficiency of the preconditioned QN
methods by means of some numerical experiments.

2 Preconditioned Quasi-Newton methods

In this section, we discuss QN methods, nonlinear restricted additive Schwarz
(NRAS) methods, and how to nonlinearly precondition QN methods.

Quasi-Newton methods: Quasi-Newton (QN) methods are quite popular in the op-
timization community, especially when the Hessian of the underlying minimization
problem is unavailable or very expensive to evaluate. In QN methods, the evaluation
of the Hessian is replaced by its low-rank approximation. This low-rank approx-
imation of the Hessian is carried out using a secant condition. At each iteration,
the approximation of the Hessian 𝐵 is constructed using the information between
subsequent iterations. The approximate Hessian, 𝐵 (𝑘+1) , satisfies the secant equation

𝐵 (𝑘+1) 𝑠 (𝑘) = 𝑦 (𝑘) , (2)

where 𝑠 (𝑘) = 𝑥 (𝑘+1) − 𝑥 (𝑘) and 𝑦 (𝑘) = 𝐹 (𝑥 (𝑘+1) ) − 𝐹 (𝑥 (𝑘) ). As the secant equation
is not sufficient to uniquely determine the matrix 𝐵, additional constraints have to
be imposed on 𝐵, which gives rise to different variants of the QN methods. In this
work, we consider two types of multi-secant methods, namely the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method, and the Andersen acceleration (AA) method. As
one of themotivations of this work is reducing thememory footprint of the algorithm,
the limited-memory variant of the BFGS method (L-BFGS), and of the AA method,
becomes a natural choice. These methods utilize only the 𝑚 pairs of the vectors
{𝑠 (𝑖) , 𝑦 (𝑖) }𝑘−1

𝑖=𝑘−𝑚 from the 𝑚 most recent iterations to construct the approximate
Hessian. We note that the original AA method is not proposed in the context of the
optimization but its interpretation as a QN method is established in [6, 12]. The
approximate Hessians obtained by the L-BFGS method and the type-I AA method
(AA-I) at an iterate 𝑘 + 1 can be written in a compact matrix format in the following
manner:
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(L-BFGS) 𝐵 (𝑘+1) = 𝐵0 −
[
𝐵0𝑆𝑘 𝑌𝑘

] [𝑆𝑘𝐵0𝑆𝑘 𝐿𝑘

𝐿>
𝑘
−𝐷𝑘

]−1 [
𝑆>
𝑘
𝐵0

𝑌>
𝑘

]
,

(AA-I) 𝐵 (𝑘+1) = 𝐼 + (𝑌𝑘 − 𝑆𝑘 ) (𝑆>𝑘 𝑆𝑘 )
−1𝑆>𝑘 .

(3)

Here, 𝑆𝑘 := [𝑠 (𝑘−𝑚) , . . . , 𝑠 (𝑘−1) ], 𝑌𝑘 := [𝑦 (𝑘−𝑚) , . . . , 𝑦 (𝑘−1) ], 𝐿𝑘 and 𝐷𝑘 denote
the strictly lower triangular, and the diagonal part of matrix 𝑆>

𝑘
𝑌𝑘 , 𝐵0 denotes

some initial Hessian approximation. In order to find the search direction 𝑝 (𝑘) , we
need the inverse of the approximate Hessians, which is generally obtained using
the Sherman–Morrison–Woodbury formula. To accelerate the convergence speed of
these methods, we propose to precondition the QN methods with an NRAS method.

Nonlinear Restricted Additive Schwarz Methods: We consider a decomposition
of the domain Ω into 𝑛 non-overlapping domains {Ω𝑖}𝑛𝑖=1 and overlapping domains
as {Ω𝛿

𝑖
}𝑛
𝑖=1, such thatΩ𝑖 ⊂ Ω𝛿

𝑖
, here 𝛿 denotes the size of the overlap. The FE spaces

associated with the overlapping domains are defined as {V 𝛿
𝑖
}𝑛
𝑖=1, V

𝛿
𝑖
⊂ V . On

these overlapping subspaces, we define the restriction and prolongation operators
as 𝑅𝛿

𝑖
: V → V 𝛿

𝑖
and 𝑃𝛿

𝑖
: V 𝛿

𝑖
→ V , respectively. We note that for 𝛿 = 0, the

overlapping decomposition degenerates to a non-overlapping decomposition, i.e.,
Ω𝑖 = Ω0

𝑖
. The prolongation operator on the non-overlapping subspaces is termed

as restricted prolongation operator, 𝑃0
𝑖
: V0

𝑖
→ V . The overlapping and the non-

overlapping decomposition of the subspaces ensures that the partition of unity is
satisfied, e.g.,

∑𝑛
𝑖=1 𝑃

0
𝑖
𝑅𝛿
𝑖
= 𝐼.

Now, we can define a local nonlinear minimization problem restricted to each
overlapping subspace as follows. For a given initial guess 𝑥 (0)

𝑖
= 𝑅𝛿

𝑖
𝑥 (𝑘) :

Find 𝑥∗𝑖 ∈ V 𝛿
𝑖 that minimizes Ψ𝛿

𝑖 (𝑥𝑖). (4)

Here,Ψ𝛿
𝑖
: V 𝛿

𝑖
→ R is the restriction of the objective functionΨ to the subspace V 𝛿

𝑖
.

Once the minimization problem is approximately solved on each subdomain, the
global iterate is updated in the following manner

𝑥 (𝑘+1) = 𝑥 (𝑘) + 𝛼 (𝑘)
∑︁𝑛

𝑖=1
𝑃0𝑖 (𝑥∗𝑖 − 𝑅𝛿

𝑖 𝑥
(𝑘) ). (5)

We note that the problem (4) is solved on the overlapping subdomains, but the
correction is accepted only on the non-overlapping part. Furthermore, to construct
a two-level variant of the NRAS method, we define a coarse space V0 ⊂ V and
the restriction and the prolongation operators 𝑅0 : V ′ → V ′0 and 𝑃0 : V0 → V ,
where 𝑃>0 = 𝑅0. Also, we define a projection operator Π0 : V → V0 to transfer the
primal variables to the coarse level. The objective function on the coarse level is
defined as Ψ0 : V0 → R, which denotes a discretization of the function Ψ on the
space V0. The coarse space plays an important role in the NRASmethod, as it allows
global communication between the subdomains and ensures the scalability of the
algorithm. In this work, the coarse-level objective function is defined in the spirit of
the full approximation scheme (FAS) or the MG-Opt method [10]. The coarse-level
function is constructed by adding a first-order consistency term, which is also called
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a “defect” in the context of FAS. Thus, the optimization problem on the coarse level
is defined as follows. For an initial guess 𝑥 (0)0 = Π0𝑥

(𝑘) :

Find 𝑥∗0 that minimizes Ψ̂0 (𝑥0) := Ψ0 (𝑥0) + 〈𝛿𝑔0, 𝑥0〉 (6)

where 𝛿𝑔0 = 𝑅0∇Ψ(𝑥 (𝑘) ) − ∇Ψ0 (Π0𝑥 (𝑘) ) denotes the first-order consistency term.
Additionally, we employ a multiplicative variant of the coarse-level update, where
we first approximately solve the problem on the coarse level and bootstrap the initial
guess on the subdomains using the approximate solution from the coarse level. The
update step for the two-level NRAS is given as follows:

𝑥 (𝑘+1) = 𝑥 (𝑘) + 𝛼̂𝑇0 (𝑥 (𝑘) ) + 𝛼
∑︁𝑛

𝑖=1
𝑃0𝑖 (𝑥∗𝑖 − 𝑅𝛿

𝑖 (𝑥 (𝑘) + 𝛼̂𝑇0 (𝑥 (𝑘) ))) (7)

where 𝑇0 (𝑥 (𝑘) ) = 𝑃0 (𝑥∗0 −Π0𝑥
(𝑘) ) denotes the coarse-level correction. We note that

in (7), 𝛼̂ and 𝛼 are computed using a line-search method, while 𝑥∗
𝑖
and 𝑥∗0 denote the

approximate solutions of problems (4) and (6), respectively.

Nonlinear preconditioning: In this section, we discuss strategies to nonlinearly
preconditioned quasi-Newton methods. Recall, we seek 𝑥∗ ∈ V such that 𝐹 (𝑥∗) = 0.
A nonlinear preconditioner 𝐺 of the residual function 𝐹 is defined such that the
preconditioner 𝐺 approximates the inverse of the residual i.e., 𝐺 ≈ 𝐹−1. Practically,
it is not possible to obtain such a preconditioning operator𝐺 explicitly but, generally,
such an operator can be defined implicitly as a fixed-point nonlinear iterative scheme,
given as 𝑥 = 𝐺 (𝑥). The operator,𝐺, can be applied to the nonlinear residual as either
a “left” or a “right” preconditioner, which gives rise to two different nonlinearly
preconditioned residuals

F𝐿 (𝑥) = 𝐺𝐿 (𝐹 (𝑥)) = 𝑥 − 𝐺 (𝑥), F𝑅 (𝑥) = 𝐹 (𝐺𝑅 (𝑥)) = 𝐹 (𝐺 (𝑥)). (8)

We remark that the left preconditioning operator is not equivalent to a fixed-point
nonlinear iterative method 𝐺𝐿 ≠ 𝐺, while the right preconditioning operator is
a fixed-point iteration scheme 𝐺𝑅 = 𝐺. The ASPIN and RASPEN methods are the
“left” preconditioned methods, where the nonlinear residual is first computed using
a fixed-point method, and Newton’s method is used to solve the equationF𝐿 (𝑥) = 0.
The NEPIN method [2], nonlinear FETI-DP and BDDC methods [7] are considered
to be the “right” preconditioned methods.
We define generic iterations for both types of preconditioning strategies. The iter-

ation for the preconditioned QN method can be achieved by replacing the residual 𝐹
with the preconditioned residual given asF𝐿/𝑅. For a given initial iterate 𝑥 (𝑘) , we first
compute 𝑥 (+) using a NRAS method, i.e., 𝑥 (+) = 𝐺 (𝑥 (𝑘) ). Once the preconditioning
step has been carried out, we can define the iteration for the “left-preconditioned”
QN method as,

𝑥 (𝑘+1) = 𝑥 (𝑘) − 𝛼 (𝑘)
(
𝐵
(𝑘)
𝐿

)−1F𝐿 (𝑥 (𝑘) ), where F𝐿 (𝑥 (𝑘) ) = 𝑥 (𝑘) − 𝐺 (𝑥 (𝑘) ). (9)
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Algorithm 1: Nonlinearly Preconditioned QN method
Data: 𝐹 : V → V ′, 𝑥 (0) ∈ V , 𝑘 ←[ 0
Result: 𝑥 (𝑘)

1 while ‖𝐹 (𝑥 (𝑘) ) ‖ > 𝜖rtol ‖𝐹 (𝑥 (0) ) ‖ do
2 For given 𝑥 (𝑘) , compute the preconditioned residual F𝐿/𝑅 (𝑥 (𝑘) )
3 Compute direction using L-BFGS/AA-I approximation of preconditioned Hessian

𝑝
(𝑘)
𝐿/𝑅 ← [ −

(
𝐵
(𝑘)
𝐿/𝑅

)−1F𝐿/𝑅𝑥
(𝑘)

4 Find 𝛼 (𝑘) using a line-search algorithm
5 Update iterate: 𝑥 (𝑘+1) ← [ 𝑥 (𝑘) + 𝛼 (𝑘) 𝑝 (𝑘)

𝐿
or 𝑥 (𝑘+1) ←[ 𝑥 (+) + 𝛼 (𝑘) 𝑝 (𝑘)

𝑅

6 Compute 𝑠 (𝑘)
𝐿/𝑅 as in (12) and 𝑦

(𝑘)
𝐿/𝑅 using (13)

7 Update the history of secant pairs {𝑠 (𝑘)
𝐿/𝑅 , 𝑦

(𝑘)
𝐿/𝑅 }

8 Update 𝑘 ←[ 𝑘 + 1

The update process for the “right-preconditioned” QNmethod differs from the “left-
preconditioning” approach. The iteration for the “right-preconditioned” QN method
is given as

𝑥 (𝑘+1) = 𝑥 (+) − 𝛼 (𝑘)
(
𝐵
(𝑘)
𝑅

)−1F𝑅 (𝑥 (𝑘) ), where F𝑅 (𝑥 (𝑘) ) = 𝐹 (𝐺 (𝑥 (𝑘) )). (10)

In (9) and (10), we compute 𝛼 (𝑘) using a line-search method. We note that, the oper-
ator 𝐺 can be explicitly given by (5) and (7) for one-level and two-level NRAS pre-
conditioner, respectively. Here, 𝐵 (𝑘)

𝐿
and 𝐵 (𝑘)

𝑅
denote the approximation of the “left”

and “right” preconditioned Hessians, respectively. The QN method aims to approx-
imate the Hessian of the underlying optimization function utilizing a set of vectors
{𝑠𝑘 , 𝑦𝑘 }. As we have preconditioned the QN method, we also have to change the un-
derlying secant equation and corresponding secant pairs. The corresponding secant
equations for the “left” and the “right” preconditioned systems are now given as

𝐵
(𝑘+1)
𝐿

𝑠
(𝑘)
𝐿

= 𝑦
(𝑘)
𝐿

, 𝐵
(𝑘+1)
𝑅

𝑠
(𝑘)
𝑅

= 𝑦
(𝑘)
𝑅

. (11)

From (9) and (10), it is clear that 𝑠 (𝑘)
𝐿/𝑅 at each iteration are defined as corrections,

which are given as

𝑠
(𝑘)
𝐿

= 𝑥 (𝑘+1) − 𝑥 (𝑘) , 𝑠
(𝑘)
𝑅

= 𝑥 (𝑘+1) − 𝑥 (+) . (12)

Now, we focus our attention on the computation of 𝑦 (𝑘)
𝐿/𝑅, which are defined as the

difference between the preconditioned residuals

𝑦
(𝑘)
𝐿

= F𝐿 (𝑥 (𝑘+1) ) − F𝐿 (𝑥 (𝑘) ), 𝑦
(𝑘)
𝑅

= 𝐹 (𝑥 (𝑘+1) ) − 𝐹 (𝑥 (+) ). (13)

We note that for the “right” preconditioning approach, the nonlinear preconditioner
can be simplified as F𝑅 (𝑥 (𝑘) ) = 𝐹 (𝐺 (𝑥 (𝑘) )) = 𝐹 (𝑥 (+) ), and the iteration in (10)
can be further simplified as
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𝑥 (𝑘+1) = 𝑥 (+) − 𝛼 (𝑘)
(
𝐵
(𝑘)
𝑅

)−1
𝐹 (𝑥 (+) ).

This update process can be interpreted as a half iteration, while the first half of the it-
eration is the preconditioning step 𝑥 (+) = 𝐺 (𝑥 (𝑘) ). Hence, the “right-preconditioned”
QN method should only construct the approximation of the Hessian for the second
half of the iteration.
A sketch of the nonlinearly preconditioned quasi-Newton method is provided in

Algorithm 1.

3 Numerical experiments

We investigate the performance of the nonlinearly preconditioned QN method
through some numerical experiments. To this aim, we consider a domain Ω =

(0, 1)2 with the boundary Γ. The boundary Γ is decomposed into four parts: top
(Γ𝑡 = [0, 1] × {1}), bottom (Γ𝑏 = [0, 1] × {0}), left (Γ𝑙 = {0} × [0, 1]) and right
(Γ𝑟 = {1} × [0, 1]). We use the discretize-then-optimize approach, where the dis-
cretization is done with the first-order FE method using a mesh with 200 × 200
quadrilateral elements. The coarse level is also constructed with the same approach,
where a mesh with 10 × 10 elements is employed for discretization.

Minimal surface: This experiment aims to find the surface of the minimal area
described by the function 𝑢 by solving the following minimization problem:

min
𝑢∈𝐻 1 (Ω)

Ψ𝑀 (𝑢) =
∫
Ω

√︁
(1 + ‖∇𝑢‖2) 𝑑𝑥,

subject to

{
𝑢 = −0.5 sin(2𝜋𝑥2) on Γ𝑙 , 𝑢 = 0.5 sin(2𝜋𝑥2) on Γ𝑟 ,
𝑢 = −0.5 sin(2𝜋𝑥1) on Γ𝑏 , 𝑢 = 0.5 sin(2𝜋𝑥1) on Γ𝑡 .

(14)

Setup for the solution methods: As we aim to study the behavior of the precon-
ditioned QN method, we use a fixed configuration of the TL-NRAS method. The
overlap for all experiments is prescribed as 𝛿 = 2, and the domain Ω is decom-
posed into 8 subdomains. The partitioning of the mesh is carried out using the
METIS library. The preconditioned QN is terminated if one of these conditions
is satisfied: ‖𝐹 (𝑥 (𝑘) )‖ < 10−7 or ‖𝐹 (𝑥 (𝑘) )‖ < 10−6‖𝐹 (𝑥 (0) )‖. The subdomain
solvers in the TL-NRAS method employ Newton’s method, which terminates if
‖𝐹𝑖 (𝑥 (𝑘)𝑖

)‖ < 10−10 or ‖𝐹𝑖 (𝑥 (𝑘)𝑖
)‖ < 10−1‖𝐹𝑖 (𝑥 (0)𝑖

)‖ is satisfied. On the coarse
level, we also employ Newton’s method, which terminates if ‖𝐹0 (𝑥 (𝑘)0 )‖ < 10

−12 or
‖𝐹0 (𝑥 (𝑘)0 )‖ < 10

−10‖𝐹0 (𝑥 (0)0 )‖ is satisfied, also the maximum number of iterations
is set to 5. We note, Newton’s method can be replaced by a multigrid preconditioned
Jacobian-free Newton-Krylov method [9] to reduce the memory requirement of the
overall methodology. We employ backtracking line-search algorithm with strong
Wolfe condition [11, Alg. 3.1, Eq. (3.7)], with 𝑐1 = 10−4, 𝑐2 = 0.99, and the value
of 𝜌 is chosen to be 0.5 for global solvers and 0.1 for subdomain solvers. The ex-
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Table 1 Number of iterations and the time to solution for the L-BFGS method and the TL-NRAS
preconditioned QN methods. (L)/(R) denote left/right preconditioning.

Memory m = 1 m = 3 m = 5 m = 7 m = 10
Time (s) # Iter Time (s) # Iter Time (s) # Iter Time (s) # Iter Time (s) # Iter

L-BFGS 698.16 643 720.01 642 699.53 646 702.62 679 536.40 513
L-BFGS (L) 301.37 25 288.69 23 296.82 24 288.61 23 300.00 25
L-BFGS (R) 426.21 36 296.99 22 278.68 20 273.99 19 272.45 20
AA-I (L) 350.60 30 285.56 22 284.20 22 287.44 23 284.43 22
AA-I (R) 374.47 36 274.40 22 281.74 23 269.98 21 281.21 22
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Fig. 1 Convergence history of the L-BFGS method, Newton’s method, TL-NRAS method, and
TL-NRAS preconditioned QN and RASPEN methods. The QN methods are configured to use the
last 7 secant pairs.

periments are carried out using MATLAB on a system with an Intel Core i9-9880H
processor, and 16GB of memory.

Convergence study: In order to study the convergence behavior of the precondi-
tioned QNmethod, the “left” and the “right” preconditioned variants of the L-BFGS
methods and the AA-I method are considered. For this numerical experiment, we
store𝑚 pairs of secant vectors, where𝑚 ∈ {1, 3, 5, 7, 10}. Table 1 depicts the time to
solution and the required number of iterations to satisfy the termination criterion for
different solution methods and different values of 𝑚. We have included only precon-
ditioned AA-I method in our study.★ From Table 1, it is clear that the preconditioned
QN methods outperform the standard L-BFGS method both in terms of the number
of iterations and the computational time. Regardless of the number of stored secant
pairs, the preconditioned L-BFGS methods and AA-I methods are two times faster
than the L-BFGSmethod. The preconditioned AA-I methods and the preconditioned
L-BFGS methods have comparable performance. While the “right” preconditioned
L-BFGSmethods outperform all other methods if more pairs of secant pairs are used.
Figure 1 depicts the convergence history of the preconditioned QNmethods, the two-
level NRAS method, and Newton’s method. We can observe that the preconditioned

★ The AA-I method requires factorization of 𝑆>
𝑘
𝑌𝑘 , which is not possible if the successive pairs of

{𝑠 (𝑘) , 𝑦 (𝑘) } are very similar. To avoid such issues, one can construct the pairs in such a way that
successive 𝑠 (𝑘) are orthogonal [12].
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QN method outperforms Newton’s method and the L-BFGS method. Also, we can
see that the TL-NRAS method has linear convergence, and by employing a QN
method as an outer solver we can reduce the number of required iterations in half.
Specifically for the left-preconditioning, in comparison with the RASPEN methods
the preconditioned QN method shows only mild deterioration in the convergence.
From the performed experiments, we can conclude that the proposed domain

decomposition-based preconditioning strategy is quite robust both in the case of the
L-BFGS method and the type-I AA method. This works provides a promising future
direction for problems when memory is a limiting factor, for example for solving the
phase field fracture problems [8] or for the training of deep neural networks.
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Nonlinear Schwarz Preconditioning
for Nonlinear Optimization Problems
with Bound Constraints

Hardik Kothari, Alena Kopaničáková, and Rolf Krause

1 Introduction

We consider a Lipschitz domain Ω ⊂ Rd, d = 2, 3, and a triangulation T on Ω.
Now, we define V = span{φp}p∈N as a Finite Element (FE) space, where N
denotes a set of nodes of the mesh T . Furthermore, we introduce the feasible set
F = {v ∈ V | ψ 6 v 6 ψ}, where ψ,ψ denote the component-wise lower bound
and upper bound, respectively.

We consider the following abstract nonlinear minimization problem:

Find v∗ = arg minv∈Ff(v), (1)

where f : V → R denotes a bounded, twice-Lipschitz-continuously-differentiable
objective function. Problems of this type arise in numerous applications, such as
contact mechanics [15], or fracture mechanics [12, 13].

Under certain assumptions on the function f , the minimization problem (1) can
be equivalently rewritten as a nonlinear complementarity problem (NCP). As the
first-order optimality conditions for (1) are given as: Find v ∈ V such that

∇f(v) 6 0, v − ψ 6 0, 〈∇f(v), v − ψ〉 = 0, ∀v ∈ F \ F ,
∇f(v) > 0, ψ − v 6 0, 〈∇f(v), ψ − v〉 = 0, ∀v ∈ F \ F ,

(2)

where F = {v ∈ F | v = ψ} and F = {v ∈ F | v = ψ} denote boundaries
of the feasible set F . Standard approaches for solving such minimization problems
include penalty/augmented Lagrangian methods, interior-point methods, or active-
set methods; see [16] for a detailed overview. In this work, we focus our attention on
Newton-based active-set methods, namely the semismooth Newton method, and the
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sequential quadratic programming (SQP) Newton method. Although the active-set
methods are fairly efficient, their convergence tends to deteriorate due to three main
factors: inability to detect an active-set sufficiently fast; strong and highly unbalanced
nonlinearities; and ill-conditioning of the problem.

In the context of unconstrained nonlinear problems, nonlinear additive Schwarz
preconditioners have been demonstrated to accelerate the convergence of the Newton
methods; see for example Additive Schwarz Preconditioned Inexact Newton (AS-
PIN) [6], Restricted Additive Schwarz Preconditioned Exact Newton (RASPEN) [8],
or Nonlinear Elimination Preconditioned Inexact Newton (NEPIN) [7] methods. In
this work, we aim to extend a class of Schwarz preconditioned Newton methods to
solve constrained nonlinear optimization problems. To the best of our knowledge,
there have been only a few attempts to employ Schwarz methods to solve variational
inequalities, for instance [1, 2, 3, 11]. In this work, we introduce a two-level nonlinear
additive Schwarz preconditioner for the Newton-SQP method, which ensures that
the subdomain and coarse-level corrections remain in the feasible set.

2 Nonlinear preconditioning

We define a residual function F : V → V ′ as the gradient of the original objective
function, i.e., F (·) ≡ ∇f(·). Let G be a nonlinear preconditioner of the residual
functionF , such that in some senseG denotes an approximate inverse of the nonlinear
function F , i.e., G ≈ F−1. Now, we can define nonlinearly-preconditioned residual
function as F (v) := F (G(v)). This preconditioner is used to define a nonlinearly-
preconditioned variational inequality problem as follows: Find v ∈ V such that

F (v) 6 0, v − ψ 6 0, 〈F (v), v − ψ〉 = 0, ∀v ∈ F \ F ,
F (v) > 0, ψ − v 6 0, 〈F (v), ψ − v〉 = 0, ∀v ∈ F \ F ,

(3)

where the solution of (3) is the same as the solution of (1) and (2). Please note that
the operatorG is used as a “right-preconditioner", since this type of preconditioning
does not change the original nonlinear system, and it also avoids the transformation of
bound constraints into general inequality constraints. Generally, the preconditionerG
can be constructed implicitly as a fixed-point iteration, i.e., v(k+1) = G(v(k)). In
this work, we construct G using a variant of the nonlinear Restricted Additive
Schwarz (NRAS) method, termed as NRAS-B method. Contrary to the standard
NRAS method, the NRAS-B method ensures that the bound constraints are not
violated by taking the preconditioning step. Thus, the preconditionerG produces an
iterate that remains in the feasible set, i.e., v(k) ∈ F , for all k = 1, 2, . . .

NRAS-B method: We consider a decomposition of the FE space V into n over-
lapping and non-overlapping subspaces, denoted by {Vi}ni=1 and {Ṽi}ni=1, respec-
tively. The overlap between the subspaces is controlled by the variable δ, defined as
a multiple of the mesh-width h of the underlying mesh T . On these subspaces, we
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define the standard restriction operator Ri : V → Vi, and the prolongation operator
Pi : Vi → V , whereR>i = Pi. Similarly, we define a restricted prolongation operator
P̃i : Ṽi → V such that

∑n
i=1 P̃iRi = I .

Utilizing the aforementioned decomposition and the transfer operators, we now
define the constrained nonlinear optimization problem on each subspace as follows.
For a given initial guess v(0)i ∈ Fi, where v(0)i ← [ Riv(k):

Find v∗i = arg minvi∈Fi
fi(vi), (4)

where fi : Vi → R denotes a restriction of the function f to the subspace Vi. The fea-
sible set associatedwith the subspaceVi is given byFi = {vi ∈ Vi | ψi 6 vi 6 ψi}.
Here, we point out that the local minimization problems (4) are solved on overlap-
ping subspaces. However, the global iterate v(k) is updated using the corrections
associated with the non-overlapping subspaces, as in

v(k+1) = v(k) + α

n∑
i=1

P̃i(v
∗
i −Riv(k)), (5)

where v∗i denotes a solution of (4) and α is computed using a line-search strategy.
Solving (4) and update rule (5) comprise an iteration of the NRAS-B method.

Two-level NRAS-B method: The convergence of additive Schwarz methods is
known to deteriorate with an increasing number of subdomains. In order to achieve
algorithmic scalability, it is essential to ensure global information transfer through
a coarse space. In the context of constrained minimization problems, constructing
a coarse space is not a trivial task, as one has to ensure that the prolongated corrections
from the coarse level provide a sufficient decrease in the objective function f ,
and the updated iterate remains in the feasible set. We construct a coarse-level
objective function f0 : V0 → R, where V0 denotes a coarse space V0 ⊂ V , and T0
denotes a mesh associated with the FE space V0. The transfer of information between
the coarse level and the original problem is ensured by the prolongation operator
P0 : V0 → V and the restriction operatorR0 : V ′ → V ′0, whereR0 = P>0 .Moreover,
we also employ the projection operator Π0 : V → V0 in order to transfer primal
quantities to the coarse level.

In the context of nonlinear multilevel methods, several approaches for construct-
ing the coarse-level feasible set F0 = {v0 ∈ V0 | ψ0

6 v0 6 ψ0} are considered in
the literature [9, 10, 14]. Here, we utilize constraint-projection rules from [9] and
construct ψ

0
, ψ0 in a component-wise manner as

(ψ
0
)t = (v0)t + max

j∈N ∩ ( 8ω0)t
[(ψ − v(k))j ],

(ψ0)t = (v0)t + min
j∈N ∩ ( 8ω0)t

[(ψ − v(k))j ],
(6)

where the symbol (·)t denotes the value of a function associated with the t-th node
of the mesh. The support of the basis function (φ0)t is denoted by (ω0)t. Now, we
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Algorithm 1: RASPN-B method
Data: f : V → R, ψ ∈ V , ψ ∈ V , v(0) ∈ F , k ←[ 0
Result: v(k)

1 while ‖[∇f(v(k))]F‖ > εatol do
2 For given v(k), find v(+) by using a step of NRAS-B or TL-NRAS-B method
3 Assemble gradient and Hessian: g ←[ ∇f(v(+)),H ← [ ∇2f(v(+))

4 Find s(k) by solving the following constrained quadratic optimization problem
min
s(k)

Q(s(k)) := 1/2〈Hs(k), s(k)〉+〈g, s(k)〉, s. t. ψ−v(+) 6 s(k) 6 ψ−v(+)

5 Find α(k) using a line-search algorithm
6 Update the iterate: v(k+1) ← [ v(+) + α(k)s(k), k ←[ k + 1

can define the optimization problem on the coarse level as follows. For a given initial
guess v(0)0 ∈ F0, where v

(0)
0 ← [ Π0v

(k):

Find v∗0 = arg minv0∈F0
f̂0(v0). (7)

Please note thatminimization problem (7) is defined using an augmented coarse-level
objective function f̂0, defined as

f̂0(v0) = f0(v0) + 〈R0∇f(v(k))−∇f0(Π0v
(k)), v0〉, (8)

where v(k) denotes the current iterate on the fine level. By adding the first-order
consistency term to the objective function f0, we ensure that the gradient of the
augmented objective function f̂0 at the first iterate is the restricted fine-level gradient.

We follow an inverted V-cycle approach, where a coarse-level update step is
followed by a single step of NRAS-B iteration, i.e., iterate v(k) is updated as follows:

v(k+
1/2) = v(k) + α̂P0(v

∗
0 −Π0v

(k)),

v(k+1) = v(k+
1/2) + α

n∑
i=1

P̃i(v
∗
i −Riv(k+

1/2)).
(9)

The symbol v∗0 in (9) denotes the solution of the coarse-level minimization prob-
lem (7), while v∗i is the solution of the subproblem (4) associated with the i-th
subspace. The step sizes α̂ and α are again obtained using a line-search algorithm.
Combining solutions of (7) and (4) with update rule (9), we can define an iteration
of the TL-NRAS-B method.

Nonlinearly-preconditioned Newton SQP method: Finally, we provide a brief
description of the nonlinearly-preconditioned Newton-SQP method for bound-
constrained optimization problems. As summarized in Alg. 1, the method consists
of two main phases. First, we invoke a step of the NRAS-B/TL-NRAS-B method
in order to obtain an updated iterate v(k). Later, we construct a quadratic model Q,
which is minimized subject to the bound constraints with the aim of obtaining a new
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search direction s(k). In contrast to standard preconditioned Newton methods [5, 7],
the minimization of the quadratic model is subjected to pointwise constraints, which
ensures that the updated iterates remain in the feasible set F . We note that the right-
preconditioning can also be interpreted as a multiplicative or a composite solver [4].

3 Numerical experiments

In this section, we investigate the performance of nonlinear Schwarz preconditioners
using two constrained minimization problems, namely the ignition and the minimal
surface problems. Both numerical examples are defined on a domain Ω := (0, 1)2

with boundary Γ = ∂Ω, which is decomposed into four parts: Γl = {0} × [0, 1],
Γr = {1} × [0, 1], Γb = [0, 1]× {0} and Γt = [0, 1] × {1}. The discretization is
performed using a mesh consisting of 120 × 120 uniform quadrilaterals which are
further decomposed into triangular elements. In the case of two-level methods, we
also employ a coarser mesh with 30× 30 elements in each direction.

Ignition: We minimize a variant of the Bratu problem, given as:

min
u∈H1(Ω)

fI(u) :=
1

2

∫
Ω

‖∇u‖2 − (ueu − eu) dx−
∫
Ω

f(x)u dx,

subject to ψ(x) 6 u 6 ψ(x), a.e. in Ω, u = 0, on Γ,
(10)

where f(x) = (9π2 + e(x
2
1−x

3
1) sin(3πx2)(x21 − x31) + 6x1 − 2) sin(3πx1). The bounds

are given as ψ(x) = 0.2− 8(x1 − 7/16)2 − 8(x2 − 7/16)2 and ψ(x) = 0.5.

Minimal Surface: This experiment aims to find the minimal surface described by
a function u by solving the following minimization problem:

min
u∈H1(Ω)

fM (u) =

∫
Ω

√
(1 + ‖∇u‖2) dx,

subject to


ψ(x) 6 u 6 ψ(x) a.e. in Ω.

u = −0.3 sin(2πx2) on Γl, u = 0.3 sin(2πx2) on Γr,
u = −0.3 sin(2πx1) on Γb, u = 0.3 sin(2πx1) on Γt,

(11)

where the lower bound is prescribed asψ(x) = 0.25− 8(x1 − 0.7)2 − 8(x2 − 0.7)2

and the upper bound is ψ(x) = 8(x1 − 0.3)2 − 8(x2 − 0.3)2 − 0.4.

Setup of the solution strategies: For all numerical experiments, we prescribe the
overlap δ = 3 and obtain the decomposition into the subdomains using the library
METIS. All considered solution methods terminate if ‖[∇f ]F‖ 6 10−8, where
[∇f ]F = PF (x−∇f(x))− x denotes the projected gradient. Here, the symbolPF
denotes the projection onto the feasible set F . Contrary to the traditional nonlin-
ear RAS methods, the subdomain solvers, coarse-level solvers, and constrained
quadratic minimization solvers are terminated using a fairly strict termination crite-
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Fig. 1 Convergence history of NRAS-B (Left) and TL-NRAS-B (Right) methods for the ignition
problem (Top) and the minimal surface (Bottom) problem. The experiments are performed with an
increasing number of subdomains (sbd).

rion, i.e., they terminate if ‖[∇f ]F‖ 6 10−11. Moreover, we employ a line-search
method with the Armijo condition for computing the step size in all inner and outer
solvers. The local and the coarse-level solvers for the NRAS-B/TL-NRAS-B meth-
ods employ the Newton-SQP method. On coarse levels, simply restriction of the
objective function fI and fM is used to construct f0.

Comparison between NRAS-B and TL-NRAS-B methods: The comparison is
performed with respect to an increasing number of subdomains. As we can observe
from Fig. 1, the standard NRAS-B method requires more iterations to satisfy the
termination criterion than the TL-NRAS-B method. Due to the strict termination
criterion, we notice that the NRAS-B method stagnates before reaching the termi-
nation criterion, while the TL-NRAS-B method manage to converge to the desired
tolerance irrespective of number of subdomains. We also notice that the NRAS-B
method requires more iterations with an increasing number of subdomains for both
problems. For the TL-NRAS-B, we observe scalable convergence with respect to the
number of subdomains for the minimal surface problem. However, for the ignition
problem, the number of iterations grows with the number of subdomains. This can be
attributed to the fact that the coarse grid is not able to represent the constraint func-
tion associated with this particular problem sufficiently well. Hence, the coarse-level
nonlinear problems become over-constrained, which amounts to small coarse-grid
corrections and insufficient global information transfer.
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Fig. 2 Convergence history of semismooth Newton (SS-Newton), Newton-SQP, RASPN-B, and
TL-RASPN-B methods for the ignition problem (Left) and minimal surface problem (Right).

Comparing RASPN-B method with other methods: In this section, we compare
the performance of the NRAS-B and TL-NRAS-B preconditioned Newton methods
with the semismooth Newton and Newton-SQP methods. In this study, the NRAS-B
and TL-NRAS-B methods employ 16 subdomains. We note that the semismooth
Newton method linearizes the nonlinearity of the problem and constraints simul-
taneously, while the Newton-SQP method first linearizes the nonlinearity of the
problem and at each Newton iteration a QP problem is solved with constraints.

From Fig. 2, we can see that the Newton-SQP method preconditioned with
NRAS-B and TL-NRAS-B method outperforms the semismooth Newton method
for both examples. As the ignition problem is only mildly nonlinear, preconditioned
Newton methods as well as the Newton-SQP method manage to satisfy the termina-
tion criterion in only 4 iterations. In the case of a minimal surface problem, which is
more nonlinear, the benefit of preconditioning the Newton method is more evident.
The RASPN-B and TL-RASPN-B methods converge in 7 and 4 iterations, respec-
tively. In comparison, the Newton-SQP and semismooth-Newton methods require
16 and 24 iterations to converge, respectively.

4 Conclusion

In this work, we presented a nonlinear additive Schwarz preconditioning method for
bound-constrained nonlinear optimization problems. The scalability of the method
is enhanced by introducing a coarse level with the first-order consistent objective
function and the constraints restricted from the fine level. The developed Schwarz
methods are then employed as a right preconditioner for the Newton-SQP method.
Our numerical results demonstrate that the proposed preconditioners enhance the
convergence of the Newton-SQPmethod and outperform standard active-set Newton
methods. We also show that the two-level preconditioner is algorithmically scalable
if a coarse space captures the constraints from the fine level sufficiently well.
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Domain Decomposition Solvers for Operators
with Fractional Interface Perturbations

Miroslav Kuchta

1 Introduction

Mathematical models featuring interaction of physical systems across a common
interface describe numerous phenomena in engineering, environmental sciences and
medicine. Here the large variations in material coefficients or wide ranges of tempo-
ral/spatial scales at which the phenomena can be studied demand parameter-robust
solution algorithms. In [3, 4] such algorithms were recently developed for Darcy-
Stokes and Biot-Stokes models by establishing uniform stability of the respective
problems in (non-standard) parameter-dependent norms. In particular, the authors
show that in order to attain robustness, mass conservation at the interface Γ of the
porous domain Ω must be accounted for in the functional setting, leading to control
of the porous pressure 𝑝 in the norm ‖𝑝‖Ω such that

‖𝑝‖2Ω = ‖𝐾1/2∇𝑝‖20,Ω + ‖𝜇−1/2𝑝‖2−1/2,Γ . (1)

Here ‖·‖𝑘,𝐷 denotes the standard norm of Sobolev space 𝐻𝑘 (𝐷) on domain 𝐷. The
coefficients 𝐾, 𝜇 > 0 are due to material properties, namely the permeability of the
porous medium and the fluid viscosity.
By operator preconditioning, the choice of norm (1) yields a Riesz map precon-

ditioner 𝑏 ↦→ 𝑥 defined by solving the problem

−𝐾ΔΩ𝑥 + 𝜇−1 (−ΔΓ)−1/2𝑥 = 𝑏. (2)

Note that the operator in (2) contains a bulk part−ΔΩ and an interface part (−ΔΓ)−1/2,
which, from the point of view topological dimension of the underlying domains, can
be viewed as a lower order perturbation.

Miroslav Kuchta
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Fig. 1 (Left) Sparsity pattern of the operator in (2) on Ω = (0, 1)3 with Γ ⊂ 𝜕Ω. Interface
perturbation leads to dense block (in blue) which is challenging for sparse LU solvers. (Right)
Number of PCG iterations under mesh refinement when solving (2) on Ω = (0, 1)2 with Γ ⊂ 𝜕Ω
and AMG [8] preconditioner. In both case case 𝐾 = 1 and the problems are discretized by
continuous linear Lagrange (P1) elements.

Efficiency of the block-diagonal Darcy/Biot-Stokes preconditioners [3, 4] hinges
on performant solvers for (2). However, the problem might not be amenable to
standard (generic, black-box) approaches especially in case when the fractional
interface perturbation becomes dominant. We illustrate this behavior in Figure 1
where (2) is solved by preconditioned conjugate gradient (PCG) method with alge-
braic multigrid (AMG) preconditioner. Indeed, the number of iterations increases
with the weight of the perturbation term and, worryingly, for large enough values
mesh-independence is lost.
Non-overlapping domain decomposition (DD) is a solution methodology which

has been successfully applied to number of challenging problems including coupled
multiphysics systems e.g. [5, 7, 11]. A key component of the method are then the
algorithms for the problems arising at the interface which can be broadly divided
into two categories. In FETI or BDDC variants (see e.g. [1] and references therein)
the solvers utilize suitable auxiliary problems on the subdomains. To develop tai-
lored solvers for operators with fractional interface perturbation we here follow an
alternative approach [1] and address the problem directly at the interface. In partic-
ular, we shall construct preconditioners for the resulting Steklov-Poincaré operators
using sums of fractional order interfacial operators which include contribution due
to the DD and the perturbation (which is only localized at the interface).

2 Domain decomposition solvers

We shall consider solvers for (2) in a more general setting. To this end, let Ω ⊂ R𝑑 ,
𝑑 = 2, 3 be a bounded domain with Lipschitz boundary 𝜕Ω, and Γ ⊆ 𝜕Ω. Moreover,
let𝑉 = 𝑉 (Ω),𝑄 = 𝑄(Γ) be a pair of Hilbert spaces with𝑉 ′,𝑄 ′ being their respective
duals and let 𝑅 : 𝑉 → 𝑄 ′ be a restriction operator. For 𝑏 ∈ 𝑉 ′ we are then interested
in solving

A𝑥 = 𝑏 in 𝑉 ′ with A = 𝐴Ω + 𝛾𝑅′𝐵−1
Γ 𝑅, (3)
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where 𝛾 ≥ 0 and 𝐴Ω : 𝑉 → 𝑉 ′ is some symmetric operator coercive on 𝑉 while
𝐵Γ : 𝑄 → 𝑄 ′ is assumed to induce an inner product on 𝑄. Note that the norm
operator in (2) is a special case of (3) with 𝑉 = 𝐻10 (Ω), 𝑄 = 𝐻1/2 (Γ), 𝑅 the trace
operator and 𝐴Ω = −𝐾ΔΩ while 𝐵Γ = (−ΔΓ)1/2.
To formulate our non-overlapping domain decomposition approach for (3), we

follow [1] and decompose 𝑉 = 𝑉0 ⊕ 𝑉Γ where 𝑉0 = {𝑣 ∈ 𝑉 ; 𝑅𝑣 = 0}. Assuming
that 𝑉Γ can be identified with 𝑄 we observe that the operator A takes a block
structure

A =

(
𝐴00
Ω
𝐴0𝑖
Ω

𝐴𝑖0
Ω
𝐴𝑖𝑖
Ω

)
+ 𝛾

(
0 0
0 𝐵̃−1

Γ

)
, (4)

whichwe exploit to design a preconditioner forA. Specifically, under the assumption
that 𝐴00

Ω
is invertible, let us define the DD preconditioner

B =

(
𝐼00
Ω

−(𝐴00
Ω
)−1𝐴0𝑖

Ω

0 𝐼 𝑖𝑖
Ω

) (
𝐴00
Ω
0

0 𝑆Γ

)−1 (
𝐼00
Ω

0
−𝐴𝑖0

Ω
(𝐴00

Ω
)−1 𝐼 𝑖𝑖

Ω

)
. (5)

Here 𝐼00
Ω
: 𝑉0 → 𝑉0 and 𝐼 𝑖𝑖Ω : 𝑉Γ → 𝑉Γ are identity operators on the respective

subspaces while 𝑆Γ is spectrally equivalent to the DD Schur complement/Steklov-
Poincaré operator 𝑆∗

Γ
= 𝐴𝑖0

Ω
(𝐴00

Ω
)−1𝐴0𝑖

Ω
+ 𝐴𝑖𝑖

Ω
+𝛾𝐵̃−1

Γ
. We note that preconditioner (5)

preserves symmetry of the original problem (3) as we target PCG solvers. However,
with Krylov methods which do not require symmetry a more efficient triangular
variant of the preconditioner is sufficient.
Our main contribution is an observation that for problems with interface pertur-

bations, the Schur complement approximation 𝑆Γ in (5) takes the form

𝑆Γ = 𝐿𝑠𝐴 + 𝛾𝐿
𝑡
𝐵, (6)

for some constants 𝑠, 𝑡 ∈ R and symmetric, positive-definite operators 𝐿𝐴, 𝐿𝐵
depending on the regularity of A, the restriction operator and the perturbation. In
particular, the structure of the preconditioner reflects the two contributions to the
Schur complement; the decomposition𝑉 = 𝑉0⊕𝑉Γ applied to operator 𝐴Ω yields 𝐿𝑠𝐴
while 𝐿𝑡

𝐵
is due to the perturbation.

Motivated by the initial example (2) we shall in the following focus on problems
for which −1 < 𝑠, 𝑡 < 1 and 𝐿𝐴, 𝐿𝐵 are spectrally equivalent to 𝐿 = −ΔΓ + 𝐼Γ.
However, we highlight that the operators might in general differ by their boundary
conditions (which for 𝐿𝐴 reflect boundary conditions on 𝜕Ω \ Γ imposed on 𝑉
in (3)).
Assuming that (𝐴00

Ω
)−1 can be efficiently computed, the main challenge for scal-

ability of preconditioner (5) is an efficient realization of (an approximate) inverse
of (6). Upon discretization, the operators 𝐿𝑠

𝐴
, 𝐿𝑡

𝐵
can be approximated by eigenvalue
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factorization1. However, this approach suffers from cubic scaling. For the specific
case of 𝐿1/2 a more efficient strategy with improved scaling is applied in [1] based
on the Lanczos process while, more recently, [9] proves that rational approxima-
tions (RA) lead to non-overlapping DD methods with linear scaling. Building on
this observation to obtain order optimal solvers for the perturbed problem (3) we fol-
low [6] where rational approximations2 were developed for Riesz maps with norms
induced by sum operator 𝛼𝐿𝑠 + 𝛽𝐿𝑡 with 𝛼, 𝛽 ≥ 0. In particular, this setting fits our
Schur complement operator (6) if constant material properties and suitable boundary
conditions are prescribed on A in (3).

3 Model problem

We shall illustrate performance of the domain decomposition preconditioner (5)
using a model interface-perturbed problem: Find 𝑥 ∈ 𝑉 = 𝐻1 (Ω) such that

𝐾 (−ΔΩ + 𝐼Ω)𝑥 + 𝛾(−ΔΓ + 𝐼Γ)𝑡𝑥 = 𝑏 in 𝑉 ′, (9)

where 𝐾 > 0, 𝛾 ≥ 0 and −1 < 𝑡 < 1. Here Ω = (0, 1)𝑑 , 𝑑 = 2, 3 and Γ = 𝜕Ω. We
note that this choice maximizes the size of the interface. At the same times, it enables
the RA-favorable setting of 𝐿𝐴 = 𝐿, 𝐿𝐵 = 𝐿, 𝐿 = −ΔΓ + 𝐼Γ in (6). Following [1]
the DD Schur complement of the operator 𝐴Ω = 𝐾 (−ΔΩ + 𝐼Ω) in (3) is spectrally
equivalent to fractional operator 𝐾𝐿1/2. In turn we apply preconditioner (5) with
𝑆Γ = 𝐾𝐿1/2 + 𝛾𝐿𝑡 . However, for simplicity, we shall fix 𝐾 , here 𝐾 = 3, and we only
investigate the effect of perturbation strength.
In the numerical experiments we consider 𝐻1-conforming finite element spaces

𝑉ℎ ⊂ 𝑉 constructed in terms of P1 elements. Consequently, the matrix realization

1 For 𝐿 : 𝑄 → 𝑄′ let 𝐿ℎ be the matrix realization of the operator in the basis of some finite
dimensional approximation space 𝑄ℎ , 𝑛 = dim𝑄ℎ . Moreover, let 𝑀ℎ be the mass matrix, i.e.
matrix realization of the inner product of the Lebesgue space 𝐿2 on𝑄ℎ . Assuming 𝐿 is symmetric
and positive definite, the factorization 𝐿ℎ𝑈ℎ = 𝑀ℎ𝑈ℎΛℎ , 𝑈𝑇

ℎ
𝑀ℎ𝑈ℎ = Id holds where Λℎ is

a diagonal matrix of eigenvalues while the corresponding eigenvectors constitute the columns of
matrix𝑈ℎ . We then define

𝐿𝑠
ℎ = (𝑀ℎ𝑈ℎ)Λ𝑠

ℎ (𝑀ℎ𝑈ℎ)𝑇 . (7)
Note that for 𝐿 = (−Δ + 𝐼 ) and 𝑓 ∈ 𝑄 represented in 𝑄ℎ by interpolant with coefficient vector
𝑓ℎ ∈ R𝑛 the function 𝑓ℎ ↦→ 𝑓ℎ · 𝐿𝑠

ℎ
𝑓ℎ represents an approximation of the square of the Sobolev

norm ‖ 𝑓 ‖2𝑠 .
2 Referring to the definitions in (7) the RA construct approximate solutions 𝑥 ∈ 𝑄 satisfying
𝛼𝐿𝑠𝑥 + 𝛽𝐿𝑡 𝑥 = 𝑏, 𝑏 ∈ 𝑄′ in the finite dimensional space 𝑄ℎ via a solution operator

𝑐0𝑀
−1
ℎ +

𝑚∑︁
𝑘=1
𝑐𝑖 (𝐿ℎ + 𝑝𝑘𝑀ℎ)−1. (8)

Here, 𝑐𝑖 ∈ R and 𝑝𝑖 ≥ 0 are respectively the residues and the poles of the rational approximation
𝑓RA to function 𝑓 : 𝑥 → (𝛼𝑥𝑠 + 𝛽𝑥𝑡 )−1. Importantly, the number of poles 𝑚 does not depend
on the dimensionality of 𝑄ℎ and is instead determined by the accuracy 𝜖RA of the RA, i.e.
‖ 𝑓 − 𝑓RA ‖ ≤ 𝜖RA. We refer to [6, 9] and references therein for more details.
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Fig. 2 PCG iterations when solving (9) on Ω = (0, 1)2 and preconditioner (5) with 𝑆Γ =

𝐾𝐿1/2 + 𝛾𝐿𝑡 . Problem is discretized by P1 elements. Blocks of the preconditioner are here com-
puted exactly.
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Fig. 3 PCG iterations when solving (9) on Ω = (0, 1)3 and preconditioner (5) with 𝑆Γ =

𝐾𝐿1/2 + 𝛾𝐿𝑡 . Problem is discretized by P1 elements. Leading block of preconditioner is computed
exactly. Results with realization of the Schur complement preconditioner by RA with tolerance
𝜖RA = 10−14 are depicted by (#) markers while (×) markers correspond to definition via the eigen-
value problem (7).

of the fractional interface perturbation reads 𝛾𝑇𝑇
ℎ
𝐿𝑡
ℎ
𝑇ℎ where matrix 𝐿𝑡ℎ is defined

in (7) and 𝑇ℎ is a discrete trace operator such that 𝑇ℎ𝜙 =
∑𝑛
𝑗=1 𝑙 𝑗 (𝜙 |Γ)𝜓 𝑗 for any

𝜙 ∈ 𝑉ℎ and 𝜓 𝑗 , 𝑙 𝑗 , 𝑗 = 1, · · · , 𝑛 being respectively the basis functions and degrees
of freedom (point evaluations) of the discrete trace space 𝑉Γ,ℎ = 𝑄ℎ built likewise
using P1 elements.
The linear systems due to discretization of (9) shall be solved by PCG solver using

our DD preconditioner (5) which now requires inverse of the linear system due to
𝐾𝐿

1/2
ℎ

+𝛾𝐿𝑡
ℎ
. Here we shall either apply the eigenvalue realization (7) (which allows

for closed form evaluation of the exact inverse) or the approximate inverse due to RA,
see (8). To put focus on the Schur complement action of blocks (𝐴00

Ω
)−1 in (5), that

is, in the diagonal and triangular factors of B, will be computed (exactly) by LU
factorization. For results with approximate inverse of 𝐴00

Ω
we refer to Remark 1.

Finally, the PCG solver is always started from 0 initial vector and terminates upon
reducing the preconditioned residual norm by factor 1010.
We summarize performance of the DD preconditioner in Figure 2 and Figure 3

which consider (9) with Ω = (0, 1)2 and Ω = (0, 1)3 respectively. It can be seen
that the PCG convergence is in general bounded in mesh size, fractionality 𝑡 and
the perturbation strength 𝛾. Important for the scalability of (5) is the observation
that iteration counts with RA realization of the Schur complement preconditioner
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Fig. 4 PCG iterations for computing the inverse of fractional perturbed operators by precondi-
tioner (5). (Left) The operator is (9) with 𝑡 = −1/2 and Ω = (0, 1)3. The operator A (4) and
the preconditioner are evaluated using RA. On the finest refinement level dim𝑉Γ,ℎ = 24 · 103.
(Right) Operator (10) is considered with 𝑆Γ = 𝐾𝐿−1/2 + 𝛾𝐼Γ in the Schur complement (6). In both
cases Γ = 𝜕Ω.

practically match the exact inverse of 𝑆Γ. We remark that the chosen tolerance of
𝜖RA = 10−14 yields roughly 𝑚 = 20 poles in (8). The computation setup in 3𝑑 then
leads to linear systems with < 6200 unknowns at the interface.

Remark 1 (Evaluation of the operator in (9))
In numerical experiments shown in Figure 2 and Figure 3 the operatorA in (9) uti-

lized the eigenvalue decomposition (7) for 𝐿𝑡
ℎ
. This realization restricts the size of Γ

or dim𝑄ℎ that are computationally tractable. However, action of the perturbation can
instead be computed via RA leading to evaluation ofA with optimal complexity and
enabling large scale problems. In Figure 4 we revisit (9) with 𝑡 = −1/2, Ω = (0, 1)3
and RA used both for the operator and the preconditioner (5). Moreover, to illustrate
performance when the preconditioner blocks are inexact, all instances of (𝐴00

Ω
)−1

shall here, for simplicity, be approximated by a single V-cycle of AMG [8]. The
number of PCG iterations then appears to be bounded in the mesh size and the
parameter 𝛾. As before, P1 elements were used for discretization.

Remark 2 (Application to 𝑯(div)-elliptic problem) Preconditioners (5) are not lim-
ited to 𝐻1-elliptic problems. To illustrate this fact we consider 𝑉 = 𝑯(div,Ω),
Ω = (0, 1)2 and a variational problem induced by bilinear form due to operator A

〈A𝒖, 𝒗〉 =
∫
Ω

𝐾 (𝒖 · 𝒗 + ∇ · 𝒖∇ · 𝒗) + 𝛾
∫
𝜕Ω

𝒖 · 𝝂𝒗 · 𝝂 ∀𝒖, 𝒗 ∈ 𝑉. (10)

We observe thatA falls under the template problem (3). In order to apply the domain-
decomposition preconditioner we then require a preconditioner for the DD Schur
complement due to (𝐴00

Ω
)−1where 𝐴00

Ω
is here the operator𝐾 (𝐼−∇∇·) on𝑯0 (div,Ω).

Motivated by [2], we shall to this end consider the operator 𝐿𝐴 = 𝐾𝐿−1/2 so that 𝑆Γ
in (5) is defined as 𝑆Γ = 𝐾𝐿−1/2 + 𝛾𝐼Γ. For numerical experiments the system
is discretized by lowest order Brezzi-Douglas-Marini elements which lead to the
discrete trace space 𝑉Γ,ℎ = 𝑄ℎ of discontinuous piecewise-linear functions on trace
mesh Γℎ . Robustness of the resulting preconditioner is shown in Figure 4.
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4 Darcy-Stokes preconditioning

We finally apply the proposed non-overlapping DD solvers to realize preconditioners
for the coupled Darcy-Stokes model with Darcy problem in the primal form [7]. That
is, assuming bounded domainsΩ𝑆 ,Ω𝐷 ⊂ R𝑑 , 𝑑 = 2, 3 sharing a common interface Γ
(cf. Figure 5) we seek to find the Stokes velocity 𝒖𝑆 , the Stokes pressure 𝑝𝑆 and the
Darcy pressure 𝑝𝐷 such that

−∇ · 𝜎(𝒖𝑆 , 𝑝𝑆) = 𝒇 𝑆 and ∇ · 𝒖𝑆 = 0 in Ω𝑆 ,
−∇ · 𝐾∇𝑝𝐷 = 𝑓𝐷 in Ω𝐷 ,

𝒖𝑆 · 𝝂 + 𝐾∇𝑝𝐷 · 𝝂 = 0 on Γ,
−𝝂 · 𝜎(𝒖𝑆 , 𝑝𝑠) · 𝝂 − 𝑝𝐷 = 0 on Γ,

−𝑃𝝂 (𝜎(𝒖𝑆 , 𝑝𝑆) · 𝝂𝑆) − 𝛼𝜇𝐾−1/2𝑃𝝂𝒖𝑆 = 0 on Γ,

(11)

where 𝑃𝝂 is the tangential trace operator 𝑃𝝂𝒖 = 𝒖−(𝒖 ·𝝂)𝝂 and𝜎(𝒖, 𝑝) = 𝜇∇𝒖−𝑝Id.
In addition to the previously introduced coefficients 𝐾 , 𝜇 > 0 the model also
includes the Beavers-Joseph-Saffman parameter 𝛼 ≥ 0. The system (11) is closed
by prescribing suitable boundary conditions to be discussed shortly.
We consider (11) with a parameter-robust block diagonal preconditioner [4]

B = diag
(
−𝜇Δ + 𝛼𝜇𝐾−1/2𝑃′

𝝂𝑃𝝂 , 𝜇
−1𝐼,−𝐾Δ + 𝜇−1 (−ΔΓ)−1/2

)−1
. (12)

Observe that both the first and the final block in (12) are of the form of the interface-
perturbed operators (3). However, for simplicity we shall here set 𝛼 = 0 and only
focus on the pressure preconditioner. In particular, to efficiently approximate (2)
we shall perform few PCG iterations with the DD preconditioner (5) using 𝑆Γ =

𝐾𝐿1/2 + 𝜇−1𝐿−1/2 in the Schur complement. We note that the interface operator is
thus identical to the one utilized in robust preconditioning of mixed Darcy-Stokes
model [10].
To illustrate performance of the preconditioner (12) we consider (11) in a 3𝑑

domain pictured in Figure 5 and set3 𝐾 = 10−2, 𝜇 = 10−4. Using discretization by
P2-P1-P2 elements the linear system is solved by preconditioned Flexible GMRes
(FGMRes). The Darcy-Stokes preconditioner is then realized by applying single
AMG V-cycle for the Stokes blocks while the Riesz map of the Darcy pressure (2) is
approximated by PCG solver using (5) and running with a relative tolerance of 10−4.
The DD preconditioner uses RA with tolerance 𝜖RA = 10−14 and AMG for the
leading block in (5). With this setup the scalability study summarized in Figure 5
reveals that the proposed solver is order optimal.

3 Due to computational demands we did not perform parameter-robustness study for 𝑑 = 3.
However, with a 2𝑑 version of the geometry in Figure 5 we observe that (5) with RA approximation
of the Schur complement leads to mesh- and parameter-independent Krylov iterations. In particular,
𝑆Γ = 𝐾𝐿1/2 + 𝜇−1𝐿−1/2 leads to 𝐾 , 𝜇 and ℎ bounded iterations when solving (2) with PCG. We
omit these results from our presentation due to spatial limitations.
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Fig. 5 (Left) Computation domain is obtained by extrusion of the pictured geometry. The inter-
face Γ, being part of a circle arc, is curved. No-slip and traction conditions are prescribed on Γ𝒖

𝑆

and Γ𝜎
𝑆
respectively. Darcy pressure is prescribed on Γ𝑝

𝐷
. (Center) Error convergence study per-

formed using the 3𝑑 setup. With P2-P1-P2 elements, optimal quadratic rates are observed in all
the variables. (Right) Solver time (including preconditioner setup and FGMRes runtime) scales
linearly with the problem size.
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Optimized Schwarz Methods for Isogeometric
Analysis

Lahcen Laayouni, Ahmed Ratnani, and Abdessadek Rifqui

1 Introduction

Isogeometric Analysis (IGA) is a novel computational technique for solving partial
differential equations (PDEs) first introduced by Hughes et al, see [6]. It integrates
computer-aided design (CAD) and simulation. In IGA, a geometric model cre-
ated within a CAD environment is used as the basis for analysis, and B-splines
or non-uniform rational B-splines (NURBS) are employed as basis functions. IGA
offers a new type of refinement strategy, in addition to the traditional mesh refine-
ment (ℎ-refinement) and 𝑝-refinement in Finite Element Analysis (FEA), namely
𝑘-refinement, which allows for changing the smoothness of the basis functions. The
aim of IGA is to improve the accuracy and efficiency of simulation by using CAD
models directly in the analysis process. In Section 2.1 we give a brief description
of the B-spline functions. For an extensive overview on the approximation theory
based on IGA, see [2].
Domain decomposition methods (DDM) are based on dividing the domain into

subdomains which leads to solve small local problems. The classical Schwarz meth-
ods use Dirichlet boundary conditions at the artificial interfaces, see [8], while the
Optimized Schwarz Methods (OSM) use Robin (𝜕𝑛𝑢 +𝜆𝑢) or higher order boundary
conditions at the artificial interfaces. The challenge is to find the optimal value of
the parameter 𝜆, this latter can be solved by virtue of Fourier transform, see [4]
for more details. Rather than relying on the existing literature on DDM for IGA as
described in [3], we adopt an approach that enforces C−1 smoothness of the B-spline
in the interface condition. For a more comprehensive understanding of it, please
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refer to [1]. For our analysis, we consider Algebraic Optimized Schwarz methods
(AOSM) which mimic OSM algebraically.
Our approach involves combining IGA and AOSM to solve partial differential

equations with complex geometries. The efficiency of the resulting algorithm is due
to the robustness of AOSM/OSM and the flexibility of IGA.

2 IGA analysis and algebraic optimized Schwarz methods

For our analysis we need to introduce B-spline and algebraic optimized Schwarz
methods.

2.1 B-spline based IGA

Let 𝑚 and 𝑝 be two positive integers, and Ξ be a set of non-decreasing real numbers
such that 𝜉1 ≤ 𝜉2 ≤ . . . ≤ 𝜉𝑚+𝑝+1. The 𝜉 𝑗 ’s are called the knots, the set Ξ is the knot
vector, and the interval [𝜉 𝑗 , 𝜉 𝑗+1) is the 𝑗-th knot span. Note that if 𝜉 𝑗 is repeated
𝑘 > 1 times in the knot vector (i.e. 𝜉 𝑗 = 𝜉 𝑗+1 = . . . = 𝜉 𝑗+𝑘−1), 𝜉 𝑗 is a multiple knot of
multiplicity k with no corresponding knot span; otherwise, it is a simple knot if 𝜉 𝑗
appears only once (or 𝑘 = 1). A knot vector is said to be uniform if its knots are
uniformly spaced; otherwise, it is called a nonuniform knot vector. A knot vector is
considered to be open if its first and last knots have multiplicity 𝑝 + 1. The interval
(𝜉1, 𝜉𝑚+𝑝+1) is called the patch. The maximum multiplicity allowed is 𝑝 + 1.
Once a knot vector is available, the B-spline basis functions can be defined

recursively, beginning with the first order, 𝑝 = 0 (piecewise constant)

𝑁0𝑗 (𝜉) := 𝜒[𝜉 𝑗 , 𝜉 𝑗+1) =

{
1, if 𝜉 𝑗 ≤ 𝜉 < 𝜉 𝑗+1,

0, otherwise.
(1)

For 𝑝 ≥ 1,

𝑁
𝑝

𝑗
(𝜉) :=


𝜉 − 𝜉 𝑗

𝜉 𝑗+𝑝 − 𝜉 𝑗
𝑁

𝑝−1
𝑗

(𝜉) +
𝜉 𝑗+𝑝+1 − 𝜉

𝜉 𝑗+𝑝+1 − 𝜉 𝑗+1
𝑁

𝑝−1
𝑗+1 (𝜉), if 𝜉 𝑗 ≤ 𝜉 < 𝜉 𝑗+𝑝+1,

0, otherwise.
(2)

we adopt the convention
0
0
= 0 in (2).

According to (2), all B-spline functions are to be (𝑖) non-negative, (𝑖𝑖) have a local
support in [𝜉 𝑗 , 𝜉 𝑗+𝑝+1] (compact support) for all 𝑗 = 1, . . . , 𝑚, (𝑖𝑖𝑖) form a partition
of unity, and (𝑖𝑣) be linear independent, as shown in [9]. The basis functions of
order 𝑝, in general, have 𝑝 − 𝑘 continuous derivatives 𝒞𝑝−𝑘 across knot 𝜉 𝑗 . When
the multiplicity of a knot value is exactly 𝑝, the basis at that knot is interpolatory. If
the multiplicity of a basis is 𝑝 + 1, it can result the basis become discontinuous in
the𝒞−1 space. In Figure 1, we present an example of cubic basis functions generated
by 𝑝 = 3 from the uniform open knot vector Ξ = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 6, 6, 6}.
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Fig. 1 Cubic basis functions formed from Ξ = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 6, 6, 6}.

2.2 Algebraic optimized Schwarz methods

Descritizing PDEs using IGA analysis leads to solve linear systems of the form

𝐴𝑢 = 𝑓 , (3)

where 𝐴 is a block banded matrix of size 𝑛 × 𝑛 given by

𝐴 =


𝐴11 𝐴12
𝐴21 𝐴22 𝐴23

𝐴32 𝐴33 𝐴34
𝐴43 𝐴44

 , (4)

where 𝐴𝑖 𝑗 are blocks of size 𝑛𝑖 × 𝑛 𝑗 , 𝑖, 𝑗 = 1, . . . , 4, and 𝑛 =
∑

𝑖 𝑛𝑖 . For a two-
subdomain decomposition with overlap we have 𝑛1 � 𝑛2 and 𝑛4 � 𝑛3. To illustrate
this decomposition let us solve the Poison equation in Ω = R × (0, 1) with homoge-
neous Dirichlet at the boundary conditions. We discretize the continuous operator
on a grid with an interval of size ℎ in both the 𝑥 and 𝑦 directions and we assume that
ℎ = 1/(𝑁 +1) so that there are 𝑁 degrees of freedom in 𝑦-direction. For instance the
stiffness matrix obtained when we discretize with the finite element method using
piecewise linear functions, and using the subdomains Ω1 = (−∞, ℎ) × (0, 1) and
Ω2 = (0, +∞) × (0, 1), leading to the decomposition

𝐴 =


𝐴11 𝐴12 O O
𝐴21 𝐴22 𝐴23 O
O 𝐴32 𝐴33 𝐴34
O O 𝐴43 𝐴44

 =


. . .
. . .

. . .

−𝐼 𝐽 −𝐼
−𝐼 J -I

-I J −𝐼
−𝐼 𝐽 −𝐼

. . .
. . .

. . .


, (5)

where 𝐼 is the 𝑁 × 𝑁 identity matrix and 𝐽 is the 𝑁 × 𝑁 tridiagonal 𝐽 =

tridiag(−1, 4,−1). We have in this case 𝑛2 = 𝑛3 = 𝑁 . The Algebraic Optimized
Schwarz methods are iterative methods [5, Section 2, page 4], and the optimized
restricted additive and multiplicative Schwarz methods are defined by



338 Lahcen Laayouni, Ahmed Ratnani, and Abdessadek Rifqui

𝑇ORAS = 𝐼 −
2∑︁
𝑖=1

𝑅̃𝑇
𝑖 𝐴̃

−1
𝑖 𝑅𝑖𝐴, and 𝑇ORMS =

1∏
𝑖=2

(𝐼 − 𝑅̃𝑇
𝑖 𝐴̃

−1
𝑖 𝑅𝑖𝐴), (6)

where the restriction operators with overlap are 𝑅1 = [𝐼 𝑂] and 𝑅2 = [𝑂 𝐼], of size
(𝑛1 + 𝑛2 + 𝑛3) × 𝑛 and (𝑛2 + 𝑛3 + 𝑛4) × 𝑛 respectively, using the prolongations 𝑅̃𝑇

𝑖

without the overlap, which are defined as

𝑅̃1 =

[
𝐼 𝑂

𝑂 𝑂

]
and 𝑅̃2 =

[
𝑂 𝑂

𝑂 𝐼

]
,

having the same order as the matrices 𝑅𝑖 , and where the identity in 𝑅̃1 is of order
𝑛1 + 𝑛2 and that in 𝑅̃2 is of order 𝑛3 + 𝑛4. The matrices 𝐴̃𝑖 are defined by

𝐴̃1 =


𝐴11 𝐴12
𝐴21 𝐴22 𝐴23

𝐴32 𝐴33 + 𝐷1

 , 𝐴̃2 =


𝐴22 + 𝐷2 𝐴23

𝐴32 𝐴33 𝐴34
𝐴43 𝐴44

 , (7)

for which the transmission blocks 𝐷1 and 𝐷2 have to be determined for fast conver-
gence. It has been shown in [5, Theorem 3.2] that the asymptotic convergence factor
of AOSM depends on the product of the two norms

‖ (𝐼 + 𝐷1𝐵33)−1 [𝐷1𝐵12 − 𝐴34𝐵13] ‖, ‖ (𝐼 + 𝐷2𝐵11)−1 [𝐷2𝐵32 − 𝐴21𝐵31] ‖. (8)

The blocks 𝐵𝑖 𝑗 depend on the inverses 𝐴−1
11 and 𝐴

−1
44 which are expensive to calculate.

Minimizing the linear part of equation (8) onmatrices𝐷1 and𝐷2within the spacesS1
and S2 with distinct sparsity patterns leads to various forms of AOSM. The 𝑂0𝑠
approach uses a scalar 𝛼𝑖 in 𝐷𝑖 = 𝛼𝑖 𝐼, while the O0 method employs a general
diagonal matrix 𝐷𝑖 and the O2 scheme uses a general tridiagonal matrix 𝐷𝑖 . The
optimal method, i.e., 𝐷1 = −𝐴34𝐴−1

44 𝐴43 and 𝐷2 = −𝐴21𝐴−1
11 𝐴12, converges in two

iterations [5].

3 IGA approximation of transmission conditions

3.1 AOSM approximations of 𝑫1 and 𝑫2

The challenge in approximating the transmission blocks 𝐷1 and 𝐷2 is to capture
efficiently the sparsity of the related matrices. In Figure 2 we present different
sparsity patterns for the model problem −Δ𝑢 = 𝑓 in a square domain Ω = (0, 1)2
for an IGA discretization with 32 × 32 elements with respect to B-spline degrees
𝑝 = 4, 5, 6. Because of the structure of the matrices we need to use adapted
algorithms which capture efficiently the sparsity of the transmissions blocks 𝐷1
and 𝐷2. For this purpose we introduce a new method, which we call 𝑂 𝑝+1, that
consists in approximating the blocks 𝐷1 and 𝐷2 using 2𝑝 + 1 diagonals, where 𝑝 is
B-spline degree.
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Fig. 2 The sparsity pattern of stiffness matrix in 2D with number of elements 32× 32 with respect
to spline polynomial degree 𝑝 = 4, 5, 6, and we allows maximum regularity 𝑘 = 1 at the internal
knots.

Fig. 3 Domain decomposition into two overlapping subdomains.

3.2 Optimized Schwarz methods for IGA

In this section we consider the Poisson equation{
−Δ𝑢 = 𝑓 , in Ω,

𝑢 = 0, on 𝜕Ω,
(9)

in a square domain Ω = (0, 1)2 with Dirichlet boundary conditions. We decompose
the domain Ω into two overlapping subdomains Ω1 = (0, 𝛼) × (0, 1) and Ω2 =

(𝛽, 1) × (0, 1), see Figure 3. The size of the overlap is defined by 𝛿 = 𝛼 − 𝛽, where
𝛼 ≥ 𝛽 allowing 𝛼 = 𝛽 for non-overlapping decomposition.
The parallel Schwarz method, introduced by P. Lions, 1990 [7], equipped with

Robin boundary conditions for the model problem and the decomposition is


−Δ𝑢𝑛+11 = 𝑓 , in Ω1 = (0, 𝛼) × (0, 1),
𝑢𝑛+11 = 0, on 𝜕Ω1(
𝜕𝑛1 + 𝜆1

)
𝑢𝑛+11 =

(
𝜕𝑛1 + 𝜆1

)
𝑢𝑛2 , on Γ1 = {𝛼} × (0, 1),

−Δ𝑢𝑛+12 = 𝑓 , 𝑖𝑛 Ω2 = (𝛽, 1) × (0, 1),
𝑢𝑛+12 = 0, on 𝜕Ω2(
𝜕𝑛2 + 𝜆2

)
𝑢𝑛+12 =

(
𝜕𝑛2 + 𝜆2

)
𝑢𝑛1 , 𝑜𝑛 Γ2 = {𝛽} × (0, 1).

(10)
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The OSM is based on finding the optimal parameter set (𝜆1, 𝜆2) that yields a rapid
convergence, M. Gander [4] provides an explicit formulas for 𝜆1 and 𝜆2 based on
Fourier analysis for the model problem (𝜂−Δ)𝑢 = 𝑓 . But in our case, no formulas are
found yet. Thus, we relied on a numerical approximation supposing that 𝜆1 = 𝜆2 = 𝜆,
then conducting a grid search over a subset of 𝜆 to find the best value.

4 Numerical experiments

For our numerical experiments we consider the model problem (9) with two-
overlapping decomposition as described before. We allow the parameter 𝛿 = 𝛼 − 𝛽

to be zero for a non-overlapping decomposition. First we illustrate the performance
of the new method 𝑂 𝑝+1 compared the optimal method, O0, O0s, and O2, for the
methods labeled “Nonoverlapping” and “Overlapping” correspond to the nonover-
lapping block Jacobi and RAS methods respectively (for further details, consult[5,
Section 2.1]), see Figures 4, 5. Because of the banded sparsity of the matrices, the
optimal method does not converge in two iterations as it is known, see [5, page 10,
Proposition 4.4]. The algorithm𝑂 𝑝+1 has similar behavior as the optimal algorithm.
In table 1, we show the number of iterations taken by various methods when used
as iterative solvers and as preconditioners for GMRES in order to achieve a resid-
ual of 10−8. We can see that AOSMs work well combined with the IGA method,
outperforming the classical Schwarz methods.

Fig. 4 Convergence history of Additive (7) AOSM with respect to 𝑝 = 4, 5.

In Tables 2 and 3 we present the numerical experiments and the behavior of
𝐿2-norms for the parallel algorithm (10) using isogeometric analysis. We show
results for overlapping and non-overlapping decompositions, with the exact solution
𝑢(𝑥, 𝑦) = 𝑥 (1 − 𝑥) 𝑦 (1 − 𝑦), and 𝜆1 = 𝜆2 = 0.075.
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Fig. 5 Left: Convergence history of additive (7) with respect to 𝑝 = 6. Right: The asymptotic
behaviors of all methods with respect to ℎ and 𝑝 = 2.

Table 1 Number of iterations to attends a residual of 10−8 for: Additive (7) AOSM+IGA used
as iterative method: top 32 elements, bottom 64 element in each direction (left), additive (7)
AOSM+IGA used as preconditioner method: top 32 elements, bottom 64 element in each direction
(right).

degree Nonoverlap Overlap Optimal O0 O0s O2 O𝑝+1
1 61 29 2 50 29 NC NC
2 75 26 2 11 10 12 8
3 87 28 7 28 24 13 9
4 92 24 6 167 24 16 9
5 111 26 9 NC 49 NC 16
6 132 25 9 NC NC NC 20
1 122 48 2 187 153 NC NC
2 135 47 2 122 21 97 9
3 148 43 2 89 29 72 11
4 147 45 5 33 44 17 11
5 146 41 6 41 41 NC 12
6 187 63 4 NC 32 NC 22

degree Nonoverlap Overlap Optimal O0 O0s O2 O𝑝+1
1 22 13 2 34 17 NC NC
2 25 11 2 7 7 8 5
3 26 12 4 12 9 8 5
4 26 12 4 55 10 10 6
5 27 13 5 NC 33 NC 8
6 29 13 5 NC NC NC 9
1 23 16 2 68 49 NC NC
2 27 18 2 73 15 51 3
3 20 19 2 40 15 45 3
4 22 12 3 34 22 8 4
5 25 17 3 21 16 NC 5
6 30 26 2 NC 12 NC 3

Table 2 𝐿2-norm without overlap after 10 iterations with respect to the number of element 16× 16
(left), and 32 × 32 (right) for OSM method.

degree ‖𝑢 − 𝑢ℎ
1 ‖𝐿2 (Ω1 ) ‖𝑢 − 𝑢ℎ

2 ‖𝐿2 (Ω2 )
2 2.80753e-07 3.13938e-06
3 3.82578e-07 1.66811e-06
4 4.89011e-07 1.12886e-06
5 5.38786e-07 8.99693e-07
6 5.71149e-07 7.84679e-07

degree ‖𝑢 − 𝑢ℎ
1 ‖𝐿2 (Ω1 ) ‖𝑢 − 𝑢ℎ

2 ‖𝐿2 (Ω2 )
2 5.52967e-07 8.66084e-07
3 5.87442e-07 7.20705e-07
4 6.05761e-07 6.65119e-07
5 6.08555e-07 6.47844e-07
6 6.41174e-07 6.28697e-07

Table 3 𝐿2-norm with overlap 𝛿 = 0.2 after 10 iterations with respect to the number of elements
16 × 16 (left), and 32 × 32 (right) for OSM method.

degree ‖𝑢 − 𝑢ℎ
1 ‖𝐿2 (Ω1 ) ‖𝑢 − 𝑢ℎ

2 ‖𝐿2 (Ω2 )
2 2.32116e-09 2.32095e-09
3 3.95799e-08 3.88673e-08
4 3.08054e-08 3.08057e-08
5 1.53245e-12 4.18834e-12
6 7.09721e-10 3.29485e-08

degree ‖𝑢 − 𝑢ℎ
1 ‖𝐿2 (Ω1 ) ‖𝑢 − 𝑢ℎ

2 ‖𝐿2 (Ω2 )
2 6.62172e-09 8.50223e-10
3 7.10352e-09 7.10352e-09
4 2.85556e-08 3.08303e-08
5 2.40483e-08 2.4419e-08
6 3.0926e-08 1.34111e-09
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Concluding remarks

We presented an algebraic computational technique for solving a model problem
that has been discetized using IGA. Our numerical experiments suggest that AOSM
are well-suited for IGA. However, we found that the methods O0, O0s, and O2 are
not effective in capturing the sparsity of IGA matrices, resulting in deteriorating
performance. On the other hand, the 𝑂 𝑝+1 method efficiently captures the sparsity
of the matrices. Our simulations of OSM for the model problem are encouraging for
further analysis of OSM with IGA.

Acknowledgements The authors are thankful to the Chair of Multiphysics and HPC led by Mo-
hammed VI Polytechnic University and sponsored by OCP.
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An Alternating Approach for Optimizing
Transmission Conditions in Algebraic
Schwarz Methods

Martin J. Gander, Lahcen Laayouni, and Daniel B. Szyld

1 Introduction

Approximating transmission conditions is very important for Optimized Schwarz
Methods (OSM) [2]. For the Algebraic Optimized Schwarz Method (AOSM) [4],
approximations need to be done purely algebraically, leading to a challenging min-
imization problem. A first approach we proposed is to use SPAI [6] to approximate
certain intermediate inverses [3]. The resulting method does however not capture
the classical behavior of optimized Schwarz methods. In [5] another approach is
explored using low-rank approximations, see also [4] for approximate factorization
techniques, and [1, 7] for algebraically formulated transmission conditions. We pro-
pose here a new approach, based on an alternating method. In section 2 we describe
two variants of the alternating method used to approximate the transmission blocks
needed in AOSM: a theoretical one using exact inverse information, and a more prac-
tical one using SPAI approximations. In section 3 we present numerical evidence to
support our findings.
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2 The alternating algorithm to approximate transmission blocks

To describe the alternating algorithm, we consider linear systems of the form

𝐴𝑢 = 𝑓 ,

where the 𝑛 × 𝑛 matrix 𝐴 usually comes from finite element or finite difference
discretizations of a partial differential equation.We further assume that 𝐴 has a block
banded shape of the form

𝐴 =


𝐴11 𝐴12
𝐴21 𝐴22 𝐴23

𝐴32 𝐴33 𝐴34
𝐴43 𝐴44

 , (1)

with 𝐴𝑖 𝑗 blocks of size 𝑛𝑖 × 𝑛 𝑗 , 𝑖, 𝑗 = 1, . . . , 4, and 𝑛 =
∑

𝑖 𝑛𝑖 . The structure of
the matrix 𝐴 corresponds to a two-subdomain decomposition where we assume that
𝑛1 � 𝑛2 and 𝑛4 � 𝑛3, i.e. 𝑛2 + 𝑛3 is related to the overlap size. For generalizations
to more subdomains, see [4, Section 6]. The iteration operators corresponding to the
additive and the multiplicative AOSM are given by

𝑇ORAS = 𝐼 −
2∑︁
𝑖=1

𝑅̃𝑇
𝑖 𝐴̃

−1
𝑖 𝑅𝑖𝐴, and 𝑇ORMS =

2∏
𝑖=1

(𝐼 − 𝑅̃𝑇
𝑖 𝐴̃

−1
𝑖 𝑅𝑖𝐴), (2)

where the classical restriction operators are 𝑅1 := [𝐼 𝑂] and 𝑅2 := [𝑂 𝐼], which
have order (𝑛1 + 𝑛2)𝑛 and (𝑛3 + 𝑛4)𝑛. The transpose of these operators, 𝑅𝑇

𝑖
, are

prolongation operators, and 𝑅̃𝑇
𝑖
are RAS-variants thereof, see [4] for more details.

The matrices 𝐴̃𝑖 are defined by

𝐴̃1 =


𝐴11 𝐴12
𝐴21 𝐴22 𝐴23

𝐴32 𝐴33 + 𝐷1

 , 𝐴̃2 =


𝐴22 + 𝐷2 𝐴23

𝐴32 𝐴33 𝐴34
𝐴43 𝐴44

 , (3)

for which the transmission blocks 𝐷1 and 𝐷2 have to be determined for fast conver-
gence. It has been shown in [4, Theorem 3.2] that the asymptotic convergence factor
of AOSM depends on the product of the two norms

‖ (𝐼 + 𝐷1𝐵33)−1 [𝐷1𝐵12 − 𝐴34𝐵13] ‖2, ‖ (𝐼 + 𝐷2𝐵11)−1 [𝐷2𝐵32 − 𝐴21𝐵31] ‖2.
(4)

The goal is to find 𝐷1 and 𝐷2 to minimize the norms in (4), where the 𝐵 matrices
are given by

𝐵31
𝐵32
𝐵33

 :=

𝐴11 𝐴12
𝐴21 𝐴22 𝐴23

𝐴32 𝐴33


−1 
0
0
𝐼

 ,

𝐵11
𝐵12
𝐵13

 :=

𝐴22 𝐴23
𝐴32 𝐴33 𝐴34

𝐴43 𝐴44


−1 

𝐼

0
0

 . (5)
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This implies that

𝐵13 = −𝐴−1
44 𝐴43𝐵12 and 𝐵31 = −𝐴−1

11 𝐴12𝐵32. (6)

Substituting 𝐵13 and 𝐵31 into (4), we obtain for the convergence factor estimates

‖ (𝐼 + 𝐷1𝐵33)−1 (𝐷1 + 𝐴34𝐴
−1
44 𝐴43)𝐵12‖2,

‖ (𝐼 + 𝐷2𝐵11)−1 (𝐷2 + 𝐴21𝐴
−1
11 𝐴12)𝐵32‖2.

(7)

The optimal choice for the transmission matrices making the norms vanish is there-
fore

𝐷1,opt = −𝐴34𝐴−1
44 𝐴43 and 𝐷2,opt = −𝐴21𝐴−1

11 𝐴12, (8)

which requires however components of the expensive inverses of the large matri-
ces 𝐴11 and 𝐴44 and is thus not very practical.

2.1 Alternating algorithm with exact blocks 𝑩𝒊 𝒋

We start by describing the new alternating algorithm to compute simple diagonal ap-
proximations to the optimal 𝐷1,opt in (8) (the algorithm for approximations to 𝐷2,opt
is analogous):

Initialization: Set 𝐷1,0 := −𝐴34 𝐴̃−1
44 𝐴43, where 𝐴̃

−1
44 is a diagonal SPAI approxi-

mation of 𝐴−1
44 . Due to the sparsity of 𝐴34 and 𝐴43 and the SPAI approximation,

𝐷1,0 is diagonal and almost constant on the diagonal, except for the two endpoints.
For this reason we consider constant diagonal matrices 𝐷1,𝑚 for 𝑚 ≥ 1.

Iteration: For iteration index 𝑚 = 1, 2, . . . , compute

𝑝𝑚 := argmin𝑝∈R ‖
(
𝐼 + 𝐷1,𝑚−1𝐵33

)−1 (
𝑝 𝐼 + 𝐴34𝐴

−1
44 𝐴43

)
𝐵12‖2;

𝐷1,𝑚 := 𝑝𝑚𝐼;
(9)

In (9), we use the exact inverse of the block 𝐴44, and we do so also for the blocks 𝐵12
and 𝐵33. The calculation of these blocks is very expensive which makes this first
approach expensive. In the next subsection we will present a more practical approach
using SPAI approximations for these blocks. Thus the cost in evaluating (9) is reduced
significantly.
Theminimization problems in (9) are scalar problems for 𝑝 ∈ R, but we can obtain

tridiagonal and pentadiagonal alternating approximation algorithms by replacing 𝑝𝐼
in the algorithm above by matrices with tridiagonal and pentadiagonal matrices with
constant diagonals leading to 3 and 5 degrees of freedom, respectively. We will use
the name Alternating SPAI(1) for diagonal approximations, Alternating SPAI(3) for
tridiagonal ones, and Alternating SPAI(5) for pentadiagonal ones.
We next investigate how the alternating algorithm converges to the minimum

obtained by globally minimizing the norm in (7). We consider the model prob-
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Fig. 1 From top left to bottom right: convergence factor estimates for the initial approximation
with SPAI, and then the first three iterations of the new alternating approach.

lem −Δ𝑢 = 𝑓 in a square domain Ω = (0, 1)2, discretized using standard centered
finite differences with mesh size ℎ = 1

𝑁+1 for 𝑁 = 25. We decompose the domain
into two equal overlapping subdomains in the 𝑥 direction with overlap 3ℎ. In order to
visualize the convergence and compare the convergence factor estimates obtained by
the alternating method with the convergence factors of the OO0 and OO2OSM algo-
rithms from [2], we plot them in Fourier space as function of the Fourier variable 𝑘
in the 𝑦 direction, see [3] for more details. We show in Figure 1 the results for the
initial approximation with SPAI, and then the first 3 iterations of our new alternating
algorithm. We see that for the SPAI initial guess, the behavior of the diagonal, tridi-
agonal and pentadiagonal methods is not like for OSM, their convergence for low
frequencies, 𝑘 small, is more like for the classical Schwarz method. This is consistent
with the analysis presented in [3]. With the first correction of our new alternating
procedure however, we can see a great improvement for low frequency behavior, the
methods obtained from the alternating procedure now behave like OSM. The second
and third iterations give further improvements.
In Figure 2, we show on the left the maximum of the two norms in (4) for the

first 8 iterations of the alternating algorithm. The algorithm converges very rapidly
to the global minimization of the norm (4) shown in Figure 2 on the right.
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Iteration Diagonal Tridiagonal Pentadiagonal
0 0.69254 0.651890 0.639410
1 0.26917 0.135600 0.096381
2 0.19344 0.086907 0.067982
3 0.18487 0.079569 0.066584
4 0.18395 0.078645 0.066586
5 0.18385 0.078135 0.066578
6 0.18384 0.078124 0.066579
7 0.18384 0.078123 0.066579
8 0.18384 0.078123 0.066579
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0

0.1
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0.3

0.4

0.5
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0.7

0.8
                               Minimum,   diag.= 0.18384,   trid.= 0.078123,   pent.= 0.06649

Classical Schwarz

Alternating SPAI(1)

Alternating SPAI(3)

Alternating SPAI(5)

OO0

OO2

Fig. 2 Left: Maximum of the two norms in (4) for the first 8 iterations of the alternating algorithm.
Right: Convergence factors for the global minimization of the norm.

2.2 Alternating algorithm using SPAI approximations for 𝑩𝒊 𝒋

The alternating algorithm described above requires the calculation of subblocks
of 𝐴−1

11 and 𝐴−1
44 and the resulting blocks 𝐵𝑖 𝑗 which is expensive. We now consider

SPAI approximations 𝐵̃𝑖 𝑗 for the blocks 𝐵𝑖 𝑗 andwemodify theminimization problem
in (9) of the alternating algorithm to

𝑝𝑚 = argmin
𝑝∈R

‖
(
𝐼 + 𝐷1,𝑚−1𝐵̃33

)−1 (
𝑝 𝐵̃12 − 𝐴34𝐵̃13

)
‖2. (10)

This step thus does no longer require to calculate the inverses 𝐴−1
11 and 𝐴

−1
44 , and the

modified alternating algorithm requires to compute approximations of the blocks 𝐵𝑖 𝑗

only once.
In Figure 3 we present the behavior of the convergence factor corresponding

to each method with respect to the fill-in1 used in the SPAI approximations for the
blocks 𝐵𝑖 𝑗 after 8 iterations. On the top left, we used a diagonal SPAI approximation,
and we see that this is not enough for the alternating procedure to improve the low
frequency behavior toward OSM. On the top right we used a tridiagonal SPAI
approximation and we see that this also does not suffice. In order to obtain good
low frequency behavior like OSM, we need to use sufficient fill-in in the SPAI
approximations for 𝐵𝑖 𝑗 , as we see in the bottom left and right panels of Figure 3.
Note that this is a one time approximation and because of the nature of the SPAI
algorithm we can approximate the columns one by one independently, and thus in
parallel. In the numerical experiments section we present a comparison between
sequential and parallel estimations of 𝐵𝑖 𝑗 .
For the minimization of the linear problems involved in the alternating algorithm

we used the Nelder-Mead algorithm implemented in fminsearch in Matlab. In the
numerical experiments we show that minimizing the norm globally takes more time
compared to the time if we minimize 8 linear problems associated to 8 iterations to
obtain convergence of the alternating algorithm.

1 Here, 𝑖 fill-in means 𝑖 fill-in entries per column are allowed.
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Fig. 3 The behavior of the convergence factor with respect to the fill-in used in the SPAI approxi-
mation of the blocks 𝐵𝑖 𝑗 after 3 iterations.

Note that this minimization process can be performed offline, it is independent
of the solution process when the Schwarz method is running, and “alternating” here
refers to the optimization process, not to the Schwarz method, which can run in
parallel or alternating fashion.

3 Numerical experiments

For our numerical experiments we consider the advection-reaction-diffusion equa-
tion,

𝜂𝑢 − ∇ · (𝑎∇𝑢) + 𝑏 · ∇𝑢 = 𝑓 ,

where 𝑎 = 𝑎(𝑥, 𝑦) > 0, 𝑏 = [𝑏1 (𝑥, 𝑦), 𝑏2 (𝑥, 𝑦)]𝑇 , 𝜂 = 𝜂(𝑥, 𝑦) ≥ 0, with

𝑏1 = 𝑦 − 1
2
, 𝑏2 = −𝑥 + 1

2
, 𝜂 = 𝑥2 cos(𝑥 + 𝑦)2, 𝑎 = 1 + (𝑥 + 𝑦)2𝑒𝑥−𝑦 .

We decompose the unit square domain Ω = (0, 1) × (0, 1) into two subdomains
Ω1 = (0, 𝛽) × (0, 1) and Ω2 = (𝛼, 1) × (0, 1), where 0 < 𝛼 ≤ 𝛽 < 1. Using
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Fig. 4 Convergence of the variousmethods for the advection-reaction-diffusionmodel problem. Top
left: exact 𝐵𝑖 𝑗 . Top right: diagonal SPAI approximations for 𝐵𝑖 𝑗 . Middle left: SPAI approximations
for 𝐵𝑖 𝑗 with 100 fill-in. Middle right: All methods used as preconditioners. Bottom: computational
time to compute the corresponding 𝐵𝑖 𝑗 sequentially and in parallel.

a finite difference method, the corresponding matrix 𝐴 is of size 1024 × 1024, with
a decomposition into two subdomains where the blocks 𝐴11, 𝐴12, 𝐴21, and 𝐴22 are
of size 480 × 480, 480 × 32, 32 × 480, and 32 × 32 respectively.
In Figure 4 we present the error as a function of the iteration index for the

various methods based on the alternating technique. We compare these methods
again with OO0, OO2, and also the optimal Schwarz method obtained with the
choice (8). We see on the top left in Figure 4 that the alternating SPAI methods
are optimized Schwarz methods if we use the exact values of 𝐵𝑖 𝑗 . For alternating
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SPAI(1) in the top right in Figure 4, convergence is not as good, but we need only
0.005034 × 8 = 0.0403 seconds to calculate the parameter 𝑝 where 8 is the number
of iterations for the alternating algorithm to converge to the minimum. In contrast,
we need 4.152525 seconds to calculate the same value of the parameter 𝑝 if we
globally minimize the norm in (4). Using more fill-in in the SPAI approximation,
rapid convergence can be recovered, see the bottom-left of Figure 4. This is more
expensive, but one can calculate the SPAI approximations for the blocks 𝐵𝑖 𝑗 in
parallel. For instance the time needed to calculate the blocks 𝐵𝑖 𝑗 for a 100 fill-in
without using parfor, in Matlab, is 2.540780 seconds, while with parfor we need
only 0.005207 seconds.

4 Concluding remarks

We proposed an alternating SPAI technique to minimize the convergence factor
estimate for the algebraic optimized Schwarz methods from [4]. By alternating be-
tween terms involved in the convergence factor estimate, we reduce the minimization
process to solve linear problems instead of non-linear ones. The required time to cal-
culate the parameters of AOSM is thus reduced drastically, but we have also shown
that one still needs quite accurate SPAI estimates of the terms in the convergence
factor estimate for AOSM in order to obtain good optimized parameters.
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FETI-DP Algorithms for 2D Biot Model
with Discontinuous Galerkin Discretization

Pilhwa Lee

1 Introduction

Poroelasticity, i.e., elasticity of porous media with permeated Darcy flow, pioneered
by Biot [7, 8] has been used broadly in geoscience [27] and biomechanics [1, 12, 14]
among many others. The difficulties for solving the linear elasticity and incompress-
ible flow problems also arise in solving the poroelastic problem, and there have
been diverse mathematical formulations and discretizations. When a continuous
Galerkin approach was formulated with mixed finite elements with three-fields of
displacement, Darcy flow flux, and pressure [26], the main numerical difficulties are
elastic locking and non-physical oscillatory pressure profiles. There have been some
new methods for dealing with these difficulties; for example, continuous Galerkin
with non-standard three-fields of displacement, pressure, and volumetric stress [24],
discontinuous Galerkin formulations [15, 27] with standard three-fields as well as
non-conforming mixed finite elements [9, 31]. When lowest-order finite elements
are applied, stabilizing terms should be added [6, 11, 28] to satisfy the inf-sup
condition [10, 16].
In this paper, we propose a numerical scheme for solving the Biot model with

three-fields linear poroelasticity. We consider a discontinuous Galerkin discretiza-
tion, i.e., the displacement and Darcy flow flux discretized as piecewise continuous
in 𝑃1 elements, and the pore pressure as piecewise constant in the 𝑃0 space with
a stabilizing term. The emerging formulation is a saddle-point problem, and more
specifically, a twofold saddle-point problem. This indefinite system is computa-
tionally challenging with slow convergence in iterative methods. It is necessary to
incorporate relevant preconditioners for saddle-point problems [5, 23].
FETI-DP algorithms transform indefinite problems to positive definite interface

problems of Lagrangian multipliers for subdomains and a primal problem for the
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coarse space [13]. They have been applied for linear elasticity [21, 25] and incom-
pressible Stokes flows [18, 22, 29, 30] as saddle-point problems. There are theoreti-
cal bounds for the condition numbers in the preconditioned systems independent to
partitioned subdomains. We show numerical scalability of FETI-DP algorithm pre-
conditioned by Dirichlet preconditioner for the three-fields Biot model discretized
with stabilized 𝑃1 − 𝑃1 − 𝑃0.

2 Linear poroelastic model

Poroelastic models describe the interaction of fluid flows and deformable elastic
porous media saturated in the fluid. Let 𝒖 be the elastic displacement, 𝑝 be the
pore-pressure. We assume that the permeability is homogeneous: K = 𝜅I. Denote 𝒛
as the Darcy volumetric fluid flux. The quasi-static Biot model reads as:

−(𝜆 + 𝜇)∇(∇ · u) − 𝜇∇2u + 𝛼∇𝑝 =f, (1)

K−1𝒛 + ∇𝑝 =b, (2)
𝜕

𝜕𝑡
(𝛼∇ · 𝒖 + 𝑐0𝑝) + ∇ · 𝒛 =𝑔. (3)

The first equation is the moment conservation. The second equation is Darcy’s law.
The third equations is the mass conservation equation. For simplicity, we neglect
the effects of gravity acceleration. In the above equations, 𝒇 is the body force of
the solid, 𝒃 is the body force of the fluid, 𝑔 is a source or sink term, 𝑐0 > 0 is the
constrained specific storage coefficient, 𝛼 is the Biot-Willis constant which is close
to 1. 𝜆 and 𝜇 are the first and second Lamé parameters, respectively.
We consider Ω ⊂ R2 as a bounded domain. For the ease of presentation, we

consider mixed partial Neumann and partial Dirichlet boundary conditions in this
paper. Specifically, the boundary 𝜕Ω is divided into the following:

𝜕Ω = Γd ∪ Γt and 𝜕Ω = Γp ∪ Γf ,

where Γd and Γt are for displacement and stress boundary conditions; Γp and Γf are
for pressure and flux boundary conditions. Accordingly, the boundary conditions
are the following:

𝒖 =0 on Γd, (𝜎(𝒖) − 𝛼𝑝I) · 𝒏 = t on Γt, (4)
𝑝 =0 on Γp, 𝒛 · 𝒏 = 𝑔2 on Γf , (5)

where 𝜎(𝒖) is the deviatoric stress. For simplicity, the Dirichlet conditions are
assumed to be homogeneous.
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3 Formulation of the Biot model as a saddle-point problem

3.1 Discrete formulation: P1 − P1 − 𝑷0

We apply the finite element method with domains normally shaped as triangles inR2.
Let Tℎ be a partition of Ω into non-overlapping elements 𝐾 . We denote by ℎ the size
of the largest element in Tℎ . On the given partition Tℎ we apply the following finite
element spaces [6]:

𝑽ℎ :={𝒖ℎ ∈ (𝐶0 (Ω))2 : uℎ |𝐾 ∈ P1 (𝐾) ∀𝐾 ∈ T ℎ , 𝒖ℎ = 0 on Γd}, (6)

𝑾ℎ :={𝒛ℎ ∈ (𝐶0 (Ω))2 : zℎ |𝐾 ∈ P1 (𝐾) ∀𝐾 ∈ T ℎ , 𝒛ℎ · 𝒏 = 0 on Γf}, (7)

𝑄ℎ :={𝑝ℎ : 𝑝ℎ |𝐾 ∈ P0 (𝐾) ∀𝐾 ∈ T ℎ}. (8)

The problem is to find (𝒖𝑛
ℎ
, 𝒛𝑛
ℎ
, 𝑝𝑛
ℎ
) ∈ 𝑽ℎ ×𝑾ℎ ×𝑄ℎ such that

𝑎(𝒖𝑛
ℎ
, 𝒗ℎ) − (𝑝𝑛

ℎ
,∇ · 𝒗ℎ) = ( 𝒇 𝑛, 𝒗ℎ) + ( 𝒕𝑛, 𝒗ℎ)Γt , ∀𝒗ℎ ∈ 𝑽ℎ

(K−1𝒛𝑛
ℎ
,𝒘ℎ) − (𝑝𝑛

ℎ
,∇ · 𝒘ℎ) = (𝒃𝑛,𝒘ℎ), ∀𝒘ℎ ∈ 𝑾ℎ

(∇ · 𝒖𝑛
Δ𝑡 ,ℎ

, 𝑞ℎ) + 1
𝛼
(∇ · 𝒛𝑛

ℎ
, 𝑞ℎ) + 𝑐0

𝛼
(𝑝𝑛
ℎ
, 𝑞ℎ) + 𝐽 (𝑝𝑛Δ𝑡 ,ℎ , 𝑞ℎ) =

1
𝛼
(𝑔𝑛, 𝑞ℎ),

∀𝑞ℎ ∈ 𝑄ℎ

(9)

where
𝐽 (𝑝, 𝑞) = 𝛿STAB

∑︁
𝐾

∫
𝜕𝐾\𝜕Ω

ℎ𝜕𝐾 [𝑝] [𝑞]𝑑𝑠

is a stabilizing term [11], 𝑝𝑛
Δ𝑡 ,ℎ

= (𝑝𝑛
ℎ
− 𝑝𝑛−1

ℎ
)/Δ𝑡, and 𝒖𝑛

Δ𝑡 ,ℎ
= (𝒖𝑛

ℎ
− 𝒖𝑛−1

ℎ
)/Δ𝑡.

The finite element discretization will lead to a twofold saddle-point problem of the
following form: 

𝐴𝒖 0 𝐵𝑇1
0 𝐴𝒛 𝐵𝑇2
𝐵1 𝐵2 −𝐴𝑝



𝒖ℎ

𝒛ℎ

𝑝ℎ

 =

𝒇1

𝒇2

𝒇3

 . (10)

4 FETI-DP formulation for Biot model with discontinuous
pressure field

In the algorithm of FETI-DP [13], the domainΩ is decomposed to 𝑁 nonoverlapping
subdomainsΩ𝑖 . Each subdomain iswith the diameter in the order of𝐻, and the neigh-
boring subdomains are matched across the subdomain interface, Γ = (∪𝜕Ω𝑖) \ 𝜕Ω.
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4.1 FETI-DP algorithm for Biot model: interior and interface spaces

We decompose the discrete displacement space 𝑽, Darcy flow flux space 𝑾 into
interior and interface spaces (V = VI ⊕ VΓ, W = WI ⊕ WΓ). The discontinuous
pressure space𝑄 is decomposed to the constant space𝑄0 with the constant pressures
on each subdomain and interior space 𝑄I which has the average zero over each
subdomain. Here 𝑽I, 𝑾I, and 𝑄I are the direct sums of subdomain interior spaces,
and VI = ⊕𝑁

𝑖=1V
𝑖
I, WI = ⊕𝑁

𝑖=1W
𝑖
I, 𝑄I = ⊕𝑁

𝑖=1𝑄
𝑖
I .

4.2 FETI-DP algorithm for Biot model: primal and dual variables

The interface space VΓ is further decomposed to primal and dual spaces:

𝑽Γ = 𝑽Δ ⊕ 𝑽Π = (⊕𝑁𝑖=1𝑽
𝑖
Δ) ⊕ 𝑽Π , (11)

where 𝑽Π is the continuous, coarse level, and primal space. 𝑽Δ is the direct sum of
independent subdomain dual interface spaces 𝑽𝑖

Δ
[29]. Similarly𝑾Γ is decomposed

to𝑾Δ and𝑾Π .

Let us represent 𝒖 and 𝒛 together as 𝑼 = (𝒖, 𝒛) ∈ 𝑽 × 𝑾. The problem turns
out to find (𝒖I, 𝒛I, 𝑝I, 𝒖Π , 𝒛Π , 𝒖Δ, 𝒛Δ, 𝑝0) ∈ 𝑽I ×𝑾I ×𝑄I ×𝑽Π ×𝑾Π ×𝑽Δ ×𝑾Δ ×𝑄0
such that 

𝐴II 𝐵
𝑇
II 𝐴𝑇

ΠI 𝐴
𝑇
ΔI 0

𝐵II 0 𝐵IΠ 𝐵IΔ 0
𝐴ΠI 𝐵

𝑇
IΠ 𝐴ΠΠ 𝐴𝑇

ΔΠ
𝐵𝑇0Π

𝐴ΔI 𝐵
𝑇
IΔ 𝐴ΔΠ 𝐴ΔΔ 𝐵𝑇0Δ

0 0 𝐵0Π 𝐵0Δ 0



𝑼I
𝑝I
𝑼Π

𝑼Δ

𝑝0


=


𝒇I
0
𝒇Π
𝒇Δ
0


. (12)

4.3 FETI-DP algorithm for Biot model: Schur complement

A Schur complement operator 𝑆 is defined in the following:
𝐴II 𝐵

𝑇
II 𝐴𝑇

ΠI 0 𝐴𝑇
Δ𝐼

𝐵II 0 𝐵IΠ 0 𝐵IΔ
𝐴ΠI 𝐵

𝑇
IΠ 𝐴ΠΠ 𝐵𝑇0Π 𝐴𝑇

ΔΠ

0 0 𝐵0Π 0 𝐵0Δ
𝐴ΔI 𝐵

𝑇
IΔ 𝐴ΔΠ 𝐵𝑇0Δ 𝐴ΔΔ



𝑼I
𝑝I
𝑼Π

𝑝0
𝑼Δ


=


0
0
0
0
𝑆𝑼Δ


. (13)

We introduce Lagrange multiplier 𝜆 and the jump operator 𝐵Δ to enforce the conti-
nuity of𝑼Δ across Γ [22]:
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𝑆 𝐵𝑇

Δ

𝐵Δ 0

] [
𝑼Δ

𝝀

]
=

[
𝒇 ∗
Δ

0

]
. (14)

The problem is reduced to find 𝜆 ∈ Λ = 𝐵Δ𝑼Δ such that

𝐵Δ𝑆
−1𝐵𝑇Δ𝜆 = 𝐵Δ𝑆

−1 𝒇 ∗Δ. (15)

This is solved by Preconditioned Conjugate Gradient (PCG).

4.4 Dirichlet preconditioner

Wedefine a Schur complement operator, the discreteHarmonic𝐻 (𝑖)
Δ
onΩ𝑖 as follows:[

𝐴
(𝑖)
II 𝐴

(𝑖)
IΔ

𝐴
(𝑖)
Δ𝐼

𝐴
(𝑖)
ΔΔ

] [
𝑼 (𝑖)
I

𝑼 (𝑖)
Δ

]
=

[
0

𝐻
(𝑖)
Δ
𝑼 (𝑖)
Δ

]
. (16)

The Dirichlet preconditioner is formulated in the following:

𝑀−1
𝜆,𝐷 = 𝐵Δ,𝐷𝐻Δ𝐵

𝑇
Δ,𝐷 , (17)

where 𝐵Δ,𝐷 is a scaled operator obtained from 𝐵Δ by the scaling factor 1/𝑁𝑥 with 𝑁𝑥
as the number of subdomains sharing each node 𝑥 in the interface Γ. 𝐻Δ is the direct
sum of 𝐻 (𝑖)

Δ
[30].

5 Numerical experiments

A test problem is formulated with 𝛼 = 1, 𝑐0 = 0, Ω = [0, 1]2, and 𝑡 ∈ [0, 0.25]:

−(𝜆 + 𝜇)∇(∇ · 𝒖) − 𝜇∇2𝒖 + ∇𝑝 = 0,
K−1𝒛 + ∇𝑝 = 0, (18)
∇ · (𝒖𝑡 + 𝒛) = 𝑔1.

The involving initial and boundary conditions are the following:
𝒖 = 0 on 𝜕Ω = Γd,
𝒛 · 𝒏 = 𝑔2 on 𝜕Ω = Γf ,
𝒖(𝒙, 0) = 0, 𝒙 ∈ Ω,

𝑝(𝒙, 0) = 0, 𝒙 ∈ Ω.

(19)

We consider the following analytic solution:
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𝒖 =
−1

4𝜋(𝜆 + 2𝜇)

[
cos(2𝜋𝑥) sin(2𝜋𝑦) sin(2𝜋𝑡)
sin(2𝜋𝑥) cos(2𝜋𝑦) sin(2𝜋𝑡)

]
,

𝒛 = −2𝜋𝑘
[
cos(2𝜋𝑥) sin(2𝜋𝑦) sin(2𝜋𝑡)
sin(2𝜋𝑥) cos(2𝜋𝑦) sin(2𝜋𝑡)

]
, (20)

𝑝 = sin(2𝜋𝑥) sin(2𝜋𝑦) sin(2𝜋𝑡),

and derive the compatible source term of 𝑔1.

5.1 Numerical implementation

In the implementation of finite elements, we use a finite element library, libMesh [19].
We apply triangular elements with 3 nodes. For domain partitioning, we apply
ParMETIS [17]. Krylov subspace iterative main solver of Preconditioned Conju-
gate Gradient (PCG) and FETI-DP algorithms are based on PETSc [3, 2, 4] and
KSPFETIDP and PCBDDC classes within PETSc [32]. The initial guess is zero
and the stopping criterion is set to be 10−8, the reduction of the residual norm. The
stabilizing factor is 𝛿STAB = 100, the time-stepping is 𝑑𝑡 = 0.00625, and Young’s
modulus 𝐸 = 1000 Pa. In each test, we count the iteration of the FETI-DP solver.

5.2 Scalability of FETI-DP algorithms

Scalability of FETI-DP preconditioning for the Biot model is tested with increasing
number of subdomains 𝑁 . The subdomain size 𝐻/ℎ is set with 8, 12, or 16. In the
first case, (𝜈 = 0.3, 𝑘 = 10−2) of compressible elasticity and permeable Darcy flow is
testedwithDirichlet preconditioner.As shown inTable 1, FETI-DP iteration numbers

Table 1 Scalability of the FETI-DP algorithms with Dirichlet preconditioner for the saddle-
point problem of Biot model. Iteration counts for increasing number of subdomains 𝑁 . Fixed
𝛿STAB = 100, 𝑑𝑡 = 0.00625, and 𝐸 = 1000.

𝐻/ℎ = 8 𝐻/ℎ = 12 𝐻/ℎ = 16
𝜈 = 0.3 𝜈 = 0.4999 𝜈 = 0.3 𝜈 = 0.4999 𝜈 = 0.3 𝜈 = 0.4999
𝑘 = 10−2 𝑘 = 10−7 𝑘 = 10−2 𝑘 = 10−7 𝑘 = 10−2 𝑘 = 10−7

𝑁 iteration iteration iteration iteration iteration iteration
2 × 2 4 9 4 10 4 11
3 × 3 5 9 5 12 5 14
4 × 4 5 9 5 12 5 17
5 × 5 5 10 5 13 5 15
6 × 6 5 11 5 13 5 16
7 × 7 5 12 5 15 5 16
8 × 8 5 12 5 13 5 17
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are bounded when subdomains were increased from 2 × 2 to 8 × 8. In the second
case, (𝜈 = 0.4999, 𝑘 = 10−7) of almost incompressible elasticity and less permeable
Darcy flow is tested with Dirichlet preconditioner. FETI-DP iteration numbers are
larger than the first case, but still bounded while subdomains are increased from 2×2
to 8 × 8, showing no issues of elastic locking. This is consistent with a theoretical
scalability of FETI-DP for almost incompressible elasticity [20].

6 Conclusion

We have explored the scalability of the FETI-DP algorithms for the 2D Biot model.
Upon numerical scalabilities of compressible elasticity with Darcy’s flow as well as
almost incompressible elasticity with limited Darcy’s flow, it remains to test param-
eter robustness, possibly in the presence of heterogeneity of parameters. Overall, the
numerical results are a foundation for further advancement of scalable FETI-DP /
BDDC preconditioners for poroelastic large deformation.
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Linear, Super-Linear and Combined Fourier
Heat Kernel Convergence Estimates
for Schwarz Waveform Relaxation

Martin J. Gander and Véronique Martin

1 Introduction

We are interested in solving the heat equation 𝜕𝑡𝑢 − 𝜈𝜕2𝑥𝑥𝑢 = 𝑓 on (−𝐿, 𝐿) × (0, 𝑇),
with an initial condition and with Dirichlet boundary conditions. We will use
a Schwarz Waveform Relaxation (SWR) method and want to study the conver-
gence of this algorithm. More precisely our goal is to understand the influence of 𝑇
and 𝐿 on the convergence. We therefore study the equation on an adimentionalized
domain

L𝑢 :=
𝜕𝑢

𝜕𝑡
− 𝜈 𝜕𝑢

𝜕𝑥2
= 𝑓 on (−1, 1) × (0, 1),

𝑢(−1, ·) = 𝑔−1,
𝑢(1, ·) = 𝑔1,
𝑢(·, 0) = 𝑢0,

(1)

where 𝜈 = 𝜈𝑇
𝐿2 > 0. Then it suffices to study the influence of 𝜈 on the convergence

speed of the algorithm.
We will consider the SWR algorithm with Dirichlet boundary conditions (𝛿 > 0

is the overlap)

L𝑢𝑘1 = 𝑓 on (−1, 𝛿) × (0, 1), L𝑢𝑘2 = 𝑓 on (0, 1) × (0, 1),
𝑢𝑘1 (𝛿, ·) = 𝑢𝑘−12 (𝛿, ·) on (0, 1), 𝑢𝑘2 (0, ·) = 𝑢𝑘1 (0, ·) on (0, 1),
𝑢𝑘1 (·, 0) = 𝑢0 on (−1, 𝛿), 𝑢𝑘2 (·, 0) = 𝑢0 on (0, 1),
𝑢𝑘1 (−1, ·) = 𝑔−1 on (0, 1), 𝑢𝑘2 (1, ·) = 𝑔1 on (0, 1).

(2)

Martin J. Gander
Section de Mathématiques, Université de Genève, Suisse, e-mail: martin.gander@unige.ch

Véronique Martin
UMR CNRS 7352, Université de Picardie Jules Verne, Amiens, France, e-mail:
veronique.martin@u-picardie.fr
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Fig. 1 Solution (in black) at several time steps of the heat equation (1) when 𝑔−1 (𝑡) = sin(3𝜋𝑡) ,
𝑔1 (𝑡) = 0 for 𝜈 = 10 (left) or 𝜈 = 0.1 (right). In red the bound given by Lemma 1.

The error 𝑒𝑘
𝑗
:= 𝑢 − 𝑢𝑘

𝑗
, 𝑗 = 1, 2 satisfies by linearity again the same algorithm (2)

but with homogeneous data, i.e. 𝑓 = 0, 𝑢0 = 0, 𝑔−1 = 𝑔1 = 0.
In Sections 2 and 3 we recall convergence results proved using the maximum

principle and we give numerical illustrations to understand the domain of validity of
each convergence bound. Then we explain in Section 4 how the Fourier transform is
usually used to measure the convergence speed of the algorithm and we discuss this
strategy when it is applied to a stationary or to an unstationary equation. We end in
Section 5 with numerical results to summarize the different regimes of convergence
depending on the value of 𝐿 and 𝑇 (or equivalently on the value of 𝜈).

2 Linear bound due to the maximum principle

In [4] a theorem is proved which gives a linear bound for the error corresponding to
algorithm (2). It relies on

Lemma 1 If 𝑢 is solution of the heat equation (1) with 𝑢0 = 0, 𝑓 = 0 then

‖𝑢(𝑥, ·)‖∞ ≤ ((1 − 𝑥)‖𝑔−1‖∞ + (𝑥 + 1)‖𝑔1‖∞)/2, −1 ≤ 𝑥 ≤ 1,

where ‖𝑔‖∞ = sup𝑡 ∈[0,1] |𝑔(𝑡) |.
Note that this bound does not depend on the value of 𝜈. If 𝜈 is large then 𝑢 tends
to satisfy 𝜕𝑥𝑥𝑢 ' 0 and then 𝑢 tends to be linear. The bound is sharp in this case.
However, if 𝜈 is small the solution tends to decay rapidly away from the boundary and
is close to 0 except near 𝑥 = −1 and 𝑥 = 1 where boundary layers appear. The bound
is not sharp in this case. In Figure 1 we show examples of the solution of the heat
equation in these two cases. Using Lemma 1, the following theorem is proved in [4]:

Theorem 1 The error of algorithm (2) satisfies for any 𝑘 ≥ 1

‖𝑒𝑘1 (0, ·)‖∞ ≤
(
1 − 𝛿
1 + 𝛿

) 𝑘
‖𝑒01 (0, ·)‖∞.
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We expect this bound to be sharp for small spatial domains or large time, corre-
sponding to the case of a large value of 𝜈.

3 Superlinear bound

In [4] a superlinear bound is proved for the error of the algorithm (2):
Theorem 2 The error in algorithm (2) satisfies for any 𝑘 ≥ 1 the superlinear bound

‖𝑒𝑘1 (0, ·)‖∞ ≤ erfc
(
𝑘𝛿

2
√
𝜈

)
‖𝑒01 (0, ·)‖∞,

where erfc(𝑥) = 2√
𝜋

∫ +∞
𝑥

𝑒−𝑡
2
𝑑𝑡 is the complementary error function.

The proof (see [4]) consists in comparing 𝑒𝑘1 (0, ·) and 𝑒
𝑘
1 (0, ·) where 𝑒𝑘1 is defined

on an infinite spatial domain by

L𝑒𝑘1 = 0 on (−∞, 𝛿) × (0, 1),
𝑒𝑘1 (·, 0) = 0 on (−∞, 𝛿),
𝑒𝑘1 (𝛿, 𝑡) = max

0≤𝜏≤𝑡
|𝑒𝑘−12 (𝛿, 𝜏) | on (0, 1),

lim
𝑥→−∞

𝑒𝑘1 (𝑥, 𝑡) = 0 on (0, 1).

Using the maximum principle we have

|𝑒𝑘1 (0, 𝑡) | ≤ 𝑒
𝑘
1 (0, 𝑡) =

∫ 𝑡

0
‖𝑒𝑘−12 (𝛿, ·)‖𝐿∞ (0,𝜏)𝐾 (𝛿, 𝑡 − 𝜏)𝑑𝜏,

where the last equality is obtained since in the infinite domain (−∞, 𝛿) the solu-

tion 𝑒𝑘1 (0, 𝑡) can be computed using the heat kernel 𝐾 (𝑥, 𝑡) = 𝑥

2
√
𝜋

𝑒
− 𝑥2

4𝑡

𝑡3/2
. The result

is then obtained by induction. In Figure 2 we compare 𝑒𝑘1 and 𝑒
𝑘
1 . We can see that

for a large value of 𝜈 the superlinear bound is not sharp (due to the fact that 𝑒𝑘1 is
computed on an infinite spatial domain) while for a small 𝜈 a boundary layer has
appeared and the superlinear bound gives a sharper estimate than the linear bound.

4 Analysis using Fourier arguments

While in [4] and [5] the SWR for the heat equation were studied using arguments
coming from the PDE analysis, in [6] a method is proposed to use the Fourier
transform to obtain the convergence factor of a Schwarz algorithm for the stationary
convection-diffusion equation, and this technique was rapidly also applied to a time
dependent equation in [2], namely the heat equation.
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Fig. 2 Comparison of 𝑒𝑘1 ( ·, 𝑡) (in black) and 𝑒
𝑘
1 ( ·, 𝑡) (in blue) for several values of 𝑡 . Here 𝛿 = 0

and 𝜈 = 10 (left) or 𝜈 = 0.01 (right). In red the bound given by Lemma 1.

In the infinite spatial domain R and infinite time domain R+, the strategy in
the time dependent case consists in solving algorithm (2) for the errors in Laplace
variables. If 𝑠 := 𝜎 + 𝑖𝜔, 𝜎, 𝜔 ∈ R let 𝑓 (𝑠) =

∫ +∞
0

𝑓 (𝑡)𝑒−𝑠𝑡𝑑𝑡, <(𝑠) ≥ 𝛼 be the
Laplace transform of the function 𝑓 ∈ 𝐿1 (R) such that | 𝑓 (𝑡) | ≤ 𝐶𝑒𝛼𝑡 , 𝐶 > 0 and 𝛼
constants.
We first obtain

𝑒𝑘1 (𝑥, 𝑠) = 𝛼𝑘𝑒
√

𝑠
𝜈
𝑥 and 𝑒𝑘2 (𝑥, 𝑠) = 𝛽𝑘𝑒

−
√

𝑠
𝜈
𝑥 .

We suppose that the algorithm for the error is initialized with 𝑒02 (𝛿, 𝑡) = 𝑔(𝑡). By
induction using the Dirichlet boundary conditions we obtain

𝑒𝑘1 (0, 𝑠) = 𝜌(𝑠) (2𝑘−1)𝑔(𝑠),

where 𝜌(𝑠) := 𝑒−
√

𝑠
𝜈
𝛿 is the convergence factor of the algorithm.

This formula seems to say that 𝜌(𝜎 + 𝑖𝜔) explains the convergence behavior
of the single frequency 𝜔. We will see in the next subsections that this is true for
a stationary problem like the screened Laplace equation. However the situation is
more complex for an unstationary problem like the heat equation. To understand this
point, let us back-transform the previous formula to obtain

𝑒𝑘1 (0, 𝑡) =
∫ 𝑡

0
𝑔(𝑡 − 𝜏)𝐾 ((2𝑘 − 1) 𝛿√

𝜈
, 𝜏)𝑑𝜏, (3)

where 𝐾 (𝑥, 𝑡) = 𝑥

2
√
𝜋

𝑒
− 𝑥2

4𝑡

𝑡3/2
is the heat kernel. We see that the error is expressed as

a convolution between the heat kernel and 𝑔.
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Fig. 3 On the left, errors 𝑒𝑘1 (0, 𝑦) for the screened equation at iterations 𝑘 = 1, 𝑘 = 5 and 𝑘 = 10

when the first guess is 𝑒02 (𝛿, 𝑦) = sin(3𝜋𝑦) . On the right, errors 𝑒𝑘1 (0, 𝑡) for the heat equation at
iterations 𝑘 = 1, 𝑘 = 10 and 𝑘 = 20 when the first guess is 𝑒02 (𝛿, 𝑡) = sin(3𝜋𝑡) .

4.1 Using Fourier arguments is different for time dependent and
stationary problems

To understand the difference between the stationary case and the unstationary one,
we first consider the screened Laplace equation L̃𝑢 := 𝜂𝑢−4𝑢 = 𝑓 inΩ := R2, with
𝜂 > 0. If the domainΩ is split into the two overlapping subdomainsΩ1 := (−∞, 𝛿)×R
and Ω2 := (0, +∞) × R, where 𝛿 > 0 is the overlap parameter, then the classical
Schwarz algorithm (for the errors) solves for iteration index 𝑘 = 1, . . .

L̃𝑒𝑘1 = 0 on (−∞, 𝛿) × R, L̃𝑒𝑘2 = 0 on (0, +∞) × R,
𝑒𝑘1 (𝛿, ·) = 𝑒𝑘−12 (𝛿, ·) on R, 𝑒𝑘2 (0, ·) = 𝑒𝑘1 (0, ·) on R.

(4)

If the initial error is a pure sine signal on the interface, 𝑒02 (𝛿, 𝑦) := sin(𝜆𝑦), then the
errors for each iteration 𝑘 = 1, 2, . . . can be obtained by a direct computation to be

𝑒𝑘1 (0, 𝑦) = 𝑒−(2𝑘−1) 𝛿
√
𝜂+𝜆2 sin(𝜆𝑦) =: 𝜌(𝜆)2𝑘−1 sin(𝜆𝑦),

which means that at each iteration the initial sine error is contracted by the conver-
gence factor 𝜌(𝜆). This result is consistent with the definition of the convergence
factor in [1] which was obtained by a Fourier transform in the 𝑦 direction with
Fourier variable 𝜔.
In Figure 3 left, we can see the errors 𝑒𝑘1 (0, 𝑦) at iterations 𝑘 = 1, 𝑘 = 5 and

𝑘 = 10. The initial sine is contracted as the iterations grow as predicted by the
previous formula. Let us see what happens for the heat equation (Figure 3, right):
a sine is introduced (𝑒02 (𝛿, 𝑡) := sin(𝜆𝑡)) and we can see now that the sine is not just
contracted anymore, it is also transported! We can use the formula (3) to understand
that 𝑒𝑘1 (0, 𝑡) is not anymore a sine function. We need therefore a more detailed
analysis which is given in the next section.
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4.2 Analysis for the heat equation

If the Fourier analysis were relevant for the heat equation, then introducing a pure sine
frequency in the algorithm would give a pure sine frequency at any iteration 𝑘 > 0,
which is not the case as we saw in the previous subsection. A better understanding of
the behavior of the pure sine frequency can be obtained from the following theorem,
proved in [3].

Theorem 3 Let 𝑇 = +∞ and 𝐿 = +∞. If the Schwarz Waveform Relaxation algo-
rithm (2) is initialized with the pure sine frequency 𝑒02 (𝛿, 𝑡) = sin(𝜆𝑡), then the error
is given by

𝑒𝑘1 (0, 𝑡) = |𝜌(𝜆) |2𝑘−1 sin
(
𝜆𝑡 − (2𝑘 − 1)𝛿

√︂
𝜆

2𝜈

)
+ 𝑧2

(
(2𝑘 − 1) 𝛿√

𝜈
, 𝑡;𝜆

)
,

where 𝑧2 satisfies for large frequency 𝜆

𝑧2

(
(2𝑘 − 1) 𝛿√

𝜈
, 𝑡;𝜆

)
=

1

𝜆
𝐾

(
(2𝑘 − 1) 𝛿√

𝜈
, 𝑡

)
+ O

(
1

𝜆3

)
,

and for large iteration 𝑘



𝑧2 (
(2𝑘 + 1) 𝛿√

𝜈
, ·;𝜆

)




𝐿∞ (0,+∞)

∼
(
2𝑘 − 1

2𝑘 + 1

)2 



𝑧2 (
(2𝑘 − 1) 𝛿√

𝜈
, ·;𝜆

)




𝐿∞ (0,+∞)

.

An analogous result also holds for 𝑒𝑘2 .

This theorem states that if you introduce a pure sine frequency as the initial guess,
then along the iterations the error becomes a sine which is contracted by 𝜌 but which
is also translated. In addition the sine is distorted by a term proportional to the heat
kernel 𝐾 .

5 Numerical results

In this section we illustrate the previous results with numerical experiments. An
implicit scheme in time is used to discretize the heat equation. The spatial and time
discretization parameters are Δ𝑥 = Δ𝑡 = 2

2001 and the overlap is 𝛿 = 5Δ𝑥. We will
consider two values for 𝜈 so that we will obtain the different behaviors described in
the previous sections.
We first consider the value 𝜈 = 1000which corresponds to a small spatial domain,

or large time. The initial guess is the pure sine 𝑒02 (𝛿, 𝑡) = sin(25𝑡). In Figure 4 left,
we show the error at 𝑥 = 𝛿 as a function of 𝑡 at iterations 𝑘 = 0 and 𝑘 = 100. We see
that the sine is exactly contracted, which we can understand using Figure 4 right: 𝜈 is
so large that the error is linear and the convergence is dictated by the maximum
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Fig. 4 𝜈 = 1000. On the left, the error 𝑒𝑘1 (0, 𝑡) as a function of 𝑡 . On the right, the error
𝑒𝑘1 (𝑥, 𝑡 = 0.9965) as a function of 𝑥 at iterations 1, 20, 50 and 100.
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Fig. 5 Error ‖𝑒𝑘1 (0, ·) ‖∞ as function of the Schwarz Waveform Relaxation iterations 𝑘. On the
left 𝜈 = 1000, on the right 𝜈 = 0.05.

principle described in Section 2. This result is confirmed in Figure 5, left, where we
show the norm of the error versus the iterations: we exactly obtain the linear bound
described in Section 2.
We then consider the value 𝜈 = 0.05which corresponds to a large spatial domain,

or small time interval. The initial guess is the pure sine 𝑒02 (𝛿, 𝑡) = sin(50𝑡).
In Figure 6 we show the solution as a function of 𝑥 at 𝑡 = 0.1. We see that now

the boundary conditions at 𝑥 = ±1 do not influence the solution and the behavior
is not linear anymore. In Figure 7 we show the error 𝑒𝑘1 (𝛿, 𝑡) as a function of 𝑡
for iterations 𝑘 = 10, 𝑘 = 30 and 𝑘 = 45. We see that the initial guess sin(50𝑡)
is not only contracted, it is also translated and transformed by the heat kernel. In
Figure 5 right, we show the error as a function of the iterations. The convergence is
first guided by the Fourier convergence factor. For later iterations however, the heat
kernel we observed in Figure 7 becomes dominant for the convergence mechanism
of the SchwarzWaveform Relaxation algorithm. Then the heat kernel leaves the time
domain and the superlinear regime dominates.
We have thus shown that for time dependent problems, Fourier analysis techniques

can be applied to study Schwarz Waveform Relaxation algorithms, but care must be
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Fig. 6 𝜈 = 0.05. Error 𝑒𝑘1 (𝑥, 𝑡 = 0.1) as a function of 𝑥 at iterations 10 and 50.
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Fig. 7 𝜈 = 0.05. Error 𝑒𝑘1 (0, 𝑡) as a function of 𝑡 from left to right at iterations 𝑘 = 10 and 𝑘 = 30.
In magenta the heat kernel term 1

𝜆
𝐾 ( (2𝑘 − 1) 𝛿√

𝜈
, 𝑡) .

taken due to the evolution nature of the problem: Fourier modes initially still contract
for diffusion problems away from the initial conditions as expected, but eventually
heat kernel components dominate and change the convergence behavior.
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Cyclic and Chaotic Examples
in Schwarz-Preconditioned Newton Methods

Conor McCoid and Martin J. Gander

1 Introduction

In [8] we showed the limits of using Newton’s method to accelerate domain de-
composition methods in 1D. Methods such as ASPIN [1], RASPEN [4], and
MSPIN [7] that use additive (A), restricted additive (RA), and multiplicative (M)
Schwarz (S) methods, respectively, to precondition (P) exact (E) or inexact (I) New-
ton’s method (N) cannot always be relied upon to converge, though few examples of
divergent, cyclic or chaotic behaviour have been presented to the community. The
goal of this paper is to expand the space of counterexamples, showing the extent
to which chaotic and cycling behaviour can occur in these methods and that these
*SP*N methods are not robust to the pitfalls of Newton’s method.

We begin by defining the particular method considered, the alternating Schwarz-
preconditioned Newton’s method (AltSPN) [8] in a general dimension:

(1)


F(x,u1,Du1,D2u1) = 0, x ∈Ω1,

u1(∂Ω) = h,
u1(Γ1) = γn,

(2)


F(x,u2,Du2,D2u2) = 0, x ∈Ω2,

u2(∂Ω) = h,
u2(Γ2) = u1(Γ2),

(3)


J(u1) ·g1 = 0,
g1(∂Ω) = 0,
g1(Γ1) = I,

(4)


J(u2) ·g2 = 0,
g2(∂Ω) = 0,
g2(Γ2) = g1(Γ2),

(5) γn+1 = γn− (G′(γn)− I)−1(G(γn)− γn) = γn− (g2(Γ1)− I)−1(u2(Γ1)− γn),

where Du and D2u represent the partial derivatives of u(x) of orders 1 and 2, respec-
tively, J(u) is the Jacobian of F evaluated for the function u(x), Γ1 is the boundary
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Martin J. Gander
Université de Genève, e-mail: martin.gander@unige.ch

367



368 Conor McCoid and Martin J. Gander

of Ω1 that lies in Ω2, and Γ2 the same for Ω2. Steps (1) and (3) are solved in the first
subdomain Ω1 while steps (2) and (4) are solved in the second, Ω2.

The operators g1 and g2 are the derivatives of u1 and u2, respectively, with respect
to γ . Since at ∂Ω u1 does not depend on γ , the derivative there is zero. Likewise,
since u1(Γ1) = γ , g1(Γ1) is the identity operator. In a discrete setting they are repre-
sented by matrices.

The function G(γ) := u2(Γ1) is the fixed point iteration of alternating Schwarz.
It represents one iteration of alternating Schwarz using γ as the boundary value
of u1(Γ1). Step (5) applies Newton’s method to G(γ), thereby accelerating the con-
vergence of the fixed point iteration.

Note that AltSPN possesses identical convergence behaviour to RASPEN, and
in fact one may consider RASPEN to be the “gluing together” of two instances of
AltSPN, one starting from the first subdomain and another starting from the second,
see Section 2 of [4]. See also [2] for substructuring of RASPEN akin to that done
here. ASPIN then behaves similarly, though without the restriction in the overlap
and using inexact Newton in place of exact Newton [6]. Multiplicative Schwarz is
identical to alternating Schwarz in the linear case [5], and so these counterexamples
are of interest for MSPIN as well.

As explained in [8] Newton’s method displays chaotic or cycling behaviour if it
displays both oscillatory convergence and oscillatory divergence in a given domain.
In 1D this was found to happen when the fixed point iteration to be accelerated ran
parallel to the functions

gC(x) =C sign(x− x∗)
√
|x− x∗|+ x,

where g(x∗) = x∗ and C ∈R [8]. In higher dimensions the class of functions indicat-
ing this behaviour greatly increases and becomes difficult to summarize, but notably
if one applies the square root operator to each coordinate of |x− x∗| then the higher
dimensional equivalent of gC(x) remains an indicator of this behaviour.

Newton’s method in any dimension generally requires globalization techniques,
such as line searches or trust regions, to guarantee convergence [3, Ch. 6]. In [8]
we developed a Newton-like method in 1D with guaranteed convergence, with as-
sumptions on the function usually satsified by SP*N methods. The counterexamples
presented here show a need for a generalization of this method into 2D. However, it
is not clear how to perform this generalization. We refer to [8] for further discussion.

2 Cycling counterexamples in 1D

We seek a larger space of examples where cycling occurs for AltSPN. To do so, we
employ optimization techniques. First we must find a functional that takes a nonlin-
earity and returns a measure of the chaos that results from applying AltSPN.
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We consider the set of problems

u′′(x)+ f (u(x)) = 0, x ∈ (−1,1) (1)

with homogeneous Dirichlet boundary conditions. The function f (x) satsifies
f (0) = 0 so that u(x) = 0 is the solution to the ODE.

The counterexample presented in [8],

u′′(x)− sin(µu(x)) = 0, u(±1) = 0,

makes use of the antisymmetry in G(γ) to achieve its cycles. We wish the same for
all nonlinearities f (x) in our space of counterexamples.

Proposition 1 If f (x) is antisymmetric then G(γ) is antisymmetric.

Proof Suppose û1(x) solves step (1) of alternating Schwarz with u1(β ) = γ . Then

−û′′1 + f (−û1) = f (û1)− f (û1) = 0.

Thus, −û1(x) solves step (1) of alternating Schwarz with u1(β ) =−γ .
By the same logic, if û2(x) solves step (2) of alternating Schwarz with u2(α) =

u1(α) then−û2(x) solves step (2) with u2(α) =−u1(α). Thus,−û2(β ) =−G(γ) =
G(−γ). �

We therefore restrict our search to nonlinearities which are antisymmetric. It
is then sufficient for the Newton-Raphson acceleration, represented by GNR(γ), to
cross the line y = −γ for cycles to exist. In the steps of AltSPN, GNR(γn) is equal
to γn+1 found in step (5).

Given that f (x) is antisymmetric it can be decomposed into a Fourier series con-
sisting solely of sinusoids, which may be truncated for our purposes:

f (x) =
N

∑
k=1

ck sin(πkx). (2)

Thus, the functional to optimize takes a set {ck}N
k=1 ∈ RN , passes it through f (x) ∈

C(−1,1) and G(γ) ∈ C(R) to arrive at a measure for the chaos of the system. We
will represent this functional as L :RN→R. There are many ways to define L({ck}),
but we shall use

L({ck}) := ‖GNR(γ)+ γ‖ . (3)

Thus, L({ck})= 0 if and only if GNR(γ)=−γ , and AltSPN cycles between γ and−γ

for all values of γ .
It is well-known that there always exists a region around the root of a function

where Newton-Raphson converges, assuming continuity of G′′(γ) and G′(γ) 6= 1.
We expect then to find only local minimizers of L({ck}).

We use a gradient descent with line search to optimize the functional L, with re-
strictions γ ∈ [−2,2] and {ck}5

k=1 ∈R5, with starting condition c1 = 1, ci = 0 for i =
2, . . . ,5. The gradient is computed through a centered finite difference stencil in R5.
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Fig. 1 A counterexample found through optimizing the functional L, equation (3). (Left) AltSPN
falls into a stable 2-cycle, as represented by the path of the red lines; the cycle’s basin of attraction
is most values within [−2,−1)∪ (1,2]. (Right) The function f (x) for this counterexample, the sum
of five sinusoids.

The coefficients ck have greater effect with higher k, so that ∂L/∂c5 > ∂L/∂c1. As
such, the stencil’s step size diminishes with k. The line search takes search direction
p = ∇L and tests {ck}+hp for h = 1. If L({ck}+hp)> L({ck}), then the search is
repeated with h→ 0.5h, until L({ck}+hp)≤ L({ck}).

The domain is discretized with 100 equally spaced points with a 3-point finite
difference Laplacian. There is an overlap of 0.4 between the domains, which are
symmetric about x = 0. This choice of overlap is taken from [8]. We find an excep-
tional counterexample using this methodology, as presented in Figure 1.

3 Chaotic counterexamples in 2D

We now seek counterexamples in 2D. That is, we seek f : R→ R such that using
AltSPN to solve

L u(x,y)+ f (u(x,y)) = uxx(x,y)+uyy(x,y)+ f (u(x,y)) = 0, x,y ∈ (−1,1)

with homogeneous Dirichlet boundary conditions results in cycling behaviour. The
two domains are split along the x-axis, so that the first domain is x ∈ (−1,α),
y ∈ (−1,1) and the second is x ∈ (−α,1), y ∈ (−1,1).

The problem with finding cyclic counterexamples in 2D is an issue of dimen-
sionality. If a given direction gives stable cycles, there is no guarantee that every
orthogonal direction to these cycles is sufficiently stable to allow these cycles to
continue indefinitely. That is, if any point on the cycle is a saddle point, then nu-
merical error can easily eject the iterates from the path of the cycles. The criteria
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for numerical cycles is then necessarily stronger than in 1D: Not only must a cycle
exist and be stable, there must exist a region around the cycle that is also stable.

As before, f (x) is chosen to be antisymmetric so that G(γ) is antisymmetric.
Proposition 1 applies to the higher dimensional case by replacing all relevant scalar
objects (γ , G(γ)) with their corresponding vectors (γ , G(γ)). The decomposition of
f (x) into sinusoids and the definition of the functional L({ck}) remain unchanged.

If γ is the discretization of a sinusoid then G(γ) = cγ , where c ∈R, up to numer-
ical error. This can be seen by transforming the solution into a Fourier series in the
y variable. Suppose

∂ 2

∂x2 u1(x,y)+ ∂ 2

∂y2 u1(x,y)+ f (u1(x,y)) = 0, x ∈ (−1,α), y ∈ (−1,1),

u1(−1,y) = u1(x,±1) = 0,
u1(α,y) =C sin(πmy),

where f (x) is antisymmetric and can therefore be expressed in the form of equa-
tion (2). Use as an ansatz u1(x,y) = g(x)sin(πmy). Take the Fourier transform of
the equation:

0 =
∫ 1

−1
(g′′(x)−m2

π
2g(x))sin(πmy)sin(πky)+ f (g(x)sin(πmy))sin(πky)dy

=(g′′(x)−m2
π

2g(x))δm,kCm +
∫ 1

−1

N

∑
j=1

c j sin(π jg(x)sin(πmy))sin(πky)dy

=δm,kL g(x)+
N

∑
j=1

c j

∫ 1

−1

∞

∑
n=0

(π jg(x))2n+1

(2n+1)!
sin(πmy)2n+1 sin(πky)dy

=δm,kL g(x)+
N

∑
j=1

c j

∞

∑
n=0

(π jg(x))2n+1

(2n+1)!
S(2n+1),

where S(n) is the integral of sin(πmy)n sin(πky) over (−1,1). We can find a recur-
sive formula for S(2n+1):

S(2n+1) =− 1
πk

cos(πky)sin(πmy)2n+1
∣∣∣∣1
−1

+
∫ 1

−1

m
k
(2n+1)cos(πky)cos(πmy)sin(πmy)2ndy

=(2n+1)
m
k

(
− 1

πk
cos(πmy)sin(πmy)2n sin(πky)

∣∣∣∣1
−1

+
m
k

2n
∫ 1

−1
sin(πky)

(
−sin(πmy)2n+1 + cos(mπy)2 sin(πmy)2n−1)dy

)
=(2n+1)(2n)

m2

k2

∫ 1

−1
sin(πmy)2n−1 sin(πky)−2sin(πmy)2n+1 sin(πky)dy
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S(2n+1) =(2n+1)(2n)
m2

k2 (S(2n−1)−2S(2n+1))

=
(2n+1)(2n)m2

k2

1+2(2n+1)(2n)m2

k2

S(2n−1) =C(m,k,n)S(1),

where C(m,k,n) is a constant that depends on m, k and n. The value of S(1) is zero
unless k = m. This proves there exists a function f̃m(x) such that

L g(x)+ f̃m(g(x)) = 0.
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Fig. 2 A chaotic AltSPN sequence in 2D, at three resolutions (top row, bottom left). The solid
red lines indicate the path of the fixed point iteration GNR(γ). The nonlinearity (bottom right) is
found through optimization on the functional L, equation (3). The AltSPN sequence is seeded using
a sine wave sin(πy) as boundary condition on the first subdomain, but quickly diverges from this
pathway.
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Thus, if g(x) satisfies this ODE with boundary conditions g(−1) = 0 and g(α) =C
then u1(x,y) solves the PDE. Since u1(x,y) in this form satisfies the boundary condi-
tions it is the solution to this step of alternating Schwarz. The solution on the second
domain, u2(x,y), then also has the same form by a symmetry argument, and its value
at x =−α is a sinusoid of the same period. Therefore, G(γ) = cγ .

As a direct consequence of this, starting with any single sine wave as boundary
conditions provides a single parameter pathway for the function G : RN → RN . We
take advantage of this fact and use csin(πy) as the boundary condition for the first
subdomain of AltSPN, varying c between -0.5 and 0. To seed the optimization we
use the previously obtained counterexample nonlinearity f (x) from the 1D case.
The same optimization method is used. 20 equally spaced points are used in each
direction with a 5-point stencil Laplacian.

The resulting nonlinearity does not admit a stable cycle but highlights the chaos
that can result from using AltSPN. Figure 2 gives this nonlinearity and an example
of a sequence generated by AltSPN. The sequence begins on the sine wave path de-
scribed previously. It then approaches a nearby stable cycle, having departed from
the strict sine wave path to one that closely resembles sine waves (bottom left of the
figure). However, the cycle is not numerically stable and is ultimately abandoned.
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Fig. 3 The first 24 iterations of the chaotic AltSPN sequence. The left figure of each iteration
shows the overall solution at that step combined from the two subdomains, and the right of each
shows the resulting G(γ) in blue and the AltSPN result in black. For comparison, the sine wave
0.5sin(πy) is plotted in red for the cycling regime, with sign that alternates with each iteration.
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As it leaves this pathway it descends into a choatic regime (top left). It eventually
ejects onto a convergent pathway (top right). It is possible these cycles exist on sad-
dlepoints, stable along some pathways but unstable along others. A small numerical
error will then shunt the AltSPN sequence away from the cycle, either to a divergent
(top left) or convergent (top right) pathway.

Figure 3 provides snapshots of the solution at each of the iterates. The first 24 it-
erations of AltSPN are shown, giving the nearly cycling regime (iterations 1 to 12)
and part of the chaotic regime (13 to 24). The cycling regime is very nearly a cycle
of sine waves, as seen by the comparable sine waves in red. A small change from
these sine waves in iteration 13 causes chaos to take over until relative stability in
iterations 20 through 24. From there, AltSPN eventually converges.

These results show that acceleration cannot be used without consequences for all
Schwarz algorithms. As with standard Newton-Raphson, there exist problems for
which the sequence diverges, cycles or behaves chaotically.

References

1. Cai, X.-C. and Keyes, D. E. Nonlinearly preconditioned inexact Newton algorithms. SIAM
Journal on Scientific Computing 24(1), 183–200 (2002).

2. Chaouqui, F., Gander, M. J., Kumbhar, P. M., and Vanzan, T. Linear and nonlinear substructured
restricted additive schwarz iterations and preconditioning. Numerical Algorithms 91(1), 81–107
(2022).

3. Dennis Jr, J. E. and Schnabel, R. B. Numerical methods for unconstrained optimization and
nonlinear equations. SIAM (1996).

4. Dolean, V., Gander, M. J., Kheriji, W., Kwok, F., and Masson, R. Nonlinear preconditioning:
How to use a nonlinear Schwarz method to precondition Newton’s method. SIAM Journal on
Scientific Computing 38, 3357–3380 (2016).

5. Gander, M. J. Schwarz methods over the course of time. Electronic transactions on numerical
analysis 31, 228–255 (2008).

6. Gander, M. J. On the origins of linear and non-linear preconditioning. In: Domain Decomposi-
tion Methods in Science and Engineering XXIII, 153–161. Springer (2017).

7. Liu, L. and Keyes, D. E. Field-split preconditioned inexact Newton algorithms. SIAM Journal
on Scientific Computing 37, A1388–A1409 (2015).

8. McCoid, C. and Gander, M. J. Cycles in Newton-Raphson preconditioned by Schwarz (AS-
PIN and its cousins). In: Domain Decomposition Methods in Science and Engineering XXVI,
Lecture Notes in Computational Science and Engineering, vol. 145. Springer Cham (2023).



Global-Local Forward Models within Bayesian
Inversion for Large Strain Fracturing
in Porous Media

Nima Noii, Thomas Wick, and Amirreza Khodadadian

1 Introduction

Phase-field fracture models are employed to capture failure and cracks in structures,
alloys, and poroelastic media. The coupled model is based on solving the elasticity
equation and an Allen-Cahn-type phase-field equation. In hydraulic fracture, a Darcy-
type equation is solved to capture the pressure profile. Solving this coupled system
of equations is computationally expensive. Indeed, to provide an accurate estimation
(compared to the measurement) a very fine mesh profile is required. Of course, the
time-dependent and nonlinear nature of the problem gives rise to more complexity. An-
other challenge is related to the computational, mechanical, and geomechanical material
parameters. They have an essential effect on the simulations; however, many of them
can not be estimated experimentally.
In [11], we used the Bayesian inversion to identify the parameters based on hydraulic

fractures of porous media. A fracture response is realized through a phase-field equa-
tion [2] (based on the seminal work [3]). But that work is limited to small deformations.
In the current study, we extend [11] towards a large strain formulation [1, 7].
In consequence, the main objective is to utilize non-intrusive global-local models [4]

that are originally based on non-overlapping domain decomposition [12] to significantly
reduce the computational cost in Bayesian inversion. In extension to our prior work,
we introduce an adoption of the hydraulic phase-field fracture formulation of a material
that undergoes large deformation in poroelastic media. Finally, ensemble Kalman filters
are employed for the proposal adaption in Bayesian inversion to identify the mechanical
material parameters once the multiscale approach is used to solve the forward model.

2 Framework for failure mechanics in hydraulic fracture

Let us assume B ⊂ R𝛿 is the solid computational domain (here 𝛿 = 2) with its surface
boundary 𝜕B and time 𝑡 ∈ T = [0, 𝑇]. The given boundary-value problem (BVP)
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is a coupled multi-field system for the fluid-saturated porous media of the fracturing
material. Since we are dealing in large strain setting, it is required to define the mapping
between the referential position X towards spatial description x based on the motion 𝝋
of point 𝑃 at time 𝑡, see Figure 1. The media can be formulated based on a coupled three-
field system. At material points x ∈ B and time 𝑡 ∈ T , the BVP solution indicates the
deformation field 𝝋(x, 𝑡) of the solid, the fluid pressure field 𝑝(x, 𝑡), and the phase-field
fracture variable 𝑑 can be represented by

𝝋 :
{
B × T → R 𝛿

(X, 𝑡) ↦→ x = 𝝋(X, 𝑡) 𝑝 :
{
B × T → R
(X, 𝑡) ↦→ 𝑝(X, 𝑡) 𝑑 :

{
B × T → [0, 1]
(X, 𝑡) ↦→ 𝑑 (X, 𝑡) (1)

Here, 𝑑 (x, 𝑡) = 0 and 𝑑 (x, 𝑡) = 1 are referred to as the unfractured and completely
fractured parts of the material, respectively. The coupled BVP is formulated through
three specific primary fields to illustrate the hydro-poro-elasticity of fluid-saturated
porous media by

Global Primary Fields : U := {𝝋, 𝑝, 𝑑}. (2)

2.1 Elastic contribution

The elastic density function is formulated through a Neo-Hookean strain energy function
for a compressible isotropic elastic solid

𝑊elas (F, 𝑑) = 𝑔(𝑑) 𝜓elas (F) with 𝜓elas (F) =
𝜇

2

[
(F : F − 3) + 2

𝛽
(𝐽−𝛽 − 1)

]
, (3)

such that the shear modulus 𝜇 and the parameter 𝛽 := 𝛽(𝜈) = 2𝜈/(1 − 2𝜈) with the
Poisson number 𝜈 < 0.5 are used. Here, the material deformation gradient of the solid
denoted by F(X) := ∇𝝋(X, 𝑡) = Grad𝝋 with the Jacobian 𝐽 := det[F] > 0 augmented
with the symmetric right Cauchy-Green tensor C = F𝑇 F is used; for details the reader
is referred to [1, 11]. We note that the quadratic function 𝑔(𝑑) = (1− 𝑑)2 + 𝜅 is denoted
as a degradation function, with 𝜅 ≈ 10−8 that is chosen as a sufficiently small quantity.
According to the classical Terzaghi theorem, the constitutive modeling results in the
additive split of the stress tensor P to effective mechanical contribution and fluid part as
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Fig. 1 Setup of the notation for the configuration and motion of the continuum body 𝝋 (X, 𝑡) . The
initial position X in the undeformed configuration B toward the current position x in the spatial
configuration B𝑡 for the solid material undergoing finite strain.
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P(F, 𝑝, 𝑑) := 𝜕𝑊elas
𝜕F = 𝑔(𝑑)P𝑒 𝑓 𝑓 (F) − 𝐵𝑝𝐽F−𝑇 with P𝑒 𝑓 𝑓 = 𝜇

[
F − 𝐽−𝛽F−𝑇 ] .

(4)
Here, the first Piola-Kirchoff stress tensor P is derived from the first-order derivative
of the pseudo-energy density function 𝑊elas given in (3). Thus, the balance of linear
momentum for the multi-field system prescribed through body force b reads

DivP(F, 𝑝, 𝑑) + b = 0. (5)

2.1.1 Fluid contribution

The fluid volume flux vectorF is described through the negative direction of the gradient
of the fluid pressure ∇𝑝 and permeability based on Darcy-type fluid’s

F := −K(F, 𝑑) ∇𝑝. (6)

Here, the second-order permeability tensorK(F, 𝑑), following [7], is additively decom-
posed into the permeability tensor into a Darcy-type flow for the unfractured porous
medium 𝑲𝐷𝑎𝑟𝑐𝑦 and Poiseuille-type flow in a completely fractured material 𝑲 𝑓 𝑟𝑎𝑐 by

𝑲 (F, 𝑑) = 𝑲Darcy (F) + 𝑑𝜁 𝑲frac (F) ,

𝑲Darcy (F) = 𝐾
𝜂𝐹
𝐽C−1 ,

𝑲frac (F) = 𝐾𝑐 𝜔
2 𝐽

[
C−1 − C−1N ⊗ C−1N

]
.

(7)

Here, 𝐾𝐷 is the isotropic intrinsic permeability of the pore space, 𝐾𝑐 is the spatial
permeability in the fracture, 𝜂𝐹 is the dynamic fluid viscosity, and 𝜁 ≥ 1 is a permeability
transition exponent. Following [7], the so-called crack aperture (or the crack opening
deformation) defined through 𝜔 = (𝜆⊥ − 1)ℎ𝑒 in terms of the stretch orthogonal to the
crack surface 𝜆2⊥ = ∇𝑑 · ∇𝑑/∇𝑑 · C−1 · ∇𝑑 and the characteristic element length ℎ𝑒.
Also, N = ∇𝑑/|∇𝑑 | denotes the outward unit normal to the fracture surface, ℎ𝑒 is the
characteristic discretization size, and I is an identity tensor. Thus, following [7, 1], the
fluid equation involve pressure files read

¤𝑝
𝑀

+ 𝐵 ¤𝐽 − 𝑟𝐹 + Div[F] = 0 . (8)

2.1.2 Fracture contribution

The crack driving state function in the regularized sense conjugate to crack phase-field
denoted as 𝐷 (𝝋, 𝑑, x) for every point x in domain act as a driving force for the fracture
evolution state reads

𝐷 (𝝋, 𝑑, x) := 2𝑙
𝐺𝑐

(1 − 𝜅)𝜓elas (F). (9)

Here, 𝐺𝑐 is the Griffith’s critical elastic energy release rate, and 𝑙 = 2ℎ𝑒 is the regular-
ization term. Following [6], the local evolution of the crack phase-field equation in the
given domain B results in the third Euler-Lagrange differential system as

(1 − 𝑑)H − [𝑑 − 𝑙2Δ𝑑] = 𝜂 ¤𝑑 𝑖𝑛 B, (D)
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Fig. 2 Configuration and loading setup of the single-scale BVP (left). Middle/right: global-local con-
figuration, by the fictitious domain B𝐹 through filling the gap between B𝐶 and B𝐿 with a same
constitutive modeling and discretization of B𝐶 such that its unification is a so-called global domain
B𝐺 := B𝐶 ∪ Γ𝐺 ∪ B𝐹 .

augmented by the homogeneous Neumann boundary condition that is ∇𝑑 ·n = 0 on 𝜕B,
with the maximum absolute value for the crack driving stateH = max𝑠∈[0,𝑡 ] 𝐷 (𝝋) ≥ 0
to avoid irreversibly. For different approach see [8]. Thus, following our recent work [11],
the variational formulations for the three PDEs for the coupled poroelastic media of the
fracturing material are

E𝜑 (U, 𝛿𝝋) =
∫
B

[
P : ∇𝛿𝝋 − b̄ · 𝛿𝝋

]
𝑑𝑉 −

∫
𝜕𝑁 B

𝝉̄ · 𝛿𝝋 𝑑𝐴 = 0 ,

E𝑝 (U, 𝛿𝑝) =
∫
B

[( 1
𝑀

(𝑝 − 𝑝𝑛) + 𝐵(𝐽 − 𝐽𝑛) − Δ𝑡 𝑟𝐹

)
𝛿𝑝 + (Δ𝑡 K ∇𝑝) · ∇𝛿𝑝

]
𝑑𝑉

+
∫
𝜕𝑁 B

𝑓 𝛿𝑝 𝑑𝐴 = 0 ,

E𝑑 (U, 𝛿𝑑) =
∫
B

[(
2𝜓𝑐 𝑑 + 2(𝑑 − 1)H

)
𝛿𝑑 + 2𝜓𝑐 𝑙2 ∇𝑑 · ∇𝛿𝑑

]
𝑑𝑉 = 0 .

(10)
This set of equation is now written in the abstract form through SS(U).

3 Multiscale modeling via a non-intrusive global-local method
The previously introduced system of equations for single-scale analysis in (10) for the
coupled problem of poroelasticity and fracture is further extended towards the global-
local (GL) method now. Following [1, 5], the GL formulation is rooted in domain
decomposition (e.g., [12]) by distinguishing the original domain into coarse and fine
discretizations, see Figure 2. To couple the domains, namely global and local domains,
we have introduced an additional auxiliary interface denoted as Γ between two disjoint
domains in poroelastic media (see [1]), and thus corresponding unknown fields, see Fig-
ure 2. These additional fields are the interface deformation 𝝋Γ (x, 𝑡) and pressure 𝑝Γ (x, 𝑡)
on auxiliary interface and their corresponding traction forces {𝝀𝝋

𝐿
, 𝝀𝝋
𝐶
} and {𝜆𝑝

𝐿
, 𝜆
𝑝

𝐶
}

that are introduced as Lagrange multipliers. These results in a set of coupling equations
at the interface by

𝝋𝐿 (X, 𝑡) = 𝝋Γ (X, 𝑡) at X ∈ Γ𝐿 ,
𝝋𝐺 (X, 𝑡) = 𝝋Γ (X, 𝑡) at X ∈ Γ𝐺 ,
𝝀𝜑
𝐿
(X, 𝑡) + 𝝀𝜑

𝐶
(X, 𝑡) = 0 at X ∈ Γ,

and


𝑝𝐿 (X, 𝑡) = 𝑝Γ (X, 𝑡) at X ∈ Γ𝐿 ,
𝑝𝐺 (X, 𝑡) = 𝑝Γ (X, 𝑡) at X ∈ Γ𝐺 ,
𝜆
𝑝

𝐿
(X, 𝑡) + 𝜆𝑝

𝐶
(X, 𝑡) = 0 at X ∈ Γ.

(11)
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Fig. 3 The pdf of posterior density of the material parameters using the BI-GL and BI-SS approaches
for fracture. The true values are shown with a dashed green line.

Now, the multi-physics problem for the global-local approach is described through
eleven primary fields to characterize the hydro-poro-elasticity of fluid-saturated porous
media at finite strains by

Extended Primary Fields : P := {𝝋𝐺 , 𝝋𝐿 , 𝑝𝐺 , 𝑝𝐿 , 𝑑𝐿 , 𝝀u
𝐶 , 𝝀

u
𝐿 , 𝜆

𝑝

𝐶
, 𝜆
𝑝

𝐿
, uΓ, 𝑝Γ} . (12)

Herein, a global constitutive model behaves as a poroelastic response, abbreviated as
E(elastic)-P(pressure), which is augmented with a single local domain and behaves
as a poroelastic material with fracture response, abbreviated as E(elastic)-P(pressure)-
D(damage). The resulting final algorithm is based on our prior work [1, 11].

4 Bayesian inversion for parameter estimation
In this study, we use MCMC (Markov chain Monte Carlo) techniques to identify the
material parameters in the hydraulic porous medium phase-field fracture setting. The
latter is solved with the previously described GL approach. In general, we can employ
the following probabilistic model to update the available prior information according to
the forward model (here considers the phase-filed fracture) and a reference observation
(arising frommeasurement, or a synthetic observation). First, we introduce the following
statistical model

M = P(𝒙, 𝜒) + 𝜀. (13)

Here M refers to the reference observation arising from the experimental data (a mea-
sured value) and P considers to the model response related to 𝜒 a set of 𝑑-dimensional
material parameters. Furthermore, 𝒙 ∈ R𝛿 and 𝜀 indicates the measurement error. It is
assumed to have Gaussian independent and identically distributed error 𝜀 ∼ N(0, 𝜎2 𝐼),
having the parameter 𝜎2. Since P in (13) is a model response which results in our
computation, such that in our presented model can be approximated through

signle-scale: P ≈ PSS or global-local: P ≈ PGL,

corresponds to equations (SS) and (GL), respectively. Thus, (13) becomes as

M = P• (Θ) + 𝜀, with • ∈ {SS,GL}. (14)
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Despite the simplicity of the Metropolis-Hastings algorithm, it is not suitable for
complicated cases, specifically when several parameters should be estimated (multi-
dimensional domains). In this study, we use MCMC with ensemble-Kalman filter, see
for a detailed discussion [11]. The ensemble Kalman filter (EnKF) indicates the error
covariance matrix by a large random ensemble of model observations. Here, to achieve
a reliable estimation of posterior density, a Kalman gain is computed using the mean and
the covariance of the prior density and the cross-covariance betweenmaterial parameters
and observations. Using an ensemble-Kalman filter, we adopt the proposal density with
𝜒★ = 𝜒 𝑗−1 + Δ𝜒, where Δ𝜃 is the jump of Kalman-inspired proposal. Afterwards,
we update the candidate via Δ𝜒 = K

(
𝑦 𝑗−1 + 𝑠 𝑗−1

)
. The Kalman gain is computed by

K = C𝜃𝑀 (C𝑀𝑀 + R)−1, where C𝜃𝑀 is the covariance matrix between the unknowns
and the model response, C𝑀𝑀 denotes the covariance matrix of the PDE-based model,
and R is the measurement noise covariance matrix [13]. Moreover, 𝑦 𝑗−1 is the residual
of candidates w.r.t the model and 𝑠 𝑗−1 ∼ N(0,R) relates to the density of measurement.
Denoting obs as an observation, 𝑦 𝑗−1 = obs − 𝑓 (𝜃 𝑗−1). We refer the reader to [9] for
more details and the codes.
Thus, we are now able to use Bayesian inversion to identify the fracking process using

multiscale approach material parameters that cannot be measured with usual techniques.

5 Numerical example

In this section, we investigate a numerical test with the main goal that Bayesian inversion
yields accurate parameter identifications at a cheap cost of the governing global-local
phase-field solver. The mechanical and geomechanical descriptoion of the parameters is
given in [10]. In the following, a BVP is applied to the square plate shown in Figure 4.
The geometry and boundary conditions are from [1]. The single-scale (SS) model
results considering the phase-field and pressure are given in Figure 5. Then, we employ
our global-local approach, with findings shown in Figure 6. Figure 7 shows the load-
displacement curve for both approachs, indicating the accuracy of the GL approach.
Finally, the computational costs of both approaches using the Bayesian setting is given
in Table 1, denoting the significant efficiency of the domain decomposition technique.

a b
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Fig. 4 Joining of two cracks driven by fluid volume injection. (a) Geometry and boundary conditions;
and (b) described crack phase-field 𝑑 as a Dirichlet boundary conditions at 𝑡 = 0 𝑠.

6 Conclusion

In this study, we extended a global-local (GL) approach for phase-field fracture as the
PDE-based model with Bayesian inversion. We applied the proposed idea to hydraulic
fracturing within poromechanics concepts, for materials undergoing large deformations.
For our numerical example, Bayesian inversion using GL is 20 times faster than the
signle-scale model, while the accuracy is similar.
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Fig. 5 The evolution of the phase-field (first line) and pressure (second line) for different fluid injection
time, i.e., 𝑡 ∈ [0.1, 10, 15, 20] seconds using SS model.

Fig. 6 The evolution of the phase-field (first line) and pressure (second line) for different fluid injection
time, i.e., 𝑡 ∈ [0.1, 10, 15, 20] seconds using GL model.

Fig. 7 A comparison between the maximum pressure obtained by the true values (the reference obser-
vation) and the mean value of posterior density of BI-GL (left) and BI-SS (right).
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Table 1 A comparison between the computational costs of BI-SS and BI-GL approaches for hydraulic
fracture. The unit is given in seconds.

Model min 𝑇 max 𝑇 mean 𝑇
∑︁

𝑇 ratio 𝑇
BI − SS 5 645 5 767 5 704 1.14×106 19.47

BI − GL 277 296.2 287.1 5.75×104 –
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On Algebraic Bounds for POSM and MRAS

Martin J. Gander and Michal Outrata

1 Introduction and preliminaries

We consider the Poisson equation as our model problem, i.e.,

Δ𝑢 = 𝑓 in Ω := (−𝑎, 𝑎) × (0, 𝑏) and 𝑢 = 𝑔 on 𝜕Ω, (1)

where 𝑓 and 𝑔 are given. We decompose Ω into two subdomains Ω1 := (−𝑎, 𝐿/2) ×
(0, 𝑏) and Ω2 := (−𝐿/2, 𝑎) × (0, 𝑏) with interfaces Γ1 and Γ2, overlap 𝑂 :=
(−𝐿/2, 𝐿/2) × (0, 𝑏) (if 𝐿 > 0) and complements Θ2 := Ω\Ω1 and Θ1 := Ω\Ω2.
Creating an equidistant mesh on Ω with mesh size ℎ, we denote by 𝑁𝑟 + 1 the
number of grid rows and 𝑁𝑐 + 1 the number of grid columns, see Figure 1. We also
define the one-grid-column-prolonged subdomainsΩℎ

1 := (−𝑎, 𝐿/2+ ℎ) × (0, 𝑏) and
Ωℎ
2 := (−𝐿/2 − ℎ, 𝑎) × (0, 𝑏) and also their interfaces Γℎ

1 := (𝐿/2 + ℎ) × (0, 𝑏)
and Γℎ

2 := (−𝐿/2 − ℎ) × (0, 𝑏). We discretize (1) with a finite difference scheme,
obtaining the block tridiagonal system matrix

𝐴Θ1 𝐴Θ1 ,Γ2
𝐴Γ2 ,Θ1 𝐴Γ2 𝐴Γ2 ,𝑂

𝐴𝑂,Γ1 𝐴𝑂 𝐴𝑂,Γ1

𝐴Γ1 ,𝑂 𝐴Γ1 𝐴Γ1 ,Θ2

𝐴Θ2 ,Γ1 𝐴Θ2


. (2)

We follow the notation of [3, Section 6.1] and introduce the parallel optimized
Schwarz method (POSM) with the transmission operators PΓ1 = PΓ2 = 𝑝I and
QΓ1 = QΓ2 = I acting on the Dirichlet and Neumann data along the interfaces.
Hence POSM is given by the iteration operator T : (𝑢 (𝑛−1)1 , 𝑢

(𝑛−1)
2 ) ↦→ (𝑢 (𝑛)1 , 𝑢

(𝑛)
2 ),

where 𝑢 (𝑛)1 , 𝑢
(𝑛)
2 are given as the solutions of the subdomain problems

Martin J. Gander, Michal Outrata
University of Geneva, e-mail: martin.gander@unige.ch, michal.outrata@unige.ch
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Fig. 1 The physical domain (left), and the discrete mesh (right).

Δ𝑢
(𝑛)
𝑖

= 𝑓 in Ω𝑖 , 𝑢
(𝑛)
𝑖

= 𝑔 on 𝜕Ω𝑖\Γ𝑖 ,

n𝑖 · ∇𝑢 (𝑛)𝑖
+ 𝑝𝑢 (𝑛)

𝑖
= n𝑖 · ∇𝑢 (𝑛−1)𝑗

+ 𝑝𝑢 (𝑛−1)
𝑗

on Γ𝑖 ,
for 𝑖, 𝑗 = 1, 2, |𝑖 − 𝑗 | = 1.

The convergence factor of POSM (see [1, Proposition 2]) as a function of 𝑎, 𝑏, 𝐿/2
and the Fourier mode 𝑘 ∈ N is given by

𝑘 𝜋
𝑏
coth

(
𝑘 𝜋
𝑏
(𝑎 − 𝐿/2)

)
− 𝑝

𝑘 𝜋
𝑏
coth

(
𝑘 𝜋
𝑏
(𝑎 + 𝐿/2)

)
+ 𝑝

·
sinh

(
𝑘 𝜋
𝑏
(𝑎 − 𝐿/2)

)
sinh

(
𝑘 𝜋
𝑏
(𝑎 + 𝐿/2)

) . (3)

Writing (2) in its augmented form and modifying the interface block rows we get

𝐴aug :=
[
𝐴̃Ω1 𝐴̃Ω1 ,Ω2
𝐴̃Ω2 ,Ω1 𝐴̃Ω2

]
:=



𝐴Θ1 𝐴Θ1 ,Γ2
𝐴Γ2 ,Θ1 𝐴Γ2 𝐴Γ2 ,𝑂

𝐴𝑂,Γ2 𝐴𝑂 𝐴𝑂,Γ1

𝐴Γ1 ,𝑂 𝐴̃Γ1 𝐴̃Γ1 ,Γ1 𝐴Γ1 ,Θ2

𝐴Γ2 ,Θ1 𝐴̃Γ2 ,Γ2 𝐴̃Γ2 𝐴Γ2 ,𝑂

𝐴𝑂,Γ2 𝐴𝑂 𝐴𝑂,Γ1

𝐴Γ1 ,𝑂 𝐴Γ1 𝐴Γ1 ,Θ2

𝐴Θ2 ,Γ1 𝐴Θ2


, (4)

where we introduced the discrete transmission conditions in the last block row of
[𝐴Ω1 𝐴Ω1 ,Ω2 ] and the first block row of [𝐴Ω2 ,Ω1 𝐴Ω2 ], which are now given by

𝐴̃Γ1 := 𝐴Γ1 + 𝐷, 𝐴̃Γ1 ,Γ1 := −𝐷 and 𝐴̃Γ2 := 𝐴Γ2 + 𝐷, 𝐴̃Γ2 ,Γ2 := −𝐷.

We are interested in the subdomain version of the modified restricted additive
Schwarz (MRAS1, see [2]), defined by its iteration matrix 𝑇 ,

𝑇 = 𝐼 −
2∑︁
𝑖=1

𝑅𝑇Ω𝑖
𝐴̃−1
Ω𝑖
𝑅Ω𝑖

𝐴̃aug with 𝑅Ω1 = [𝐼Ω1 0Ω2 ], 𝑅Ω2 = [0Ω1 𝐼Ω2 ] . (5)

1MRAS was introduced in the so-called globally deferred correction form, where we iterate on the
global solution unknowns, in contrast to iterating on the subdomain solution unknowns here. This
is but a technicality and hence we keep the name; the equivalence is shown in [3, Section 6.1, 6.2].
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Notice that the interface block structure of MRAS does not match the one in [3,
Algorithm 2] but the transmission matrix 𝐷 is chosen to get fast convergence,
analogously to the parameter 𝑝 in POSM. Setting

𝐸
Ω1
Γ2
:=

[
0Θ1 𝐼Γ20𝑂0Γ1

]𝑇
, 𝐸

Ω1
Γ1
:=

[
0Θ10Γ20𝑂 𝐼Γ1

]𝑇
, 𝐸

Ω1
Θ1
:=

[
𝐴Γ2 ,Θ10Γ20𝑂0Γ1

]𝑇
,

𝐸
Ω2
Γ2
:=

[
𝐼Γ20𝑂0Γ10Θ2

]𝑇
, 𝐸

Ω2
Γ1
:=

[
0Γ20𝑂 𝐼Γ10Θ2

]𝑇
, 𝐸

Ω2
Θ2
:=

[
0Γ20𝑂0Γ1𝐴Θ2 ,Γ1

]𝑇
,

we can write
𝐴̃Ω𝑖

= 𝐴Ω𝑖
+ 𝐸Ω𝑖

Γ𝑖
𝐷

(
𝐸
Ω𝑖

Γ𝑖

)𝑇
, 𝑖 = 1, 2,

and formulate a convergence result for MRAS, analogue to [2, Theorem 3.2].

Theorem 1 ([2, Section 3])
The MRAS iteration matrix 𝑇 in (5) has the structure

𝑇 =

[
0 𝐾
𝐿 0

]
,
𝐾 := 𝐴−1

Ω1
𝐸
Ω1
Γ1

[
𝐼 + 𝐷 (𝐴−1

Ω1
)Γ1 ,Γ1

]−1 (
−𝐷 (𝐸Ω2

Γ1
)𝑇 + (𝐸Ω2

Θ2
)𝑇

)
,

𝐿 := 𝐴−1
Ω2
𝐸
Ω2
Γ2

[
𝐼 + 𝐷 (𝐴−1

Ω2
)Γ2 ,Γ2

]−1 (
−𝐷 (𝐸Ω1

Γ2
)𝑇 + (𝐸Ω1

Θ1
)𝑇

)
.

(6)

Moreover, the asymptotic convergence factor of MRAS is bounded by√︁
‖𝑀1𝐵1‖2 · ‖𝑀2𝐵2‖2,

𝑀1 :=
[
𝐼 + 𝐷 (𝐴−1

Ω1
)Γ1 ,Γ1

]−1 (
−𝐷 − 𝐴Γ1 ,Θ2𝐴

−1
Θ2
𝐴Θ2 ,Γ1

)
, 𝐵1 := (𝐴−1

Ω2
)Γ1 ,Γ2 ,

𝑀2 :=
[
𝐼 + 𝐷 (𝐴−1

Ω2
)Γ2 ,Γ2

]−1 (
−𝐷 − 𝐴Γ2 ,Θ1𝐴

−1
Θ1
𝐴Θ1 ,Γ2

)
, 𝐵2 := (𝐴−1

Ω1
)Γ2 ,Γ1 .

(7)

Due to the symmetry of the model problem and the method we have 𝐵 := 𝐵1 = 𝐵2
and 𝑀 := 𝑀1 = 𝑀2, which in turn simplifies the bound in (7) to ‖𝑀𝐵‖2.

2 Analysis of the MRAS bound and its reformulation

First, we recall the sine series expansion in the 𝑦 direction F𝑦 , so that we have

𝑢(𝑥, 𝑦) =
+∞∑︁
𝑘=1

F𝑦𝑢(𝑥, 𝑘) sin
(
𝑘𝜋

𝑏
𝑦

)
≡

+∞∑︁
𝑘=1

𝑢̂(𝑥, 𝑘) sin
(
𝑘𝜋

𝑏
𝑦

)
,

with2 F𝑦𝑢 :=
∫ 𝑏

0 𝑢(𝑥, 𝑦) sin(𝑘𝜋𝑦/𝑏)d𝑦. Next,we factor out (𝐴−1
Ω1
)Γ1 ,Γ1 and (𝐴−1

Ω2
)Γ2 ,Γ2

on the left from𝑀1,2, so that instead of (7) we focus on the asymptotically equivalent

2 Using the sine series relies on the Dirichlet boundary conditions (BCs) along {𝑦 = 0} and
{𝑦 = 𝑏} in (1); for different BCs see [4].
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𝑀𝐵 :=
[(
(𝐴−1

Ω1
)Γ1 ,Γ1

)−1
+ 𝐷

]−1
︸                         ︷︷                         ︸

(𝑇 Denom)−1

(
−𝐷 − 𝐴Γ1 ,Θ2𝐴

−1
Θ2
𝐴Θ2 ,Γ1

)
︸                           ︷︷                           ︸

𝑇 Numer

(𝐴−1
Ω2
)Γ1 ,Γ2

(
(𝐴−1

Ω2
)Γ2 ,Γ2

)−1︸                           ︷︷                           ︸
𝑇 Over

. (8)

The key question is whether the bound (7), which now becomes ‖𝑀𝐵‖, is the discrete
analogue of (3) – piece by piece. Linking each of the blocks in (8) to a discrete
linear operator with a continuous counterpart, we analyze it using the Fourier series
expansion. Taking b ∈ R𝑁𝑟−1 and interpolating it to a function 𝛾 : Γℎ

1 → R, the
following problems are equivalent up to the FD discretization:

𝐴Ω1u = − 1
ℎ2
𝐸
Ω1
Γ1

b and
Δ𝑢 = 0 in Ωℎ

1 ,

𝑢 = 0 on 𝜕Ωℎ
1 \Γ

ℎ
1 , and 𝑢 = 𝛾 on Γℎ

1 .
(9)

Defining the solution operator byS1 (𝛾) = 𝑢
��
Γ1
where 𝑢 is the solution of (9), we have

(up to the FD discretization) the equivalence of the linear operators −1/ℎ2 (𝐴−1
Ω1
)Γ1 ,Γ1

and S1. To calculate S1 we expand in the 𝑦 variable using F𝑦 , simplifying the
continuous problem in (9) to the semi-discrete problem(

𝜕𝑥𝑥 −
(
𝑘 𝜋
𝑏

)2)
𝑢̂(𝑥, 𝑘) = 0 for 𝑥 ∈ (−𝑎, 𝐿/2 + ℎ) and 𝑘 ∈ N,

𝑢̂(−𝑎, 𝑘) = 0 and 𝑢̂(𝐿/2 + ℎ, 𝑘) = 𝛾̂(𝑘) for 𝑘 ∈ N,
(10)

and denote by Ŝ1 := F𝑦S1 the Fourier symbol of S1. A direct calculation yields

𝑢̂(𝑥, 𝑘) =
sinh

(
𝑘 𝜋
𝑏
(𝑎 + 𝑥)

)
𝛾̂(𝑘)

sinh
(
𝑘 𝜋
𝑏
(𝑎 + 𝐿/2 + ℎ))

) , Ŝ1𝛾̂(𝑘) =
sinh

(
𝑘 𝜋
𝑏
(𝑎 + 𝐿/2)

)
sinh

(
𝑘 𝜋
𝑏
(𝑎 + 𝐿/2 + ℎ))

) 𝛾̂(𝑘).
Therefore, the eigenvalues of the linear operator −1/ℎ2 (𝐴−1

Ω1
)Γ1 ,Γ1 approximate the

modes 𝑘 = 1, . . . , 𝑁𝑟 − 1 of Ŝ1 given above, as we see in Figure 2. The rest of the
blocks in (8) are summarized in Table 1 and illustrated in Figure 2, see [4] for detailed
calculations. We see that the approximation is very accurate for the low-frequency
modes but not quite accurate for the high-frequency ones. If 𝐷 diagonalizes in the
same basis as the rest of the blocks and we denote its eigenvalues by 𝛿1, . . . , 𝛿𝑁𝑟−1,
then the eigenvalues of 𝑇Denom, 𝑇Numer, 𝑇Over approximate certain discrete (trun-
cated) Fourier symbols we present in Table 2 and illustrate in Figure 3. We see that
the inaccuracy on the high frequencies is still present. More importantly, comparing
Table 2 with (3) shows that the contraction factor due to the domain overlap in (3)
matches exactly 𝜃𝑘 for each 𝑘 , i.e., the one due to the continuous representation
of 𝑇Over. However, this is clearly not the case for the contraction factor due to the
transmission condition induced by 𝐷. The ratio 𝜂𝑘/𝜁𝑘 shows that choosing 𝛿𝑘 = 𝑝

(the naive choice) is not the correct one (see [4] for more details) and we continue
by reformulating Theorem 1 to reflect also the transmission part of (3).
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Table 1 The blocks and corresponding linear operators (LO) from (8).

block discrete LO continuous LO Fourier symbol

(𝐴−1
Ω1
)Γ1 ,Γ1 − 1

ℎ2
(𝐴−1

Ω1
)Γ1 ,Γ1 S1 : 𝛾 ↦→ 𝑢

��
Γ1

Ŝ1 =
sinh( 𝑘𝜋

𝑏
(𝑎+𝐿/2))

sinh( 𝑘𝜋
𝑏

(𝑎+𝐿/2+ℎ) ))
𝐴Γ1 ,Θ2 𝐴

−1
Θ2

𝐴Θ2 ,Γ1 −ℎ2𝐴Γ1 ,Θ2 𝐴
−1
Θ2

𝐴Θ2 ,Γ1 S2 : 𝛾 ↦→ 𝑢
��
Γ1

Ŝ2 =
sinh( 𝑘𝜋

𝑏
(𝑎−𝐿/2−ℎ))

sinh( 𝑘𝜋
𝑏

(𝑎−𝐿/2) ))
(𝐴−1

Ω2
)Γ1 ,Γ2 − 1

ℎ2
(𝐴−1

Ω2
)Γ1 ,Γ2 S3 : 𝛾 ↦→ 𝑢

��
Γ1

Ŝ3 =
sinh( 𝑘𝜋

𝑏
(𝑎−𝐿/2))

sinh( 𝑘𝜋
𝑏

(𝑎+𝐿/2+ℎ) ))
(𝐴−1

Ω2
)Γ2 ,Γ2 − 1

ℎ2
(𝐴−1

Ω2
)Γ2 ,Γ2 S4 : 𝛾 ↦→ 𝑢

��
Γ2

Ŝ4 =
sinh( 𝑘𝜋

𝑏
(𝑎+𝐿/2))

sinh( 𝑘𝜋
𝑏

(𝑎+𝐿/2+ℎ) ))

1 5 10 15 20

10 1

eigs( 1
h2 (A 1

1 ) 1, 1)

1

1 5 10 15 20

10 1

eigs( h2A 1, 2A 1
2 A 2, 1 )

2

1 5 10 15 20
k

10 4

10 3

10 2

10 1

eigs( 1
h2 (A 1

2 ) 1, 2 )

3

1 5 10 15 20
k

10 1

eigs( 1
h2 (A 1

2 ) 2, 2 )

4

Fig. 2 Results obtained for the parameters 𝑎 = 𝑏 = 1, 𝐿 = 2ℎ, 𝑁𝑟 = 22.

Table 2 The matrices and their corresponding (truncated) Fourier symbols.(
𝑇 Denom

)−1
𝑇 Numer 𝑇 Over

𝜂𝑘 := 𝛿𝑘 − 1
ℎ2
sinh( 𝑘𝜋

𝑏
(𝑎+𝐿/2+ℎ))

sinh( 𝑘𝜋
𝑏

(𝑎+𝐿/2)) 𝜁𝑘 := −𝛿𝑘 + 1
ℎ2
sinh( 𝑘𝜋

𝑏
(𝑎−𝐿/2−ℎ))

sinh( 𝑘𝜋
𝑏

(𝑎−𝐿/2) )) 𝜃𝑘 :=
sinh( 𝑘𝜋

𝑏
(𝑎−𝐿/2))

sinh( 𝑘𝜋
𝑏

(𝑎+𝐿/2) ))(
𝑇
Denom)−1

𝑇
Numer

𝑇
Over

𝜂𝑘 := − 1
ℎ

𝑘𝜋
𝑏
coth

(
𝑘𝜋
𝑏

(𝑎 + 𝐿/2)
)
− 𝜆𝑘 𝜁 𝑘 := − 1

ℎ
𝑘𝜋
𝑏
coth

(
𝑘𝜋
𝑏

(𝑎 − 𝐿/2)
)
+ 𝜆𝑘 𝜃𝑘 :=

sinh( 𝑘𝜋
𝑏

(𝑎−𝐿/2))
sinh( 𝑘𝜋

𝑏
(𝑎+𝐿/2) ))

The main tool used to obtain Theorem 1 is the Sherman-Morrison-Woodbury
formula for the inverse of a low-rank updated matrix, here the update was the corner
block 𝐷. We now show that using the same formula for a slightly different block
gives the “correct” result. We split the interface blocks as in [3, Section 5.2] and
write 𝐴Γ1 = 𝐴

𝐿
Γ1

+ 𝐴𝑅
Γ1
and 𝐴Γ2 = 𝐴

𝐿
Γ2

+ 𝐴𝑅
Γ2
so that we have

−ℎ(𝐴Γ1 ,𝑂u𝑂 + 𝐴𝐿
Γ1

uΓ1 ) ≈ 𝑢𝑥
��
Γ1
, −ℎ(𝐴Γ1 ,Θ2uΘ2 + 𝐴𝑅

Γ1
uΓ1 ) ≈ −𝑢𝑥

��
Γ1
,

−ℎ(𝐴Γ2 ,𝑂u𝑂 + 𝐴𝑅
Γ2

uΓ2 ) ≈ −𝑢𝑥
��
Γ2
, −ℎ(𝐴Γ2 ,Θ1uΘ1 + 𝐴𝐿

Γ2
uΓ2 ) ≈ 𝑢𝑥

��
Γ2
.

(11)

This is natural for FD and FEM discretizations. Using the so-called ghost point trick
we get 𝐴𝐿

Γ1
= 𝐴𝑅

Γ1
= 1
2 𝐴Γ1 , 𝐴

𝐿
Γ2

= 𝐴𝑅
Γ2

= 1
2 𝐴Γ2 . Adopting this we rewrite 𝐴̃𝑎𝑢𝑔 as
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Fig. 3 Results obtained with 𝑎 = 𝑏 = 1, 𝐿 = 2ℎ, 𝑁𝑟 = 21 and 𝐷 = diag
(
𝜋2/ℎ

)
.

𝐴aug :=

[
𝐴𝐿
Ω1

+ 𝐴Ω1 𝐴̃Ω1 ,Ω2

𝐴̃Ω2 ,Ω1 𝐴𝑅
Ω1

+ 𝐴Ω2

]
:=



𝐴Θ1 𝐴Θ1 ,Γ2
𝐴Γ2 ,Θ1 𝐴Γ2 𝐴Γ2 ,𝑂

𝐴𝑂,Γ2 𝐴𝑂 𝐴𝑂,Γ1

𝐴Γ1 ,𝑂 𝐴𝐿
Γ1

+ 𝐴Γ1 𝐴̃Γ1 ,Γ1 𝐴Γ1 ,Θ2

𝐴Γ2 ,Θ1 𝐴̃Γ2 ,Γ2 𝐴𝑅
Γ2

+ 𝐴Γ2 𝐴Γ2 ,𝑂

𝐴𝑂,Γ2 𝐴𝑂 𝐴𝑂,Γ1

𝐴Γ1 ,𝑂 𝐴Γ1 𝐴Γ1 ,Θ2

𝐴Θ2 ,Γ1 𝐴Θ2


,

with the transmission conditions kept the same as in (4) but reorganized with

𝐴Γ1 := 𝐴
𝑅
Γ1

+ 𝐷, and 𝐴Γ2 := 𝐴
𝐿
Γ2

+ 𝐷.

As a result, the Sherman-Morrison-Woodbury formula is nowused for
(
𝐴𝐿
Ω1

+ 𝐴Ω1

)−1
and

(
𝐴𝑅
Ω1

+ 𝐴Ω2

)−1
and analogously to [2, Lemma 3.1, Theorem 3.2] we obtain The-

orem 2 (we take advantage of the symmetry, for the general case see [4]).

Theorem 2 The MRAS iteration matrix 𝑇 in (5) can also be written as

𝑇 =

[
0 𝐾
𝐿 0

]
, with

𝐾 :=
(
𝐴𝐿
Ω1

)−1
𝐸
Ω1
Γ1

(
(
(
𝐴𝐿
Ω1

)−1
)Γ1 ,Γ1

)−1 [(
(
(
𝐴𝐿
Ω1

)−1
)Γ1 ,Γ1

)−1
+ 𝐴Γ1

]−1 (
−𝐷 (𝐸Ω2

Γ1
)𝑇 + (𝐸Ω2

Θ2
)𝑇

)
,

𝐿 :=
(
𝐴𝑅
Ω2

)−1
𝐸
Ω2
Γ2

(
(
(
𝐴𝑅
Ω2

)−1
)Γ2 ,Γ2

)−1 [(
(
(
𝐴𝑅
Ω2

)−1
)Γ2 ,Γ2

)−1
+ 𝐴Γ2

]−1 (
−𝐷 (𝐸Ω1

Γ2
)𝑇 + (𝐸Ω1

Θ1
)𝑇

)
.

Moreover, the asymptotic convergence factor of POSM is bounded by

‖𝑀𝐵‖2, where (12)
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𝑀 :=
(
𝑇
Denom)−1

𝑇
Numer

=

[(
(
(
𝐴𝐿
Ω1

)−1
)Γ1 ,Γ1

)−1
+ 𝐴Γ1

]−1 ((
𝐴𝑅
Γ1

− 𝐴Γ1 ,Θ2𝐴
−1
Θ2
𝐴Θ2 ,Γ1

)
− 𝐴Γ1

)
,

𝐵 := 𝑇 Over = (
(
𝐴𝑅
Ω2

)−1
)Γ1 ,Γ2

(
(
(
𝐴𝑅
Ω2

)−1
)Γ2 ,Γ2

)−1
.

(13)

Focusing on the first block in (13),we takeb ∈ R𝑁𝑟−1 and interpolating it to a function
𝛾 : Γ1 → R, the following problems are equivalent up to the FD discretization:

𝐴𝐿
Ω1

u = − 1
ℎ
𝐸
Ω1
Γ1

b and
Δ𝑢 = 0 in Ω1,

𝑢 = 0 on 𝜕Ω1\Γ1, and n1 · ∇𝑢 = 𝛾 on Γ1.
(14)

Setting S2 (𝛾) = 𝑢
��
Γ1
, where 𝑢 is the solution of (14) we have the equivalence (up to

the FD discretization) of −1/ℎ(𝐴−1
Ω1
)Γ1 ,Γ1 and S2. Considering(

𝜕𝑥𝑥 −
(
𝑘 𝜋
𝑏

)2)
𝑢̂(𝑥, 𝑘) = 0 for 𝑥 ∈ (−𝑎, 𝐿/2 + ℎ) and 𝑘 ∈ N,

𝑢̂(−𝑎, 𝑘) = 0 and 𝑢̂𝑥 (𝐿/2 + ℎ, 𝑘) = 𝛾̂(𝑘) for 𝑘 ∈ N,
(15)

we set Ŝ1 := F𝑦S1 and a direct calculation yields the solution of (15) and Ŝ1 as

𝑢̂(𝑥, 𝑘) =
sinh

(
𝑘 𝜋
𝑏
(𝑎 + 𝑥)

)
𝑘 𝜋
𝑏
cosh

(
𝑘 𝜋
𝑏
(𝑎 + 𝐿/2))

) , Ŝ1𝛾̂(𝑘) =
sinh

(
𝑘 𝜋
𝑏
(𝑎 + 𝐿/2)

)
𝑘 𝜋
𝑏
cosh

(
𝑘 𝜋
𝑏
(𝑎 + 𝐿/2))

) 𝛾̂(𝑘).
Therefore, the eigenvalues of−1/ℎ((𝐴𝐿

Ω1
)−1)Γ1 ,Γ1 approximate the first 𝑁𝑟 −1modes

of F𝑦S1 with better accuracy in high-frequencies than we observed withS1, see Fig-
ure 2 and Figure 4. For the other blocks see Table 3 and Figure 4. If−𝐴𝑅

Γ1 diagonalizes
in the Fourier discrete basis with eigenvalues 𝜆1, . . . , 𝜆𝑁𝑟−1, then the eigenvalues
of 𝑇 Denom, 𝑇 Numer, 𝑇 Over approximate certain discrete (truncated) Fourier symbols,
presented in Table 2 and Figure 3. Notice that at the discrete level we have𝑀𝐵 = 𝑀𝐵,
i.e., the difference is in the representation of the bound (blue markers in Figure 3)
as we changed only the block organization in the Sherman-Morrison-Woodbury for-
mula. Comparing Table 2 with (3), we get the link between 𝜆𝑘 (and hence also 𝛿𝑘 )
and the Robin parameter 𝑝 in (3). Calculating the optimal 𝑝 now directly translates
to the optimal choice of 𝐷 by

𝑝𝐼 = −ℎ𝑊𝑇
(
𝐴𝑅
Γ1

+ 𝐷
)
𝑊 , i. e., 𝐷 = − 𝑝

ℎ
𝐼 − 𝐴𝑅

Γ1
.
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Table 3 The blocks and corresponding linear operators (LO) from (8).

block discrete LO continuous LO Fourier symbol

(
(
𝐴𝐿
Ω1

)−1
)Γ1 ,Γ1 − 1

ℎ
(
(
𝐴𝐿
Ω1

)−1
)Γ1 ,Γ1 S1 : 𝛾 ↦→ 𝑢

��
Γ1

Ŝ1 = 1
𝑘𝜋
𝑏
coth( 𝑘𝜋

𝑏
(𝑎+𝐿/2) ))

𝐴
𝑅

Γ1 − 𝐴Γ1 ,Θ2 𝐴
−1
Θ2

𝐴Θ2 ,Γ1 −ℎ
(
𝐴
𝑅

Γ1 − 𝐴Γ1 ,Θ2 𝐴
−1
Θ2

𝐴Θ2 ,Γ1

)
S2 : 𝛾 ↦→ n1 · ∇𝑢

��
Γ1

Ŝ2 = 𝑘𝜋
𝑏
coth

(
𝑘𝜋
𝑏

(𝑎 − 𝐿/2))
)

(
(
𝐴𝑅
Ω2

)−1
)Γ1 ,Γ2 − 1

ℎ
(
(
𝐴𝑅
Ω2

)−1
)Γ1 ,Γ2 S3 : 𝛾 ↦→ 𝑢

��
Γ1

Ŝ3 =
sinh( 𝑘𝜋

𝑏
(𝑎−𝐿/2))

𝑘𝜋
𝑏
cosh( 𝑘𝜋

𝑏
(𝑎+𝐿/2) ))
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Fig. 4 Results obtained for the parameters 𝑎 = 𝑏 = 1, 𝐿 = 2ℎ, 𝑁𝑟 = 21.

References

1. Gander, M. J. On the influence of geometry on optimized Schwarz methods. SeMA Journal
53(1), 71–78 (2013).

2. Gander, M. J., Loisel, S., and Szyld, D. B. An optimal block iterative method and preconditioner
for banded matrices with applications to PDEs on irregular domains. SIAM Journal on Matrix
Analysis and Applications 33(2), 653–680 (2012).

3. Gander, M. J. and Zhang, H. A class of iterative solvers for the Helmholtz equation: factoriza-
tions, sweeping preconditioners, source transfer, single layer potentials, polarized traces, and
optimized Schwarz methods. SIAM Review 61(1), 3–76 (2019).

4. Outrata, M. Schwarz methods, Schur complements, preconditioning and numerical linear
algebra. Ph.D. thesis, University of Geneva, Math Department (2022).



Hierarchical LU Preconditioning
for the Time-Harmonic Maxwell Equations

Maryam Parvizi, Amirreza Khodadadian, Sven Beuchler, and Thomas Wick

1 Introduction

The Maxwell system describes the behaviour of electromagnetic fields. Nédélec’s edge
finite element method is an efficient discretization technique to solve this equation which
involves the curl-curl operator numerically [13, 10]. Although thematrix arising from the
linear system is sparse, direct solvers cannot solve the problem with linear complexity.
In the presence of quasi-uniform meshes, the memory requirement of 𝑂 (𝑁4/3) and
computational time of 𝑂 (𝑁2) are expected where the problem size is 𝑁 [11].
Matrices with full rank often can be approximated using low-rank matrices; but, it is

not always applicable. Thus, it is desirable to present a block-wise partitioning of the ma-
trix and approximate appropriately chosen (using an admissibility condition) blocks by
their low-rank decompositions. Hierarchical matrices (H -matrices), [7], are block wise
low-rank matrices that allow us to represent dense matrices with data sparse approxi-
mations and the logarithmic-linear storage complexity, i.e., O(𝑁𝑚 log(𝑁)), where 𝑚 is
a parameter that controls the accuracy of the approximation.
Besides the storage complexity reduction, another application of the H -matrix ap-

proximations is to use them as a preconditioner to solve the system directly, or to use
them as preconditioner to reduce the number of iterations in Krylov-based iterative
solvers based on matrix-vector multiplication, e.g., GMRES [15]. In the time-harmonic
case, the system matrix may become indefinite and ill-conditioned, in particular for
high frequency cases. In this regime, the usual factorization methods such as incom-
plete LU (iLU) do not lead to reliable results and converge to the exact solution poorly.
Then it is very difficult to design Galerkin discretizations [12] and efficient iterative
solvers [4] (see also [9] for recent studies).
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In this paper, we study the effect of applying hierarchical 𝐿𝑈 decompositions, i.e.,
H − 𝐿𝑈 decompositions, as a preconditioner to solve the Maxwell equations using iter-
ative solvers. The idea of usingH matrices for the curl-curl operators and magnetostatic
model problems was introduced in [3]. A preconditioner based on the H matrices was
used in [2] and [14] for solving the Maxwell equations in the low-frequency regime.
In [5], the authors showed that the inverse of the Galerkin matrix corresponding to the
FEM discretization of time-harmonic Maxwell equations can be approximated by an
H -matrix and proved the exponential convergence in the maximum block-rank. This ap-
proximation can be used to prove the existence ofH -𝐿𝑈 factorization without frequency
restriction.
In this work, in addition to addressing the advantage of iterative hierarchical precon-

ditioning, we exploit the influence of applying an inverse of H -matrix approximations
as a preconditioner to solve the linear systems directly. Our numerical tests also include
studies on the influence of the wave number. As observed, for both low and high fre-
quencymaterials usingH−𝐿𝑈 factorization will lead to a fast and accurate convergence
of the iterative solvers.
The paper is organized as follows. In Section 2, we briefly introduce the Maxwell

system and present the Nédélec’s finite element discretization. The H -matrices and
how to compute the inverse of an H -matrix approximation for the Galerkin system
matrix are explained in Section 3. We also present an algorithm to compute theH − 𝐿𝑈

approximation of a matrix, and use it as a preconditioner to solve the system directly. In
Section 4, numerical results are presented to substantiate the efficiency of the hierarchical
matrix as a direct and iterative solver. Finally, the conclusions are given in Section 5.

2 The Maxwell equations

Denoting Ĥ the magnetic field intensity, E the electric field density for the domain
Ω ⊂ R𝑑 (𝑑 = 2, 3), we have the time-harmonic Maxwell equations as

∇ · (𝛽Ĥ) = 0 in Ω × I, (1a)
∇ · (𝛼E) = 𝜌 in Ω × I, (1b)(

𝛼
𝜕

𝜕𝑡
+ 𝜒

)
E−∇ × Ĥ = F in Ω × I, (1c)

𝛽
𝜕

𝜕𝑡
Ĥ + ∇ × E = 0 in Ω × I, (1d)

where F is the applied electrical force, 𝜌 is the charge density, and I = (0, 𝑇] is the
time interval. In addition, 𝛼 and 𝛽 are the dielectric and magnetic permeabilities, and 𝜒
is the conductivity constant. Considering an arbitrary frequency 𝜔, with respect to time,
the electric and magnetic fields can be represented as follows

E(𝑥, 𝑡) = 𝑒−𝑖𝜔𝑡𝑬 (𝑥), (2a)

Ĥ (𝑥, 𝑡) = 𝑒−𝑖𝜔𝑡𝑯(𝑥), (2b)
F (𝑥, 𝑡) = 𝑒−𝑖𝜔𝑡𝑭(𝑥). (2c)

Replacing (2a) and (2b) into (1c) and (1d), we obtain
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−∇ × 𝑯 − 𝑖𝜔𝜁𝑬 = F(𝑥) in Ω, (3a)
∇ × 𝑬 − 𝑖𝜔𝛽𝑯 = 0 in Ω, (3b)

where 𝜁 := 𝛼 + 𝑖𝜒/𝜔. Also, we consider a perfect conduction boundary condition (we
surround Ω by a perfect bounded material i.e., 𝐸 × 𝒏 = 0). Therefore, we have the
following second-order operator for (3)

L𝑬 := ∇ × (𝛽−1∇ × 𝑬) − 𝜅𝑬 = 𝑱𝑆 in Ω, (4)

where 𝜅 := 𝜔2𝜁 and 𝑱𝑆 := −𝑖𝜔𝑭.

2.1 Discretization by edge elements

To present a Galerkin weak formulation for (4), we denote by 𝑳2 (Ω) as the space of
vector field with three entries from 𝐿2 (Ω), i.e.,

𝑳2 (Ω) :=
{
U = (𝑈1,𝑈2,𝑈3) : 𝑈𝑖 ∈ 𝐿2 (Ω), 𝑖 = 1, 2, 3

}
,

with 〈· , ·〉 as the inner product on this space, and continue with defining the following
space

𝑯(curl,Ω) :=
{
U ∈ 𝑳2 (Ω) : ∇ × U ∈ 𝑳2 (Ω)

}
,

equipped with the norm

‖U‖2𝑯 (curl,Ω) := ‖U‖2
𝑳2 (Ω) + ‖∇ × U‖2

𝑳2 (Ω) .

Considering homogeneous Dirichlet boundary conditions, the space 𝑯0 (curl,Ω) ⊂
𝑯(curl,Ω) is introduced as follows

𝑯0 (curl,Ω) := {U ∈ 𝑳2 (Ω) : ∇ × U ∈ 𝑳2 (Ω), U × n = 0 on Γ}.

Then, the weak formulation for (4) can be written as : find 𝑬 ∈ 𝑯0 (curl,Ω)

𝑎(𝑬,Φ) := 〈∇ × 𝑬,∇ ×Φ〉 − 𝜅 〈𝑬,Φ〉 = 〈𝑱𝑆 ,Φ〉 ∀Φ ∈ 𝑯0 (curl,Ω). (5)

Here, we should note that 𝜅 is not an eigenvalue of the operator ∇ × ∇× [13, Corol-
lary 4.19], in addition we have 𝜅 ≠ 0, and we set 𝛽 = 1. The existence of the unique
solution for the variational formulation (5) is proven in [10, Thm. 5.2], and the following
a priori estimate is obtained

‖𝑬‖𝑯 (curl,Ω) ≤ 𝐶∗ ‖𝑱𝑆 ‖𝐿2 (Ω) , (6)

where 𝐶∗ depends on Ω as well as 𝜅.
For the discretization, we consider quasi-uniformmesh simplicesT = {𝑇1, . . . , 𝑇𝑁T },

where 𝑇𝑗 ∈ T are open elements and denote ℎ := max𝑇𝑗 ∈T diam(𝑇𝑗 ). We assume T is
a Ciarlet-regular mesh, i.e., it does not contain any hanging nodes. We also assume there
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is 𝛾 > 0 such that diam(𝑇ℓ) ≤ 𝛾 |𝑇ℓ |1/3 for all 𝑇ℓ ∈ T . In order to present the Galerkin
FEM for (5), we consider lowest order Nédélec’s curl-conforming elements of the first
kind, i.e.,

Vℎ := {vℎ ∈ 𝑯(curl,Ω) : vℎ |𝑇 ∈ N0 (𝑇) ∀𝑇 ∈ T },
Vℎ,0 := Vℎ ∩ 𝑯0 (curl,Ω),

where for all 𝑇 ∈ Tℎ , the lowest order local Nédélec space of the first kind N0 (𝑇) is
defined as [13]

N𝑜 (𝑇) = {𝒂 + 𝒃 × x : 𝒂, 𝒃 ∈ R3, x ∈ 𝑇}.

We denote Yℎ := {Φ1, . . . ,Φ𝑁 } as a basis with 𝑁 as the dimension of Vℎ,0. This basis
is uniquely defined by the property 𝜎(Φ𝑖 , 𝑒 𝑗 ) = 𝛿𝑖 𝑗 , where 𝑒 𝑗 denotes an interior edge
of the mesh and 𝜎(𝑝, 𝑒) is the line integral of the tangential component of 𝑝 along 𝑒.
Then, the Galerkin FEM for (5) is given as: Find 𝑬ℎ ∈ Vℎ,0 such that

𝑎(𝑬ℎ ,Φℎ) = 〈𝑱𝑆 ,Φℎ〉 ∀Φℎ ∈ Vℎ,0. (7)

This is equivalent to solve the following system

A𝑥 = 𝑏, where A = [A𝑖 𝑗 ]𝑁𝑖, 𝑗=1 with A𝑖 𝑗 := 𝑎(Φ𝑖 ,Φ 𝑗 ), Φ 𝑗 , Φ𝑖 ∈ Yℎ , (8)

and the right hand side vector 𝑏 is defined as 𝑏 𝑗 :=
〈
𝑱𝑆 ,Φ 𝑗

〉
, 𝑗 ∈ {1, 2, . . . , 𝑁}.

3 H-matrices and H-matrix arithmetic

H -matrices are defined based on a partition 𝑃 generated from a clustering algorithm
that allows us to determine which blocks can be approximated by low-rank matrices or
are small [7].
ApplyingH -matrix approximations allows us to store large matrices in the format of

low-rank block-wise matrices which could lead to logarithmic-linear storage complexity
provided that a proper method is used to define the hierarchical structure that results in
the final block-wise format of the matrix. In the following lemma from [5], it is shown
that the inverse of theGalerkinmatrixA (8) can be approximated using anH -matrix, and
proven that this approximation converges exponentially with respect to the maximum
block rank to A.

Definition 1 [H -matrices] A matrix BH ∈ C𝑁×𝑁 is called an H -matrix, if for every
admissible block (𝜏, 𝜎), we have the following factorization

BH |𝜏×𝜎 = X𝜏𝜎Y𝐻
𝜏𝜎 ,

of rank 𝑟 where X𝜏𝜎 ∈ C𝜏×𝑟 and Y𝜏𝜎 ∈ C𝜎×𝑟 .
In order to use the inverse of theH -matrix approximation ofA as a preconditioner, first,
we need to find anH -matrix approximation for A, then we obtain the inverse using the
iterative method of Schulz [8].
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Lemma 1 ([5]) Let A be the Galerkin matrix defined in (8). Then, there exists an
H -matrix approximation BH with the maximum block rank 𝑟 (rank of all the blocks
of BH is either smaller than or equal to 𝑟) such that

A−1 − BH




2 ≤ 𝐶̄ℎ−1𝑒−𝑐 (𝑟

1/4/ln 𝑟 ) ,

where 𝐶̄ and 𝑐 are constants depending only on material parameters, and the properties
of Ω.

In the definition ofH -matrices, the low-rank blocks are determined based on the concept
of 𝜂-admissibility defined in [7]. In the following, the mathematical definition of an
H -matrix is given.
Although computing the inverse of the H -matrix approximation of the Galerkin

system matrix leads to logarithmic-linear complexity, the computational cost to solve
the linear system directly is still too high. Thus, we need to use another alternative to
reduce the numerical cost such as theH −𝐿𝑈 factorization. In the following, we present
an algorithm from [1, Sec. 2.9], and use it as a preconditioner to solve the linear systems.

Algorithm 1 H − 𝐿𝑈 decomposition and application in preconditioning of a simple
iterative solver for (7).

1) Compute the H-matrix approximation of A, i.e., AH

2) Compute the H- matrix 𝐿𝑈 decomposition of AH as follows

1) for 𝑗 = 1, . . . , 𝑁

for 𝑘 = 1, . . . , 𝑗 − 1

Solve the system
𝑘∑︁
𝑖=1

𝐿 𝑗𝑖𝑈𝑖𝑘 = (AH) 𝑗𝑘 to get 𝐿 𝑗𝑘 .

2) Compute 𝐿 𝑗 𝑗 and𝑈 𝑗 𝑗 by 𝐿 𝑗 𝑗𝑈 𝑗 𝑗 = 𝐴 𝑗 𝑗 −
𝑗−1∑︁
𝑖=1

𝐿 𝑗𝑖𝑈𝑖 𝑗 .

3) for 𝑘 = 𝑗 + 1, . . . , 𝑁

Solve the system
𝑗∑︁

𝑖=1
𝐿 𝑗𝑖𝑈𝑖𝑘 = (AH) 𝑗𝑘 to get𝑈 𝑗𝑘 .

3) for 𝑖 = 1, . . . ,MaxIt

Compute 𝑟 = 𝑏 − A 𝑥 and err=‖𝑟 ‖2 /‖𝑏 ‖2
Compute 𝑥 = 𝑥 +𝑈−1 (𝐿−1 𝑟

)
.

if err < TOL break

4) Compute error = ‖A 𝑥 − 𝑏 ‖2.
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4 Main algorithm and numerical experiments

In this section, we first present the main algorithm of this work, and then we study three
numerical examples to solve the linear system arising from the Maxwell equations using
anH -matrix approximation as a preconditioner. For this, we employ the geometrically
balanced cluster tree presented in [6], and we set the admissibility parameter 𝜂 = 2.
We use a truncated singular value decomposition (SVD) with different ranks 𝑟 to com-
pute BH as the inverse of AH obtained from the Schulz iteration. In other words, for
admissible blocks (𝜏, 𝜎), we have AH |𝜏×𝜎 := U𝑟S𝑟V𝑇

𝑟 where U𝑟 ∈ R𝜏×𝑟 , S𝑟 ∈ R𝑟×𝑟
and V𝑟 ∈ R𝜎×𝑟 are the first 𝑟 columns of U, S and V, respectively. Then, we find the
inverse BH for the matrix AH .

4.1 Example 1: a unit box

The geometry is Ω = (0, 1)3 and 𝑱𝑆 = [0, 0, 1]>. The coarse mesh consists of 6 tetra-
hedrons. This mesh is uniformly refined 𝑘 times, 𝑘 = 2, . . . , 7. All computations are
performed in MATLAB with 125 cores. Table 1 displays the iteration numbers of the
preconditioned GMRES method with the describedH -matrix preconditioner for differ-
ent values of 𝜅. The GMRES method is stopped if a relative accuracy of 𝑇𝑂𝐿 = 10−5
of the residual is reached. In all experiments, the parameter 𝛽 = 1 is chosen. After 100
iterations, we restart GMRES. The results show that the H -matrices can be used as an
efficient preconditioner if 𝜅 ≤ 202. For higher frequencies, the iteration numbers grow
in some, but not all levels 𝑘 . This is due to the computation of the 𝐿𝑈 decomposition
of theH -matrix. The approximation of the original matrix by theH -matrix is still very
good, also in the case of 𝑘 = 5 and 𝜅 = 900.

Table 1 GMRES iterations numbers for Example 1.

𝜅 𝑁dof 25 100 225 400 625 900
𝑘 = 2 98 1 1 1 1 1 1

𝑘 = 3 604 2 2 2 2 2 2

𝑘 = 4 3 184 2 4 5 5 4 3

𝑘 = 5 41 024 3 4 8 9 11 > 3000

𝑘 = 6 238 688 3 6 20 4 48 25

𝑘 = 7 1 807 264 4 5 7 19 46 93

4.2 Example 2: two boxes

Here the geometry consists of two boxes, i.e., Ω := (−1, 1) × (−1, 1) × [−1,−2) ∪
(−2, 2) × [1, 2) × (−1, 1) ∪ (−2, 2) × [−1, 1] × [−1, 1] ∪ (−1, 1) × (−1, 1) × [1, 2) ∪
(−2, 2) × [−1, 2) × (−1, 1). We set the parameters 𝜅 = 1, 𝑱𝑆 = [1, 1, 1]>, and 𝛽 = 1.
The computational domain with and the inverse of H -matrix approximation of the
stiffness matrix is shown in Figure 1. We have 24 440 admissible blocks, 48 404 small
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Fig. 1 Example 2. The computational geometry (left) and the inverse of H-matrix approximation of
the stiffness matrix (7) H-matrix clustering (right) for 𝑁dof = 22 001.

Fig. 2 Approximation error of 𝐵H in Example 2 for a stiffness matrix with 𝑁dof = 22 001 (left) and
the relative allocated memory (right).

blocks and the depth is 16. The decay of the approximation error versus 𝑟 and the
corresponding allocated memory are shown in Figure 2. As shown, using higher 𝑟 gives
rise to a reliable inverse of theH -matrix approximation. The computed BH can be used
as a preconditioner to solve the linear system (7) directly.

4.3 Example 3: a magnet surrounded by air

We consider a magnet surrounded by air where the box is 1 × 1 × 1 and the magnet
dimension is 0.5 × 0.5 × 0.75. We set 𝜅 = 10, 𝛽 = 10 and 𝑱𝑆 = [10, 10, 10]>. The
geometry and the H -approximation of A for 𝑁dof = 122 202 is shown in Figure 3. In
this approximation, we have 215 964 admissible blocks, 402 451 small blocks, and the
depth is 15. TheH−LU decomposition ofA is given in Figure 4.We use Algorithm 1 for
different 𝑁dof to solve the linear system. Table 2 shows the results for different matrices
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Fig. 3 Example 3. The computational geometry (left) and H-matrix approximation of A for 𝑁dof =
122 202 (right).

Fig. 4 The H-LU decomposition for the stiffness matrix resulting from Example 3 corresponding to
Figure 3.

Table 2 The iterative solver preconditioned by H − 𝐿𝑈 used to solve the Maxwell equations for
different 𝑁dof.

𝑁dof 5 492 8 050 13 602 33 933 48 811 70 133 78 603 96 846 129 200 304 309
error 7.22 e -9 1.07 e -9 5.80e-9 2.23e-8 5.11e-8 9.06e-8 5.98e-10 4.38e-10 5.04e-10 5.78e-9

time [s] 11.52 35.24 60.52 151.71 256.18 546.9 602.73 481 820.9 2335

iterations 3 3 3 3 4 4 5 5 6 7

using 𝑇𝑂𝐿 = 1 × 10−8. For all cases, the negligible error indicates the accuracy the
method, and the elapsed CPU time points out its efficiency. For the last two examples, we
usedNetgen/ngsolve [16] to produce themeshes (denoting different 𝑁dof) and assembling
the matrices of (7).
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5 Conclusion

In this work, theH -matrix approximation was used to solve the time-harmonicMaxwell
equations. As a direct solver, the inverse of the hierarchical matrix approximation of the
linear system was employed as a preconditioner, where an accurate approximation was
achieved. Additionally, we then employed anH − 𝐿𝑈 factorization as a preconditioner.
In both cases, the use of H matrix approximations could reduce the computational

cost and increase the accuracy of the solution. The H matrices can be coupled with
the domain decomposition to take advantage of both approaches, i.e., to reduce the
complexity and accelerate the convergence of the iterative solvers. This possibility will
be addressed in the future papers.
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Convergence Bounds for Parareal with Spatial
Coarsening

Aušra Pogoželskytė and Martin J. Gander

1 Introduction

In the times of exascale computing, very efficient algorithms for space parallelism
exist and communication between processors has become a bottleneck; parallelism
in the time dimension is necessary. The Parareal algorithm [10] allows us to do this
in a non-intrusive fashion. However, it is limited by the sequential nature of its coarse
operator. A solution would be to consider a multilevel version of Parareal such as
Multigrid Reduction in Time (MGRIT) [3], but it also suffers from scalability issues
due to coarsening only in the time dimension. There are some algorithms that are
scalable such as the Space-Time Multigrid algorithm of Gander and Neumüller [8],
but they are more intrusive.
Parareal with spatial coarsening offers a solution that would be both scalable and

non-intrusive. It has been first introduced in [4] in order to preserve the stability of the
scheme while solving the Navier-Stokes equations, but it has only been numerically
studied in [11].
Many bounds for Parareal exist [5, 7, 9], but they do not provide useful information

in the case where spatial coarsening is used, or have assumptions that cannot be
satisfied such as simultaneous diagonalizability in [2, 12]. We present here two
convergence bounds for Parareal with spatial coarsening, and illustrate our results
using the heat equation.

Aušra Pogoželskytė, Martin J. Gander
University of Geneva, rue du Conseil-Général 7-9, Geneva, e-mail: ausra.pogozelskyte@unige.ch,
martin.gander@unige.ch
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2 Parareal with spatial coarsening

Let 𝐴 ∈ R𝑛𝑥×𝑛𝑥 be a matrix coming from a uniform 𝑛𝑥 point spatial discretization of
a partial differential equation and define 𝑓 : R→ R𝑛𝑥 to be a source term. Consider
the initial value problem,

𝑦′(𝑡) = 𝐴 𝑦(𝑡) + 𝑓 (𝑡), 𝑡 ∈ (0, 𝑇], 𝑦(0) = 𝑦0 . (1)

Note that the assumptions on the linearity of the problem and the time independence
of 𝐴 are only necessary to facilitate the analysis. The problem (1) can be then
discretized in time on a uniform 𝑛𝑡 + 1 point mesh using a one-step method. This
results in the time-stepping iteration,

𝑦𝑛+1 = Φ 𝑦𝑛 + 𝑓𝑛, 𝑛 = 0, . . . , 𝑛𝑡 . (2)

Now, coarsen the spatial and time mesh by a factor of 𝑚𝑥 and 𝑚𝑡 such that the
fine mesh can be seen as a refinement of the coarse mesh. Define 𝑢 and 𝑔 to be the
restrictions of 𝑦 and 𝑓 to the coarse grid. Proceeding in the sameway, a time-stepping
iteration can be defined on the coarse mesh,

𝑢𝑛+1 = Ψ 𝑢𝑛 + 𝑔𝑛, 𝑛 = 0, . . . , 𝑛𝑡/𝑚𝑡 , (3)

where Ψ is an operator depending on the coarse time-step and the spatial discretiza-
tion matrix of the coarse problem. Define also the operators 𝐹 := Φ𝑚𝑡 and 𝐺 := Ψ.

Example: Discretization of the heat equation

Consider the one-dimensional heat equation,
𝜕𝑡 𝑦(𝑥, 𝑡) = 𝑐2𝜕𝑥𝑥𝑦(𝑥, 𝑡) + 𝑓 (𝑥, 𝑡) , (𝑥, 𝑡) ∈ (0, 𝐿) × (0, 𝑇],
𝑦(𝑥, 0) = 𝑦0 (𝑥) , 𝑥 ∈ (0, 𝐿),
𝑦(0, 𝑡) = 𝑦(𝐿, 𝑡) = 0 , 𝑡 ∈ (0, 𝑇] .

(4)

Denote {𝑥𝑖}𝑛𝑥

𝑖=0 and {𝑋 𝑗 }𝑁𝑥

𝑗=0 to be fine and coarse discretizations of [0, 𝐿] such that
𝑥𝑖 = 𝑖Δ𝑥 and 𝑋 𝑗 = 𝑗𝑚𝑥Δ𝑥 where Δ𝑥 = 𝐿/𝑛𝑥 and 𝑛𝑥 = 𝑚𝑥𝑁𝑥 . This leads to a system
of the form (1) where 𝐴 and 𝐴Δ are discrete Laplacians on the fine and coarse grids,

𝐴 :=
𝑐2

Δ𝑥2

©­­­­«
−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1

ª®®®®¬
, 𝐴Δ :=

𝑐2

(𝑚𝑥Δ𝑥)2

©­­­­«
−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1

ª®®®®¬
.

Using a Runge-Kutta method whose stability function is given by 𝑅, one gets the
operators 𝐹 = 𝑅(Δ𝑡𝐴)𝑚𝑡 and 𝐺 = 𝑅(𝑚𝑡Δ𝑡𝐴Δ).
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The time stepping (2) can be parallelized in the time dimension using the Parareal
algorithm with spatial coarsening. It was first introduced by Fischer, Hecht and
Maday in [4] in order to preserve the stability of their numerical schemewhen solving
the Navier-Stokes equations using Parareal as well as reducing the serial overhead
of the coarse operator. Define 𝐼 ∈ R𝑛𝑥×𝑁𝑥 and 𝑅 ∈ R𝑁𝑥×𝑛𝑥 to be interpolation and
restriction operators. The algorithm is initialized as

𝑌00 = 𝑦0 , 𝑌0𝑛 = (𝐼 𝐺 𝑅)𝑌0𝑛−1 , 𝑛 = 1, . . . , 𝑁𝑡 (5)

and its 𝑘th iteration is given by

𝑌 𝑘
0 = 𝑦0 , 𝑌 𝑘

𝑛 = 𝐹 𝑌 𝑘−1
𝑛−1 − (𝐼 𝐺 𝑅)𝑌 𝑘−1

𝑛−1 + (𝐼 𝐺 𝑅)𝑌 𝑘
𝑛−1 , 𝑛 = 1, . . . , 𝑁𝑡 (6)

Remark 1 The iteration (6) is the same as traditional Parareal, except that the coarse
operator 𝐺 := 𝐼𝐺𝑅 is used. This means, in particular, that properties such as finite
time convergence [6, Theorem5] are conserved. The finite time convergence property
states that the algorithm will converge in the worst case at iteration 𝑘 = 𝑁𝑡 .

3 Analysis of parareal with spatial coarsening

To get insight on the convergence of the algorithm, we will investigate how it
behaves for each spatial mode of the error. Therefore, the spatial dimension will be
transformed in a Fourier basis, leaving the time dimension as is. For simplicity of
the analysis, we will assume that the coarsening factor in space is 𝑚𝑥 = 2.

3.1 Derivation of the error propagation operator

The first step of the analysis is to derive the error propagation operator. Let 𝑌𝑛 be
the fine solution of (1) and 𝑒𝑘𝑛 = 𝑌𝑛 − 𝑌 𝑘

𝑛 denote the error of the Parareal algorithm.
Then, the error verifies the recurrence relation

𝑒𝑘+1𝑛+1 = 𝐹 𝑌𝑛 − 𝐹 𝑌 𝑘
𝑛 + (𝐼 𝐺 𝑅)𝑌 𝑘

𝑛 − (𝐼 𝐺 𝑅)𝑌 𝑘+1
𝑛 + (𝐼 𝐺 𝑅)𝑌𝑛 − (𝐼 𝐺 𝑅)𝑌𝑛

= (𝐹 − 𝐼 𝐺 𝑅) 𝑒𝑘𝑛 + (𝐼 𝐺 𝑅) 𝑒𝑘+1𝑛 . (7)

Let 𝒆𝑘 := [𝑒𝑘0 , . . . , 𝑒
𝑘
𝑛𝑡
]> be the vector of the errors at iteration 𝑘 for all time

steps. Define Γ−𝑖 to be a matrix with ones on its 𝑖th subdiagonal and zeros elsewhere.
Then, the relation (7) can be written as the linear system

(𝐼𝑡 ⊗ 𝐼𝑥 − Γ−1 ⊗ (𝐼 𝐺 𝑅)) 𝒆𝑘+1 = (Γ−1 ⊗ (𝐹 − 𝐼 𝐺 𝑅)) 𝒆𝑘 , (8)
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which can be solved to get the iteration 𝒆𝑘+1 = 𝐸 𝒆𝑘 . The matrix 𝐸 is called the error
propagation operator and describes the evolution of the error between two iterations
for all time (and space) steps.

Lemma 1 The error propagation operator 𝐸 is given by

𝐸 =

(
𝑛𝑡−1∑︁
𝑖=0

Γ−𝑖−1 ⊗ (𝐼 𝐺 𝑅)𝑖
)
(𝐼𝑡 ⊗ (𝐹 − 𝐼 𝐺 𝑅)) .

Proof The result is obtained by direct computation, see [1, Lemma 2.1] for similar
computations. �

3.2 Analysis of the error propagation operator in Fourier space

Let 𝑈 ∈ R𝑛𝑥×𝑛𝑥 be a basis that diagonalizes the fine operator 𝐹. The columns of
the matrix 𝑈 will be referred to as modes and can be further split into low and high
frequency modes 𝑢̌𝜅 and 𝑢̂𝜅 . Low modes are defined to be the modes that can be
well represented on the considered mesh, and high modes those who can not.
When considering coarsening in space, the issue of aliasing arises, see Figure 1.

That means that there are pairs of low and high frequency modes {𝑢̌𝜅 , 𝑢̂𝜅 } that are
mapped to the same coarse mode 𝑢𝜅 on the coarse grid. Those pairs are said to be
harmonic of each other. We can define the space of harmonics as the space spanned
by pairs of such modes (see [13] for a more detailed discussion).
Assume that the transfer operators 𝑅 and 𝐼 keep the spaces of harmonics invari-

ant1. Then, there exist symbols 𝜄𝜅 , 𝜄𝜅 , 𝑟𝜅 and 𝑟𝜅 such that

𝑅𝑢̌𝜅 = 𝑟𝜅𝑢𝜅 , 𝑅𝑢̂𝜅 = 𝑟𝜅𝑢𝜅 , 𝐼𝑢𝜅 = 𝜄𝑢̌𝜅 + 𝜄𝑢̂𝜅 .

Likewise, under our hypothesis on the coarse grid, the coarse modes 𝑢𝜅 will
diagonalize the operator 𝐺,

𝐺𝑢𝜅 = 𝜇𝜅𝑢𝜅 , 𝐹𝑢̌𝜅 = 𝜆̌𝜅 𝑢̌𝜅 , 𝐹𝑢̂𝜅 = 𝜆̂𝜅 𝑢̂𝜅 .
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Fig. 1 Example of aliasing for the heat equation with 𝑛𝑥 = 7. Points on the fine and coarse grid
intersect the dotted and continuous lines. One can observe pairs of modes: one low (blue) and one
high (orange), that get mapped to a single coarse mode on the coarse grid.

1 This is true for common Multigrid transfer operators, see [13].
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Example: Modes and Fourier symbols for the heat equation

For the heat equation (4), due to Dirichlet boundary conditions, the fine operator is
diagonalized by a basis of sines, thus the columns of𝑈 are given by

𝑢𝜅 (𝑥) = sin
( 𝜅𝜋𝑥

𝐿

)
, 𝑥 ∈ {𝑥 𝑗 }𝑛𝑥

𝑗=0, 𝜅 = 1, . . . , 𝑛𝑥 .

The corresponding low (coarse) and high modes are for 𝜅 = 1, . . . , 𝑁𝑥

𝑢̌𝜅 (𝑥) = sin
( 𝜅𝜋𝑥

𝐿

)
≡ 𝑢𝜅 (𝑥) , 𝑢̂𝜅 (𝑥) = sin

(
(𝑛𝑥 − 𝜅)𝜋𝑥

𝐿

)
≡ 𝑢𝑛𝑥−𝜅 (𝑥) .

Consider linear interpolation and full-weighting restriction, defined as

(𝑅𝐹𝑊 𝑢) 𝑗 =
1
4
(𝑢2 𝑗−1 + 2𝑢2 𝑗 + 𝑢2 𝑗+1), 𝑗 = 0, . . . , 𝑛/2 − 1 ,

(𝐼𝑙𝑖𝑛𝑣) 𝑗 =
{
𝑣 𝑗/2 if 𝑗 is even,
1
2 (𝑣( 𝑗−1)/2 + 𝑣( 𝑗+1)/2) if 𝑗 is odd.

Then the associated Fourier symbols are given by

𝜄𝜅 = 𝑟𝜅 =
1
2
(1 + cos(𝜋𝑥/𝐿)) , 𝜄𝜅 = 𝑟𝜅 =

1
2
(1 − cos(𝜋𝑥/𝐿)) .

Lemma 2 The error propagation operator keeps the space of harmonics invariant.

Proof By Lemma 1, the error propagation operator depends on the fine and coarse
propagators 𝐹 and𝐺 as well as on the transfer operators 𝑅 and 𝐼, and powers thereof.
Indeed,

𝐼𝐺𝑅𝑢̌𝜅 = 𝐼𝐺𝑟𝜅𝑢𝜅 = 𝐼𝜇𝜅𝑟𝜅𝑢𝜅 = 𝜄𝜅𝜇𝜅𝑟𝜅 𝑢̌𝜅 + 𝜄𝜅𝜇𝜅𝑟𝜅 𝑢̂𝜅 ,

𝐼𝐺𝑅𝑢̂𝜅 = 𝐼𝐺𝑟𝜅𝑢𝜅 = 𝐼𝜇𝜅𝑟𝜅𝑢𝜅 = 𝜄𝜅𝜇𝜅𝑟𝜅 𝑢̌𝜅 + 𝜄𝜅𝜇𝜅𝑟𝜅 𝑢̂𝜅 .

This can be summarized as

𝐼𝐺𝑅[𝑢̌𝜅 , 𝑢̂𝜅 ] = [𝑢̌𝜅 , 𝑢̂𝜅 ]𝜇𝜅

(
𝜄𝜅𝑟𝜅 𝜄𝜅𝑟𝜅
𝜄𝜅𝑟𝜅 𝜄𝜅𝑟𝜅

)
=: [𝑢̌𝜅 , 𝑢̂𝜅 ]𝜇𝜅Π𝜅 . (9)

Similarly, we can write an analog expression for the fine operator 𝐹,

𝐹 [𝑢̌𝜅 , 𝑢̂𝜅 ] = [𝑢̌𝜅 , 𝑢̂𝜅 ]
(
𝜆̌𝜅 0
0 𝜆̂𝜅

)
=: [𝑢̌𝜅 , 𝑢̂𝜅 ]Λ𝜅 . (10)

Thus, as the space of harmonics is invariant for the operators 𝐼𝐺𝑅 and 𝐹, it is also
invariant for the error propagation operator. �
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Lemma 2 says that the error propagator 𝐸 can be transformed in the Fourier space
to an operator that is diagonal by blocks, where each block is given by

𝐸𝜅 =

(
𝑛𝑡−1∑︁
𝑖=0

Γ−𝑖−1 ⊗ (𝜇𝜅Π𝜅 )𝑖
)
(𝐼𝑡 ⊗ (Λ𝜅 − 𝜇𝜅Π𝜅 )) . (11)

Denote by 𝑒𝑘𝑛 (𝜅) the error at time-step 𝑛 and iteration 𝑘 of Parareal in Fourier
space for the wavenumber 𝜅 and its corresponding high frequency mode. Using the
relationship (11), we can get a relationship on the pairs of harmonics that can be
bounded in the 2-norm as

‖𝑒𝑘+1𝑛+1 (𝜅)‖2 = ‖Λ𝜅 − 𝜇𝜅Π𝜅 ‖2‖𝑒𝑘𝑛 (𝜅)‖2 + ‖𝜇𝜅Π𝜅 ‖2 ‖𝑒𝑘+1𝑛 (𝜅)‖2 . (12)

To shorten the notation, we will omit 𝜅 in 𝑒𝑘𝑛 (𝜅) and refer to it as 𝑒𝑘𝑛, and all the
norms in what follows will be 2-norms, i.e. ‖ · ‖ := ‖ · ‖2.

Theorem 1 (Linear bound)
Let Λ𝜅 and 𝜇𝜅Π𝜅 be defined as in (9) and (10). Then, for a given wavenumber 𝜅,

the error of Parareal with spatial coarsening in Fourier space is bounded as

max
1≤𝑛≤𝑁𝑡

‖𝑒𝑘+1𝑛 ‖ ≤ 1 − ‖𝜇𝜅Π𝜅 ‖𝑁𝑡

1 − ‖𝜇𝜅Π𝜅 ‖
‖Λ𝜅 − 𝜇𝜅Π𝜅 ‖ max

1≤𝑛≤𝑁𝑡

‖𝑒𝑘𝑛 ‖ . (13)

Proof Let 𝛼 = ‖Λ𝜅 − 𝜇𝜅Π𝜅 ‖2 and 𝛽 = ‖𝜇𝜅Π𝜅 ‖2. Using iteration (12) and iterating
on the term ‖𝑒𝑘+1𝑛 ‖ yields

‖𝑒𝑘+1𝑛+1‖ ≤ 𝛼‖𝑒𝑘𝑛 ‖ + 𝛽
(
𝛼‖𝑒𝑘𝑛−1‖ + 𝛽‖𝑒𝑘+1𝑛−1‖

)
≤ . . . ≤

𝑛−1∑︁
𝑖=0

𝛽𝑖𝛼‖𝑒𝑘𝑛−𝑖 ‖ + 𝛽𝑛‖𝑒𝑘+10 ‖ .

As the error at the initial time step is 𝑒𝑘+10 = 0, we have 𝑒𝑘+10 = 0. Taking the
maximum over 𝑛 and using the closed form of geometric series concludes the proof.

Remark 2 One can notice that (13) is very similar to the bound found in [2] where no
spatial coarsening is considered. The only addition is this matrix Π𝜅 which accounts
for the effect of transfer operators on the Fourier modes.

Remark 3 Note that in Theorem 1 the inequality step is due to the submultiplicative
property of the matrix norm and the fact that

‖(𝜇𝜅Π𝜅 )𝑖 ‖ ≤ ‖𝜇𝜅Π𝜅 ‖𝑖 . (14)

However, the inequality (14) is an equality, as Π𝜅 is a rank one matrix. Indeed, there
exists a matrix Π0 such that Π𝑘 = tr(Π)𝑘Π0. In our case, Π0 := 1

tr(Π)Π.
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Lemma 3 (Theorem 2.10 in [7])
Let 𝛼, 𝛽 ∈ R, then the recurrence relation 𝑒𝑘+1

𝑛+1 ≤ 𝛼𝑒𝑘𝑛 + 𝛽𝑒𝑘+1𝑛 implies

𝑒𝑘𝑛+1 ≤
𝛼𝑘

(𝑘 − 1)!

𝑛−𝑘∑︁
𝑖=0

𝑘−1∏
𝑙=1

(𝑖 + 𝑙)𝛽𝑖 max
𝑛

𝑒0𝑛 . (15)

Theorem 2 (Superlinear bound)
LetΛ𝜅 and 𝜇𝜅Π𝜅 be defined as in (9) and in (10). Then, for a given wavenumber 𝜅,

the error of Parareal with spatial coarsening in Fourier space is bounded by

‖𝑒𝑘𝑛+1‖ ≤ ‖Λ𝜅 − 𝜇𝜅Π𝜅 ‖𝑘
(𝑘 − 1)!

𝑁𝑡−𝑘∑︁
𝑖=0

𝑘−1∏
𝑙=1

(𝑖 + 𝑙) ‖𝜇𝜅Π𝜅 ‖𝑖 max
𝑛

‖𝑒0𝑛‖ .

Proof From (12) and setting 𝛼 = ‖Λ𝜅 − 𝜇𝜅Π𝜅 ‖ and 𝛽 = ‖𝜇𝜅Π𝜅 ‖, we obtain the
relationship in Lemma 3, which concludes the proof. �

Remark 4 As we have a bound for the error in Fourier space, we can deduce a bound
for the error in the real space 𝑒𝑘𝑛. Indeed, by the discrete equivalent of the Perseval
theorem, we get

‖𝑒𝑘𝑛 ‖22 =
1
𝑛𝑥

𝑛𝑥∑︁
𝜅=1

|𝑒𝑘𝑛 |2 =
1

𝑚𝑥𝑁𝑥

𝑁𝑥∑︁
𝜅=1

( |𝑒𝑘𝑛 |2 + |𝑒𝑘𝑛 |2) =
1

𝑚𝑥𝑁𝑥

𝑁𝑥∑︁
𝜅=1

‖𝑒𝑘𝑛 ‖22 ,

where the second equality is obtained by splitting the error modes into high and low
frequencies, and the third by grouping them into pairs. In particular,

‖𝑒𝑘𝑛 ‖2 ≤
1
𝑚𝑥

max
𝜅

‖𝑒𝑘𝑛‖2 .

Weshow in Figure 2 a numerical illustration of the linear and superlinear bounds from
Theorem 1 and Theorem 2. We see that our convergence bounds for Parareal with

Fig. 2 Numerical error for
Parareal with spatial coarsen-
ing, and linear (Theorem 1)
and superlinear (Theorem 2)
convergence bounds. The nu-
merical errors are measured
in the 2-norm in space and
∞-norm in time when solv-
ing the heat equation with
𝑛𝑥 = 𝑛𝑡 = 200, 𝑚𝑥 = 2,
𝑚𝑡 = 10 on [0, 10−1 ].
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spatial coarsening are indeed capturing the convergence behavior of the algorithm.
Our results are thus an important step for fully understanding Parareal with spatial
coarsening. In particular, they emphasize the crucial role of transfer operators in the
convergence of the algorithm, through the matrix Π.
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Three-Level NOSAS Preconditioners

Yi Yu and Marcus Sarkis

1 The standard NOSAS preconditioners
The nonoverlapping spectral additive Schwarz methods (NOSAS) were first intro-
duced as two-level domain decomposition preconditioners [5, 6] designed to solve
symmetric positive definite and sparse linear system 𝐴𝑥 = 𝑏 arising from highly
heterogeneous coefficients. NOSAS are of the nonoverlapping Schwarz type, and the
subdomain interactions are via the coarse problem. NOSAS preconditioners have
the following form

𝑀−1
NOSAS = 𝑅

𝑇
0 𝐴

−1
0 𝑅0︸     ︷︷     ︸

Coarse Level

+
𝑁∑︁
𝑖=1

𝑅𝑇𝑖 𝐴
−1
𝑖 𝑅𝑖︸          ︷︷          ︸

First Level

, (1)

where 𝑅𝑖 are restriction matrices fromΩ to the nonoverlapping open subdomainsΩ𝑖 .
We require each subdomain to be the union of elements with nodes on the boundaries
of neighboring subdomains matching across the interface. 𝐴𝑖 = 𝑅𝑖𝐴𝑅𝑇𝑖 are the local
Dirichlet solvers onΩ𝑖 , and 𝐴0 is the coarsematrix corresponding to the global coarse
bilinear form on the interface Γ := ∪𝑁

𝑖=1Γ𝑖 = ∪𝑁
𝑖=1 (𝜕Ω𝑖\𝜕Ω). 𝐴0 can be constructed

as "exact" with 𝐴0 = 𝑅0𝐴𝑅𝑇0 or as "inexact" with different choices of 𝐵
(𝑖)
ΓΓ
to obtain

better scalability property; see [6]. 𝑅𝑇0 is the global extension operator, which is the
sum of a discrete a-harmonic extension of the low-frequency eigenfunctions and a
low-cost extension for the high-frequency eigenfunctions inside each subdomain. The
eigenfunctions are obtained locally and in parallel from the following generalized
eigenvalue problem in each subdomain, (Cf. eq. (3.7) in [1] and eq. (7.3) in [2])

𝑆 (𝑖)𝜉 := (𝐴(𝑖)
ΓΓ

− 𝐴(𝑖)
Γ𝐼
(𝐴(𝑖)

𝐼 𝐼
)−1𝐴(𝑖)

𝐼Γ
)𝜉 = 𝜆𝐵 (𝑖)

ΓΓ
𝜉, (2)
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where 𝑆 (𝑖) is the local Schur complement, 𝐴(𝑖)
ΓΓ
, 𝐴

(𝑖)
Γ𝐼
, 𝐴

(𝑖)
𝐼Γ
, 𝐴

(𝑖)
𝐼 𝐼
are obtained from the

local Neumannmatrices 𝐴(𝑖) , where the subscripts Γ and 𝐼 denote the part associated
with the interface and interior of the subdomain, respectively. The right hand side 𝐵 (𝑖)

ΓΓ

is positive definite, and we have several choices [8, 7]. We can choose 𝐵 (𝑖)
ΓΓ

= 𝐴
(𝑖)
ΓΓ
,

which is the energy of the zero extension, or 𝐵 (𝑖)
ΓΓ

= 𝐴̂
(𝑖)
ΓΓ
as the diagonal or block

diagonal of 𝐴(𝑖)
ΓΓ
. Next, a threshold 𝜂1 is set up to decompose the space of degrees

of freedom on Γ orthogonally with respect to 𝑆 (𝑖) and 𝐵 (𝑖)
ΓΓ
into two subspaces, the

low-frequency (eigenvalues smaller or equal to 𝜂1) eigenfunctions and the high-
frequency (eigenvalues larger than 𝜂1) eigenfunctions. This decomposition defines
naturally the extension 𝑅𝑇0 , which is the discrete a-harmonic extension for the low-
frequency eigenfunctions and zero extension for the high-frequency eigenfunctions.
Using 𝐵 (𝑖)

ΓΓ
and low-frequency eigenfunctions we can construct a coarse bilinear

form 𝑎0 (·, ·) and its corresponding matrix form 𝐴0. 𝑎0 (·, ·) can also be interpreted
as the sum of the energy of low-frequency eigenfunctions with respect to 𝑆 (𝑖) and
the energy of high-frequency eigenfunctions with respect to 𝐵 (𝑖)

ΓΓ
. To obtain a better

convergence rate and a smaller global problem, instead of using the zero extension
for the high-frequency eigenfunctions in 𝑅𝑇0 , we can also use H

(𝑖)
𝛿,𝐷
, which is the

minimum a-energy extension inside a 𝛿 layer of Γ𝑖 and zero Dirichlet condition
elsewhere inside the subdomain. For this specific 𝑅𝑇0 , the right-hand side 𝐵

(𝑖)
ΓΓ
can

be chosen as 𝑆 (𝑖)
𝛿,𝐷
, which is the Schur complement corresponding to H (𝑖)

𝛿,𝐷
; or

choose 𝐵 (𝑖)
ΓΓ
as 𝑆 (𝑖)

𝐹
, which is a block matrix constructed from the zero extension of

vertices and Schur complement of each edge/face in a 𝛿 layer. The latter choice has
excellent parallel scalability since, then, the assembling 𝐵ΓΓ are block diagonal with
blocks related to the edges/faces only. In order to decrease the complexity of the
generalized eigenvalue problems, there is also an economic version [8] by replacing
the left-hand side 𝑆 (𝑖) with 𝑆 (𝑖)

𝛿,𝑁
, which is the Schur complement of the discrete

a-harmonic extension in a 𝛿 layer and with zero Neumann condition inside.
For the “exact” 𝐴0, i.e., choosing 𝐵 (𝑖)

ΓΓ
= 𝐴

(𝑖)
ΓΓ
or 𝐵 (𝑖)

ΓΓ
= 𝑆

(𝑖)
𝛿,𝐷
, the size of the coarse

problem is equal to the degrees of freedom (DOF) on the interface. However, for the
“inexact” 𝐴0, i.e., choosing 𝐵 (𝑖)

ΓΓ
= 𝐴̂

(𝑖)
ΓΓ
or 𝐵 (𝑖)

ΓΓ
= 𝑆

(𝑖)
𝐹
the coarse problem can be sep-

arated into local and global interactions by using the Sherman-Morrison-Woodbury
formula [6]. The local part is based on the uncoupled 𝐵 (𝑖)

ΓΓ
, which corresponds to solv-

ing a small Dirichlet problem in a thin region near the edges/faces of the subdomains.
The global part is based on coupled low-frequency modes across the subdomains,
which are built from generalized eigenfunctions on the subdomains. The global part
is designed to guarantee the robustness of the preconditioner to any ill-conditioned
positive definite matrix 𝐴, and the size of the global problem is equal to the total
number of selected eigenfunctions.
Now, let 𝑉ℎ (Ω) be any finite element space on a bounded polygonal (polyhe-

dral) domain Ω, and the condition number of NOSAS preconditioners satisfies the
following theorem. For a detailed proof, see [7, 8].
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Theorem 1 For any 𝑢ℎ ∈ 𝑉ℎ (Ω) the following holds:

𝜂1
𝐶1 +1

𝑎(𝑢ℎ , 𝑢ℎ) ≤ 𝑎(𝑀−1
NOSAS𝐴𝑢ℎ , 𝑢ℎ) ≤ (𝐶1 +1)𝑎(𝑢ℎ , 𝑢ℎ),

where 𝐶1 is a constant based on different choices of 𝐵 (𝑖)
ΓΓ

.

For 𝐵 (𝑖)
ΓΓ

= 𝐴
(𝑖)
ΓΓ
or 𝐵 (𝑖)

ΓΓ
= 𝑆

(𝑖)
𝛿,𝐷
, we have𝐶1 = 1. For 𝐵 (𝑖)

ΓΓ
= 𝐴̂

(𝑖)
ΓΓ
, we have 𝐴(𝑖)

ΓΓ
≤𝐶1𝐵 (𝑖)

ΓΓ

for 1 ≤ 𝑖 ≤ 𝑁 with 𝐶1 = 3 in two dimensions and 𝐶1 = 4 in three dimensions. For
𝐵
(𝑖)
ΓΓ

= 𝑆
(𝑖)
𝐹
, we have 𝑆 (𝑖)

𝛿,𝐷
≤ 𝐶1𝐵 (𝑖)

ΓΓ
for 1 ≤ 𝑖 ≤ 𝑁 with 𝐶1 = 3 in two dimensions and

𝐶1 = 5 in three dimensions when 𝛿 < 𝐻
2 . Here we denote𝐻 as the size of the nonover-

lapping subdomain and ℎ as the size of the finite element. The threshold 𝜂1 is usually
chosen to be 𝑂 ( ℎ

𝐻
) so that the preconditioned system has condition number 𝑂 ( 𝐻

ℎ
).

Furthermore, the number of eigenfunctions we choose is only related to the geometry
of the heterogeneous coefficients, and we give quantitative results in [6].
A unique feature of the NOSAS preconditioner is that no weighting is required

to average the local solutions. This is different from methods like BDD, BDDC,
FETI, and FETI-DP, which require expensive deluxe weighting for some highly
heterogeneous problems. Moreover, the global matrix of the NOSAS has better
sparsity than the coarse matrix of BDD or FETI, with zero blocks corresponding to
the eigenfunctions in the subdomains that are not adjacent. NOSAS is constructed
purely algebraically from unassembled Neumann matrices 𝐴(𝑖) , which facilitates the
construction of the three-level NOSAS preconditioner, where we use the NOSAS
idea recursively on the coarse level.

2 The three-level NOSAS preconditioners
We note that the size of the global problem for NOSAS is the total number of eigen-
functions we choose in all subdomains. Therefore, for a large number of subdomains,
the coarse problem can become a bottleneck. The motivation of a three-level exten-
sion of the NOSAS methods is to approximate the coarse problem by replacing the
direct solver with a new preconditioner; see the three-level BDDC method [4] and
the three-level GDSW preconditioner [3]. We can also further recursively apply the
preconditioners to new levels, which is algorithmically straightforward leading to
multilevel extensions.
We first introduce some notations to define our three-level NOSAS. We decom-

pose Ω into 𝑁0 nonoverlapping open polygonal subregions Ω 𝑗 ,0 of size 𝑂 (𝐻0). We
denote 𝑊 𝑗𝑘 = Ω 𝑗 ,0 ∩Ω𝑘,0, which is the common vertex/edge/face of two adjacent
subregions when not empty. We further decompose each subregion Ω 𝑗 ,0 into some
subdomains Ω𝑖 of size 𝑂 (𝐻). We define Γ 𝑗 ,0 as the interface of subregion Ω 𝑗 ,0, and
define Γ 𝑗 ,𝐼 as the union of all subdomain interfaces Γ inside Ω 𝑗 ,0 without touch-
ing Γ 𝑗 ,0. The global interface Γ0 and the global interface interior Γ𝐼 are the union
of Γ 𝑗 ,0 and Γ 𝑗 ,𝐼 , respectively; see Figure 1 as an illustration. Therefore, we have that
Γ = Γ0 ⊕Γ𝐼 . Unless otherwise specified, we use𝑉ℎ (𝐷) to denote {𝑣 |𝐷 : 𝑣 ∈ 𝑉ℎ (Ω)},
where D is a set in Ω.
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Fig. 1 Comparison of a two-level mesh (left) and a three-level mesh (right) with ℎ = 1/32,𝐻 = 1/4,
𝐻0 = 1/2.

We need to decompose the coarse space 𝑉0 := {𝑣 |Γ : 𝑣 ∈ 𝑉ℎ (Ω)} into some new
local spaces and a coarser space. Following the procedure of additive Schwarz
methods, we define the local spaces𝑉 𝑗 ,0 (1 ≤ 𝑗 ≤ 𝑁0) as the restriction of𝑉0 on Γ 𝑗 ,𝐼

and vanishing on Γ 𝑗 ,0. The coarser space 𝑉0,0 is the restriction of 𝑉0 on Γ0. We
also define extrapolation operators 𝑅𝑇

𝑗,0 :𝑉 𝑗 ,0→𝑉0 as the extension by zero outside
of Ω 𝑗 ,0 for 1 ≤ 𝑗 ≤ 𝑁0, and 𝑅𝑇0,0 : 𝑉0,0 → 𝑉0 will be defined later. Then 𝑉0 admits
the following direct sum decomposition

𝑉0 = 𝑅
𝑇
0,0𝑉0,0 ⊕ 𝑅

𝑇
1,0𝑉1,0 ⊕ · · · ⊕ 𝑅𝑇𝑁0 ,0𝑉𝑁0 ,0.

Next, we follow the procedure of the NOSAS methods to define 𝑅𝑇0,0. We will use
only the Neumann matrices 𝐴(𝑖)

0 associated with the bilinear form 𝑎
(𝑖)
0 (·, ·). In the

subregion Ω 𝑗 ,0 (1 ≤ 𝑗 ≤ 𝑁0), we define the corresponding coarse bilinear form

𝑎
( 𝑗)
0,0 (·, ·) =

∑︁
𝑖∈N( 𝑗)

𝑎
(𝑖)
0 (·, ·),

whereN( 𝑗) is the set of indices of subdomains Ω𝑖 contained in the subregion Ω 𝑗 ,0.
Let Neumann matrices 𝐴( 𝑗)

0,0 be associated with the bilinear form 𝑎
( 𝑗)
0,0 (·, ·) defined

above. Then, 𝐴( 𝑗)
0,0 can be decomposed andwritten as the blockmatrix

[
𝐴
( 𝑗)
Γ0Γ0

𝐴
( 𝑗)
Γ0Γ𝐼

𝐴
( 𝑗)
Γ𝐼 Γ0

𝐴
( 𝑗)
Γ𝐼 Γ𝐼

]
,

where subscripts Γ0, Γ𝐼 denote the parts associated with Γ0 and Γ𝐼 , respectively.
We consider the following local generalized eigenvalue problem in each subregion
(1 ≤ 𝑗 ≤ 𝑁0) separately

𝑆
( 𝑗)
0 𝜙

( 𝑗)
𝑘
:= (𝐴( 𝑗)

Γ0Γ0
− 𝐴( 𝑗)

Γ0Γ𝐼
(𝐴( 𝑗)

Γ𝐼 Γ𝐼
)−1𝐴( 𝑗)

Γ𝐼 Γ0
)𝜙 ( 𝑗)

𝑘
= 𝜇

( 𝑗)
𝑘
𝐵
( 𝑗)
Γ0Γ0

𝜙
( 𝑗)
𝑘
, (𝑘 = 1, · · · , 𝑛 𝑗 ,0)

(3)
where 𝑆 ( 𝑗)0 is the Schur complement of 𝐴

( 𝑗)
0,0 and 𝑛 𝑗 ,0 is the number of DOFs on Γ 𝑗 ,0.

Similar to the two-level NOSAS, we have the following choices for the right-hand
side 𝐵 ( 𝑗)

Γ0Γ0
:

1. 𝐵 ( 𝑗)
Γ0Γ0

= 𝐴
( 𝑗)
Γ0Γ0
;

2. 𝐵 ( 𝑗)
Γ0Γ0

= 𝐴̂
( 𝑗)
Γ0Γ0
, which is the diagonal or block diagonal version of 𝐴( 𝑗)

Γ0Γ0
;
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3. 𝐵 ( 𝑗)
Γ0Γ0

= 𝑆
( 𝑗)
𝛿0 ,𝐷
, which is the Schur complement defined as follows

𝑣𝑇𝑗 𝑆
( 𝑗)
𝛿0 ,𝐷

𝑢 𝑗 = 𝑎
( 𝑗)
0,0 (H

( 𝑗)
𝛿0 ,𝐷

𝑢 𝑗 ,H ( 𝑗)
𝛿0 ,𝐷

𝑣 𝑗 ), for all 𝑢 𝑗 , 𝑣 𝑗 ∈ 𝑉ℎ (Γ 𝑗 ,0).

Here, we set 𝛿0 = 𝑙𝐻 with some integer 𝑙, andH ( 𝑗)
𝛿0 ,𝐷

is defined as the minimum
𝑎
( 𝑗)
0,0-energy extension from 𝑉ℎ (Γ 𝑗 ,0) to 𝑉ℎ (Γ 𝑗 ,0

⋃
Γ 𝑗 ,𝐼 ) with a zero Dirichlet

condition outside of a 𝛿0 layer from Γ 𝑗 ,0;
4. 𝐵 ( 𝑗)

Γ0Γ0
= 𝑆

( 𝑗)
𝑊
, which is the block diagonal of {𝐴( 𝑗)

𝑊𝑗𝑘 ,𝑊𝑗𝑘
}𝑊𝑗𝑘 ∈Γ 𝑗,0 if𝑊 𝑗𝑘 is a vertex

in 2D (vertex and edge in 3D) and {𝑆 ( 𝑗)
𝑊𝑗𝑘 , 𝛿0

}𝑊𝑗𝑘 ∈Γ 𝑗,0 if 𝑊 𝑗𝑘 is an edge in 2D

(face in 3D), where 𝐴( 𝑗)
𝑊𝑗𝑘 ,𝑊𝑗𝑘

is the submatrix of 𝐴( 𝑗)
0,0 relative to𝑊 𝑗𝑘 , and

𝑣𝑇𝑗𝑘𝑆
( 𝑗)
𝑊𝑗𝑘 , 𝛿0

𝑢 𝑗𝑘 = 𝑎
( 𝑗)
0,0 (H

( 𝑗)
𝑊𝑗𝑘 , 𝛿0

𝑢 𝑗𝑘 ,H ( 𝑗)
𝑊𝑗𝑘 , 𝛿0

𝑣 𝑗𝑘 ), for all 𝑢 𝑗𝑘 , 𝑣 𝑗𝑘 ∈ 𝑉ℎ (𝑊 𝑗𝑘 ),

whereH ( 𝑗)
𝑊𝑗𝑘 , 𝛿0

is defined as the minimum 𝑎 ( 𝑗)0,0-energy extension from 𝑉ℎ (𝑊 𝑗𝑘 )
to 𝑉ℎ (Γ 𝑗 ,0

⋃
Γ 𝑗 ,𝐼 ) with zero Dirichlet condition outside of a 𝛿0 layer from𝑊 𝑗𝑘 .

For a detailed comparison of the choices above; see [7]. Next, we solve the local
generalized eigenvalue problem (3) and fix a threshold 𝜂0 < 1. We pick the small-
est 𝑘 𝑗 eigenvalues less than 𝜂0 and their corresponding eigenvectors to construct the
space 𝑄 ( 𝑗)

0 and the local orthogonal projection Π ( 𝑗)
0,𝑆 : 𝑉ℎ (Γ 𝑗 ,0) →𝑄

( 𝑗)
0 with respect

to 𝐵 ( 𝑗)
Γ0Γ0
norm as follows

𝑄
( 𝑗)
0 = [𝜙 ( 𝑗)

1 , 𝜙
( 𝑗)
2 , · · · , 𝜙 ( 𝑗)

𝑘 𝑗
], Π

( 𝑗)
0,𝑆 =𝑄

( 𝑗)
0 (𝑄 ( 𝑗)𝑇

0 𝐵
( 𝑗)
Γ0Γ0

𝑄
( 𝑗)
0 )−1𝑄 ( 𝑗)𝑇

0 𝐵
( 𝑗)
Γ0Γ0

.

We also denote Π ( 𝑗)⊥
0,𝑆 = 𝐼

( 𝑗)
0 −Π

( 𝑗)
0,𝑆 , where 𝐼

( 𝑗)
0 : 𝑉ℎ (Γ 𝑗 ,0) →𝑉ℎ (Γ 𝑗 ,0) is the identity

mapping. Based on different choices of 𝐵 ( 𝑗)
Γ0Γ0
, we have the following choices for

𝑅
( 𝑗)𝑇
0,0 : 𝑉ℎ (Γ 𝑗 ,0) →𝑉ℎ (Γ 𝑗 ,0

⋃
Γ 𝑗 ,𝐼 ):

i. H ( 𝑗)
0 Π

( 𝑗)
0,𝑆 +E

( 𝑗)
0 Π

( 𝑗)⊥
0,𝑆 ,

ii. H (𝑖)
0 Π

( 𝑗)
0,𝑆 +

∑
𝑊𝑗𝑘 ∈Γ 𝑗,0H

( 𝑗)
𝛿0 ,𝐷

Π
( 𝑗)⊥
0,𝑆 ,

where H ( 𝑗)
0 and E ( 𝑗)

0 are the minimum 𝑎
( 𝑗)
0,0-energy extension and zero extension

from 𝑉ℎ (Γ 𝑗 ,0) to 𝑉ℎ (Γ 𝑗 ,0
⋃
Γ 𝑗 ,𝐼 ), respectively. For simplicity, we choose 1. and 2.

for 𝐵 ( 𝑗)
Γ0Γ0
and their corresponding option i. in 𝑅 ( 𝑗)𝑇

0,0 for the rest of the paper. Therefore,
∀𝑢Γ0 ∈ 𝑉0,0, we define 𝑅𝑇0,0 : 𝑉0,0→𝑉0 as

𝑅𝑇0,0𝑢Γ0 =


𝑢Γ0

𝑁0∑︁
𝑗=1

−𝑅𝑇𝐼 𝑗 𝐼0 (𝐴
( 𝑗)
Γ𝐼 Γ𝐼

)−1𝐴( 𝑗)
Γ𝐼 Γ0

Π
( 𝑗)
0,𝑆𝑅Γ 𝑗Γ0𝑢Γ0

 ,
where 𝑅Γ 𝑗Γ0 : 𝑉0,0→𝑉ℎ (Γ 𝑗 ,0) and 𝑅𝑇𝐼 𝑗 𝐼0 : 𝑉ℎ (Γ 𝑗 ,𝐼 ) →𝑉ℎ (Γ𝐼 ) are the trivial restric-
tion and extension operators, respectively.
Then, we define 𝐴̂0,0 corresponding to the following bilinear form
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𝑎̂0,0 (𝑢Γ0 , 𝑣Γ0 ) = 𝑣𝑇Γ0

𝑁0∑︁
𝑗=1

(
(Π ( 𝑗)
0,𝑆𝑅Γ 𝑗Γ0 )𝑇 𝑆

( 𝑗)
0 (Π ( 𝑗)

0,𝑆𝑅Γ 𝑗Γ0 ) + (Π ( 𝑗)⊥
0,𝑆 𝑅Γ 𝑗Γ0 )𝑇 𝐵

( 𝑗)
Γ0Γ0

(Π ( 𝑗)⊥
0,𝑆 𝑅Γ 𝑗Γ0 )

)
𝑢Γ0

= 𝑣𝑇Γ0

𝑁0∑︁
𝑗=1

𝑅𝑇
Γ 𝑗Γ0

(
𝐵

( 𝑗)
Γ0Γ0

−𝐵 ( 𝑗)
Γ0Γ0

𝑄
( 𝑗)
0 𝐷

( 𝑗)
0 (𝑄 ( 𝑗)𝑇

0 𝐵
( 𝑗)
Γ0Γ0

𝑄
( 𝑗)
0 )−1𝑄 ( 𝑗)𝑇

0 𝐵
( 𝑗)
Γ0Γ0

)
𝑅Γ 𝑗Γ0𝑢Γ0 ∀𝑢Γ0 , 𝑣Γ0 ∈ 𝑉0,0,

where 𝐷 ( 𝑗)
0 = diagonal(1− 𝜇 ( 𝑗)1 ,1− 𝜇 ( 𝑗)2 , · · · ,1− 𝜇 ( 𝑗)

𝑘 𝑗
) and 𝜇 ( 𝑗)

𝑘
are the generalized

eigenvalues corresponding to 𝜙 ( 𝑗)
𝑘
.

Then, the three-level NOSAS preconditioners have the following form

𝑀−1
3NOSAS = 𝑅

𝑇
0
( Third Level︷         ︸︸         ︷
𝑅𝑇0,0 𝐴̂

−1
0,0𝑅0,0+

Second Level︷              ︸︸              ︷
𝑁0∑︁
𝑗=1
𝑅𝑇𝑗,0 𝐴̂

−1
𝑗 ,0𝑅 𝑗 ,0

)
𝑅0︸                                               ︷︷                                               ︸

Coarse Level

+
𝑁∑︁
𝑖=1

𝑅𝑇𝑖 𝐴
−1
𝑖 𝑅𝑖︸          ︷︷          ︸

First Level

. (4)

For the first level, 𝐴𝑖 = 𝑅𝑖𝐴𝑅𝑇𝑖 , (1 ≤ 𝑖 ≤ 𝑁) are the matrices corresponding to the
exact local bilinear form of 𝐴, the same as in the two-level method. For the second
level, 𝐴̂ 𝑗 ,0 = 𝑅 𝑗 ,0𝐴0𝑅

𝑇
𝑗,0, (1 ≤ 𝑗 ≤ 𝑁0) are the matrices form corresponding to the

following exact local bilinear form of 𝐴0

𝑎̂ 𝑗 ,0 (𝑢 𝑗 ,0, 𝑣 𝑗 ,0) = 𝑎0 (𝑅𝑇𝑗,0𝑢 𝑗 ,0, 𝑅
𝑇
𝑗,0𝑣 𝑗 ,0), ∀𝑢 𝑗 ,0, 𝑣 𝑗 ,0 ∈ 𝑉 𝑗 ,0.

For the third level, 𝐴̂0,0 is the matrix form of 𝑎̂0,0 (·, ·) defined above.
To show the condition number of three-level NOSAS preconditioners, we first

focus on the preconditioner in the coarse level and define 𝐵−1
0 as

𝐵−1
0 = 𝑅𝑇0,0 𝐴̂

−1
0,0𝑅0,0 +

𝑁0∑︁
𝑗=1
𝑅𝑇𝑗,0 𝐴̂

−1
𝑗 ,0𝑅 𝑗 ,0.

Wenote that 𝐵0 can be seen as an approximation of 𝐴0, and 𝐵−1
0 is a two-level NOSAS

preconditioner of 𝐴0. Therefore, similar to the two-level methods, we should also
consider the relation of 𝐵 ( 𝑗)

Γ0Γ0
with 𝐴( 𝑗)

Γ0Γ0
. For different choices of 𝐵 ( 𝑗)

Γ0Γ0
, let 𝐶0 be

the constant such that 𝐴( 𝑗)
Γ0Γ0

≤ 𝐶0𝐵 ( 𝑗)
Γ0Γ0
for 1 ≤ 𝑗 ≤ 𝑁0. For 𝐵 ( 𝑗)

Γ0Γ0
= 𝐴

( 𝑗)
Γ0Γ0
, we have

𝐶0 = 1. For 𝐵 ( 𝑗)
Γ0Γ0

= 𝐴̂
( 𝑗)
Γ0Γ0
, we have 𝐶0 = 3 in two dimensions and 𝐶0 = 4 in three

dimensions. Then, using theNOSASmethods property we have shown in Theorem 1,
we have ∀𝑢Γ ∈ 𝑉0,

𝜂0
𝐶0 +1

𝑢𝑇Γ 𝐴
−1
0 𝑢Γ ≤ 𝑢𝑇Γ 𝐵−1

0 𝑢Γ ≤ (𝐶0 +1)𝑢𝑇Γ 𝐴−1
0 𝑢Γ .

Since 𝐴0 and 𝐵0 are symmetric and positive definite matrices, it is equivalent to

1
𝐶0 +1

𝑢𝑇Γ 𝐴0𝑢Γ ≤ 𝑢𝑇Γ 𝐵0𝑢Γ ≤ 𝐶0 +1
𝜂0

𝑢𝑇Γ 𝐴0𝑢Γ .
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Using the above property of 𝐵0 and combining it with the abstract theory of the
additive Schwarz method, we can obtain the following condition number for the
three-level NOSAS methods.

Theorem 2 For any 𝑢ℎ ∈ 𝑉ℎ (Ω) the following holds:(𝐶1
𝜂1

+ 𝐶0 +1
𝜂1𝜂0

)−1
𝑎(𝑢ℎ , 𝑢ℎ) ≤ 𝑎(𝑀−1

3NOSAS𝐴𝑢ℎ , 𝑢ℎ) ≤ (1+𝐶1 +𝐶1𝐶0)𝑎(𝑢ℎ , 𝑢ℎ).

3 Numerical experiments
We present numerical results for the variational formulation of

∫
Ω
𝜌(𝑥)∇𝑢 · ∇𝑣𝑑𝑥 =∫

Ω
𝑓 𝑣𝑑𝑥 with 𝑓 = 1 and a heterogeneous coefficient function 𝜌(𝑥). We choose four

specific 𝜌(𝑥) from the SPE10 model problems, 𝐾𝑥𝑥_06 and 𝐾𝑥𝑥_85, with the
computational domain Ω = (0,22) × (0,6). We decompose Ω into 33 congruent
square subregions of size 𝐻0 = 2, and 528 congruent square subdomains of size
𝐻 = 1/2. We further decompose each square subdomain into (𝐻/ℎ)2 congruent
small squares of size ℎ = 0.1. The shape-regular partition Tℎ is obtained by dividing
each of these small squares into two right triangle elements.𝑉ℎ (Ω) are the piecewise
linear basis functions on the triangulation Tℎ . We impose a zero Dirichlet boundary
condition on 𝜕Ω and use the PCG method for the preconditioned system with the
relative residual error 10−6 in the 𝑙2 norm.

Table 1 The two-level NOSAS preconditioners applied to four SPE10 model problems with dif-
ferent 𝜂1.

𝜂1 Iter. Cond. Size of global problem
0.025 46 34.45 431
0.05 39 24.47 443
0.1 32 15.52 486
0.2 23 6.82 735
0.4 16 4.05 1674

Kxx_06

𝜂1 Iter. Cond. Size of global problem
0.025 46 29.43 480
0.05 42 27.71 513
0.1 33 13.92 600
0.2 25 8.61 833
0.4 18 4.57 1535

Kxx_85

Table 2 The three-level NOSAS preconditioners applied to four SPE10 meshes with 𝜂0 = 0.25
and different 𝜂1.

𝜂1 Iter. Cond. Size of global problem
0.025 57 48.62 123
0.05 49 31.16 124
0.1 45 31.19 130
0.2 34 14.94 163
0.4 26 9.36 236

Kxx_06

𝜂1 Iter. Cond. Size of global problem
0.025 62 61.18 169
0.05 54 38.68 174
0.1 45 27.55 191
0.2 39 23.88 226
0.4 28 11.93 276

Kxx_85
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The scalability of NOSAS methods with the “inexact” solver is shown in [5, 6].
The main focus of our numerical experiments is to compare two-level NOSAS
preconditioners with three-level NOSAS preconditioners, and show that three-level
NOSAS have a smaller size of the global problem while maintaining a good iteration
and condition number. For the two-level NOSAS preconditioners, we choose 𝐵 (𝑖)

ΓΓ
=

𝑆
(𝑖)
𝐹
with 𝛿 = 2ℎ, and choose 𝑅𝑇0 the discrete a-harmonic extension for the low-

frequency eigenfunctions and H (𝑖)
𝛿,𝐷
for the high-frequency eigenfunctions in (2).

For the three-level NOSAS preconditioners, 𝐵 (𝑖)
ΓΓ
, 𝑅𝑇0 are the same as the two-level

preconditioners. Then we choose 𝐵 ( 𝑗)
Γ0Γ0

= 𝐴̂
( 𝑗)
Γ0Γ0
as the diagonal of 𝐴( 𝑗)

Γ0Γ0
, and 𝑅𝑇0,0

as the discrete a-harmonic extension for the low-frequency eigenfunctions and zero
extension for the high-frequency eigenfunctions in (3). Note that ℎ

𝐻
= 0.2 and Table 1

shows the performance of the two-level NOSAS with different thresholds 𝜂1 for the
SPE10 model problems. For the three-level NOSAS, we choose a fixed 𝜂0 = 𝐻

𝐻0
and

show the corresponding results for different thresholds 𝜂1 in Table 2. All our test
results support the theoretical condition number bound in Theorem 1 and Theorem 2.
In addition, we observe a much smaller condition number numerically. The reason
is that numerically, the constant 𝐶0 is close to 1.8 and 𝐶1 is close to 1.5 for the
“inexact” solver.
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Optimized Schwarz Method for Coupled
Direct-Adjoint Problems Applied to Parameter
Identification in Advection-Diffusion Equation

Alexandre Vieira and Pierre-Henri Cocquet

1 Introduction

LetΩ be a bounded open set with Lipschitz boundary. We want to solve the problem

min
𝑘

1
2
‖𝑇 − 𝑇target‖2𝐿2 (Ω) ,

s.t. div(u𝑇) − div(𝑘∇𝑇) = 𝑓 in Ω, 𝑇 |𝜕Ω = 𝑇0 and 𝑘 ∈ 𝑈𝑎𝑑 ,

(1)

with 𝑓 ∈ 𝐿2 (Ω), u ∈ 𝐻1 (Ω) given s.t. divu = 0. The set of admissible control 𝑈𝑎𝑑

contains all 𝑘 (𝑥) ∈ [𝑎, 𝑏] for a.e. 𝑥 and 𝑎 > 0 and is chosen such that any sequences
(𝑘𝑛)𝑛 ⊂ 𝑈𝑎𝑑 have a subsequence converging a.e. in Ω. Such 𝑘 ∈ 𝑈𝑎𝑑 must be more
regular (e.g with bounded variation) and we refer to [9, p. 9, Assumption 1] for
an example of such 𝑈𝑎𝑑 . With all these assumptions, (1) has at least one optimal
solution (see e.g. [9, Theorem 3]).
We will focus on finding ways to compute a solution to (1) on several subdomains.

In recent years, a lot of papers started to look at ways to decompose the resolution
of optimal control problems. In [5], the authors split the optimization problem as
two independent optimization problems, splitted by subdomains, with an augmented
cost. The necessary (and sufficient) conditions of optimality let us see that it actually
reduces to a classical Schwarz method applied to the direct and adjoint systems,
where the control could be eliminated (see also [1, 2, 7]).
These papers rely on the huge literature analyzing the different flavors of the

Schwarz iterative method: we only refer to [4] for an introduction and to [8] for
a more in depth presentation of these methods (and other decomposition methods).

A. Vieira
Université de la Réunion, PIMENT, Sainte-Clotilde, France,
e-mail: alexandre.vieira@univ-reunion.fr

P.-H. Cocquet
Université de Pau et des Pays de l’Adour, SIAME, rue de l’Université, Pau, France,
e-mail: pierre-henri.cocquet@univ-pau.fr
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In order to decompose the resolution of (1) across several subdomains, we will
also adopt an indirect approach: we will decompose the computations of the gradient
of the cost, which will be used afterward in a descent method. Since the control needs
to be defined on the whole domain Ω, it seems hard to define a decomposition of (1)
using an overlap. Therefore, we will focus on finding an optimized Schwarz iteration,
without overlap, to compute the gradient of the cost.

2 Direct and adjoint equations

First of all, we express the gradient of the cost which can be given thanks to an
adjoint equation. The next result can be proved using [6, Corollary 1.3].

Theorem 1 Let 𝐽 (𝑘) = 1
2 ‖𝑇 (𝑘) − 𝑇target‖2𝐿2 (Ω) with 𝑇 (𝑘) ∈ 𝐻1 (Ω) be the solution

to div(u𝑇) − div(𝑘∇𝑇) = 𝑓 in Ω and 𝑇 |𝜕Ω = 𝑇0. Then: 𝜕𝑘𝐽 (𝑘) = ∇𝑇 · ∇𝜆, where 𝜆
solves

div(𝑘∇𝜆 − u𝜆) = 𝑇 − 𝑇target, 𝜆 |𝜕Ω = 0.

Therefore, the gradient of 𝐽 can be computed by solving for fixed 𝑘:{
−div(𝑘∇𝑇 − u𝑇) = 𝑓 , 𝑇 |𝜕Ω = 𝑇0,
div(𝑘∇𝜆 + u𝜆) = 𝑇 − 𝑇target, 𝜆 |𝜕Ω = 0. (2)

We now expose our strategy in order to accelerate the resolution of (1): we would like
to decompose the resolution of (2) across several subdomains in order to accelerate
the computation of the gradient. However, since our optimization parameter 𝑘 is
defined on Ω, it seems hard to imagine a decomposition method using an overlap. If
we were computing a solution of (2) on two subdomains Ω1 and Ω2 with an overlap,
then we would end with two different gradients 𝜕𝑘𝐽 (𝑘) on Ω1 ∩ Ω2, depending on
which side the gradient is computed. Therefore, using a descent technique would
produce two different controls 𝑘1 onΩ1 and 𝑘2 onΩ2, with possibly different values
on Ω1 ∩Ω2. This could prevent the convergence to an optimal solution of (1).
To summarize, we are interested in non-overlapping Schwarz techniques. It should

be noted that optimized Schwarzmethod for an advection-diffusion equation has been
done in [3] but, to the best of our knowledge, never for (2).

3 Optimized Schwarz method for coupled direct-adjoint system

We assume there is open setsΩ𝑖 such thatΩ = Ω1 ∪Ω2 with interface Γ∩ = Ω1∩Ω2.
A non-overlapping Schwarz method for (2) can then be roughly defined as

1. Take an initial guess (𝑇0
𝑖
, 𝜆0

𝑖
) defined on Ω𝑖 ,

2. Until some stopping criteria are met: Compute (𝑇𝑛+1
𝑖

, 𝜆𝑛+1
𝑖

) satisfying
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−div(𝑘∇𝑇𝑛+1

𝑖 ) + div(𝑢𝑇𝑛+1
𝑖 ) = 𝑓 , on Ω𝑖 , 𝑇

𝑛+1
𝑖 |𝜕Ω𝑖\Γ∩ = 𝑇0,

div(𝑘∇𝜆𝑛+1𝑖 ) + div(𝑢𝜆𝑛+1𝑖 ) = 𝑇𝑛+1 − 𝑇target on Ω𝑖 , 𝜆
𝑛+1
𝑖 |𝜕Ω𝑖\Γ∩ = 0,

(3)

and the following transmission conditions on the interface

𝑘𝜕n

(
𝑇𝑛+1
𝑖

𝜆𝑛+1
𝑖

)
− u · n
2

(
𝑇𝑛+1
𝑖

−𝜆𝑛+1
𝑖

)
+ (−1)𝑖+1S𝑖

(
𝑇𝑛+1
𝑖

|Γ∩
𝜆𝑛+1
𝑖

|Γ∩

)
(4)

=𝑘𝜕n

(
𝑇𝑛
3−𝑖

𝜆𝑛3−𝑖

)
− u · n
2

(
𝑇𝑛
3−𝑖

−𝜆𝑛3−𝑖

)
+ (−1)𝑖+1S𝑖

(
𝑇𝑛
3−𝑖 |Γ∩

𝜆𝑛3−𝑖 |Γ∩

)
,

where n is the outer normal to 𝜕Ω1. In (3)–(4), S𝑖 are linear operators acting on
traces of (𝑇𝑖 , 𝜆𝑖) (e.g. S𝑖 = 𝑝𝑖 id where 𝑝𝑖 are some constants and id is the identity
operator, or some linear differential operator involving tangential derivatives).
To study the convergence of the non-overlapping Schwarz method as well as its

convergence properties, we are going to restrict ourselves to the case 𝑘 = constant,
Ω = R2, Ω1 = (−∞, 0) × R and Ω2 = (0, +∞) × R. In such setting, we can rely on
Fourier analysis [4] to study the convergence and also to design optimized transmis-
sion operators S𝑖 that accelerate the convergence. Without loss of generality, we also
suppose that 𝑓 = 𝑇target = 0 since we are interested in the error.

3.1 Computation of the optimal transmission operator

We start by applying Fourier transform to (2) along the 𝑦 axis:

−𝑘𝜕𝑥𝑥
(
𝑇𝑛
𝑖

𝜆̂𝑛
𝑖

)
+ 𝑢1𝜕𝑥

(
𝑇𝑛
𝑖

−𝜆̂𝑛
𝑖

)
+

(
𝑘𝜔2 − 𝑖𝑢2𝜔 0

1 𝑘𝜔2 + 𝑖𝑢2𝜔

) (
𝑇𝑛
𝑖

𝜆̂𝑛
𝑖

)
= 0, 𝑖 ∈ {1, 2}.

Along 𝑥, this is a second order ordinary differential equation which can be solved
explicitly. Define :

𝑟𝑇± (𝜔) =
𝑢1 ±

√︃
𝑢21 + 4𝑘2𝜔2 − 4𝑖𝑘𝑢2𝜔

2𝑘
, 𝑟𝜆± (𝜔) =

−𝑢1 ±
√︃
𝑢21 + 4𝑘2𝜔2 + 4𝑖𝑘𝑢2𝜔

2𝑘
.

Concerning 𝑇 , using the Dirichlet condition at infinity, there exist functions 𝐴𝑛
𝑇
(𝜔)

and 𝐵𝑛
𝑇
(𝜔) such that:

𝑇𝑛
1 (𝑥, 𝜔) = 𝐴𝑛

𝑇 (𝜔)𝑒𝑟
𝑇
+ (𝜔)𝑥 , 𝑇𝑛

2 (𝑥, 𝜔) = 𝐵𝑛
𝑇 (𝜔)𝑒𝑟

𝑇
− (𝜔)𝑥 .

These solutions are reintroduced into the equation in order to solve it for 𝜆̂. There, the
equation is non-homogeneous, but the right hand-side is of the form 𝐶 (𝜔)𝑒𝐷 (𝜔)𝑥 ,
for some functions 𝐶 and 𝐷 independent of 𝑥. An arbitrary solution is therefore
easily found, and one proves that they take the form:
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𝜆̂𝑛1 (𝑥, 𝜔) = 𝐴𝑛
𝜆 (𝜔)𝑒𝑟

𝜆
+ (𝜔)𝑥−𝐴𝜆𝑇 (𝜔)𝑇𝑛

1 (𝑥, 𝜔),

𝜆̂𝑛2 (𝑥, 𝜔) = 𝐵𝑛
𝜆 (𝜔)𝑒𝑟

𝜆
− (𝜔)𝑥−𝐵𝜆𝑇 (𝜔)𝑇𝑛

2 (𝑥, 𝜔),

where 𝐴𝜆𝑇 (𝜔) = (−𝑘𝑟𝑇+ (𝜔)2−𝑢1𝑟𝑇+ (𝜔)+𝑘𝜔2+𝑖𝑢2𝜔)−1 and 𝐵𝜆𝑇 (𝜔) = (−𝑘𝑟𝑇− (𝜔)2−
𝑢1𝑟

𝑇
− (𝜔) + 𝑘𝜔2 + 𝑖𝑢2𝜔)−1.
We may now derive each solution with 𝑥:

𝜕𝑥𝑇
𝑛
1 (𝑥, 𝜔) = 𝑟𝑇+ (𝜔)𝑇𝑛

1 (𝑥, 𝜔), 𝜕𝑥𝑇
𝑛
2 (𝑥, 𝜔) = 𝑟𝑇− (𝜔)𝑇𝑛

2 (𝑥, 𝜔),

𝜕𝑥𝜆̂
𝑛
1 (𝑥, 𝜔) = 𝑟𝜆+ (𝜔)𝐴𝑛

𝜆 (𝜔)𝑒𝑟
𝜆
+ (𝜔)𝑥 − 𝐴𝜆𝑇 (𝜔)𝑟𝑇+ (𝜔)𝑇𝑛

1 (𝑥, 𝜔),

𝜕𝑥𝜆̂
𝑛
2 (𝑥, 𝜔) = 𝑟𝜆− (𝜔)𝐵𝑛

𝜆 (𝜔)𝑒𝑟
𝜆
− (𝜔)𝑥 − 𝐵𝜆𝑇 (𝜔)𝑟𝑇− (𝜔)𝑇𝑛

2 (𝑥, 𝜔).

We now assume that F𝑦 (S𝑖 (𝑇, 𝜆)) (𝑥, 𝜔) = 𝜎𝑖 (𝜔) (𝑇, 𝜆̂), where 𝜎𝑖 is a 2×2 complex
matrix. The transmission conditions then read:

𝑘𝜕𝑥

(
𝑇𝑛
1
𝜆̂𝑛1

)
(𝑥, 𝜔) − 𝑢1

2

(
𝑇𝑛
1

−𝜆̂𝑛1

)
(𝑥, 𝜔) + 𝜎1 (𝜔)

(
𝑇𝑛
1
𝜆̂𝑛1

)
(𝑥, 𝜔)

=
(
𝑀+

𝑟 (𝑥, 𝜔) + 𝜎1 (𝜔)𝑀+
0 (𝑥, 𝜔)

) (
𝐴𝑛
𝑇
(𝜔)

𝐴𝑛
𝜆
(𝜔)

)
,

𝑘𝜕𝑥

(
𝑇𝑛
2
𝜆̂𝑛2

)
(𝑥, 𝜔) − 𝑢1

2

(
𝑇𝑛
2

−𝜆̂𝑛2

)
(𝑥, 𝜔) + 𝜎2 (𝜔)

(
𝑇𝑛
2
𝜆̂𝑛2

)
(𝑥, 𝜔)

=
(
𝑀−

𝑟 (𝑥, 𝜔) + 𝜎2 (𝜔)𝑀−
0 (𝑥, 𝜔)

) (
𝐵𝑛
𝑇
(𝜔)

𝐵𝑛
𝜆
(𝜔)

)
,

𝑀+
𝑟 (𝑥, 𝜔) =

(
(𝑘𝑟𝑇+ (𝜔) − 𝑢1

2 )𝑒
𝑟𝑇+ (𝜔)𝑥 0

−(𝑘𝑟𝑇+ (𝜔) − 𝑢1
2 )𝐴𝜆𝑇 (𝜔)𝑒𝑟

𝑇
+ (𝜔)𝑥 (𝑘𝑟𝜆+ (𝜔) − 𝑢1

2 )𝑒
𝑟𝜆+ (𝜔)𝑥

)
𝑀+
0 (𝑥, 𝜔) =

(
𝑒𝑟

𝑇
+ (𝜔)𝑥 0

𝐴𝜆𝑇 (𝜔)𝑒𝑟
𝑇
+ (𝜔)𝑥 𝑒𝑟

𝜆
+ (𝜔)𝑥

)
, 𝑀−

0 (𝑥, 𝜔) =
(

𝑒𝑟
𝑇
− (𝜔)𝑥 0

−𝐵𝜆𝑇 (𝜔)𝑒𝑟
𝑇
− (𝜔)𝑥 𝑒𝑟

𝜆
− (𝜔)𝑥

)
𝑀−

𝑟 (𝑥, 𝜔) =
(

(𝑘𝑟𝑇− (𝜔) − 𝑢1
2 )𝑒

𝑟𝑇− (𝜔)𝑥 0
−(𝑘𝑟𝑇− (𝜔) − 𝑢1

2 )𝐵𝜆𝑇 (𝜔)𝑒𝑟
𝑇
− (𝜔)𝑥 (𝑘𝑟𝜆− (𝜔) − 𝑢1

2 )𝑒
𝑟𝜆− (𝜔)𝑥

)
Using the conditions at 𝑥 = 0, we get the following recurrence:(

𝐴𝑛
𝑇
(𝜔)

𝐴𝑛
𝜆
(𝜔)

)
=

[
𝑀+

𝑟 (0, 𝜔) + 𝜎1 (𝜔)𝑀+
0 (0, 𝜔)

]−1 [
𝑀−

𝑟 (0, 𝜔) + 𝜎1 (𝜔)𝑀−
0 (0, 𝜔)

]︸                                                                                ︷︷                                                                                ︸
𝑀1 (𝜔)[

𝑀−
𝑟 (0, 𝜔) − 𝜎2 (𝜔)𝑀−

0 (0, 𝜔)
]−1 [

𝑀+
𝑟 (0, 𝜔) − 𝜎2 (𝜔)𝑀+

0 (0, 𝜔)
]︸                                                                                 ︷︷                                                                                 ︸

𝑀2 (𝜔)

×
(
𝐴𝑛−2
𝑇

(𝜔)
𝐴𝑛−2
𝜆

(𝜔)

)
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𝐵𝑛
𝑇
(𝜔)

𝐵𝑛
𝜆
(𝜔)

)
=

[
𝑀−

𝑟 (0, 𝜔) − 𝜎2 (𝜔)𝑀−
0 (0, 𝜔)

]−1 [
𝑀+

𝑟 (0, 𝜔) − 𝜎2 (𝜔)𝑀+
0 (0, 𝜔)

]︸                                                                                 ︷︷                                                                                 ︸
𝑀2 (𝜔)[

𝑀+
𝑟 (0, 𝜔) + 𝜎1 (𝜔)𝑀+

0 (0, 𝜔)
]−1 [

𝑀−
𝑟 (0, 𝜔) + 𝜎1 (𝜔)𝑀−

0 (0, 𝜔)
]︸                                                                                ︷︷                                                                                ︸

𝑀1 (𝜔)

×
(
𝐵𝑛−2
𝑇

(𝜔)
𝐵𝑛−2
𝜆

(𝜔)

)
Therefore, the optimal choice of 𝜎𝑖 cancels 𝑀1 (𝜔)𝑀2 (𝜔) and 𝑀2 (𝜔)𝑀1 (𝜔) ; this
reads:

𝜎
opt
1 (𝜔) = −𝑀−

𝑟 (0, 𝜔)
(
𝑀−
0 (0, 𝜔)

)−1
=

(
−𝑘𝑟𝑇− (𝜔) + 𝑢1

2 0
−𝑘𝐵𝜆𝑇 (𝜔) [𝑟𝜆− (𝜔) − 𝑟𝑇− (𝜔)] −𝑘𝑟𝜆− (𝜔) − 𝑢1

2

)
,

𝜎
opt
2 (𝜔) = 𝑀+

𝑟 (0, 𝜔)
(
𝑀+
0 (0, 𝜔)

)−1
=

(
𝑘𝑟𝑇+ (𝜔) − 𝑢1

2 0
−𝑘𝐴𝜆𝑇 (𝜔) [𝑟𝑇+ (𝜔) − 𝑟𝜆+ (𝜔)] 𝑘𝑟𝜆+ (𝜔) + 𝑢1

2

)
.

However, as it is usual concerning the optimal Schwarz operator, an inverse Fourier
transform proves that S𝑜𝑝𝑡

𝑖
, the inverse Fourier transform of 𝜎opt

𝑖
, is a non-local

operator [4]. This property can be difficult to handle in a numerical method. This is
why we will restrict the set of admissible transmission operator S𝑖 to local constant
operators.

3.2 Computation of optimized transmission operator

Instead of using the optimal (non-local) operator, wewill search for an optimal lower-
triangular matrix 𝑃𝑖 , which we will suppose to be constant in 𝜔. All the calculations
above can be done similarly with this new assumption, and we may write similarly

the new matrices 𝑀1 (𝜔) and 𝑀2 (𝜔). Suppose 𝜎1 =
(
𝜎11 0
𝜎13 𝜎14

)
and 𝜎2 =

(
𝜎21 0
𝜎23 𝜎24

)
.

Then 𝑀𝑙 (𝜔)𝑀𝑚 (𝜔) =
(
𝑀11 (𝜔) 0
𝑀 𝑙𝑚
3 (𝜔) 𝑀14 (𝜔)

)
, where

𝑀11 (𝜔) =
(2𝑘𝑟𝑇− (𝜔) + 2𝜎11 − 𝑢1) (−2𝑘𝑟𝑇+ (𝜔) + 2𝜎21 + 𝑢1)
(2𝑘𝑟𝑇+ (𝜔) + 2𝜎11 − 𝑢1) (−2𝑘𝑟𝑇− (𝜔) + 2𝜎21 + 𝑢1)

,

𝑀14 (𝜔) =
(2𝑘𝑟𝜆− (𝜔) + 2𝜎14 + 𝑢1) (2𝑘𝑟𝜆+ (𝜔) − 2𝜎24 + 𝑢1)
(2𝑘𝑟𝜆+ (𝜔) + 2𝜎14 + 𝑢1) (2𝑘𝑟𝜆− (𝜔) − 2𝜎24 + 𝑢1)

,

and 𝑀 𝑙𝑚
3 (𝜔) for 𝑙, 𝑚 = 1, 2 can be computed as above but are not given since their

expressions are not needed in the subsequent analysis.
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A way that seems natural is to optimize the transmission conditions consists
in solving the min-max problem: min𝜎11 ,𝜎13 ,𝜎14 max𝜔∈[𝜔1 ,𝜔2 ] ‖𝑀1 (𝜔)𝑀2 (𝜔)‖ for
some matrix norm ‖ · ‖ and some constants 𝜔1 < 𝜔2. Solving this min-max problem
can be tricky: the result may depend on the chosen norm, and the complicated
expression of the components of 𝑀1𝑀2 makes the whole analysis inextricable.
Furthermore, it is not entirely clear how one could use either the product 𝑀1𝑀2 or
𝑀2𝑀1 in this min max problem. This could change the nature of the result.
However, we remark that the spectral radius appears to be useful in this case,

since 𝜌(𝑀1 (𝜔)𝑀2 (𝜔)) = 𝜌(𝑀2 (𝜔)𝑀1 (𝜔)) only depend on 𝜎11, 𝜎21, 𝜎14 and 𝜎24.
Furthermore, optimizing the spectral radius of the matrices may be done in two
independent optimization problems:

min
𝜎11 ,𝜎21

max
𝜔∈[𝜔1 ,𝜔2 ]

��������
(
−
√︃
𝑢21 + 4𝑘2𝜔2 − 4𝑖𝑘𝑢2𝜔 + 2𝜎11

) (
−
√︃
𝑢21 + 4𝑘2𝜔2 − 4𝑖𝑘𝑢2𝜔 + 2𝜎21

)
(√︃

𝑢21 + 4𝑘2𝜔2 − 4𝑖𝑘𝑢2𝜔 + 2𝜎11
) (√︃

𝑢21 + 4𝑘2𝜔2 − 4𝑖𝑘𝑢2𝜔 + 2𝜎21
)

�������� ,

min
𝜎14 ,𝜎24

max
𝜔∈[𝜔1 ,𝜔2 ]

��������
(
−
√︃
𝑢21 + 4𝑘2𝜔2 + 4𝑖𝑘𝑢2𝜔 + 2𝜎14

) (
−
√︃
𝑢21 + 4𝑘2𝜔2 + 4𝑖𝑘𝑢2𝜔 + 2𝜎24

)
(√︃

𝑢21 + 4𝑘2𝜔2 + 4𝑖𝑘𝑢2𝜔 + 2𝜎14
) (√︃

𝑢21 + 4𝑘2𝜔2 + 4𝑖𝑘𝑢2𝜔 + 2𝜎24
)

�������� .
This kind of min max problem can be solved. Suppose 𝜔1 = 0, 𝜔2 = 𝜋/ℎ and
applying results from [3, p. 35, Eq. (2.11)] prove, assuming ℎ is small enough, that
the solution in this case is:

𝜎11 = 𝜎14 =

(
𝑘𝜋 |𝑢1 |3
2ℎ

)1
4

, 𝜎21 = 𝜎24 =

(
25𝑘3𝜋3 |𝑢1 |

ℎ3

)1
4

. (5)

Other similar results can be found in [3]. However, this approach of optimizing the
spectral radius let the parameters 𝜎13 and 𝜎23 free, and 𝑀123 (𝜔) and 𝑀213 (𝜔) both
depend on 𝜎13 and 𝜎23. We show below how these parameters can be chosen.

3.3 Random tests for the last parameters

In order to see the influence of the parameters 𝜎𝑖3, we ran a batch of numerical
tests with random values for 𝜎𝑖3. We then solve (2) on Ω = (−1, 1) × (0, 1) with
𝑘 = 1, 𝑓 = 𝑇target = 0, u = (−2, 0), 𝑇0 |𝑥=−1 = 0, 𝑇0 |𝑥=1 = 2 and 𝑇0 |𝑦∈{0,1} = 1.
We first solve the equation on Ω, and compare it with the solution of (3)–(4), where
Ω1 = (−1, 0) × (0, 1), Ω2 = (0, 1) × (0, 1), Γ∩ = {0} × [0, 1] and 𝜎𝑖1, 𝜎𝑖4 are
assigned using (5). 𝜎13 and 𝜎23 are assigned randomly between −150 and +150. We
used second order centered finite differences, a ghost point for the Robin boundary
conditions and a 20 × 20 uniform grid for each subdomain. We then run 5 and
10 iterations of (3)–(4), and compare the result with the solution on the whole
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Fig. 1 Number random values between −150 and +150 generated for 𝜎𝑖3 VS Error (infinity norm)
on 𝜆 at the 5th (Left) and 10th (Right) iteration using random antidiagonal elements (blue dots) or
just 0 (red line).

domain, which let us compute an error at the end of the iterations. We did this
experiment with 250 random couples for 𝜎13 and 𝜎23, and plot the error. The results
are given in Figure 1. From these results, we see that the choice 𝜎13 = 𝜎23 = 0 seems
to give the lowest error (the red line in (1)). Indeed, after 5 (resp. 10) iterations, the
lowest error is at 0.0189 (resp. 3.5919 × 10−5) with the random values, while the
error with 𝜎13 = 𝜎23 = 0 is at 0.0051 (resp. 8.4667 × 10−6). This choice is special
since it decouples 𝑇 and 𝜆 at the interface Γ∩. It then suggests that the resolution of𝑇
first, and then 𝜆, is more efficient, with respect to the number of Schwarz iterations.

3.4 Schwarz iteration as critical points of an optimization problem

We conclude this proceeding by showing that each iteration of the Schwarz method
can be obtained by computing the critical points of some specific Lagrange func-
tional. We restrict ourselves to transmission conditions (4), where S𝑖 are lower-
triangular matrices with constant coefficients and recall that n is the outer normal
to 𝜕Ω1. We consider the next sub-domain problem{

−div(𝑘∇𝑇𝑖 − u𝑇𝑖) = 𝑓 in Ω𝑖 ,

𝑘𝜕n𝑇𝑖 + 𝑎𝑖u · n𝑇𝑖 + (−1)𝑖+1𝑝𝑖𝑇𝑖 = (−1)𝑖+1𝑔𝑖 on Γ∩, 𝑇𝑖 = 𝑇0 on 𝜕Ω𝑖 \ Γ∩.
(6)

Its variational formulation is: Find 𝑇 ∈ 𝐻1 (Ω𝑖) such that 𝑇𝑖 |𝜕Ω𝑖\Γ∩ = 𝑇0 and
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𝑎𝑖 (𝑇𝑖 , 𝜆𝑖) :=
∫
Ω𝑖

𝑘∇𝑇𝑖 · ∇𝜆𝑖 − 𝑇𝑖 u · ∇𝜆𝑖 𝑑𝑥

−
∫
Γ∩

(
𝑝𝑖 + (−1)𝑖+1 (1 + 𝑎𝑖)u · n

)
𝑇𝑖𝜆𝑖 𝑑𝑠

=

∫
Ω𝑖

𝑓 𝜆𝑖 𝑑𝑥 +
∫
Γ∩

𝑔𝑖𝜆𝑖 𝑑𝑠, ∀𝜆𝑖 ∈ 𝑉𝑖 :=
{
𝜑 ∈ 𝐻1 (Ω𝑖) | 𝜑|𝜕Ω𝑖\Γ∩ = 0

}
.

We then have the next result whose proof can formally be done by direct computation.

Theorem 2 Given 𝛼𝑖 ∈ 𝐿∞ (Γ∩), 𝛽𝑖 ∈ 𝐿2 (Γ∩), we consider the Lagrangian

L𝑖 (𝑇𝑖 , 𝜆𝑖) =
1
2
‖𝑇𝑖 − 𝑇target‖2𝐿2 (Ω𝑖) + 𝑎𝑖 (𝑇𝑖 , 𝜆𝑖) −

∫
Ω𝑖

𝑓 𝜆𝑖 𝑑𝑥 −
∫
Γ∩

𝑔𝑖𝜆𝑖 𝑑𝑠

+
∫
Γ∩

(𝛼𝑖

2
𝑇2𝑖 + 𝛽𝑖𝑇𝑖

)
𝑑𝑠, ∀

(
𝑇𝑖 − 𝑇0,𝑖

)
, 𝜆𝑖 ∈ 𝑉𝑖 ,

where 𝑇0,𝑖 ∈ 𝑉𝑖 is an extension of 𝑇0. Let (𝑇𝑖 , 𝜆𝑖) satisfying 𝜕𝑇𝑖 ,𝜆𝑖L𝑖 (𝑇𝑖 , 𝜆𝑖) = 0.
Then 𝑇𝑖 is a weak solution to (6) and 𝜆𝑖 ∈ 𝑉𝑖 is a weak solution to the (adjoint)
problem{

div(𝑘∇𝜆𝑖 + u𝜆𝑖) = 𝑇𝑖 − 𝑇target in Ω𝑖 , 𝜆𝑖 = 0 on 𝜕Ω𝑖 \ Γ∩,
𝑘𝜕n𝜆𝑖 + (1 + 𝑎𝑖)u · n𝜆𝑖 + (−1)𝑖+1𝑝𝑖𝜆𝑖 = (−1)𝑖+1 (𝛼𝑖𝑇𝑖 + 𝛽𝑖) on Γ∩.

(7)

From Theorem 2, we see that chosing 𝑎𝑖 = − 12 , 𝑝𝑖 = 𝜎𝑖1, 𝛼𝑖 = −𝜎𝑖3,

𝑔𝑖 =𝑘𝜕n𝑇
𝑛
3−𝑖 + 𝑎𝑖u · n𝑇𝑛

3−𝑖 + (−1)𝑖+1𝑝𝑖𝑇𝑛
3−𝑖 ,

𝛽𝑖 =

(
𝑘𝜕n𝜆

𝑛
3−𝑖 + (1 + 𝑎𝑖)u · n𝜆𝑛3−𝑖 + (−1)𝑖+1𝑝𝑖𝜆𝑛3−𝑖 + 𝛼𝑖𝑇

𝑛
3−𝑖

)
,

yields that (𝑇 𝑘+1
𝑖

− 𝑇0,𝑖 , 𝜆
𝑘+1
𝑖

) ∈ 𝑉𝑖 × 𝑉𝑖 is a critical point of L𝑖 . Each iterate
of the DDM can then be obtained by solving an optimization problem on each
subdomain (see also e.g. [1, 5]).

4 Conclusion

Using a Schwarz method on (2) appears to be harder than expected. The transmission
conditions found in [3] can be adapted to this case, but only gives a partial clue to
define some optimized transmission operator. Furthermore, solving (2) only let us
compute the gradient of the cost which only accelerates the computation of the
gradient, but not necessarily the resolution of (1). Concerning (2), we still wonder
if one can take advantage of the triangular structure of (1): is it better to solve first
for 𝑇 alone, and then for 𝜆, or could we find efficient iterations to compute the
couple (𝑇, 𝜆)? Additional works in this direction are on-going projects.
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Three-Level BDDC for Virtual Elements

Axel Klawonn, Martin Lanser, and Adam Wasiak

1 Introduction

The Virtual Element Method (VEM) is a Galerkin-type method for the solution of
partial differential equations which allows for the discretization with general polyg-
onal/polyhedral meshes. Furthermore, the VEM framework allows for the relatively
simple construction of trial and test spaces with desirable properties on these gen-
eral meshes. In recent years, numerous variants of the VEM have been proposed and
analyzed, which include nonconforming, high-regularity, high-order, and hourglass-
stabilized variants [4, 5, 9, 11]. The different approaches have been applied to many
different model problems. As a framework to make the VEM suitable for large scale
problems, the FETI-DP (Finite Element Tearing and Interconnecting - Dual Primal)
and BDDC (Balancing Domain Decomposition by Constraints) domain decomposi-
tion methods have been introduced for virtual element discretizations [6, 7], which
allows for an efficient and parallel iterative solution on large-scale computers. Re-
cently, the analysis has been extended to the Stokes problem in [8], and adaptive
coarse spaces for virtual element discretizations have been considered in [10] for
mixed form problems in three dimensions and in [13] for stationary diffusion and
linear elasticity in two dimensions. The use of adaptive coarse spaces allows for
the solution of highly heterogeneous problems, for example, stationary diffusion
problems with jumps in the diffusion coefficient, since, in the case of both finite
and virtual elements, the method is provably robust. In [14] a condition number
bound of the preconditioned system which only depends on geometrical constants
and a user defined tolerance was shown for finite element discretizations and in [13]
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the same was shown for the virtual element case. Unfortunately, adaptive coarse
spaces can be large, especially for decompositions with many subdomains and/or
difficult coefficient distributions. Also, classical coarse spaces grow proportionally
with the number of subdomains and, in a parallel context, with the number of parallel
resources. These large global coarse problems are a typical parallel scalability bot-
tleneck in BDDC and FETI-DPmethods, since the exact solution using, for example,
sparse direct solvers does not scale. To alleviate this difficulty in BDDC, numerous
multilevel approaches have been proposed, where the solution of the coarse prob-
lem is approximated by applying BDDC recursively using a very coarse domain
decomposition. This allows for a parallel solution of the coarse problem and thus
improves scalability. Here, we consider the three-level BDDC preconditioner intro-
duced in [16] and apply it to the BDDC method with virtual element discretizations
for the first time.

2 Model problems and the virtual element method

The domain Ω ⊂ R2 is assumed to be a polygon. Let 𝑓 ∈ 𝐿2 (Ω). We consider the
stationary diffusion equation with homogeneous Dirichlet boundary values

−∇ · (𝜌∇𝑢) = 𝑓 in Ω, 𝑢 = 0 on 𝜕Ω.

Here, we assume 𝜌 to satisfy 0 < 𝜌∗ ≤ 𝜌(𝑥) ≤ 𝜌∗ for two constants 𝜌∗, 𝜌∗ ∈ R. The
corresponding weak formulation is given by{

Find 𝑢 ∈ 𝐻10 (Ω) such that
𝑎(𝑢, 𝑣) = ( 𝑓 , 𝑣)𝐿2 (Ω) for all 𝑣 ∈ 𝐻10 (Ω),

(1)

where 𝑎(𝑣, 𝑤) := (𝜌∇𝑣,∇𝑤)𝐿2 (Ω) for 𝑣, 𝑤 ∈ 𝐻10 (Ω). We briefly introduce the VEM
as it is presented in [2, 1]. Let {Tℎ}ℎ be a sequence of quasi-uniform tessellations
of Ω into a finite number of simple polygons 𝐾 , where ℎ := max𝐾 ∈Tℎ ℎ𝐾 and
ℎ𝐾 := diam(𝐾). Each polygon has a finite number of vertices. Let P𝑘 (𝐾) denote the
space of polynomials of at most degree 𝑘 on 𝐾 . The meshes are assumed to satisfy
the following condition. There exists a 𝛾 > 0 such that for all ℎ and for all 𝐾 ∈ Tℎ:
1. 𝐾 is star-shaped with respect to a ball of radius ≥𝛾ℎ𝐾 .
2. The distance between any two vertices of 𝐾 is ≥𝛾ℎ𝐾 .
Denoting the set of edges of 𝐾 by E𝐾 and defining P−1 = {0}, a suitable local virtual
element space for the target order of accuracy 𝑘 ∈ N is given by

𝑉ℎ (𝐾) = {𝑣 ∈ 𝐻1 (𝐾) : 𝑣 𝑒 ∈ P𝑘 (𝑒) ∀𝑒 ⊂ E𝐾 , 𝑣 𝜕𝐾 ∈ C(𝜕𝐾), Δ𝑣 ∈ P𝑘−2 (𝐾)},

where C(𝜕𝐾) denotes the continuous functions on the boundary of 𝐾 . Then the
global virtual element space can be defined as 𝑉ℎ = {𝑣 ∈ 𝐻10 (Ω) : 𝑣 𝐾 ∈ 𝑉ℎ (𝐾)}.
We can choose the following degrees of freedom on 𝑉ℎ:
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• The values of 𝑣ℎ on each polygon vertex.
• For 𝑘 ≥ 2, the 𝑘 − 1 values of 𝑣ℎ on each point of the Gauss-Lobatto quadrature
rule on every edge of the tessellation.

• For 𝑘 ≥ 2 and all 𝐾 ∈ Tℎ , the volume moments up to order 𝑘 − 2 of 𝑣ℎ in 𝐾 .

The term 𝑎(𝑢ℎ , 𝑣ℎ) cannot be computed for 𝑣ℎ , 𝑤ℎ ∈ 𝑉ℎ from the given de-
grees of freedom. Therefore, we replace 𝑎(·, ·) with a suitable approximate bilinear
form 𝑎ℎ (·, ·) obtaining the discrete variational problem: Find 𝑢ℎ ∈ 𝑉ℎ such that
𝑎ℎ (𝑢ℎ , 𝑣ℎ) = 𝑓ℎ (𝑣ℎ) ∀𝑣ℎ ∈ 𝑉ℎ . For more details on the construction and implemen-
tation of 𝑎ℎ (·, ·) and related theoretical estimates we refer to [1, 2, 3].

3 BDDC and three-level BDDC

Ω1 Ω2

Ω3 Ω4

ℎ

𝐻

𝐼 Δ Π

Fig. 1 Domain decomposition with
polygonal meshes.

Let us give a brief description of the BDDC
method as it applies to virtual element dis-
cretizations. Let {Ω𝑖}𝑁𝑖=1 be a nonoverlapping
domain decomposition of Ω such that Ω =

∪𝑁
𝑖=1Ω𝑖 , equipped with sequences of quasi-
uniform tessellations T ℎ

𝑖
, 𝑖 = 1, ..., 𝑁 that sat-

isfy the VEMgrid assumptions. For each subdo-
main Ω𝑖 , we obtain local stiffness matrices 𝐾 (𝑖)

and load vectors 𝑓 (𝑖) using the VEM.
We denote by 𝐻𝑖 the diameter of Ω𝑖 and define
𝐻 := max𝑖 𝐻𝑖 . Let Γ := ∪𝑖≠ 𝑗𝜕Ω𝑖 ∩ 𝜕Ω 𝑗\𝜕Ω𝐷
be the interface, that is, the set of all points that
belong to at least two subdomains. Further de-
noting by Γℎ the set of all degrees of freedom
(d.o.f.) which lie on the interface, we split these into two distinct sets, the set of
primal degrees of freedom (Π) and the set of dual degrees of freedom (Δ) obtaining
Γℎ = Δ∪Π. In this article, the primal variables are chosen as the subdomain vertices.
For degrees of freedom in the interior, we use the index 𝐼. A depiction can be found
in Fig. 1. Finally, we require the decomposition to be conforming, that is, the virtual
element nodes coincide on the interface. We denote the local discrete virtual element
spaces 𝑉ℎ (Ω𝑖) := 𝑉ℎ ∩ 𝐻1 (Ω𝑖). We further define the local discrete trace spaces
𝑊𝑖 := 𝑉ℎ (𝜕Ω𝑖 ∩ Γℎ) and let𝑊 :=

∏𝑁
𝑖=1𝑊𝑖 .

3.1 Standard BDDC

The BDDC method is defined as follows. We assume the following local ordering of
the degrees of freedom which yields the following representation of the decomposed
stiffness matrices, solution vectors, and right-hand sides



430 Axel Klawonn, Martin Lanser, and Adam Wasiak

𝐾 =

[
𝐾𝐼 𝐼 𝐾𝐼Γ
𝐾Γ𝐼 𝐾ΓΓ

]
, 𝑢 =

[
𝑢𝐼
𝑢Γ

]
, and 𝑓 =

[
𝑓𝐼
𝑓Γ

]
,

where 𝐾𝐼 𝐼 := diag𝑁𝑖=1𝐾
(𝑖)
𝐼 𝐼
and 𝐾𝐼Γ := diag𝑁𝑖=1𝐾

(𝑖)
𝐼Γ
. In the same way, we have 𝑢𝑇

𝐼
=

(𝑢 (1)𝑇
𝐼

, . . . , 𝑢
(𝑁 )𝑇
𝐼

), and similarly for 𝑢Γ, 𝑓𝐼 , and 𝑓Γ. We define the unassembled
Schur complement and the reduced right-hand side by

𝑆 := 𝑆
ΓΓ

= 𝐾
ΓΓ

− 𝐾
Γ𝐼
𝐾−1
𝐼 𝐼 𝐾𝐼Γ and g := g

Γ
= f

Γ
− K

ΓIK
−1
II fI.

Wedenote by 𝑅𝑇
Π
= (𝑅 (1)𝑇

Π
, 𝑅

(2)𝑇
Π

, . . . , 𝑅
(𝑁 )𝑇
Π

) and 𝑅𝑇
Δ
= (𝑅 (1)𝑇

Δ
, 𝑅

(2)𝑇
Δ

, . . . , 𝑅
(𝑁 )𝑇
Δ

)
the partial finite element assembly operators with values in {0, 1}, which assemble
the system in the primal variables. We further define 𝑅Γ = diag(𝑅Δ, 𝐼Π).
By assembling 𝑆 and 𝑔 in the primal variables we obtain

𝑆 =

[
𝐼Δ
𝑅𝑇
Π

]
𝑆

[
𝐼Δ
𝑅Π

]
=:

[
𝑆ΔΔ 𝑆ΔΠ

𝑆ΠΔ 𝑆ΠΠ

]
and 𝑔̃ =

[
𝐼Δ
𝑅𝑇
Π

]
𝑔.

By assembling these systems in the dual variables we obtain the standard BDDC
system

𝑅𝑇Γ 𝑆𝑅Γ
𝑢𝑔 = 𝑅

𝑇
Γ 𝑔̃ ⇐⇒: 𝑆𝑔𝑢𝑔 = 𝑔𝑔 .

Next, we introduce scaling matrices 𝐷 (𝑖) belonging to their subdomains Ω𝑖 .
Consider the domain Ω𝑖 which shares the edges E𝑖 𝑗1 , . . . , E𝑖 𝑗𝑛 with the subdo-
mains Ω 𝑗1 , . . . ,Ω 𝑗𝑛 , respectively. Ordering 𝐷 (𝑖) according to the edges, yields
𝐷 (𝑖) = diag𝑛

𝑚=1𝐷
[𝑖 ]
E𝑖 𝑗𝑚
. We further require that the two scaling matrices belonging to

an interface edge E𝑖 𝑗 satisfy 𝐷 [𝑖 ]
E𝑖 𝑗 + 𝐷

[ 𝑗 ]
E𝑖 𝑗 = 𝐼, where 𝐼 denotes the identity matrix.

Here, we consider 𝜌-scaling [15]. With these scaling matrices, the scaled versions
of 𝑅Δ and 𝑅Γ are defined as 𝑅𝑇𝐷,Δ = (𝑅 (1)𝑇

𝐷,Δ
, . . . , 𝑅

(𝑁 )𝑇
𝐷,Δ

) and 𝑅
𝐷,Γ

= diag(𝑅
𝐷,Δ

, 𝐼
Π
),

where 𝑅 (𝑖)
𝐷,Δ

= 𝐷 (𝑖)𝑅 (𝑖)
Δ
. Finally the preconditioned BDDC system is given by

𝑀−1𝑆𝑔𝑢𝑔 = 𝑀
−1𝑔𝑔, where 𝑀−1 := 𝑀−1

BDDC := 𝑅
𝑇
𝐷,Γ𝑆

−1𝑅𝐷,Γ .

4 Three-level BDDC

The three-level BDDCmethod is now characterized by an approximate solution of the
linear Schur complement system 𝑆𝑧 = 𝑟 which occurs in the preconditioner and thus
has to be solved in each iteration for an arbitrary residual vector 𝑟 . The approximation
is based on a recursive application of the two-level BDDC preconditioner to the
coarse problem using a coarser third level decomposition for the set of primal
degrees of freedom. More precisely, the exact inverse 𝑆−1

ΠΠ
is replaced by the BDDC

preconditioner on the third level within each application of 𝑆−1. We define the
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Ω(1) Ω(2)

Ω(3) Ω(4)𝐻

Ω1 Ω2 Ω5 Ω6

Ω3 Ω4 Ω7 Ω8

Ω9 Ω10 Ω13 Ω14

Ω11 Ω12 Ω15 Ω16

ℎ

𝐻

𝐼

𝐼

Δ

Δ

Π

Π

Fig. 2 Example of a three-level domain decomposition into 16 regular subdomains (bottom) and
4 regular subregions (top) with polygonal meshes on the subdomains. The interface Γ between
subregions is marked in magenta.

operator 𝑆 such that the solution of 𝑧 = 𝑆−1𝑟 is the desired approximation of 𝑧
and we will discuss its construction below. This allows us to define the three-level
preconditioner

𝑀−1
3L := 𝑅

𝑇
𝐷,Γ𝑆

−1𝑅𝐷,Γ .

We decompose Ω into 𝑁 subregions Ω( 𝑗) with diameters 𝐻. Each subregion is
the union of 𝑁 𝑗 subdomains, which we will denote by Ω( 𝑗)

𝑖
, 𝑖 = 1, . . . , 𝑁 𝑗 . To create

a third level, we split the primal variables Π into different categories, just as in
the two level case. Let Γ ⊂ Π be the interface between the subregions, that is, the
primal variables belonging to two or more subregions. We further split the subregion
interface into dual and primal variables obtaining Γ = Δ ∪ Π. Here, the subregion
primal variables are those that are connected to three or more subregions, that is,
the vertices of the subregions. The remaining primal variables are denoted as 𝐼. An
example of a three-level decomposition is shown in Fig. 2. The operator 𝑆 is con-
structed by applying BDDC to the subregion decomposition. Instead of assembling
the global Schur complement on all primal variables, the third-level decomposition
is used to assemble a Schur complement on each subregion. For these subregion
Schur complements, the BDDC preconditioner is built analogously to the second
level and replaces the inverse action of 𝑆−1

ΠΠ
in each iteration of BDDC. In general

(under certain assumptions on the coefficient distribution), the resulting system re-
quires more PCG iterations to converge to the desired tolerance and shows higher
condition numbers than the classical BDDC method but is more efficient due to
being able to be computed in parallel. For more details we refer to [12, 16].
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Fig. 3 Voronoi tessellations (two figures on the left) and Centroidal Voronoi Tessellations (CVT)
(two figures on the right) with 25 and 16 elements respectively used for the numerical experiments.

BDDC Three-level BDDC
𝐻/𝐻 = 5, 𝐻/ℎ ≈ 5 sr = 5 × 5, 𝐻/𝐻 = 5

𝐻/ℎ it cond sr it cond 𝐻/𝐻 it cond
≈25 15 2.38 5 × 5 21 4.09 5 21 4.09
≈50 16 2.40 10 × 10 25 4.73 10 24 5.12
≈75 16 2.40 15 × 15 26 4.90 15 28 6.43

Fig. 4 Condition numbers (cond) and iteration numbers (it) for BDDC and three-level BDDC with
linear virtual element discretizations for a stationary diffusion problem. The coefficient distribution
and the decomposition in subregions (sr) for the third level in the case of 5 × 5 subregions are
shown on the left side. The Voronoi tessellation with 25 elements shown in Fig. 3 is used on each
subdomain. The coefficient function is 106 on the red patches and 1 on the white ones.

5 Numerical results

For the numerical experiments, we consider Ω = [0, 1]2 and regular domain de-
compositions into 𝑚 × 𝑚 quadratic subdomains and 𝑀 × 𝑀 quadratic subregions.
To create a conforming decomposition, the meshes in Fig. 3 are mirrored across
the subdomain interface. The PCG method is iterated until a relative reduction of
the residual of 10−8 is reached. The results in Fig. 4 confirm the expected behavior
of BDDC and three-level BDDC for the case of virtual elements, where using the
three-level variant increases the iteration numbers and condition numbers slightly.
Nonetheless, the method is fairly robust and scalable against increasing the number
of subregions or their size. This is comparable to the finite element case. Similar
results can be obtained for CVT meshes. Considering a subregion checkerboard
pattern as the coefficient distribution, both meshtypes, and virtual elements of order
𝑘 = 1, 2 in Table 1, we can observe a similar behavior.
To conclude, we have applied the three-level BDDC method to virtual element

discretizations. The method shows a similar performance to its finite element coun-
terpart. A proof of the three-level BDDC condition number bound to virtual element
discretizations is in preperation.
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Table 1 Condition numbers (cond) and iteration numbers (it) for three-level BDDC with virtual
element discretizations with polynomial degree given by 𝑘 for a coefficient distribution in a sub-
region (sr) checkerboard pattern with a contrast of 106. The subdomain meshes for 𝐻/ℎ ≈ 5 and
𝐻/ℎ ≈ 4 are shown in Fig. 3.

𝐻/𝐻 = 5, 𝐻/ℎ ≈ 5
𝑘 = 1 Voronoi CVT
sr it cond it cond
5 × 5 14 2.33 13 2.33
10 × 10 14 2.33 13 2.33
15 × 15 14 2.35 13 2.35

sr = 5 × 5, 𝐻/ℎ ≈ 5
𝑘 = 1 Voronoi CVT
𝐻/𝐻 it cond it cond
5 14 2.33 13 2.33
10 15 2.38 14 2.38
15 15 2.39 14 2.39

sr = 5 × 5, 𝐻/𝐻 = 5
𝑘 = 1 Voronoi CVT
𝐻/ℎ it cond it cond
≈5 14 2.33 14 2.33
≈10 17 3.19 17 3.22
≈15 19 3.65 19 3.76

𝐻/𝐻 = 4, 𝐻/ℎ ≈ 4
𝑘 = 2 Voronoi CVT
sr it cond it cond
4 × 4 17 3.53 16 3.55
8 × 8 17 3.54 16 3.55
12 × 12 17 3.54 16 3.55

sr = 4 × 4, 𝐻/ℎ ≈ 4
𝑘 = 2 Voronoi CVT
𝐻/𝐻 it cond it cond
4 17 3.53 16 3.55
8 18 3.53 18 3.57
12 19 3.56 18 3.60

sr = 4 × 4, 𝐻/𝐻 = 4
𝑘 = 2 Voronoi CVT
𝐻/ℎ it cond it cond
≈4 17 3.53 16 3.55
≈8 20 4.49 20 4.44
≈12 21 4.66 22 5.64
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An Adaptive Overlapping Schwarz Algorithm
for Isogeometric Analysis

Olof B. Widlund, Luca F. Pavarino, Simone Scacchi, and Stefano Zampini

1 Introduction

The algorithm considered in this paper is known as the RAGDSW – the Reduced
Adaptive Generalized Dryja-Smith-Widlund – method. Following an idea of Clark
Dohrmann, the GDSW algorithms were introduced in order to avoid the need for
coarser meshes for overlapping Schwarz algorithms, see [4]; for a general introduc-
tion to Schwarz method see [9, Chap. 2–3]. This was accomplished by borrowing
coarse spaces from another family of domain decomposition algorithms namely the
iterative substructuring methods, see [9, Chap. 4–6]. These algorithms were later
further refined decreasing the dimension of the coarse spaces, see [5, 6]. We note
that the GDSW methods, without adaptation, can be used for problems for which
only fully assembled stiffness matrices are available. Unfortunately, the adaptive
variants require access to the stiffness matrices for individual subdomains, matrices
that cannot be recovered from fully assembled matrices.
The purpose of our present work is to extend previous work on low order finite

elements to isogeometric analysis (IgA) based onB-splines andNURBS (nonuniform
rational B-splines) of arbitrary order 𝑝; for an introduction to IgA, see, e.g., [1]. Our
elliptic problems are scalar elliptic problems and compressible linear elasticity in two
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or three dimensions. We note that the NURBS are commonly used in computer aided
design and we always assume that the domains of the elliptic problems considered
can be represented exactly using this class of functions.With B-splines of order 𝑝 and
smoothness 𝑘 = 𝑝 − 1, there are 𝑝 one-dimensional (1D) B-spline basis functions
which differ from zero at any fixed internal knot. This is the origin of our fat
interfaces; see further Section 3.
New coarse spaces for overlapping Schwarz methods are generated adaptively

by solving generalized eigenvalue problems on subsets of the fat interface which
subdivide the domain of the elliptic problem into subdomains. We call these subsets
eigensets. The resulting eigenvectorswith eigenvalues less than or equal to a tolerance
are then extended by zero to the rest of the fat interface to provide Dirchlet data for
the computation of basis functions, of minimum energy, for the coarse subspace of
our Schwarz algorithms. We note that the AGDSW algorithms considered in [7] use
eigensets of the interface based of equivalence classes directly related to subdomain
vertices, edges, and faces while the RAGDSW algorithms of [8] use only one type
of eigensets each associated with a vertex of the interface. The latter choice leads to
considerably much smaller coarse subspaces. The two papers just cited, which have
provided a foundation for our work, are for low order finite elements. These new
algorithms improve the rate of convergence of the overlapping Schwarz algorithms, in
particular, for caseswhen thematerial coefficients of our problems vary considerably;
the work by Heinlein et al. have very strong results of that kind.
Our theoretical result provides an estimate of the condition number for our precon-

ditioned conjugate gradient methods in terms of the tolerance used in the selection
of eigenvectors of the generalized eigenvalue problems. Our experimental work with
our algorithm is still in progress and will further be reported in a forthcoming paper,
which will also provide complete proofs of our theoretical results.

2 The discrete problems

In this paper, the coarse space of the two-level additive Schwarz methods is given in
terms of a coarse partition of the domain into non-overlapping subdomains {Ω𝑘 }.The
union of the intersections of the boundaries of these subdomains form the interface Γ.
In a reference domain, each non-overlapping subdomains, Ω̂𝑘 , is a preimage of Ω𝑘

and is a square with a side length 𝐻 each of which is partitioned into elements, with
a side length of about ℎ, by B-spline knots which we assume to form a quasi-uniform
mesh. The coarse space of the pioneering paper [2] is associated with B-spline
elements given in terms of the reference subdomains and of the same degree as those
on the fine decomposition into small elements. In order to keep the dimension of the
coarse space small, maximal smoothness of the B-splines, 𝑘 = 𝑝−1, is chosen in that
paper and in our work and this assumption also assures us that the coarse space is
contained in the global space on the fine mesh which is also chosen to be of maximal
smoothness. In the reference subdomains, tensor-product B-splines, 𝐵𝑝

𝑖
(𝑥)𝐵𝑝

𝑗
(𝑦)

and 𝐵𝑝

𝑖
(𝑥)𝐵𝑝

𝑗
(𝑦)𝐵𝑝

𝑘
(𝑧), of order 𝑝 in all coordinates in two and three dimensions
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(2D and 3D), respectively, are used. The physical subdomains are the images of
the reference subdomains under a mapping using NURBS. As already indicated
the coarse spaces of our algorithm is chosen differently. Our local subproblems are
given by Dirichlet problems on subdomains which share at least one layer of knots
with all their neghbors. This overlap is measured by a parameter 𝑟 ≥ 0 where 𝑟 = 0
represents minimal overlap and a value of 𝑟 > 0 indicates that 𝑟 layers of knots are
shared between the neighboring local problems.

3 Equivalence classes, related subspaces, and preconditioners

For 2D, the subdomain vertices and edges of Γ are associated with equivalence
classes of the knots of the fine mesh. The pairs of indices, (𝑖, 𝑗), associated with
the fat interface, Γ 𝑓 𝑎𝑡 , are determined by the set of 2D B-splines with values which
differ from zero on part of the interface Γ. This fat interface, in turn, is divided into
equivalence classes of fat vertices and fat edges.
Each interior subdomain vertex, and for 𝑘 = 𝑝 − 1, is associated with a fat vertex

set of 𝑝2 knots with 𝑝2 B-spline basis functions that do not vanish at that vertex.
Similarly, each interior subdomain edge is associated with a fat edge with basis
functions which vanish at the two vertices at the end of the edge but differ from
zero on part of a particular edge of Γ. Each fat edge can be viewed as being built
from 𝑝 thin edges of knots parallel to the subdomain edge in question in the reference
domain. There is also an equivalence class of knots of the interior of any subdomain
basis functions which vanish identically on the interface Γ. In 3D, there are also fat
faces and the subspaces associated with fat vertices, fat edges, fat faces, and interiors
of subdomains which are defined very similarly to the 2D case.
The eigensets of the RAGDSW algorithms are only of one type each associated

with a subdomain vertex 𝑉 ; see Fig. 1. We denote such an eigenset by 𝑅 and by Ω𝑅

the interior of the union of the closure of four or eight subdomains which share
the vertex at the center of this eigenset for 2D and 3D, respectively. In Fig. 1, the
dots represent the locations of the maxima of the different B-spline basis functions
associated with the fat interfaces. In the 2D case, the dots of 𝑅 are those of the
fat vertex and of the parts of the fat edges which are closer to 𝑉 than to any other
subdomain vertex. We note that for an even value of 𝑝, none of these dots would fall
on the interface Γ. The figures would also look different if the parameter 𝑘 < 𝑝 − 1.
To decrease the cost of the computation of the elements of the matrices of the

generalized eigenvalue problems (1), we can also use a subset of Ω𝑅 making sure
that all the basis functions associated with the set 𝑅 are supported in the set that
replaces Ω𝑅 . We note that the theory, which we have developed, is equally valid in
this case.
Considering the 3D case, we can now provide details on the construction of the

set 𝑅. The B-spline knots and tensor-product B-splines associated with one of these
eigensets are those of its fat vertex and the halves of the fat edges closest to the
vertex and the nearest quarters of the adjacent fat faces; see Fig. 1. In case the
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Fig. 1 RAGDSW eigensets for 𝑝 = 3, 𝑘 = 2. Top left: A 2D eigenset consisting of the union of
a fat vertex (black dots) and adjcent halves of fat edges edges (red dots). Top right: the eigenset
on a quarter-ring domain. Bottom left: A 3D eigenset consisting of the union of a fat vertex (black
dots), halves of the adjacent fat edges (red dots), and quarters of adjacent fat faces (blue asterisks).
Bottom right: The eigenset in a thick quarter-ring domain.

number of knots on a subdomain edge is not even, we allocate the knots furthest
away from the relevant fat vertices to any of its closest eigensets. We also make
similar minor modifications of the set of knots of the fat subdomain faces. The union
of these eigensets, which do not overlap, covers the entire fat interface. We note that
the knots originating from the fat vertex and subsets of fat edges and fat faces are
displayed with different symbols and colors; we will need to partition this eigenset 𝑅,
accordingly, when constructing the generalized eigenvalue problems.
The generalized eigenvalue problem associated with such an eigenset is of the

form
𝑆
Ω𝑅

𝑅𝑅
𝜏★,𝑅 = 𝜆★,𝑅 𝐾

Ω𝑅

𝑅𝑅
𝜏★,𝑅, (1)

defined by the Schur complement 𝑆Ω𝑅

𝑅𝑅
generated from the stiffness matrix 𝐾Ω𝑅

of the Neumann problem on Ω𝑅 built from the four or eight subdomains sharing
the eigenset or from a subset of Ω𝑅 as indicated above. The Schur complement
is generated by eliminating all degrees of freedom except those of 𝑅. The other
matrix, 𝐾Ω𝑅

𝑅𝑅
, is the principal minor, associated with 𝑅, of the same stiffness matrix
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after eliminating the off-diagonal blocks that represent coupling between the sets
from which the set 𝑅 is constructed.
It is easy to see that the Schur complement is singular with one constant null vector

for any scalar elliptic problem. For elasticity, there are three- and six-dimensional
null spaces for 2D and 3D, respectively; they originate from the rigid body modes.
This fact shows that the null space condition will always be satified. For elasticity
and the case 𝑝 = 1, the other matrix of the generalized eigenvalue problems can also
be singular but this issue does not arise if 𝑝 ≥ 2.
Working with a tolerance 𝑡𝑜𝑙𝑅 ≥ 0, we select all eigenvectors with 𝜆★,𝑅 ≤ 𝑡𝑜𝑙𝑅,

extend their values by zero to the rest of the fat interface and then compute their
minimal energy extensions to find the coarse space elements 𝑣★,𝑅 associated with 𝑅.
For each eigenvector, this requires the solutions of a Dirichlet problem for each of
the subdomains ofΩ𝑅 with a zero right hand side. Thus, any such basis function has
values in the interior of the subdomains obtained by a minimal energy extension.

4 A theoretical result

Our theoretical result is an estimate of the condition number of the two-level additive
Schwarz algorithm using the coarse space obtained from the coarse basis functions
introduced above and one local subspace for each sudomain Ω𝑘 . Any such local
subspace is associated with all the knots of the subdomain and the part of the fat
interface adjacent to the subdomain. Currently our proof does not work for smaller
overlaps.

Theorem 1 There are constants 𝐶1 and 𝐶2 such that the condition number of the
two-level additive Schwarz operator 𝑃𝑎𝑑𝑑 satifies

𝜅(𝑃𝑎𝑑𝑑) ≤ 𝐶1 (1 + 𝐶2/𝑡𝑜𝑙). (2)

Here 𝑡𝑜𝑙 is the smallest tolerance 𝑡𝑜𝑙𝑅 used for the generalized eigenvalue problems
and 𝐶1 and 𝐶2 are computable constants independent of the number of subdomains,
the dimension of the subprobems, and the coefficients of our elliptic problems.

Our proof relies to a large extent on the work reported in the two papers by Hein-
lein et al.

5 Numerical results

In this section, we report on numerical experiments with the isogeometric RAGDSW
preconditioner for the 2D Poisson equation on a quarter-ring domain, discretized by
isogeometric NURBS spaces with mesh size ℎ, polynomial degree 𝑝, regularity
𝑘 = 𝑝 − 1, and the overlap parameter 𝑟 . The domain is decomposed into 𝑁 nonover-
lapping subdomains of characteristic size 𝐻. The linear systems of equations arising
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from the discretizations are solved by the PCG algorithm accelerated by the isoge-
ometric RAGSW preconditioner, with a zero initial guess and a stopping criterion
of a 10−6 reduction of the Euclidean norm of the PCG residual. In the tests, we study
how the convergence rate of the RAGDSW preconditioner depends on the parame-
ters ℎ, 𝑁 , 𝑝, and 𝑟 The numerical tests have been performed with a MATLAB code
based on the GeoPDEs library [3]. We expect to be able to show results for linear
elasticity and much larger 3D problems in a forthcoming paper.

Table 1 RAGDSWpreconditioner in 2D quarter-ring domain: condition number 𝜅2, iteration count,
it, and coarse problem size 𝑁Π as a function of the number of subdomains 𝑁 and mesh size ℎ.
Fixed spline parameters 𝑝 = 2, 𝑘 = 1, minimal overlap parameter 𝑟 = 0, 𝑡𝑜𝑙 = 0.1.

RAGDSW preconditioner, quarter-ring domain
𝑝 = 2, 𝑘 = 1, 𝑟 = 0, 𝑡𝑜𝑙 = 0.1

1/ℎ = 8 1/ℎ = 16 1/ℎ = 32 1/ℎ = 64 1/ℎ = 128
𝑁 𝜅2 it. 𝑁Π 𝜅2 it. 𝑁Π 𝜅2 it. 𝑁Π 𝜅2 it. 𝑁Π 𝜅2 it. 𝑁Π

2 × 2 3.60 10 1 6.69 14 2 9.23 17 3 16.10 22 4 30.60 29 4
4 × 4 7.63 16 9 8.77 18 18 16.16 24 18 16.31 23 36
8 × 8 10.85 20 49 10.38 19 98 18.90 25 98
16 × 16 13.73 22 225 11.40 19 450
32 × 32 16.23 24 961

Table 2 RAGDSW preconditioner in 2D quarter-ring domain: condition number 𝜅2, iteration
counts it. and coarse problem size 𝑁Π as a function of the number of subdomains 𝑁 and mesh
size ℎ, Fixed spline parameters 𝑝 = 3, 𝑘 = 2, minimal overlap parameter 𝑟 = 0, 𝑡𝑜𝑙 = 0.1.

RAGDSW preconditioner, quarter-ring domain
𝑝 = 3, 𝑘 = 2, 𝑟 = 0, 𝑡𝑜𝑙 = 0.1

1/ℎ = 8 1/ℎ = 16 1/ℎ = 32 1/ℎ = 64 1/ℎ = 128
𝑁 𝜅2 it. 𝑁Π 𝜅2 it. 𝑁Π 𝜅2 it. 𝑁Π 𝜅2 it. 𝑁Π 𝜅2 it. 𝑁Π

2 × 2 7.15 14 1 9.72 15 2 16.87 18 3 20.10 20 4 26.63 22 8
4 × 4 11.79 22 9 14.41 23 18 17.34 24 27 22.40 24 36
8 × 8 17.16 27 49 14.53 23 98 17.55 23 147
16 × 16 22.15 29 225 14.91 23 450
32 × 32 26.42 30 961

5.1 Scalability in 𝑵 and quasi-optimality in 𝑯/𝒉

The condition number 𝜅2 of the RAGDSW preconditioned system and the conjugate
gradient iteration count, it, are reported in Tables 1 and 2 as a function of the number
of subdomains 𝑁 and the mesh size ℎ for 𝑝 = 2 and 𝑝 = 3, respectively. In both
cases, we consider the maximal regularity 𝑘 = 𝑝 − 1. We set the adaptive tolerance
to 𝑡𝑜𝑙 = 0.1. The results show that the proposed preconditioner is scalable, since,
moving along the diagonals of each table, both the condition number and iteration
count exhibit a moderate increase that seems to level off and approach a constant
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Fig. 2 Scalability of RAGDSW preconditioner in 2D quarter-ring domain: condition number 𝜅2
(top) and iteration counts it. (bottom) as a function of the number of subdomains 𝑁 , fixed ratio
𝐻/ℎ = 4, overlap parameter 𝑟 = 0 and 𝑟 = 2, 𝑡𝑜𝑙 = 0.1.

value; see also Fig. 2. We note that for the largest problems of these tables, the
dimension of the coarse space appears to increase about four times when the number
of subdomains increases by four.

5.2 Dependence on 𝒑

In this test, we study the robustness of the RAGDSW preconditioner with respect to
the spline polynomial degree 𝑝. The quarter-ring domain is discretized with a mesh
size ℎ = 1/64 and 𝑁 = 4 × 4 subdomains, while the degree 𝑝 varies from 2 to 8 and
the regularity 𝑘 = 𝑝−1 is always maximal. The results reported in Table 3 show that
the condition numbers and iteration counts exhibit a moderate increase up to 𝑝 = 5.
They then start to increase, more slowly when the adaptive tolerance 𝑡𝑜𝑙 is large
and the coarse space sufficiently rich. We note that the condition numbers without
preconditioning – not reported – grows very rapidly with 𝑝.
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Table 3 RAGDSW preconditioner in 2D quarter-ring domain: condition number 𝜅2 and iteration
counts it. as a function of the spline polynomial degree 𝑝 and adaptive tolerance parameter 𝑡𝑜𝑙,
with maximal regularity 𝑘 = 𝑝 − 1, fixed number of subdomains 𝑁 = 4 × 4, 1/ℎ = 64, 𝑟 = 0. 𝑁Π

denotes the dimension of the coarse space.

RAGDSW prec., quarter-ring domain
𝑁 = 4 × 4, 1/ℎ = 64, 𝑟 = 0

𝑡𝑜𝑙 = 0.05 𝑡𝑜𝑙 = 0.1 𝑡𝑜𝑙 = 0.2 𝑡𝑜𝑙 = 0.5
𝑝 dofs 𝜅2 it 𝑁Π 𝜅2 it 𝑁Π 𝜅2 it 𝑁Π 𝜅2 it 𝑁Π

2 4356 16.16 24 18 16.16 24 18 10.76 18 36 10.76 18 36
3 4489 22.21 27 18 17.34 24 27 12.20 20 36 8.56 17 81
4 4624 17.56 25 18 14.98 21 27 10.60 19 63 9.24 17 144
5 4761 29.15 31 18 20.05 26 63 13.51 22 108 11.48 20 225
6 4900 52.77 40 54 31.18 32 99 26.33 29 288 24.09 27 324
7 5041 35.19 41 99 26.17 33 252 25.14 31 441 25.14 31 441
8 5184 135.56 73 243 89.68 57 513 82.49 55 576 82.49 55 576
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Numerical Assessment of PML Transmission
Conditions in a Domain Decomposition
Method for the Helmholtz Equation

Niall Bootland, Sahar Borzooei, Victorita Dolean, and Pierre-Henri Tournier

1 Introduction

Finite element discretisations of large-scale time-harmonic wave problems typically
lead to ill-conditioned linear systems with a large number of unknowns. A promising
class of methods to solve such huge systems in parallel, both in terms of convergence
and computing time, is offered by domain decomposition methods (DDMs). These
approaches rely on a partition of the computational domain into smaller subdomains,
leading to subproblems of smaller sizes which are manageable by direct solvers.
A robust domain decomposition (DD) preconditioner for large-scale computations
is given in [4]. However, improving the efficiency of such preconditioners continues
to be a challenging issue.Recentwork has shown that transmission operators based on
perfectly matched layers (PMLs) are well-suited for two-dimensional configurations
of the Helmholtz problem within non-overlapping DDMs [10]. Further, PMLs have
been used successfully as transmission conditions in DDMs applied to geophysical
applications modelled by the Helmholtz equation [11].
In this work, we present an efficient PML-based Schwarz-type preconditioner

with overlapping subdomains to solve large-scale wave propagation problems. We
then assess the performance of this one-level DD algorithm, where the transmission
conditions at the boundaries between subdomains are PML conditions in order to
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provide a better approximation to the transparent boundary operator. Further, we
will investigate the convergence properties and compare them with the use of more
standard impedance transmission conditions.

2 Mathematical model

As an underlying model we consider the Helmholtz equation in free space, given by

−(Δ + 𝑘2 (x))𝑢(x) = 𝑔(x), x ∈ Ω (1)

for Ω = R𝑑 in dimension 𝑑 = 2 or 3, where 𝑘 (x) = 2𝜋
𝜆
is the wavenumber, with

𝜆 = 𝑐
𝑓
being the wavelength, 𝑐(x) the wave speed and 𝑓 the frequency. Note that the

angular frequency is then defined as𝜔 = 2𝜋 𝑓 . To close the problem we prescribe the
physically relevant condition at infinity known as the far field Sommerfeld radiation
condition

lim
|x |→∞

|x| 𝑑−12
(
𝜕𝑢

𝜕 |x| − 𝑖𝑘𝑢

)
= 0. (2)

Since we can not compute on the whole free space domain, we consider truncating
to an appropriate finite domain. Let us suppose now that Ω ⊂ R𝑑 represents a finite
computational domain capturing the physical area of interest. A typical approach, as
in [7], is to replace the Sommerfeld condition (2) with the first-order approximation

𝜕𝑢

𝜕n
+ 𝑖𝑘𝑢 = 0, x ∈ 𝜕Ω, (3)

known as the impedance (or Robin) boundary condition (Imp BC), with n being the
unit outward normal to the boundary 𝜕Ω. This enables the appropriate description
of wave behaviour in a bounded domain. The finite element discretisation of (1) can
then be written as a linear system 𝐴u = b.

2.1 PML formulation

Perfectly matched layers (PMLs) were introduced as a better alternative to absorbing
boundary conditions (ABCs) by Berenger [2] to achieve a higher accuracy in domain
truncation by eliminating undesired numerical reflections from boundaries, leading
to exponential convergence of the numerical solution to the exact solution [1]. PML
implementation is done by stretching Cartesian coordinates such that the stretching
is defined in a layer surrounding Ω, as in [6], giving a larger computational do-
main ΩPML. In this regard, we assume the boundaries of the artificially truncated
domain Ω are aligned with the coordinate axes.
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For simplicity of exposition, we will focus on truncating the problem in the 𝑥
direction. Let us suppose that the PML extends from the boundary of our domain
of interest at 𝑥 = 𝑎 to 𝑥 = 𝑎∗ and Dirichlet conditions are imposed on 𝑥 = 𝑎∗. The
stretched coordinate mapping used is given by

𝜕

𝜕𝑥pml
↦→ 1
1 − 𝑖

𝜔
𝜎(𝑥)

𝜕

𝜕𝑥
, where

{
𝜎(𝑥) = 0 if 𝑥 < 𝑎,

𝜎(𝑥) > 0 if 𝑎 < 𝑥 < 𝑎∗.
(4)

In the PML region, where 𝜎(𝑥) > 0, oscillating solutions turn into exponentially
decaying ones. In the original domain Ω, 𝜎(𝑥) = 0 so that the underlying equation
is unchanged. In this work we will study three different stretching functions [3, 8],
namely

𝜎−1 (𝑥) =
1

𝑎∗ − 𝑥
, 𝜎−2 (𝑥) =

2
(𝑎∗ − 𝑥)2

, and 𝜎2 (𝑥) = 𝛼(𝑎∗ − 𝑥)2. (5)

In 𝜎2 (𝑥), 𝛼 is experimentally chosen to take the value 30 in our simulations. To
incorporate a PML into other coordinate directions, we simply apply equivalent one-
dimensional transformations to obtain 𝜕

𝜕𝑦pml
and 𝜕

𝜕𝑧pml
. At the corners of the extended

computational domain ΩPML we will have PML regions that stretch along two or
three directions simultaneously; this will not generate any problems. Implementing
this mapping in, for instance, a three-dimensional domain requires a slight change
to the Helmholtz equation (1) over ΩPML, resulting in the Laplace operator Δ being
replaced by following operator which stretches in the PMLs

Δpml =
𝜕2

𝜕𝑥pml
2 +

𝜕2

𝜕𝑦pml
2 +

𝜕2

𝜕𝑧pml
2 . (6)

2.1.1 Accuracy assessment for PMLs

In this section we will solve the Helmholtz equation when PMLs are applied as
global boundary conditions for a 2D domain of length 10𝜆 in each direction. We
will compute the 𝐿2 relative error with respect to the analytical exact solution
and compare it with the situation where impedance boundary conditions are used
instead.We consider a scattering problem of a plane wave by a circular obstacle, with
a Dirichlet boundary condition on the boundary of the obstacle, shown in Figure 1.
First, in Table 1, we compare different stretching functions 𝜎 with the utilization of
higher order P3 Lagrange finite elements and discretization of 𝑛𝜆 = 20 points per
wavelength. We find that the best accuracy is obtained with 𝜎−1 and so we continue
our tests with this function here. Within our tests we vary the number of points per
wavelength 𝑛𝜆 and the PML length in order to investigate their relative effect on the
resulting error. Results are detailed in Table 2. We see that, except for 𝑛𝜆 = 5, PMLs
provide higher accuracy compared to impedance boundary conditions, even when
the length of the PMLs incorporate only 0.1𝜆. Moreover, for a fixed PML length,
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Fig. 1 Plane wave excitation solution when using PMLs as global boundary conditions in 2D.

Table 1 𝐿2 relative error for different stretching functions 𝜎 with PML length 𝐿pml = 𝜆. The
radius of the circular obstacle is 𝑅 = 𝜆.

Stretching functions
𝜎−1 𝜎−2 𝜎2
0.00112 0.001517 0.075495

Table 2 𝐿2 relative error for different PML lengths with 𝜎−1 or impedance boundary conditions
(Imp BCs), 𝑅 = 𝜆.

PML length
𝑛𝜆 0.1𝜆 0.2𝜆 0.3𝜆 0.5𝜆 𝜆 2𝜆 3𝜆 4𝜆 5𝜆 10𝜆 Imp BCs
5 0.10408 0.02441 0.02684 0.02120 0.01685 0.01251 0.00927 0.00741 0.00605 0.00265 0.05118
10 0.01354 0.01011 0.00665 0.00534 0.00425 0.00311 0.00235 0.00184 0.00150 0.00067 0.04642
20 0.00893 0.00467 0.00268 0.00159 0.00112 0.00078 0.00059 0.00046 0.00038 0.00017 0.04620
30 0.00797 0.00320 0.00175 0.00083 0.00050 0.00035 0.00026 0.00021 0.00017 0.00007 0.04620
40 0.00617 0.00246 0.00121 0.00056 0.00029 0.00020 0.00015 0.00012 0.00009 0.00006 0.046212
50 0.00578 0.00192 0.00096 0.00041 0.00020 0.00013 0.00010 0.00008 0.00006 0.00003 0.046216

and again even for 0.1𝜆, the error still decreases when increasing 𝑛𝜆, whereas for
impedance boundary conditions the error is dominated by the domain truncation
even for 𝑛𝜆 = 5. Of course, the error also decreases significantly with increasing
PML length, all the way down to 3 × 10−5 for 𝑛𝜆 = 50 and 10𝜆.

2.2 Domain decomposition preconditioner

A preconditioner 𝑀−1 is a linear operator whose use aims to reduce ill-conditioning
and allow faster convergence of an iterative solver. Usually (but not always) this
approximates 𝐴−1 and has a matrix–vector product that is much cheaper to compute
than solving the original linear system. To this end, we employ right preconditioning
within GMRES to solve our discretised linear system, namely by solving

𝐴𝑀−1y = f, where u = 𝑀−1y. (7)
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Right preconditioning benefits from minimising a residual that is independent of the
preconditioner, unlike left-preconditioned GMRES. Overlapping Schwarz methods
comewith the advantages of better convergence and easier implementation compared
to substructuring methods. Furthermore, contrary to non-overlapping methods, cor-
ners do not need specific treatment. Overlapping methods are also a natural choice
to consider when using PML transmission conditions, as the added PML can be
naturally included in the overlap region. In this work we use the optimised restricted
additive Schwarz (ORAS) domain decomposition preconditioner, given by

𝑀−1
ORAS =

𝑁sub∑︁
𝑠=1

𝑅𝑇
𝑠 𝐷𝑠𝐴

−1
𝑠 𝑅𝑠 , (8)

where 𝑁sub is the number of overlapping subdomains Ω𝑠 into which the domain Ω
is decomposed. To define the matrices present in (8), let N be an ordered set of the
unknowns of the whole domain and let N =

⋃𝑁sub
𝑠=1 N𝑠 be its decomposition into

the non-disjoint ordered subsets corresponding to the different overlapping subdo-
mains Ω𝑠 . Further, define 𝑁 = |N | and 𝑁𝑠 = |N𝑠 |. The 𝑁𝑠 × 𝑁𝑠 matrices 𝐴𝑠 stem
from the discretisation of local boundary value problems on Ω𝑠 with transmission
conditions chosen as either Robin or PML conditions to be implemented at the sub-
domain interfaces. The 𝑁𝑠 × 𝑁 matrix 𝑅𝑠 is the Boolean restriction matrix from Ω

to subdomain Ω𝑠 while 𝑅𝑇
𝑠 is then the extension matrix from subdomain Ω𝑠 to Ω.

The 𝑁𝑠 ×𝑁𝑠 diagonal matrices 𝐷𝑠 provide a discrete partition of unity, i.e., are such
that

∑𝑁sub
𝑠=1 𝑅𝑇

𝑠 𝐷𝑠𝑅𝑠 = 𝐼. See, e.g., [5, 9] for further details on such methods. PMLs
are introduced as transmission conditions on the interface boundaries of the local
subdomains in [10]. In this approach, the PML region is included strictly inside the
overlap, the PML region being the outermost layers within each overlapping domain.
This ensures that there is enough overlap for the approach to be efficient and sufficient
length of the PML for a good approximation of the interface transmission condition.

3 Numerical results

3.1 PML as transmission conditions for a 2D domain

As a simple model, we consider excitation by a Gaussian point source, 𝑆(𝑥, 𝑦) =

𝑒−30𝑘 ( (𝑥−5)
2+(𝑦−5)2) , in the center of a 2D domain of size [0, 10] × [0, 10], as shown

in Figure 2 (left). The convergence rate is studied when either PML or impedance
conditions are imposed as global boundary conditions (BCs) or interface condi-
tions (ICs). This leads to four different configurations in total1. To discretise we
employ P3 finite elements on regular grids with 𝑛𝜆 = 15.

1 In 2D we present results only with PMLs for the global BCs; a comparison with impedance BCs
will be given later for the full 3D problem in Table 5.
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Fig. 2 The solution of the 2D, with 𝑓 = 3𝐻𝑧 (left), and 3D, with 𝑓 = 1𝐻𝑧 (right), point source
excitation problem with PML boundary conditions.

In our tests, we set the wave speed to 𝑐 = 1 and we vary the frequency 𝑓 from 3Hz
to 10Hz, which leads to a number of wavelengths in the domain ranging from 30
to 100. That also results in different values of #DoFs, which represents the number of
degrees of freedom in the discrete problem. We decompose the global domain into
either 𝑁 = 8 × 8 = 64 or 𝑁 = 10 × 10 = 100 square subdomains and use interface
PML regions of length 𝐿pmli.
In Table 3, simulations results are given using the 𝜎−1 stretching function2, where

the interface PML length is 𝐿pmli = 1ℎ and ℎ = 𝜆
𝑛𝜆
is the mesh size. The PML length

on the global boundary is chosen to be 𝐿pml = 2𝜆 and the number of overlapping
layers of elements between subdomains is varied from 2 to 8 layers. We first observe
that when interface PMLs are used we always require fewer iterations compared to
using impedance ICs. Secondly, with the impedance condition the iteration counts
increase with frequency 𝑓 , but this is not the case when using interface PMLs where
iteration counts remain insensitive to 𝑓 . Finally, we note that an overlap of 4 layers is
sufficient here for the PMLs with little benefit seen as we increase the overlap further
while for the impedance condition a larger overlap is needed to continually reduce
the iteration counts.
In Table 4, the simulations with 𝑓 = 3Hz are repeated but now with 𝐿pmli = 5ℎ.

Note that for the appropriate transmission of data between subdomains, we should
consider the length of the overlap to be larger than the length of the PML region. This
can be seen in Table 4 where an overlap of more than 5 layers is required for good
convergence. Comparing the number of iterations, when the overlap is sufficient,
with those in Table 3, we can see a small improvement in the convergence when
using a larger interface PML region. Note that the one-level preconditioner is by
nature not robust, in the sense that the number of iterations usually depends on the
number of subdomains. That is to say, the number of iterations does not depend only
on the quality of the approximation of the absorbing interface conditions, which as
we can see from Table 2 is already good when using PMLs of small length.

2 A comparison with other choices of stretching function 𝜎 will be given later in Table 7.
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Table 3 Iteration counts for varying frequency 𝑓 and choices of ICs, discretised using P3 elements
with 𝑛𝜆 = 15. Within the PMLs we use 𝜎−1, 𝐿pmli = 1ℎ and 𝐿pml = 𝜆.

Overlap
𝑁 = 64 𝑁 = 100

BCs ICs 𝑓 (Hz) #DoFs 2 4 6 8 2 4 6 8
PML Imp

3 2,076,481
52 48 44 41 65 58 53 51

PML PML 39 33 33 32 49 42 40 42
PML Imp

5 5,480,281
63 59 56 54 70 65 60 57

PML PML 41 35 33 34 49 42 41 42
PML Imp

10 21,077,281
69 67 63 61 77 71 67 68

PML PML 40 34 33 34 48 41 41 41

Table 4 Iteration counts for 𝑓 = 3 𝐻𝑧 and varying choices of ICs, discretised using P3 elements
with 𝑛𝜆 = 15. Within the PMLs we use 𝜎−1, 𝐿pmli = 5ℎ and 𝐿pml = 𝜆.

Overlap
𝑁 = 64 𝑁 = 100

BCs ICs 𝑓 (Hz) #DoFs 2 4 6 8 2 4 6 8
PML Imp

3 2,076,481
52 48 44 41 65 58 53 51

PML PML 110 64 31 31 140 80 39 39

3.2 PML as transmission conditions for a 3D domain

In this section, we consider a similar Gaussian point source excitation in the center of
the 3D domain, 𝑆(𝑥, 𝑦, 𝑧) = 𝑒−30𝑘 ( (𝑥−5)

2+(𝑦−5)2+(𝑧−5)2) ; see Figure 2 (right). For this
problem we discretise with P2 finite elements and use 𝑛𝜆 = 5 and 𝐿pml = 2𝜆. When
recording iteration counts in this section, the use of−means the simulation failed due
to memory limitations while • indicates a lack of convergence in 2000 iterations.
In Table 5 we use 𝜎−1 and compare all four combinations of BCs and ICs when
𝐿pmli = 1ℎ and 𝑓 = 1Hz, this results in #DoFs = 2,803,221. We observe that using
PML rather than impedance conditions reduces iteration counts both when used as
BCs or ICs, in particular, when swapping from impedance for both BCs and ICs
to PMLs we see at least a 2/3 reduction in iterations. Furthermore, using PML BCs
again provides a somewhat more accurate solution when comparing 𝐿2 relative error
with respect to the analytical exact solution. Here, we consider 𝑁 = 6 × 6 × 5 = 180
and 𝑁 = 7 × 7 × 6 = 294 subdomains.
In Table 6, simulations for the full PML case are repeated for different lengths

of 𝐿pmli. Again we see the overlap should be larger than the interface PML length
and, when so, iteration counts slowly decrease as 𝐿pmli increases.
Finally,we compare different stretching functions𝜎 for the case of 𝐿pmli = 4ℎ. The

results in Table 7 show that the best convergence is provided when we choose 𝜎−1.
While the iteration counts when using 𝜎−2 have only a small increase, it is always
more effective to use 𝜎−1. The convergence observed for 𝜎2 is much poorer, demon-
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Table 5 Iteration counts and 𝐿2 error for 𝑓 = 1Hz and varying choices of BCs and ICs, discretised
using P2 elements with 𝑛𝜆 = 5. Within the PMLs we use 𝜎−1, 𝐿pmli = 1ℎ and 𝐿pml = 2𝜆.

Overlap
𝑁 = 180 𝑁 = 294

BCs ICs 2 4 6 8 2 4 6 8 𝐿2 relative error
Imp Imp 40 31 27 − 45 35 32 34

0.211853
Imp PML 36 29 26 − 42 35 29 31
PML Imp 30 22 20 − 33 25 23 21

0.0709828
PML PML 24 20 18 − 27 23 20 19

Table 6 Iteration counts for 𝑓 = 1Hz with PML BCs and ICs varying the PML interface length
𝐿pmli, discretised using P2 elements with 𝑛𝜆 = 5. Within the PMLs we use 𝜎−1 and 𝐿pml = 2𝜆.

Overlap
𝑁 = 180 𝑁 = 294

BCs ICs 𝐿pmli 2 4 6 8 2 4 6 8
PML PML 1ℎ 24 20 18 − 27 23 20 19
PML PML 2ℎ 30 19 17 − 34 22 19 18
PML PML 4ℎ 37 21 15 − 42 24 17 15
PML PML 6ℎ 38 21 18 − 43 24 21 15

Table 7 Iteration counts for 𝑓 = 1Hz and varying choice of ICs and PML stretching function 𝜎,
discretised using P2 elements with 𝑛𝜆 = 5. Within the PMLs we use 𝐿pmli = 4ℎ and 𝐿pml = 2𝜆.

Overlap
Stretching 𝑁 = 180 𝑁 = 294

BCs ICs function 2 4 6 8 2 4 6 8
PML Imp

𝜎−1
30 22 20 − 33 25 23 21

PML PML 37 21 15 − 42 24 17 15
PML Imp

𝜎−2
33 28 24 − 38 30 27 26

PML PML • 33 19 − • 38 23 19
PML Imp

𝜎2
• • 973 − • • 1984 1201

PML PML • • • − • • • •

strating the importance of choosing a suitable stretching function in order to be
advantageous in the domain decomposition preconditioner. In our tests 𝜎−1 provided
the best choice and justifies its use in our previous simulations.

4 Conclusion

In this work, we have introduced the use of PMLs as interface conditions within an
overlapping domain decomposition solver for Helmholtz equations. With the choice
of PMLs as interface conditions, better convergence is achieved compared to using
impedance conditions. Results on 2D and 3D model problems show the utility of the
approach with a suitable choice of stretching function.
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Unmapped Tent Pitching Schemes
by Waveform Relaxation

Gabriele Ciaramella, Martin J. Gander, and Ilario Mazzieri

1 Introduction

The mapped tent pitching algorithm (MTP) is a very advanced domain decomposi-
tion strategy for the parallel solution of hyperbolic problems. MTP was introduced
in [4] and computes the solution by iteratively constructing new polygonal space-time
subdomains, called tents, in a way that the hyperbolic problem can be solved ex-
actly within them. Due to the polygonal space-time structure of the subdomains, the
numerical solution is obtained by a process that maps the tents into space-time cylin-
ders (rectangles for 1D spatial problems), computes the solution in the transformed
subdomains, and maps it back into the original tents. Due to the tent mapping leading
to singularities, special time integrators are needed to mitigate order reduction.
To avoid this, we introduce a new, unmapped tent pitching algorithm (UTP), based

on a conceptual idea from Nievergelt in 1964 [5]: “In numerical analysis, one has
always tried to speed up computation by reducing the amount of work to be done, not
by performing redundant computations.” Introducing redundant computations, we
eliminate the mapping process from the MTP with a Schwarz waveform relaxation
method (SWR). We present our new UTP for the model problem

𝜕𝑡𝑡𝑢(𝑥, 𝑡) = 𝑐2𝜕𝑥𝑥𝑢(𝑥, 𝑡) for (𝑥, 𝑡) ∈ Ω × (0, 𝑇),
𝑢(𝑥, 0) = 𝑔0 (𝑥) and 𝜕𝑡𝑢(𝑥, 0) = 𝑔1 (𝑥) for 𝑥 ∈ Ω,

𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0 for 𝑡 ∈ [0, 𝑇],
(1)

where Ω = (0, 1), 𝑇 > 0, and 𝑔0 and 𝑔1 are sufficiently regular functions. We first
explain in Section 2 the classicalMTP process for the solution of (1) and characterize
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ilario.mazzieri@polimi.it

M.J. Gander
Section de Mathématiques, Université de Génève, Switzerland, e-mail: martin.gander@unige.ch

455



456 Gabriele Ciaramella, Martin J. Gander, and Ilario Mazzieri

the corresponding advancing front in case of a uniform space decomposition. Then, in
Section 3, we introduce a red-black Schwarz waveform relaxation method (RBSWR)
and prove a particular relation between RBSWR and MTP. This relation leads us
very naturally to introduce our UTP in Section 4.

2 The mapped tent-pitching algorithm (MTP)

To describe the MTP algorithm introduced in [4] for the solution of (1), consider
a set Ω0 = {𝑥 𝑗 }𝑁𝑗=0 ⊂ Ω of nodes 0 = 𝑥0 < 𝑥1 < · · · < 𝑥𝑁 = 1. The core of MTP
is the strategy used to pitch tents at the nodes and define the advancing front of the
computed exact solution. In our one-dimensional setting, a tent is a hat-function 𝜙 𝑗
with value 1 at the node 𝑥 𝑗 and zero at the remaining nodes of Ω0. The advancing
front is the curve representing a portion of the boundary of the space-time subdomain
of Ω × [0, 𝑇] in which the exact solution has been computed by MPT at a certain
iteration. More precisely, the advancing front (at iteration 𝑘 ∈ N) is a continuous
functions 𝜏MTP

𝑘
: Ω → R, which is linear in the subintervals (𝑥 𝑗 , 𝑥 𝑗+1). The MTP

iteration is initialized with 𝜏MTP0 ≡ 0 and at the 𝑘-th iteration a new advancing
front 𝜏MTP

𝑘
is computed from 𝜏MTP

𝑘−1 with the property that 𝜏
MTP
𝑘

(𝑥) ≥ 𝜏MTP
𝑘−1 (𝑥) for

all 𝑥 ∈ Ω. The process terminates when an iteration 𝑘 = 𝐾 > 0 is reached with
𝜏MTP
𝐾

≡ 𝑇 . To obtain 𝜏MTP
𝑘

one needs to pitch a new tent on the front 𝜏MTP
𝑘−1 , that

means to select an appropriate node 𝑥 𝑗 inΩ0 and a 𝑣𝑘𝑗 > 0, and update the advancing
front as

𝜏MTP𝑘 (𝑥) := 𝜏MTP𝑘−1 (𝑥) + 𝑣
𝑘
𝑗 𝜙 𝑗 (𝑥). (2)

The node 𝑥 𝑗 and the value 𝑣𝑘𝑗 are computed to ensure that | (𝜏MTP𝑘
) ′(𝑥) | ≤ 1

𝑐
for all

𝑥 ∈ Ω \ Ω0. This is a CFL condition [2] and since 𝜏MTP𝑘
is piecewise linear, it is

equivalent to1

|𝜏MTP
𝑘

(𝑥ℓ) − 𝜏MTP𝑘
(𝑥
ℓ̃
) |

|𝑥ℓ − 𝑥ℓ̃ |
≤ 1
𝑐

for all ℓ = 0, . . . , 𝑁 and ℓ̃ ∈ Nℓ , (3)

where Nℓ denotes the set of indices of the neighboring nodes to 𝑥ℓ . Now, since 𝜙 𝑗
is zero on Ω0 \ {𝑥 𝑗 }, one has that 𝜏MTP𝑘

(𝑥ℓ) = 𝜏MTP
𝑘−1 (𝑥ℓ) for all 𝑥ℓ ∈ Ω0 \ {𝑥 𝑗 }.

Thus, given a 𝜏MTP
𝑘−1 satisfying (3), the new tent must be pitched in a way that 𝜏

MTP
𝑘

satisfies (3) as well, that is

|𝜏MTP
𝑘−1 (𝑥 𝑗 ) + 𝑣

𝑘
𝑗
𝜙 𝑗 (𝑥 𝑗 ) − 𝜏MTP𝑘−1 (𝑥ℓ̃) |

|𝑥 𝑗 − 𝑥ℓ̃ |
≤ 1
𝑐

for all ℓ̃ ∈ N𝑗 . (4)

1 In [4], condition (3) appears with an additional constant depending on the shape regularity of the
decomposition. This constant is 1 in our one-dimensional framework.
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Algorithm 1Mapped Tent Pitching (sequential)
Require: A decomposition Ω0.
1: Set 𝑘 = 0 and initialize 𝜏MTP

𝑘
≡ 0.

2: while 𝜏MTP
𝑘
. 𝑇 do

3: Compute the set 𝐽𝑘 .
4: Select an index 𝑗 ∈ 𝐽𝑘 , the corresponding node 𝑥 𝑗 and set 𝑣𝑘𝑗 = 𝑤𝑘

𝑗
.

5: Update the advancing front: 𝜏MTP
𝑘

(𝑥) := 𝜏MTP
𝑘−1 (𝑥) + 𝑣

𝑘
𝑗
𝜙 𝑗 (𝑥) .

6: Solve (1) in the domain between 𝜏MTP
𝑘

and 𝜏MTP
𝑘−1 (below the new tent).

7: Update 𝑘 = 𝑘 + 1.
8: end while

Since 𝑣𝑘
𝑗
𝜙 𝑗 (𝑥) ≥ 0, 𝜏MTP

𝑘−1 satisfies (3), and 𝜙 𝑗 (𝑥 𝑗 ) = 1, (4) becomes 𝑣𝑘
𝑗

≤
min

ℓ̃∈N𝑗

( |𝑥 𝑗−𝑥ℓ̃ |
𝑐

+ 𝜏MTP
𝑘−1 (𝑥ℓ̃) − 𝜏

MTP
𝑘−1 (𝑥 𝑗 )

)
. To satisfy this condition and maximize

the advancement of the front, we define

𝑤𝑘ℓ := min
(
𝑇 − 𝜏MTP𝑘−1 (𝑥ℓ), min

ℓ̃∈Nℓ

( |𝑥ℓ − 𝑥ℓ̃ |
𝑐

+ 𝜏MTP𝑘−1 (𝑥ℓ̃) − 𝜏
MTP
𝑘−1 (𝑥ℓ)

))
(5)

for ℓ = 1, . . . , 𝑁 , and the set of admissible values 𝑣𝑘
𝑗
as 𝐽𝑘 := {ℓ ∈ {1, . . . , 𝑁} :

𝑤𝑘
ℓ
> 0}. Thus, at the 𝑘-th iterationMTP selects any node 𝑥 𝑗 with 𝑗 ∈ 𝐽𝑘 and pitches

a tent of height 𝑣𝑘
𝑗
= 𝑤𝑘

𝑗
. Once a new tent is pitched, MTP solves the problem within

this new tent by amapping process that transforms the tent into a cylinder (a rectangle
in this one-dimensional setting). The overall MTP procedure is given in Algorithm 1.
This is the sequential version of MTP. A parallel version can be easily obtained by
pitching multiple tents at each iteration, namely by modifying Step 4 and Step 5:

4: Select a set S𝑘 ⊂ 𝐽𝑘 of all indices 𝑗 ∈ S𝑘 such that the corresponding nodes are
not neighbors. Pick all nodes 𝑥 𝑗 with 𝑗 ∈ S𝑘 and set 𝑣𝑘𝑗 = 𝑤𝑘𝑗 .

5: Update the advancing front: 𝜏MTP
𝑘

(𝑥) := 𝜏MTP
𝑘−1 (𝑥) +

∑
𝑗∈S𝑘

𝑣𝑘
𝑗
𝜙 𝑗 (𝑥).

We illustrate the parallel MTP procedure with an example using a space decom-
position of 7 points (𝑥 𝑗 , 𝑗 = 0, . . . , 6), see Fig. 1, top left. TheMTP is initialized with
𝜏MTP0 ≡ 0. For 𝑘 = 1 all nodes can be potentially selected, that is 𝐽1 = {0, . . . , 6}, but
not all of them can be simultaneously selected. Thus, we assume that the nodes 𝑥1, 𝑥3
and 𝑥5 are selected and three tents are pitched on 𝜏MTP0 . The new resulting front
is 𝜏MTP1 , which is represented by the red line in Fig. 1, top left. Notice that the slopes
of 𝜏MTP1 are lower or equal to the slopes of the characteristic curves, because of con-
dition (5) and the fact that the decomposition considered is nonuniform2. Once 𝜏MTP1
is obtained, the set of admissible nodes is 𝐽2 = {0, 2, 4, 6}. These can be all se-
lected and give rise to the hat-functions (multiplied by the corresponding values 𝑣𝑘

𝑗
)

represented by the blue dashed lines in Fig. 1, top right. The new front 𝜏MTP2 (blue
line in Fig. 1, top right) is then obtained by summing all these functions to 𝜏MTP1 .
Repeating this process at iterations 3 and 4 leads to the fronts 𝜏MTP3 (magenta line in

2 For uniform decompositions, tents are always pitched along characteristic lines.
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𝑥1 𝑥2 𝑥6𝑥5𝑥4𝑥3𝑥0

𝑇 1/𝑐

−1/𝑐

𝑥1 𝑥2 𝑥6𝑥5𝑥4𝑥3𝑥0

𝑇

𝑥1 𝑥2 𝑥6𝑥5𝑥4𝑥3𝑥0

𝑇 1/𝑐

−1/𝑐

𝑥1 𝑥2 𝑥6𝑥5𝑥4𝑥3𝑥0

𝑇

𝑥1 𝑥2 𝑥6𝑥5𝑥4𝑥3𝑥0

𝑇 1/𝑐

−1/𝑐

𝛿
𝑥𝐿 𝑥𝑅

𝑇

𝛿
𝑐𝑘 = 1

2𝛿
𝑐

𝑘 = 2

3𝛿
𝑐𝑘 = 3

Fig. 1 Top row, left: MTP iteration 1: 𝜏MTP1 (red) and 𝜏MTP0 (black). The tents 𝑣1
𝑗
𝜙 𝑗 coincide with

the red lines. The cross on the top right gives the slopes of the characteristic lines. Top row, right:
MTP iteration 2: 𝜏MTP2 (blue), 𝜏MTP1 (red), new tents 𝑣2

𝑗
𝜙 𝑗 (blue dashed).Middle row, left: MTP

iteration 3: 𝜏MTP3 (magenta), 𝜏MTP2 (blue), new tents 𝑣3
𝑗
𝜙 𝑗 (magenta dashed).Middle row, right:

MTP iteration 4: 𝜏MTP4 (black), 𝜏MTP3 (magenta), new tents 𝑣4
𝑗
𝜙 𝑗 (black dashed). Bottom row, left:

Full decomposition constructed by MTP. Bottom row, right: First three iterations of SWR. The
gray areas are the regions where the exact solution is computed.

Fig. 1, middle left) and 𝜏MTP4 (black line in Fig. 1, middle right). At convergence, we
obtain the decomposition shown in Fig. 1, bottom left, which is not uniform since the
initial space decomposition Ω0 is not uniform. It is finer (in time) where the space
decomposition is finer, and the front advances more slowly there. Note also that at
each iteration the MTP process solves the problem below characteristics, and the
conditions used to pitch new tents are satisfied when exact data is available on the
lower boundary of the new tent and can be propagated into it. We now characterize
the behavior of the advancing front for a uniform decomposition.

Lemma 1 (MTP advancing front for uniform decompositions)
Let the decomposition Ω0 be uniform with ℎ := 𝑥 𝑗 − 𝑥 𝑗−1 for 𝑗 = 1, . . . , 𝑁 .

Consider any interior subinterval I = [𝑥𝐿 , 𝑥𝑅], with 𝑅 ∈N even and 𝐿 =𝑅 − 1.
Assume that the (parallel) MTP selects alternatingly odd and even nodes of Ω0 at
odd and even iterates, respectively. Then, starting from 𝜏MTP0 ≡ 0, we have that
𝜏MTP1 (𝑥𝐿) = ℎ

𝑐
and 𝜏MTP1 (𝑥𝑅) = 0, and for any 𝑛 > 0 that

𝜏MTP2𝑛 (𝑥𝐿) = (2𝑛 − 1)ℎ/𝑐 𝜏MTP2𝑛 (𝑥𝑅) = 2𝑛ℎ/𝑐, (6a)
𝜏MTP2𝑛+1 (𝑥𝐿) = (2𝑛 + 1)ℎ/𝑐, 𝜏MTP2𝑛+1 (𝑥𝑅) = 2𝑛ℎ/𝑐. (6b)
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Proof Denote byNℓ the set of neighboring nodes of 𝑥ℓ . The proofworks by induction
and uses (2) and (5).We begin with the base case 𝑛 = 0. Since 𝜏MTP0 ≡ 0, using (5) we
compute 𝑣1

𝐿
= ℎ
𝑐
. Thus, (2) leads to 𝜏MTP1 (𝑥𝐿) = ℎ

𝑐
and 𝜏MTP1 (𝑥ℓ) = 0 for all ℓ ∈ N𝐿 ,

and then 𝜏MTP1 (𝑥𝑅) = 0. Now, we consider the induction step. Thus, assuming
that (6a) and (6b) hold, we use (2) to write 𝜏MTP2𝑛+2 (𝑥ℓ) = 𝜏

MTP
2𝑛+1 (𝑥ℓ) + 𝑣

2𝑛+2
𝑅

𝜙𝑅 (𝑥ℓ) for
ℓ ∈ {𝑅, 𝐿}. Using (5) with the fact that the decomposition is uniform, we obtain for
ℓ ∈ N𝑅 that

𝑣2𝑛+2𝑅 =
ℎ

𝑐
+ 𝜏MTP2𝑛+1 (𝑥ℓ) − 𝜏

MTP
2𝑛+1 (𝑥𝑅) =

ℎ

𝑐
+ (2𝑛 + 1) ℎ

𝑐
− 2𝑛 ℎ

𝑐
= 2

ℎ

𝑐
,

and thus 𝜏MTP2𝑛+2 (𝑥𝐿) = (2𝑛 + 1) ℎ
𝑐
and 𝜏MTP2𝑛+2 (𝑥𝑅) = (2𝑛 + 2) ℎ

𝑐
. Now, (2) implies that

𝜏MTP2𝑛+3 (𝑥ℓ) = 𝜏
MTP
2𝑛+2 (𝑥ℓ) + 𝑣

2𝑛+2
𝐿

𝜙𝐿 (𝑥ℓ) for ℓ ∈ {𝑅, 𝐿}, and (5) allows us to compute
𝑣2𝑛+2
𝐿

= 2 ℎ
𝑐
. Hence, we get that 𝜏MTP2𝑛+3 (𝑥𝐿) = (2𝑛 + 3) ℎ

𝑐
and 𝜏MTP2𝑛+3 (𝑥𝑅) = (2𝑛 + 2) ℎ

𝑐
,

and the claim follows. �

3 Red-black Schwarz waveform relaxation (RBSWR)

Consider a decomposition of Ω into 𝑁 − 1 subdomains 𝐼 𝑗 = (𝑥 𝑗 , 𝑥 𝑗+2), 𝑗 =

0, . . . , 𝑁 − 2, where 𝑥 𝑗 are the nodes in Ω0. This is a decomposition with gen-
erous overlap. Let R = {0, 2, 4, . . . } and B = {1, 3, 5, . . . } be two subsets of
{0, 1, . . . , 𝑁 − 2}. RBSWR is defined by solving in parallel the subproblems

𝜕𝑡𝑡𝑢
𝑘
𝑗 (𝑥, 𝑡) = 𝑐2𝜕𝑥𝑥𝑢𝑘𝑗 (𝑥, 𝑡) in 𝐼 𝑗 × (0, 𝑇), (7)

𝑢𝑘𝑗 (𝑥, 0) = 𝑔0 (𝑥) and 𝜕𝑡𝑢𝑘𝑗 (𝑥, 0) = 𝑔1 (𝑥) for 𝑥 ∈ 𝐼 𝑗 , (8)

𝑢𝑘𝑗 (𝑥 𝑗 , 𝑡) = 𝑢𝑘−1𝑗−1 (𝑥 𝑗 , 𝑡) for 𝑡 ∈ [0, 𝑇], (9)

𝑢𝑘𝑗 (𝑥 𝑗+2, 𝑡) = 𝑢𝑘−1𝑗+1 (𝑥 𝑗+2, 𝑡) for 𝑡 ∈ [0, 𝑇], (10)

where 𝑘 is the iteration index, and 𝑗 ∈ R for 𝑘 odd and 𝑗 ∈ B for 𝑘 even. Moreover,
the exterior boundary conditions have to be appropriately replaced for 𝑗 = 0 at 𝑥0
and for 𝑗 = 𝑁−2 at 𝑥𝑁−1. Now, we assume that the decompositionΩ0 is uniform and
denote the overlap by 𝛿 = 𝑥 𝑗−𝑥 𝑗−1. Convergence of (7) was proved in [3, Theorem 1],
where it is shown that the exact solution is obtained for 𝑘 ≥ 𝑇 𝑐

𝛿
. The convergence

behavior depends on the propagation of the exact solution in the overlap; see [3,
Figure 1] and Fig. 1, bottom right. In particular, it is possible to show that at odd
iterations 𝑘 = 2𝑛 + 1, 𝑛 = 0, 1, 2, . . . , the exact solution is computed in the overlap
below the characteristic curve intersecting the interface {𝑥𝐿} × (0, 𝑇) at (2𝑛 + 1) 𝛿

𝑐
,

cf. Fig. 1, bottom right. Similarly, at even iterations 𝑘 = 2𝑛, 𝑛 = 1, 2, . . . , the exact
solution is computed in the overlap below the characteristic curve intersecting the
interface {𝑥𝑅}× (0, 𝑇) at 2𝑛 𝛿

𝑐
, cf. Fig. 1, bottom right. Thus, we can define a RBSWR

advancing front, denoted by 𝜏RBSWR
𝑘

(𝑥), as the function lying on the characteristic
curves and such that below its graph the method has already computed the exact
solution, independently of the initial guess 𝑢0. An example of the first 4 iterations of
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Ω1 Ω3 Ω5

Ω2 Ω4

𝑘 = 1𝑘 = 1 𝑘 = 1
𝑘 = 2 𝑘 = 2

𝑘 = 3𝑘 = 3 𝑘 = 3

𝑘 = 4 𝑘 = 4

𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

Fig. 2 First four iterations of the red-black SWR for a 5-subdomain case. The gray areas are the
regions where the exact solution is computed.

RBSWR is given in Fig. 2. The fronts 𝜏RBSWR
𝑘

(𝑥) are red and black lines delimiting
the gray regions where the exact solution has been computed.
The RBSWR advancing front is characterized in the next lemma, whose proof

can be deduced from Fig. 1, bottom right, and Fig. 2.

Lemma 2 (RBSWR advancing front)
Assume that the decomposition Ω0 is uniform with ℎ = 𝑥 𝑗 −𝑥 𝑗−1 for 𝑗 = 1, . . . , 𝑁 .

Consider any interior subinterval I = [𝑥𝐿 , 𝑥𝑅], with 𝑅 ∈ N even and 𝐿 = 𝑅 − 1.
Consider the RBSWR with overlap 𝛿 = 𝑥𝑅 − 𝑥𝐿 and initialized with any (sufficiently
regular) function 𝑢0 such that 𝜏RBSWR0 ≡ 0. The advancing front 𝜏RBSWR

𝑘
satisfies

𝜏RBSWR1 (𝑥𝐿) = 𝛿
𝑐

, 𝜏RBSWR1 (𝑥𝑅) = 0, and, for any 𝑛 = 1, 2, . . . , the relations

𝜏RBSWR2𝑛 (𝑥𝐿) = (2𝑛 − 1)𝛿/𝑐, 𝜏RBSWR2𝑛 (𝑥𝑅) = 2𝑛𝛿/𝑐, (11a)

𝜏RBSWR2𝑛+1 (𝑥𝐿) = (2𝑛 + 1)𝛿/𝑐, 𝜏RBSWR2𝑛+1 (𝑥𝑅) = 2𝑛𝛿/𝑐. (11b)

The relation between MTP and RBSWR arises immediately by comparing
Lemma 1 and Lemma 2 and it is stated in the following theorem.

Theorem 1 (RBSWR and MPT for uniform decompositions)
Consider a uniform decomposition Ω0 with ℎ = 𝑥 𝑗 − 𝑥 𝑗−1 for 𝑗 = 1, . . . , 𝑁 .

Assume that the (parallel) MTP selects alternately odd and even nodes of Ω0 at odd
and even iterates, respectively. Further, notice that the overlap is 𝛿 = ℎ. Then, for
any initial guess 𝑢0 such that 𝜏RBSWR0 ≡ 0, the fronts 𝜏MTP

𝑘
and 𝜏RBSWR

𝑘
coincide in

all interior nodes of Ω0, thus in all interior subintervals.

4 Unmapped tent-pitching

Theorem 1 suggests that the mapping process is not necessary to obtain the exact
solution below the tents. This process can be avoided by using SWR on appropriately
defined space-time subdomains, even though few redundant computations need to be
performed. The key idea is to consider rectangular space-time subdomains having
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𝑘 = 1

regions of redundant computations

Ω1 Ω3 Ω5

Ω2 Ω4
𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

𝑘 = 2

regions of redundant computations

Ω1 Ω3 Ω5

Ω2 Ω4
𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

𝑘 = 3

Ω1 Ω3 Ω5

Ω2 Ω4
𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

𝑘 = 4

Ω1 Ω3 Ω5

Ω2 Ω4
𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

Fig. 3 First four iterations of UTP on a 5 subdomain decomposition. Red and black boxes are the
space-time subdomains constructed by UTP at odd and even iterations. The black lines correspond
to the tents that MTP constructs. The blue hatched regions are the portions of the domain where
UTP computes the exact solution.

the same height of the tents pitched on the space subdomains and width equal
to the length of the space subdomains themselves. The space-time subdomains
can be considered as rectangular tents, in which the solution can be computed
directly, using, e.g., a time-stepping method, without the need of mapping the tent
into a rectangular box (the subdomain is already a rectangular tent!). We call this
approach the unmapped tent pitching (UTP) algorithm, and describe it in detail for
a uniform space decompositionΩ0 and for a parallel MTP selecting alternatingly odd
and even nodes. Extensions to nonuniform decompositions and higher dimensions
are possible, but beyond the scope of this short manuscript. They will be presented
in the future work [1]. The UTP process begins by selecting the odd nodes ofΩ0 and
computing the heights 𝑣0

𝑗
of the tents that the MTP would pitch. Instead, rectangular

space-time subdomains T𝑗 are pitched, and one RBSWR iteration is performed
restricted on them. This step is shown in Fig. 3, top left, where the three (red)
subdomains are represented together with the tents that the parallel MTP would
pitch. RBSWRcomputes the exact solution below the tents, as represented by the blue
hatched regions in Fig. 3, top right. However, wrong approximations are computed
in the areas above the tents, which correspond to the regions where redundant
computations are performed. The second iteration of the UTP is shown in Fig. 3, top
right. Here, the new pitched rectangular subdomains are depicted in black. Within
them one RBSWR iteration is performed. The exact solution is obtained below the
classical MTP tents, while redundant computations are performed above them. As
a result, the exact solution is computed in the blue hatched area depicted in Fig. 3,
bottom left. By repeating this process iteratively one obtains the subdomains and
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Algorithm 2 Unmapped Tent Pitching by RBSWR
Require: A decomposition Ω0 of 𝑁 nodes and an initial guess function 𝑢0.
1: Set 𝑘 = 1 and 𝑣0

𝑗
= 0 for all 𝑗 = 1, . . . , 𝑁 .

2: while ∃ 𝑗 ∈ {0, 1, . . . , 𝑁 − 1} : 𝑣𝑘−1
𝑗

≠ 𝑇 do
3: Set 𝐽𝑘 = {1, 3, . . . } if 𝑘 is odd and 𝐽𝑘 = {2, 4, . . . } if 𝑘 is even.
4: Use (5) to compute the heights 𝑣𝑘

𝑗
= 𝑤𝑘

𝑗
+ 𝑣𝑘−1

𝑗
for all 𝑗 ∈ 𝐽𝑘 .

5: For each 𝑗 ∈ 𝐽𝑘 pitch a rectangular subdomain T𝑗 := [𝑥 𝑗−1, 𝑥 𝑗+1 ] × [𝑣𝑘−1
𝑗
, 𝑣𝑘

𝑗
].

6: Solve (7) to get 𝑢𝑘+1
𝑗
in T𝑗 for all 𝑗 ∈ 𝐽𝑘 , and extend them by 𝑢0 above T𝑗 .

7: Update 𝑘 = 𝑘 + 1.
8: end while

the exact solution areas shown in Fig. 3 for 𝑘 = 3 and 𝑘 = 4. The overall UTP
Algorithm 2 terminates when the exact solution is computed in the entire space-time
domain.
To conclude, our new unmapped tent pitching algorithm computes to the mapped

tent pitching algorithm equivalent approximations, using redundant computations.
It is however cheaper, since it does not have to compute the tent mappings, and the
volume of the redundant computations is also present in the tents after the mapping.
Its implementation is also straightforward, and one can use standard time integrators,
since there is no danger of order reduction without the tent mapping.
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A 2-Level Domain Decomposition
Preconditioner for KKT Systems
with Heat-Equation Constraints

Eric C. Cyr

1 Introduction

This paper develops a new domain-decomposition method for solving the KKT sys-
temwith heat-equation constraints. This effort is driven by the quadratic optimization
problem of the form

min
𝑧

1
2

∫ 𝑇

0
‖𝑢 − 𝑢̃‖2

𝐿2 (Ω) 𝑑𝑡 +
𝜔

2

∫ 𝑇

0
‖𝑧‖2

𝐿2 (Ω) 𝑑𝑡

s.t. 𝜕𝑡𝑢 − 𝜈∇ · ∇𝑢 = 𝑧, 𝑥 ∈ Ω ⊂ R2, 𝑡 ∈ [0, 𝑇]
𝑢(𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω, 𝑡 ∈ [0, 𝑇], 𝑢(𝑥, 0) = 𝑢0 (𝑥), 𝑥 ∈ Ω

(1)

This quadratic PDE-constrained optimization problem finds a control 𝑧 such that the
solution 𝑢 to the heat equation matches the target 𝑢̃. The spatial domain is Ω, the
time interval is [0, 𝑇], and the heat conductivity is 𝜈. Uniform homogenous boundary
conditions are assumed for all time, and the initial condition is prescribed by 𝑢0.
Many nonlinear methods use a series of quadratic approximations of the form

represented by Eq. 1 to solve PDE-constrained optimization problems (see for in-
stance sequential quadratic programming methods [8, 15, 27]). There have been
several studies focused on developing scalable preconditioners for the saddle-point
system that arises from the first-order necessary conditions. Often preconditioners
for saddle-point systems take the form of approximate factorization block precondi-
tioners [3]. These were explored for KKT systems in [4, 5]. Our work relies heavily
on the block preconditioners from the Wathen group [23, 24, 25].
This effort focuses on transient PDE constraints where the size of the system

scales with the number of spatial unknowns times the number of time steps, re-
sulting in substantial computational effort. To alleviate this, a number of efforts
have proposed accelerating the time solve using adaptive space-time discretiza-
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tions [16, 17], parareal [12, 20, 27], multigrid approaches [6, 7, 10, 13, 19], block
preconditioning [23, 24], and domain decomposition methods [14].
Our approach is also built on block preconditioning ideas. A difference is that our

technique exploits an observation that the Schur-complement of the KKT system is
elliptic in time (see [11, 18]). This allows us to leverage existing two level domain
decomposition approaches for elliptic systems to improve the parallel scalability of
the block preconditioner. Good performance is achieved by algorithmic choices that
ensure the forward and backward in time integrators can be applied on the fine level.

2 Discrete system and block preconditioner

In this article the PDE in Eq. 1 will be discretized on a 2D Cartesian grid using first
order backward Euler in time, and a second order finite difference stencil in space.
A row of the discrete space-time system for the heat equation satisfies:

𝑢𝑛+1𝑖, 𝑗 −𝑢𝑛𝑖, 𝑗+Δ𝑡𝜈
(
−𝑢𝑛+1(𝑖+1) 𝑗 + 2𝑢

𝑛+1
𝑖 𝑗

− 𝑢𝑛+1(𝑖−1) 𝑗

Δ𝑥2
+
−𝑢𝑛+1

𝑖 ( 𝑗+1) + 2𝑢
𝑛+1
𝑖 𝑗

− 𝑢𝑛+1
𝑖 ( 𝑗−1)

Δ𝑦2

)
= Δ𝑡𝑧𝑛+1𝑖 𝑗 .

(2)
Here 𝑖, 𝑗 are the interior space indices defined over 1 . . . 𝑛𝑥 − 1 and 1 . . . 𝑛𝑦 − 1.
The exterior indices are eliminated using the homogenous boundary conditions. The
superscript time index 𝑛 runs from 0 . . . 𝑁𝑡 . Each 𝑛 is referred to below as a time-
node. The control variable 𝑧’s index matches the implicit index on 𝑢, therefore 𝑧𝑛+1
is associated with the 𝑛th time interval. For a single time interval, Eq. 2 rewritten in
matrix form is

𝐽(𝑛+1) (𝑛+1)𝑢
𝑛+1 + 𝐽(𝑛+1)𝑛𝑢𝑛 + 𝐿 (𝑛+1) (𝑛+1) 𝑧

𝑛+1 = 0, (3)

and the global space-time system is

𝐽𝑢 + 𝐿𝑧 = 𝑓 . (4)

The right hand side 𝑓 includes contributions from the initial conditions. Thematrix 𝐽
is block lower triangular and the matrix 𝐿 is block diagonal.
The linear system whose solution solves the quadratic optimization problem from

Eq. 1 is the celebrated KKT system 𝐾u = f where

𝐾 =


𝑀𝑢 𝐽𝑇

𝜔𝑀𝑧 𝐿
𝑇

𝐽 𝐿

 , u =


𝑢

𝑧

𝑤

 , f =

𝑓𝑢
𝑓𝑧
𝑓

 . (5)

The final row is the discrete form of the PDE constraint, enforced by the Lagrange
multiplier 𝑤. We will also refer to 𝑤 as the adjoint solution. 𝑀𝑢 and 𝑀𝑧 are identity
matrices scaled byΔ𝑡Δ𝑥Δ𝑦. The matrix 𝐾 is a saddle point matrix, whose structure is
frequently observed in numerical optimization.Many effective block preconditioners
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have been developed for this class of matrix [2, 3, 4]. We focus on the block pre-
conditioning approach developed byWathen and collaborators for solving linearized
PDE-constrained optimization problems [23, 24, 25].
We write a block LDU factorization of the matrix 𝐾

𝐾 =


𝐼

𝐼

𝐽𝑀−1
𝑢 𝜔−1𝐿𝑀−1

𝑧 𝐼



𝑀𝑢

𝜔𝑀𝑧

−𝑆



𝐼 𝑀−1

𝑢 𝐽𝑇

𝐼 𝜔−1𝑀−1
𝑧 𝐿𝑇

𝐼

 (6)

where the Schur-complement is 𝑆 = 𝐽𝑀−1
𝑢 𝐽𝑇 + 1

𝜔
𝐿𝑀−1

𝑧 𝐿𝑇 . Following [23], 𝐾 is
preconditioned using the block diagonal operator

𝑃 =


𝑀𝑢

𝜔𝑀𝑧

𝑆

 , where 𝑆 = 𝐽𝑀−1
𝑢 𝐽𝑇 , 𝐽 = 𝐽 + 𝜔−1/2𝐿. (7)

This preconditioner leverages the result in [21], and approximately inverts the block
diagonal in the LDU factorization. The matrix 𝐽 used in the approximate Schur
complement 𝑆 is block lower triangular (similar to 𝐽), a fact thatwewill exploit below.
The choice of 𝑆 integrates the state Jacobian and the effects of the regularization
parameter. In [23, 24] and [26], this approximation is developed and shown to lead
to robust performance with respect to 𝜔.

3 Two-level domain decomposition Schur-complement

We propose a new domain decomposition approach for approximately inverting 𝑆.
This is motivated by the observation that the operator 𝑆 is elliptic in time (see [18]
and [11]). For simplicity, we show this discretely using only the term 𝐽𝑀−1

𝑢 𝐽𝑇 .
Consider the ODE 𝜕𝑡 𝑦 = −𝑦 discretized over three time steps with forward Euler:
𝑦𝑛+1 − 𝑦𝑛 + Δ𝑡𝑦𝑛 = 0. With 𝑀𝑢 = 𝐼, the Schur-complement 𝑆 is


1

−1 + Δ𝑡 1
−1 + Δ𝑡 1



1 −1 + Δ𝑡

1 −1 + Δ𝑡

1


=


1 −(1 − Δ𝑡)

−(1 − Δ𝑡) 2(1 − Δ𝑡) + Δ𝑡2 −(1 − Δ𝑡)
−(1 − Δ𝑡) 2(1 − Δ𝑡) + Δ𝑡2

 . (8)
Examining the second row it is clear the operator has a 1D Laplacian stencil in
time, with a positive perturbation on the diagonal. To take advantage of this ellip-
ticity, we will apply existing domain decomposition approaches to the 𝑆 operator.
This ellipticity principle enables scalable performance of a preconditioned Krylov
method.We also impose an efficiency constraint that the computational kernels in our
preconditioner use the time integration method for the state and adjoint unknowns.
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The ellipticity principle is realized by considering a restricted additive Schwarz
(RAS) method with 𝑁𝐷 subdomains (see [9]). Each subdomain contains the spatial
unknowns associated with a subset of time steps. For instance, if there are 𝑁𝑡 = 9
time steps, then for 𝑁𝐷 = 3 the subdomains contain time-nodes {1, 2, 3}, {3, 4, 5, 6},
and {6, 7, 8, 9} (the 0th time-node is the excluded initial condition). Notice that the
time-nodes are overlapped but the time steps are not. With these subsets, boolean
operators 𝑅𝑠 are defined that restrict a space-time vector to the time-nodes in a sub-
domain, giving the RAS preconditioner

𝑆−1RAS =
𝑁𝐷∑︁
𝑠=1

𝑅𝑇𝑠 𝐷𝑠

(
𝑅𝑠𝐽𝑀

−1
𝑢 𝐽𝑇 𝑅𝑇𝑠

)−1
𝑅𝑠 (9)

where 𝐷𝑠 is the (boolean) partition of unity matrix (Defn. 1.11 of [9]). RAS is
known to lead to effective preconditioners for elliptic problems and can be extended
to a multi-level schemes. While the ellipticity principle is exploited in 𝑆−1RAS, the
explicit formation of the product 𝐽𝑀−1

𝑢 𝐽𝑇 does not satisfy the efficiency constraint.
To satisfy the efficiency constraint note that the range of 𝐽𝑇 𝑅𝑇𝑠 is nonzero on

time-nodes in the 𝑠th subdomain and one time-node earlier. For instance, if the
subdomain contains nodes {3, 4, 5, 6} then the range is nonzero on {2, 3, 4, 5, 6}.
Let 𝑄𝑠 be a new extended restriction operator whose action produces a space-time
vector for time-nodes that are nonzero in the range of 𝐽𝑇 𝑅𝑇𝑠 . Further, choose 𝑄𝑠 so
that

𝑄𝑠 =

[
𝑊𝑠

𝑅𝑠

]
and 𝑄𝑠𝑄

𝑇
𝑠 = 𝐼 . (10)

The operator 𝑊𝑠 restricts the space-time vector to the time-nodes contained in the
earlier time step relative to the 𝑠th subdomain. Because 𝑄𝑠 is a restriction operator
that represents the nonzero range of 𝐽𝑇 𝑅𝑇𝑠 , we have that 𝑄𝑇

𝑠 𝑄𝑠𝐽
𝑇 𝑅𝑇𝑠 = 𝐽𝑇 𝑅𝑇𝑠 .

Recalling that 𝑀𝑢 is diagonal, we can rewrite the subdomain solve in 𝑆−1𝑅𝐴𝑆
as

𝑅𝑠𝐽𝑀
−1
𝑢 𝐽𝑇 𝑅𝑇𝑠 = 𝑅𝑠𝐽𝑄

𝑇
𝑠 (𝑄𝑠𝑀

−1
𝑢 𝑄𝑇

𝑠 )𝑄𝑠𝐽
𝑇 𝑅𝑇𝑠 (11)

Using the constraint in Eq. 10, we have the additional identities 𝑅𝑠 = 𝑅𝑠𝑄
𝑇
𝑠 𝑄𝑠 and

𝑅𝑇𝑠 = 𝑄𝑇
𝑠 𝑄𝑠𝑅

𝑇
𝑠 . This permits a final rewrite of the operator in Eq. 11

𝑅𝑠𝐽𝑀
−1
𝑢 𝐽𝑇 𝑅𝑇𝑠 = 𝑅𝑠𝑄

𝑇
𝑠 𝐽𝑠𝑀

−1
𝑠 𝐽𝑇𝑠 𝑄𝑠𝑅

𝑇
𝑠 (12)

where 𝐽𝑠 = 𝑄𝑠𝐽𝑄
𝑇
𝑠 and 𝑀−1

𝑠 = 𝑄𝑠𝑀
−1
𝑢 𝑄𝑇

𝑠 . The inverse action of 𝐽𝑠𝑀−1
𝑠 𝐽𝑇𝑠 is

easily computed in a matrix free way on the time-nodes in the extended subdomain.
Motivated by this equivalence, we define a new one-level preconditioner

𝑆−1RASQ =

𝑁𝐷∑︁
𝑠=1

𝑅𝑇𝑠 𝐷𝑠

(
𝑅𝑠𝑄

𝑇
𝑠 𝐽

−𝑇
𝑠 𝑀𝑠𝐽

−1
𝑠 𝑄𝑠𝑅

𝑇
𝑠

)
𝑅𝑠 . (13)

The term in parentheses is different from the term inverted in Eq. 9. The difference
is that the inverse computed in Eq. 9 is constrained to have a zero initial condition
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outside of the subdomain. This revised operator satisfies our efficiency constraint as
computing 𝐽−1𝑠 and 𝐽−𝑇𝑠 is done using the time integration method.
To obtain scalability with respect to the number of subdomains a coarse grid cor-

rection is required. Again leveraging the elliptic nature of the Schur-complement we
consider the Nicolaides coarse space developed for solving the Poisson problem [22].
Following the presentation in [9], the Nicolades coarse space is defined as

𝑍 =


𝐷1𝑅1Φ1 . . .

𝐷2𝑅2Φ2
. . .

...
. . .

. . .

. . . 𝐷𝑁𝐷
𝑅𝑁𝐷

Φ𝑁𝐷


, where Φ𝑠 =


1 −1
1 −1 + 2

𝑁𝑠

...
...

1 −1 + 2 𝑁𝑠

𝑁𝑠


(14)

The columns of Φ𝑠 form a constant and linear basis over the 𝑁𝑠 subdomain time-
nodes. The coarse restriction 𝑅0 = 𝑍𝑇 is used in the definition of the coarse operator
𝑆0 = 𝑅0𝐽𝑀

−1
𝑢 𝐽𝑇 𝑅𝑇0 . The coarse solve is applied in a multiplicative way

𝑆−12−level = 𝑆
−1
RASQ𝑅

𝑇
0 𝑆

−1
0 𝑅0. (15)

Due to the structure of 𝑅0 the coarse operator 𝑆0 can be constructed in parallel. This
does represent a violation of the efficiency constraint to be addressed by future work.

4 Numerical experiments

To demonstrate this approach we discretize the quadratic optimization problem from
Eq. 1 as described in Sec. 2. The 2D spatial domain is Ω = (0, 1) × (0, 2) ⊂ R2, and
the time domain is [0, 1]. The initial conditions and target solutions are

𝑢0 (𝑥, 𝑦) = −𝑥𝑦(𝑥−1) (𝑦−2), 𝑢̃(𝑥, 𝑦, 𝑡) = sin(2.0𝜋𝑡) sin(2.0𝜋𝑥) sin(2.0𝜋𝑦). (16)

The regularization parameter 𝜔 varies over five orders of magnitude. Experiments
were run with 9 × 9, 17 × 17, and 33 × 33 mesh points. Qualitatively, variation
with number of spatial points was not a factor in the convergence. This is not
surprising as the implicit operator in space is inverted with a direct solve. As a result,
the computations below are all for the case of 17 × 17 mesh points. Recall that
homogeneous boundary conditions are removed, giving 15 × 15 unknowns in each
time step. The linear system 𝐾u = f (Eq. 5) is solved using right preconditioned
GMRES from PyAMG [1] iterated until a relative residual tolerance of 10−6 is
achieved.
Figure 1 presents three weak-scaling studies ranging from 100 to 3200 time steps.

The number of time steps per subdomain is fixed at 80 in the left plot, 20 in the
center plot, and 5 in the right plot. For the case of 80 steps, the fewest number of
time steps is 200 (the minimum number of time steps evenly divisible by 80 in the
chosen sequence). The plots, show the number of iterations as a function of time
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Fig. 1 Three weak scaling studies for different numbers of time-steps per subdomain. The two
level scheme (triangles) has flat iteration counts for regardless of the number of time steps, the
subdomain size, and the regularization parameter. Asymptotically the one level method shows
a strong dependence with respect to the number of subdomains and time steps.

Fig. 2 This plot demonstrates the robustness of the two level scheme (triangle markers) with respect
to the regularization parameter 𝜔. Note that for many cases the one level scheme (circle markers)
did not converge in the 420 iterations (the maximum allowed), thus those values are omitted.

step count for GMRES preconditioned using 𝑃 from Eqn 7 with Schur complement
approximations 𝑆−1RASQ for the one level case (circle markers), and 𝑆

−1
2−level for the

two level case (triangle markers). Different values for the regularization parameter𝜔
are indicated using solid (10−2), dashed (10−3) or dotted (10−4) lines. These plots
demonstrate that the performance of the two level method is independent of both the
number of subdomains, and the number of time steps. Further, independence holds
regardless of the value of the regularization parameter. As anticipated the one level
method has substantial growth with the number of time steps, and variability with the
regularization parameter. However, it is worth noting that dependent on the number
of subdomains and the size of the regularization parameter the one level method may
be faster despite its lack of scalability. For instance, when using 40 subdomains and
a regularization parameter of 10−4 the one-level method takes the same number of
iterations but lacks the synchronization and added cost of the two level method.
The scalingwith respect to the regularization parameter is investigated in Figure 2.

In these plots the preconditioned iteration counts are plotted as a function of the
inverse regularization parameter. Data points are excluded when the number of
iterations exceeded the maximum iteration count for GMRES (in this case 420).
Here again the two level method scales well, yielding essentially flat iteration counts
as a function of the regularization parameter. The one level method shows strong
dependence on 𝜔, though it improves dramatically for smaller values.
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5 Conclusion

In this paper, motivated by results in block preconditioning and the elliptic-in-
time nature of the KKT system, we develop a two level domain decomposition
preconditioner that facilitates a parallel-in-time solver for the discrete optimality
system constrained by the heat equation. While limited in their breadth, initial
results for this approach show excellent scalability with respect to the number of
time steps, subdomains, and the regularization parameter. Future work will focus on
achieving improved scaling by including more levels in the hierarchy, and applying
this technique to a broader class of problems and discretizations.
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Auxiliary Space Preconditioning
with a Symmetric Gauss-Seidel Smoothing
Scheme for IsoGeometric Discretization
of H0(curl)-elliptic Problem

Abdeladim El Akri, Khalide Jbilou, Nouredine Ouhaddou, and Ahmed Ratnani

1 Introduction

The IsoGeometric Analysis (IgA), introduced by Hughes et al. in [4], is a compu-
tational method that provides a general framework for the design and analysis of
numerical approximation of partial differential equations (PDEs). The IgA is based
on the Galerkin formulation followed by the construction of a finite-dimensional
subspace, which approximates the solution space, determined by a finite set of basis
functions. These functions are adopted from the geometry description of the PDE
domain which usually employs 𝐵-spline functions, as done by computer-aided de-
sign algorithms [6]. As a consequence, the geometry is maintained exactly and the
use of high-regularity functions is settled by simply increasing or decreasing the
multiplicities of knots.
The discrete problems produced by isogeometric methods are usually very hard

to solve by the standard methods; they are ill-conditioned and the development of
a preconditioning strategy is not straightforward, specially in the case of problems
characterized by the presence of a large kernel of the PDE operator (like e.g themodel
problem considered in the present paper). In this case a natural way of constructing
the preconditioner is the Auxiliary Space Preconditioning (ASP) method introduced
by Xu in [9], see also [3]. The latter is a preconditioning technique based on a simple
smoothing scheme (e.g Jacobi or Gauss-Seidel method) and an auxiliary space. The
method has the main advantage of linking the solution space directly with functions
in the potential space, whichmakes it possible to control the drawback of the presence
of a large null space.
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Due to page limitation, in the present work we consider only one model problem
(even if the results are valid for a variety of 𝑯(curl) and 𝑯(div) problems)

curl curl 𝒖 + 𝜏𝒖 = 𝒇 in Ω, 𝒖 × 𝒏 = 0 on 𝜕Ω, (1)

where the vector function 𝒇 ∈ (𝐿2 (Ω))3, 𝜏 is a positive constant andΩ = (0, 1)3. We
develop a fast preconditioned iterative linear solver for (1). The resulting algorithm
relies on a symmetric Gauss-Seidel smoothing scheme, Poisson problem solvers, and
a GLT-based smoother to remove the dependence on the degree 𝑝 . For the former we
provide a new algorithm which exploits the block representation of the matrix of the
resulting discrete system through sum of Kronecker products. For the isogeometric
discretization of the Poisson problems, we adopt the fast diagonalization method
developed in [8]. The GLT smoother is taken from [5].
The rest of the paper is organized as follows. Section 2 presents the IgA finite

element discretization of the model (1). In Section 3, we propose a new algorithm for
the symmetric Gauss-Seidel method that utilizes the block structure of the matrix-
based discretization of (1). Next, in Section 4, we introduce the auxiliary space
preconditioner, and in Section 5, we combine it with aGLT-based smoother to control
the 𝑝-dependency of the solver. Finally, in Section 6, we illustrate the performance
of our preconditioner with several numerical tests.

2 Isogeometric discretization

For the sake of simplicity, we shall consider only non-periodic and uniform knot
vectors of the form

𝑇 = (0, . . . , 0︸   ︷︷   ︸
𝑝+1

, 𝑡𝑝+2 < 𝑡𝑝+3 < . . . 𝑡𝑛−1 < 𝑡𝑛, 1, . . . , 1︸   ︷︷   ︸
𝑝+1

),

where 𝑡𝑖 is the 𝑖-th knot, 𝑛 is the number of basis functions and 𝑝 is the polynomial
order. 𝐵-spline basis functions are defined recursively and they begin with order
𝑝 = 0 such as

𝐵𝑖,0 (𝑡) =
{
1 if 𝑡𝑖 ≤ 𝑡 < 𝑡𝑖+1,

0 otherwise

and for higher order 𝑝 ≥ 1 as follows

𝐵𝑖, 𝑝 (𝑡) =
𝑡 − 𝑡𝑖

𝑡𝑖+𝑝 − 𝑡𝑖
𝐵𝑖, 𝑝−1 (𝑡) +

𝑡𝑖+𝑝+1 − 𝑡
𝑡𝑖+𝑝+1 − 𝑡𝑖+1

𝐵𝑖+1, 𝑝−1 (𝑡),

in which a fraction with zero denominator is assumed to be zero. We let

S𝑝 = span
{
𝐵𝑖, 𝑝 : 𝑖 = 1, . . . , 𝑛

}
, S𝑝

0 = span
{
𝐵𝑖, 𝑝 : 𝑖 = 2, . . . , 𝑛 − 1

}
,
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theuni-variate spline spaces spanned by the 𝐵-spline functions. For three-dimensional
vector field structures, we specify a tridirectional knot vector 𝑻 = 𝑇1×𝑇2×𝑇3, where
each 𝑇𝑖 is an open and uniform univariate knot vector related to a 𝐵-spline degree 𝑝𝑖 .
We let then

𝑽ℎ,0 (curl) =
(
S𝑝1−1 ⊗ S𝑝2

0 ⊗ S
𝑝3
0

)
×
(
S𝑝1
0 ⊗ S

𝑝2−1 ⊗ S𝑝3
0

)
×
(
S𝑝1
0 ⊗ S

𝑝2
0 ⊗ S

𝑝3−1
)
,

the three-dimensional isogeometric approximation of 𝑯0 (curl) (see [1]). However,
we shall need also the following discrete counterpart of space 𝐻10 (Ω)

𝑉ℎ,0 (grad) = S𝑝1
0 ⊗ S

𝑝2
0 ⊗ S

𝑝3
0 .

Among the important properties, spaces 𝑉ℎ,0 (grad) and 𝑽ℎ,0 (curl) feature quasi
interpolation operatorsΠgrad

ℎ,0 andΠ
curl
ℎ,0 (see [1], for instance) thatmake the (DeRham)

diagram

𝐻10
grad

−−−−−−−−→ 𝑯0 (curl)

Π
grad
ℎ,0

y Πcurl
ℎ,0

y
𝑽ℎ,0 (grad)

grad
−−−−−−−−→ 𝑽ℎ,0 (curl)

commutes and exact.
Our discrete solution 𝒖ℎ ∈ 𝑽ℎ,0 (curl) satisfies the weak formulation

(curl 𝒖ℎ , curl 𝒗ℎ) + 𝜏(𝒖ℎ , 𝒗ℎ) = ( 𝒇 , 𝒗ℎ), ∀𝒗ℎ ∈ 𝑽ℎ,0 (curl), (2)

where (·, ·) refers to the (𝐿2 (Ω))3 inner-product. With the standard basis for
𝑽ℎ,0 (curl) (see [7]), we can write (2) as a linear system 𝑨𝒙 = 𝒃, where 𝑨 is
a (symmetric) 3 × 3 block matrix of the form

𝑨 =
©­«
𝐴11 𝐴12 𝐴13
𝐴21 𝐴22 𝐴23
𝐴31 𝐴32 𝐴33

ª®¬ , (3)

where each diagonal block matrix 𝐴𝑖𝑖 is a sum of Kronecker products of 3 matrices
while the non-diagonal matrices 𝐴𝑖 𝑗 (𝑖 ≠ 𝑗) are Kronecker products of 3 matrices.
Algorithms presented in the next section exploit this (tensor-product) structure.

3 Block fast Gauss-Seidel method for sum of Kronecker products

In this section we present an efficient implementation of the block Gauss-Seidel
method that is specifically designed for solving systems of equations involving
a sum of Kronecker product matrices. This implementation is a key contribution of
our paper and is used in the Gauss-Seidel smoothing step of the optimal ASP-based
algorithm presented in Section 5.
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To begin, we recall the symmetric Gauss-Seidel method in Algorithm 1. Our
implementation uses the spsolve driver, which has different implementations de-
pending on the type of the matrix 𝑨 (lower or upper triangular matrix). These
implementations are given in algorithms 2–3.

Algorithm 1: Symmetric Gauss Seidel solver
Input : 𝑨: A given matrix, 𝒃: A given vector, 𝒙: A starting point, 𝜈1: The number of iterations
Output
:

𝒙: The approximate solution of 𝑨𝒙 = 𝒃

1 for 𝑖 ← 1 to 𝜈1 do
2 𝒙 ← 𝒙 + spsolve(𝑨, 𝒃 − 𝑨𝒙, lower = True)
3 end
4 for 𝑖 ← 1 to 𝜈1 do
5 𝒙 ← 𝒙 + spsolve(𝑨, 𝒃 − 𝑨𝒙, lower = False)
6 end

Algorithm 2: spsolve: Lower
triangular solver for 3×3 block
matrix

Input : 𝑨: Lower triangular matrix, 𝒃: A
given vector

Output
:

𝒙: Solution of 𝑨𝒙 = 𝒃

1 𝑏1 , 𝑏2 , 𝑏3 ← unfold(𝒃)
2 𝑥1 ← spsolve(𝐴11 , 𝑏1 , lower = True)
3 𝑏̃2 ← 𝑏2 − 𝐴21𝑥1
4 𝑥2 ← spsolve(𝐴22 , 𝑏̃2 , lower = True)
5 𝑏̃3 ← 𝑏3 − 𝐴31𝑥1 − 𝐴32𝑥2
6 𝑥3 ← spsolve(𝐴33 , 𝑏̃3 , lower = True)
7 𝒙 ← fold(𝑥1 , 𝑥2 , 𝑥3)

Algorithm 3: spsolve: Upper
triangular solver for 3×3 block
matrix

Input : 𝑨: Upper triangular matrix, 𝒃: A
given vector

Output
:

𝒙: Solution of 𝑨𝒙 = 𝒃

1 𝑏1 , 𝑏2 , 𝑏3 ← unfold(𝒃)
2 𝑥3 ← spsolve(𝐴33 , 𝑏3 , lower = False)
3 𝑏̃2 ← 𝑏2 − 𝐴23𝑥3
4 𝑥2 ← spsolve(𝐴22 , 𝑏̃2 , lower = False)
5 𝑏̃1 ← 𝑏1 − 𝐴12𝑥2 − 𝐴13𝑥3
6 𝑥1 ← spsolve(𝐴11 , 𝑏̃1 , lower = False)
7 𝒙 ← fold(𝑥1 , 𝑥2 , 𝑥3)

Next, we provide a new implementation for the lower triangular solver that is used in
Algorithm 2 (the upper solver used in Algorithm 3 follows the same rationals). We
refer to our driver as spsolve. Since the diagonal block matrices in (3) are sums of
Kronecker products of 3matrices, we can derive efficientmatrix-free implementation
as described in Algorithm 4 (in the case of a sparse matrix (CSR)).

4 Auxiliary space preconditioner

In this section, we present the auxiliary space preconditioning strategy for system (2).
To keep the presentation focused, we only introduce the ASP preconditioner (we refer
to [2] for more detailed analysis and further discussion of the preconditioner). For
this purpose, we introduce the following matrices

- 𝑯 defines the matrix related to the restriction of (𝐻10 (Ω))
3 inner product to

(𝑉ℎ,0 (grad))3, and 𝑴 is the matrix representation related to the restriction of the
(𝐿2 (Ω))3 inner product to (𝑉ℎ,0 (grad,Ω))3.
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Algorithm 4: spsolve: Lower triangular solver for sum of Kronecker
product [CSR] matrices.

Input : 𝑨: Lower triangular matrix of the form
𝛼𝐴1 ⊗ 𝐴2 ⊗ 𝐴3 + 𝛽𝐵1 ⊗ 𝐵2 ⊗ 𝐵3 + 𝛾𝐶1 ⊗ 𝐶2 ⊗ 𝐶3, 𝒃: A given vector

Output
:

𝒙: Solution of 𝑨𝒙 = 𝒃

// 𝑛𝑙 is the number of rows of matrices 𝐴𝑙, 𝐵𝑙, 𝐶𝑙, 𝑙 = 1, 2, 3.
1 for 𝑖1 ← 1 to 𝑛1 do
2 for 𝑖2 ← 1 to 𝑛2 do
3 for 𝑖3 ← 1 to 𝑛3 do
4 𝒊 ← multi_index(𝑖1 , 𝑖2 , 𝑖3)
5 𝑦𝒊 ← 0
6 𝑎𝑑 ← 1
7 for 𝑘1 ← 𝐴1.indptr[𝑖1 ] to 𝐴1.indptr[𝑖1 + 1] − 1 do
8 𝑗1 ← 𝐴1.indices[𝑘1 ]
9 𝑎1 ← 𝐴1.data[𝑘1 ]

10 for 𝑘2 ← 𝐴2.indptr[𝑖2 ] to 𝐴2.indptr[𝑖2 + 1] − 1 do
11 𝑗2 ← 𝐴2.indices[𝑘2 ]
12 𝑎2 ← 𝐴2.data[𝑘2 ]
13 for 𝑘3 ← 𝐴3.indptr[𝑖3 ] to 𝐴3.indptr[𝑖3 + 1] − 1 do
14 𝑗3 ← 𝐴3.indices[𝑘3 ]
15 𝑎3 ← 𝐴3.data[𝑘3 ]
16 𝒋 ← multi_index( 𝑗1 , 𝑗2 , 𝑗3)
17 if 𝒊 < 𝒋 then
18 𝑦𝒊 ← 𝑦𝒊 + 𝑎1𝑎2𝑎3𝒙 [ 𝒋 ]
19 else
20 𝑎𝑑 ← 𝑎1𝑎2𝑎3
21 end
22 end
23 end
24 end
25 𝑧𝒊 ← 0
26 𝑏𝑑 ← 1
27 for 𝑘1 ← 𝐵1.indptr[𝑖1 ] to 𝐵1.indptr[𝑖1 + 1] − 1 do
28 𝑗1 ← 𝐵1.indices[𝑘1 ]
29 𝑎1 ← 𝐵1.data[𝑘1 ]
30 for 𝑘2 ← 𝐵2.indptr[𝑖2 ] to 𝐵2.indptr[𝑖2 + 1] − 1 do
31 𝑗2 ← 𝐵2.indices[𝑘2 ]
32 𝑎2 ← 𝐵2.data[𝑘2 ]
33 for 𝑘3 ← 𝐵3.indptr[𝑖3 ] to 𝐵3.indptr[𝑖3 + 1] − 1 do
34 𝑗3 ← 𝐵3.indices[𝑘3 ]
35 𝑎3 ← 𝐵3.data[𝑘3 ]
36 𝒋 ← multi_index( 𝑗1 , 𝑗2 , 𝑗3)
37 if 𝒊 < 𝒋 then
38 𝑧𝒊 ← 𝑧𝒊 + 𝑎1𝑎2𝑎3𝒙 [ 𝒋 ]
39 else
40 𝑏𝑑 ← 𝑎1𝑎2𝑎3
41 end
42 end
43 end
44 end
45 𝑤𝒊 ← 0
46 𝑐𝑑 ← 1
47 for 𝑘1 ← 𝐶1.indptr[𝑖1 ] to 𝐶1.indptr[𝑖1 + 1] − 1 do
48 𝑗1 ← 𝐶1.indices[𝑘1 ]
49 𝑎1 ← 𝐶1.data[𝑘1 ]
50 for 𝑘2 ← 𝐶2.indptr[𝑖2 ] to 𝐶2.indptr[𝑖2 + 1] − 1 do
51 𝑗2 ← 𝐶2.indices[𝑘2 ]
52 𝑎2 ← 𝐶2.data[𝑘2 ]
53 for 𝑘3 ← 𝐶3.indptr[𝑖3 ] to 𝐶3.indptr[𝑖3 + 1] − 1 do
54 𝑗3 ← 𝐶3.indices[𝑘3 ]
55 𝑎3 ← 𝐶3.data[𝑘3 ]
56 𝒋 ← multi_index( 𝑗1 , 𝑗2 , 𝑗3)
57 if 𝒊 < 𝒋 then
58 𝑤𝒊 ← 𝑤𝒊 + 𝑎1𝑎2𝑎3𝒙 [ 𝒋 ]
59 else
60 𝑐𝑑 ← 𝑎1𝑎2𝑎3
61 end
62 end
63 end
64 end
65 𝒙 [𝒊 ] ← 1

𝛼𝑎𝑑+𝛽𝑏𝑑+𝛾𝑐𝑑
(𝒃 [𝒊 ] − 𝛼𝑦𝒊 − 𝛽𝑧𝒊 − 𝛾𝑤𝒊 )

66 end
67 end
68 end
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- Wewrite 𝑷 and𝑮 for matrices related to the transform operatorsΠcurl
ℎ,0 | (𝑉ℎ,0 (grad))3

and grad|𝑉ℎ,0 (grad) , respectively.
- Let 𝑳 be the matrix related to the mapping

(𝝓ℎ , 𝝓ℎ) ∈ 𝑉ℎ,0 (grad) ×𝑉ℎ,0 (grad) ↦−→
(
grad 𝝓ℎ , grad 𝝓ℎ

)
.

- 𝑺 stands for the matrix related to the smoother.

With these notations, ASP preconditioner for problem (2) is given by

𝑩 = 𝑺 + 𝑲, 𝑲 := 𝑷 (𝑯 + 𝜏𝑴)−1 𝑷𝑇 + 𝜏−1𝑮𝑳−1𝑮𝑇 . (4)

The smoother 𝑺 can be chosen by a simple relaxation scheme such as the Jacobi
and symmetric Gauss-Seidel (GS) method. In this case, it has been proved in [2]
that the spectral condition number 𝜅(𝑩𝑨) is bounded, with respect to discretization
parameter ℎ. However, the numerical tests developed in the aforementioned paper
show that the overall performance obtained with Gauss-Seidel smoother is better
than that obtained with Jacobi. That’s why in the present paper we focus on the
symmetric Gauss-Seidel method.

5 𝒉 𝒑-Robust preconditioning algorithm

In this section, we introduce the ASP-GS-GLT algorithm, which is based on the ASP
method and addresses the problem related to the 𝐵-Spline degree. Indeed, the ASP
approach can be extended to construct a 𝑝-stable preconditioner by incorporating
an extra smoother that controls the 𝑝-dependency of the preconditioner. To derive
the smoother, we use the theory of Generalized Locally Toeplitz (GLT) sequences
(see [5]).
TheASP-GS-GLTalgorithm is formulated using the decomposition (4) as follows:

Algorithm 5: ASP-GS-GLT preconditioning for 𝑽ℎ,0 (curl)
Input : 𝑨: The matrix given in (3), 𝒃: A given vector, 𝒙: A starting point, 𝜈1: The number of GS iterations ,

𝜈2: The number of GLT iterations , 𝜈𝐴𝑆𝑃 : The number of ASP iterations
Output
:

𝒙: The approximate solution of 𝑨𝒙 = 𝒃

1 𝑘 ← 0
2 while 𝑘 ≤ 𝜈𝐴𝑆𝑃 and not convergence do
3 𝒙 ← smoother1 (𝑨, 𝒃, 𝒙, 𝜈1) // Apply Symmetric GS smoother
4 𝒙 ← smoother2 (𝑨, 𝒃, 𝒙, 𝜈2) // Apply GLT smoother
5 𝒅 ← 𝒃 − 𝑨𝒙 // Compute the defect
6 𝒙𝑐 ← 𝑲 𝒅 // ASP correction
7 𝒙 ← 𝒙 + 𝒙𝑐 // Update the solution
8 𝑘 ← 𝑘 + 1
9 end

Algorithm 5 is built upon three building blocks: a symmetric Gauss-Seidel smooth-
ing, a GLT-based smoother, and an ASP correction. To implement the Gauss-Seidel
smoothing, we employ the block fast Gauss-Seidel method described in Section 3.
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Our GLT-smoothing strategy is adapted from the work of [5]. Additionally, the ASP
correction utilizes solvers for Poisson problems to compute solutions for systems
with matrices 𝑯 + 𝜏𝑴 and 𝑳. For this purpose, we rely on the fast diagonalization
method introduced in [8].

6 Numerical results

In this section, we present some numerical experiments to test the strategy proposed
in this paper in view of further applications. In all these tests, we consider the model
problem (1) in the computational domain Ω = (0, 1)3 subdivided into 2𝑘 × 2𝑘 × 2𝑘
sub-domains (𝑘 ≥ 1). As a right-hand side function we chose 𝒇 (𝒙, 𝒚, 𝒛) = (𝒙, 𝒚, 𝒛).
The IgA discrete system (2) is solved by the Conjugate Gradient (CG) method in the
case of the un-preconditioned and preconditioned systems. The stopping criteria is
‖𝑨𝒙 − 𝒃‖/‖𝒃‖ ≤ 10−6 and the initial guess is chosen to be the zero vector.

Table 1 Un-preconditioned (NP) and ASP preconditioner (ASP): CG iterations counts for different
values of ℎ = 1/2𝑘 and 𝑝. ’−’ means that CG reaches the maximum number of iterations (set
to 3000) without convergence. Parameter values 𝜏 = 10−4, 𝜈1 = 1, 𝜈2 = 𝑝 + 1 and 𝜈𝑎𝑠𝑝 = 3.

ℎ = 1/8 ℎ = 1/16 ℎ = 1/32 ℎ = 1/64
𝑝 NP ASP NP ASP NP ASP NP ASP
1 151 3 328 4 511 6 879 6
2 520 2 975 4 1313 5 1962 6
3 − 2 − 3 − 4 − 6
4 − 3 − 3 − 4 − 5
5 − 3 − 3 − 4 − 5

ℎ = 1/8 ℎ = 1/16 ℎ = 1/32 ℎ = 1/64
𝑝 NP ASP NP ASP NP ASP NP ASP
6 − 4 − 4 − 4 − 4
7 − 4 − 4 − 4 − 4
8 − 4 − 4 − 4 − 4
9 − 5 − 4 − 4 − 5
10 − 5 − 5 − 5 − 5

Table 2 ASP preconditioner: CG iterations counts for different values of 𝜏 and 𝑝. ’−’ means that
CG reaches the maximum number of iterations (set to 3000) without convergence. Parameter values
ℎ = 1/64, 𝜈1 = 1, 𝜈2 = 𝑝 + 1 and 𝜈𝑎𝑠𝑝 = 3.

𝑝 = 1 𝑝 = 3 𝑝 = 8
𝜏 NP ASP NP ASP NP ASP
10−4 879 6 − 6 − 4
10−3 755 6 − 6 − 4
10−2 610 7 − 6 − 4
10−1 486 7 − 5 − 4
1 295 7 2278 5 − 4

𝑝 = 1 𝑝 = 3 𝑝 = 8
𝜏 NP ASP NP ASP NP ASP
10 244 6 1180 5 − 4
102 131 6 361 4 2227 3
103 41 4 101 2 687 4
104 10 1 39 2 320 3
105 9 1 39 1 318 2

In the first test, we keep following the number of the CG iterations for convergence for
different values of 𝑘 and 𝑝. The results are shown in Table 1. As we can observe from
the table, this example indicates that our ASP preconditioner is robust in the sense
that the number of iterations necessary to achieve the convergence is sufficiently
small and is hardly dependent on the mesh parameter ℎ and the 𝐵-spline degree 𝑝.
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In the second test, we study the dependence of the ASP preconditioner on the
parameter 𝜏. For this objective, in Table 2we provideGC iteration counts for different
values of 𝜏 and 𝑝. The table shows a strong dependence of the un-preconditioned
problem on 𝜏, In contrast, however, the number of CG iterations, in the case of ASP
preconditioner, is independent of 𝜏. This shows that the ASP method is perfectly
able to handle small values of 𝜏.
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Composing Two Different Nonlinear FETI–DP
Methods

Stephan Köhler and Oliver Rheinbach

1 Nonlinear FETI–DP

Nonlinear FETI–DP methods [3] are nonlinear generalizations of linear FETI–DP
domain decomposition methods [10]. Using a divide-and-conquer approach, the
unconstrained minimization of some objective 𝐽 is transformed into a constrained
optimization problem over many subdomains,

min𝑢̃ 𝐽 (𝑢̃) subject to (s.t.) 𝐵𝑢̃ = 0, (1)

where the constraint 𝐵𝑢̃ = 0 enforces continuity across subdomain boundaries; here,
𝑢̃ := [𝑢 (1)

𝐵𝐵
, . . . , 𝑢

(𝑁 )
𝐵𝐵

, 𝑢̃Π]𝑇 , where the subscript 𝐵 refers to the union of the inner
and dual variables, 𝐽 (𝑢̃) := ∑𝑁

𝑖=1 𝐽
(𝑖) (𝑢 (𝑖)

𝐵𝐵
, 𝑅

(𝑖)
Π
𝑢̃Π), 𝐽 (𝑖) is the local objective of the

𝑖-th subdomain, 𝑅 (𝑖)
Π
is the assembly operator of the primal variables as in linear

FETI–DP methods [10]. The Lagrange function for (1) is L(𝑢̃, 𝜆) = 𝐽 (𝑢̃) + 𝜆𝑇 𝐵𝑢̃.
The saddle point problem of the first-order necessary optimality condition

∇𝑢̃L(𝑢̃, 𝜆) = ∇𝐽 (𝑢̃) + 𝐵𝑇 𝜆 = 𝑓 ,

∇𝜆L(𝑢̃, 𝜆) = 𝐵𝑢̃ = 0, (2)

corresponds directly to the linear FETI–DP saddle point problem [10]. The nonlinear
operator ∇𝐽 (𝑢̃) := 𝑅𝑇

Π
∇𝐽 (𝑅Π 𝑢̃) is obtained from finite element subassembly of the

blocks ∇𝐽 (𝑖) (𝑢 (𝑖)
𝐵𝐵

, 𝑅
(𝑖)
Π
𝑢̃Π) in the primal variables using the operator 𝑅𝑇

Π
as in linear

FETI–DP methods [10]. This coupling provides a nonlinear coarse problem for
the method. Thus, ∇𝐽 represents a nonlinear coarse approximation of the original
problem.
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Technische Universität Bergakademie Freiberg, 09596 Freiberg,
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Next, we perform the nonlinear elimination: we split the first row in (2) according
to disjoint index sets 𝐸, 𝐿 (eliminate or linearize) and solve in a first step

∇𝑢̃𝐸L(𝑢̃𝐸 , 𝑢̃𝐿 , 𝜆) = ∇𝑢̃𝐸 𝐽 (𝑢̃𝐸 , 𝑢̃𝐿) + 𝐵𝑇
𝐸𝜆 = 0, (3)

for 𝑢̃𝐸 , given 𝑢̃𝐿 and 𝜆. Then, we can insert 𝑢̃𝐸 into the remaining equations and
solve by linearization in 𝑢̃𝐿 and 𝜆, and using the implicit function theorem. In [3],
four different elimination sets are considered: Nonlinear FETI–DP-1 (NL-1), where
𝐸 = ∅, nonlinear FETI–DP-2 (NL-2), where 𝐸 contains all variables and 𝐿 = ∅,
nonlinear FETI–DP-3 (NL-3), where 𝐸 contains the inner and the dual variables,
and Nonlinear FETI–DP-4 (NL-4), where 𝐸 contains only the inner variables. Here,
we focus on the two elimination sets of NL-2 and NL-4.

2 Composing two different nonlinear FETI–DP methods

We combine the two different nonlinear FETI–DPmethodsNL-2, where all variables
are eliminated, and NL-4 where only the inner variables are eliminated. The idea is
based on [9], where a similar approach is successfully applied for nonlinear FETI–1.
In a first step, for given multipliers 𝜆 (𝑘) , the implicit function 𝑔1 (𝜆 (𝑘) ), such that

∇𝑢̃L
��
(𝑔1 (𝜆(𝑘) ) ,𝜆(𝑘) ) = 0, (4)

where we denote the evaluation of ∇𝑢̃L at the point (𝑔1 (𝜆 (𝑘) ), 𝜆 (𝑘) ) by
∇𝑢̃L

��
(𝑔1 (𝜆(𝑘) ) ,𝜆(𝑘) ) , is computed. The function 𝑔1 corresponds to NL-2. Afterwards,

we compute a weighted average over the interface by

𝑔2 (𝜆 (𝑘) ) := (𝐼 − 𝐵∗ 𝑇 𝐵)𝑔1 (𝜆 (𝑘) ), (5)

where 𝐵∗ is a pseudo-inverse for 𝐵 such that 𝐵 𝐵∗ 𝑇 𝐵=𝐵 and 𝐵∗𝐵𝑇 𝐵∗ =𝐵∗. A cost-
saving variant for 𝐵∗ is 𝐵∗ = 𝐵𝐷,Γ, where 𝐵𝐷,Γ corresponds to the Dirichlet pre-
conditioner of the standard FETI–DP method; see, e.g., [8]. Due to (5), it follows
immediately that 𝐵𝑔2 (𝜆 (𝑘) ) = 0. However, there is an unnatural tension between the
interface variables of 𝑔2 and the variables adjacent to them. To resolve this tension,
in a third step, we compute the implicit function corresponding to NL-4,

𝑔3 (𝜆 (𝑘) ) :=
(
ℎ(𝑔2,Δ (𝜆 (𝑘) ), 𝑔2,Π (𝜆 (𝑘) ), 𝜆 (𝑘) )𝑇 , 𝑔2,Δ (𝜆 (𝑘) )𝑇 , 𝑔2,Π (𝜆 (𝑘) )𝑇

)𝑇
, (6)

where 𝑔2,Δ, 𝑔2,Π are the dual, primal variables of 𝑔2, respectively, and the implicit
function ℎ(𝑔2,Δ (𝜆 (𝑘) ), 𝑔2,Π (𝜆 (𝑘) ), 𝜆 (𝑘) ) solves

∇𝐼L
��(ℎ(𝑔2,Δ (𝜆(𝑘) ) ,𝑔2,Π (𝜆(𝑘) ) ,𝜆(𝑘) ) , 𝑔2,Δ (𝜆(𝑘) ) , 𝑔2,Π (𝜆(𝑘) ) , 𝜆(𝑘) ) = 0, (7)

where we denote the gradient with respect to the inner variables of 𝑢̃ by ∇𝐼 .
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We obtain the new multipliers by 𝜆 (𝑘+1) = −𝐵𝑇 𝐵∗∇𝐽
��
𝑔3 (𝜆(𝑘) ) , for details, see [9].

If (𝑢̃∗, 𝜆∗) is a KKTpoint of (1) and if∇𝑢̃𝑢̃L
��
(𝑢̃∗ ,𝜆∗) is invertible, it follows from (4) by

the implicit function theorem that 𝑔1 (𝜆∗) = 𝑢̃∗. Furthermore, it follows that 𝐵𝑢̃∗ = 0
and therefore, from (4) and (5), we have 𝑔1 (𝜆∗) = 𝑔2 (𝜆∗). From (4), it follows that
𝑔1 (𝜆∗) = 𝑔3 (𝜆∗). By the first part of the first-order necessary optimality condition (2),
we have ∇𝐽 (𝑢̃∗) = −𝐵𝑇 𝜆∗. Therefore, the nonlinear root-finding problem is

𝑟 (𝜆) := −𝐵𝑇 𝐵∗∇𝐽
��
𝑔3 (𝜆(𝑘) ) − 𝐵𝑇 𝜆 = −𝐵𝑇 𝐵∗∇𝑢̃L

��
𝑔3 (𝜆(𝑘) ) . (8)

Since we assume that 𝐵𝑇 has full rank, which can always guaranteed by the use of
nonredundant multipliers, we can rewrite (8) as 𝑟 (𝜆) := 𝐵∗∇𝑢̃L

��
𝑔3 (𝜆(𝑘) ) . We apply

Newton’s method to 𝑟 (𝜆). By similar arguments as outlined in [9], we have

𝐷𝑟 (𝜆) ≈
(
𝐵∗
Γ̃
𝑆
Γ̃Γ̃

��
(𝑔3 (𝜆) ,𝜆)𝐵

∗𝑇
Γ̃
𝐵
Γ̃
𝑆
Γ̃Γ̃

��
(𝑔3 (𝜆) ,𝜆)

−1
𝐵𝑇

Γ̃

)
, (9)

where

𝑆
Γ̃Γ̃

��
(𝑔3 (𝜆) ,𝜆) :=(

∇2
ΔΔ

L − ∇2
Δ𝐼
L ∇2

𝐼 𝐼
L−1 ∇2

𝐼Δ
L ∇2

ΔΠ
L − ∇2

Δ𝐼
L ∇2

𝐼 𝐼
L−1 ∇2

𝐼Π
L

∇2
ΠΔ

L − ∇2
Π𝐼

L ∇2
𝐼 𝐼
L−1 ∇2

𝐼Δ
L ∇2

ΠΠ
L − ∇2

Π𝐼
L ∇2

𝐼 𝐼
L−1 ∇2

𝐼Π
L

)�����
(𝑔3 (𝜆) ,𝜆)

and 𝐵∗
Γ̃
, 𝐵

Γ̃
correspond to the interface part of 𝐵∗, 𝐵, respectively. Let us remark that

the approximation (9) uses 𝑔1 (𝜆) ≈ 𝑔3 (𝜆).
The operator in (9) consists of two parts: the FETI–DP system matrix

𝐵
Γ̃
𝑆
Γ̃Γ̃

��
(𝑔3 (𝜆) ,𝜆)

−1
𝐵𝑇

Γ̃
and the Dirichlet preconditioner 𝐵∗

Γ̃
𝑆
Γ̃Γ̃

��
(𝑔3 (𝜆) ,𝜆)𝐵

∗𝑇
Γ̃
; for the

linear case, see, e.g., [8, 10] and for the nonlinear case, see, e.g.,[3, 7]. The Newton
equation for 𝑟 (𝜆) is given by(

𝐵∗
Γ̃
𝑆
Γ̃Γ̃
𝐵∗𝑇
Γ̃
𝐵
Γ̃
𝑆
Γ̃Γ̃

−1 𝐵𝑇

Γ̃

)��
(𝑔3 (𝜆) ,𝜆)𝛿𝜆̂ = −𝐵∗∇𝑢̃L

��
(𝑔3 (𝜆) ,𝜆) . (10)

The system matrix in (10) corresponds to the system matrix of a standard precon-
ditioned FETI-DP system, however, the preconditioner 𝐵∗

Γ̃
𝑆
Γ̃Γ̃
𝐵∗𝑇
Γ̃
is not applied to

the right hand side, which is an important difference.
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For completeness, we show the preconditioned Newton equation for NL-2:(
𝐵∗
Γ̃
𝑆
Γ̃Γ̃
𝐵∗𝑇
Γ̃
𝐵
Γ̃
𝑆
Γ̃Γ̃

−1 𝐵𝑇

Γ̃

)��
(𝑔1 (𝜆) ,𝜆)𝛿𝜆 = −𝐵∗

Γ̃
𝑆
Γ̃Γ̃

��
(𝑔1 (𝜆) ,𝜆)𝐵

∗𝑇
Γ̃
𝐵𝑔1 (𝜆).

Note, the difference between the two equations is the evaluation point of the operator
and the right hand side.

3 Globalization of nonlinear FETI–DP

For the globalization of the method outlined in Section 2, we use the exact differen-
tiable penalty function

𝑃(𝑢̃, 𝜆;𝑀, 𝜇) = L(𝑢̃, 𝜆) + 𝜇

2 ‖𝑐(𝑢̃)‖
2 + 12 ‖𝑀∇𝑢̃L(𝑢̃, 𝜆)‖2 (11)

introduced in [2]. For a detailed analysis of 𝑃, we refer to [1]. For nonlinear FETI–
DP, we have 𝑐(𝑢̃) = 𝐵𝑢̃ and 𝑀 = 𝜂 𝐵, where 𝐵 is the FETI–DP jump operator. First
results for globalization of nonlinear FETI–DP by 𝑃 were presented in [6] and for
a detailed analysis we refer to [5]. The methods presented in [6] make explicit use of
the nonlinear elimination. Indeed, the nonlinear elimination needs to be computed in
every step of the backtracking. Such an approach for the function 𝑔3 from Section 2
is computationally expensive also when computing the exact Jacobian 𝐷𝑔3. Let us
keep in mind that (9) uses the approximation 𝑔3 (𝜆) ≈ 𝑔1 (𝜆).

Simplified backtracking Hence, we need to modify the globalization approach.
The main idea is that for given point (𝑢̃ (𝑘) , 𝜆 (𝑘) ) we compute a new trial point
(𝑔3 (𝜆̂ (𝑘) ), 𝜆̂ (𝑘) ), where 𝜆̂ (𝑘) = 𝜆 (𝑘) + 𝛿𝜆̂ (𝑘) and 𝛿𝜆̂ (𝑘) is the solution of (10) at
(𝑔3 (𝜆 (𝑘) ), 𝜆 (𝑘) ). Afterwards, we compute our search direction by

𝑑
(𝑘)
1 =

(
(𝑔3 (𝜆̂𝑘 ) − 𝑢̃ (𝑘) )𝑇 , 𝛿𝜆̂ (𝑘) 𝑇 )𝑇

. (12)

Similarly as for a Newton-direction, it is unclear if 𝑑 (𝑘)
1 is a descent direction.

Therefore, we must ensure that a generalized angle condition holds if we use 𝑑 (𝑘)
1 .

If 𝑑 (𝑘)
1 does not fulfill a generalized angle condition, i.e.,

∇ 𝑃 (𝑘) 𝑇 𝑑𝑘
1 ≥ −min{𝜂1, 𝜂2 ‖∇𝑃 (𝑘) ‖ 𝑝∞} ‖𝑑 (𝑘)

1 ‖2 ‖∇𝑃 (𝑘) ‖∞, (13)

where ∇𝑃 (𝑘) := ∇𝑃
��
(𝑢̃ (𝑘) ,𝜆(𝑘) ;𝑀,𝜇𝑘 ) or if

‖𝑑 (𝑘)
1 ‖2 < 𝜂3

(
−∇ 𝑃 (𝑘) 𝑇 𝑑

(𝑘)
1

)
/‖𝑑 (𝑘)

1 ‖2, (14)

we compute a new direction 𝑑 (𝑘)
2 by the solution of the standard Lagrange-Newton

equation at the point (𝑢̃ (𝑘) , 𝜆 (𝑘) ). Let us remark that the solution of the Lagrange-
Newton equation correspond to a Newton-like search direction for 𝑃; see, e.g., [1].
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Init: (𝑢̃ (0) , 𝜆(0) ) , 𝜂1 , 𝜌 ∈ (0, 1) , 𝜀update > 1, 𝜀tol , 𝜇0 , 𝜂2 , 𝜂3 , 𝑝 > 0.
for 𝑘 = 0, 1, . . . until convergence do
1. If ‖∇L (𝑘) ‖∞ ≤ 𝜀tol, STOP.
2. (a) Compute 𝑔3 (𝜆(𝑘) ) // Includes computation of NL-2 and NL-4.

(b) Solve 𝐵∗
Γ̃
𝑆
(𝑘)
Γ̃Γ̃

𝐵∗𝑇
Γ̃

𝐵
Γ̃
𝑆
(𝑘)
Γ̃Γ̃

−1
𝐵𝑇

Γ̃
𝛿𝜆̂(𝑘) = −𝐵∗∇𝑢̃L (𝑘) .

(c) Compute 𝑔3 (𝜆(𝑘) + 𝛿𝜆̂(𝑘) ) // Includes computation of NL-2 and NL-4.

(d) Set 𝑑 (𝑘) =

(
𝑔3 (𝜆(𝑘) + 𝛿𝜆̂(𝑘) ) − 𝑢̃ (𝑘)

𝛿𝜆̂(𝑘)

)
.

if (13) or (14) then
Set 𝑑 (𝑘) = −∇2L−1��

(𝑢̃ (𝑘) ,𝜆(𝑘) ) ∇L
��
(𝑢̃ (𝑘) ,𝜆(𝑘) )

if (13) then
Set 𝑑 (𝑘) = −∇2𝑃

��
(𝑢̃ (𝑘) ,𝜆(𝑘) )

end
end

3. Compute the step length 𝛼𝑘 based on the Armijo rule.

4. Set 𝑢̃ (𝑘+1) = 𝑢̃ (𝑘) + 𝛼𝑘𝑑
(𝑘)
𝑢̃
and 𝜆(𝑘+1) = 𝜆(𝑘) + 𝛼𝑘𝑑

(𝑘)
𝜆
,

where 𝑑 (𝑘) = (𝑑 (𝑘) 𝑇
𝑢̃

, 𝑑
(𝑘) 𝑇
𝜆

)𝑇 .

5. if ‖ 𝐵𝑢̃ (𝑘+1) ‖ ≥ 𝜌 ‖ 𝐵𝑢̃ (𝑘) ‖ then
Set 𝜇𝑘+1 = 𝜀update 𝜇𝑘 .

else
Set 𝜇𝑘+1 = 𝜇𝑘 .

end
end

Fig. 1:Minimization algorithm for 𝑃.

If 𝑑 (𝑘)
2 does also not fulfill the generalized angle condition (13), we use −∇𝑃 (𝑘)

as the search direction. Afterwards, we compute the step length by the Armijo
rule. In contrast to the algorithm outlined in [6], we do not compute any nonlinear
elimination in the backtracking of the Armijo rule. This is important to reduce the
runtime, since the computation of 𝑔3 (𝜆 (𝑘) ) takes some effort. We refer to this as
simplified backtracking.

Minimization algorithm We outline our minimization algorithm in Fig. 1. Let
us explain some details: Our framework is based on a general line search algorithm
and a globalized Newton line search algorithm; for details, see, e.g., [11]. We use
the simplified backtracking to save some runtime. Furthermore, we do not rely on
the exact computation of 𝑔3 (𝜆 (𝑘) ), since we are only interested in a descent for 𝑃.
Therefore, we can abort the computation of the 𝑔1 (𝜆 (𝑘) ), which corresponds to
the nonlinear elimination of NL-2, after a few iterations. This holds also for the
nonlinear elimination corresponding to the NL-4 step. By such an inexact nonlinear
elimination, we try to avoid over solving of the nonlinear elimination problems and
the idea is based on the approach in [4]. The inexact nonlinear elimination is an
important difference to Newton’s method applied to 𝑟 (𝜆), which needs, formally, the
exact computation of 𝑔3 (𝜆 (𝑘) ). The disadvantage in Fig. 1 is that if Fig. 1 2. (b) does
not provide a descent direction, we have to compute and factorize ∇2L again at the
old point (𝑢̃ (𝑘) , 𝜆 (𝑘) ), which takes some additional runtime.
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Let us remark that the globalization strategy in Fig. 1 combined with an inexact
computation of 𝑔3 is based on the ideas in [5].

4 Numerical results

We consider red a two-dimensional beam bending benchmark problem with a Neo-
Hookean constitutive law using no or almost incompressible inclusions embedded in
each subdomain. The strain energy density function for the compressible matrix ma-
terial part is given by 𝐽 (𝑥) = 𝜇

2 (tr(𝐹 (𝑥)
𝑇 𝐹 (𝑥)) −2) − 𝜇 log(𝜓(𝑥)) + 𝜆

2 (log(𝜓(𝑥)))
2,

where 𝜓(𝑥) = det(𝐹 (𝑥)), 𝐹 (𝑥) = ∇𝜑(𝑥), 𝜑(𝑥) = 𝑥 + 𝑢(𝑥), 𝑢(𝑥) denotes the dis-
placement and 𝜇 and 𝜆 are the Lamé constants. The nearly incompressible part is
given by 𝐽 (𝑥) =

𝜇

2 (tr(
1

𝜓 (𝑥) 𝐹 (𝑥)
𝑇 𝐹 (𝑥)) − 2) + 𝜅

2 (𝜓(𝑥) − 1)
2, where 𝜅 =

𝜆(1+𝜇)
3𝜇 ;

see, e.g. [12, 5] and references therein. As material parameters, we use 𝐸 = 210 and
𝜈 = 0.3 for the matrix material and 𝐸 = 210 and 𝜈 = 0.499 for the (mildly) almost
incompressible inclusions. For the discretization, we use 𝑃 2 elements, which are
not stable for the incompressible case.
For the computation of 𝑔1 (𝜆 (𝑘) ) in Fig. 1 (a), we solve the minimization problem

min𝑢̃ L(𝑢̃, 𝜆 (𝑘) ). We solve this problem inexactly, in the sense that we abort the com-
putation if |L (𝑢̃ (𝑘)

ℓ+1 ,𝜆
(𝑘) )−L(𝑢̃ (𝑘)

ℓ
,𝜆(𝑘) ) |

|L (𝑢̃ (𝑘)
ℓ

,𝜆(𝑘) ) |
< 𝛾1 or if (1 − 𝛾2) <

‖∇𝑢̃L(𝑢̃ (𝑘)
ℓ+1 ,𝜆

(𝑘) ) ‖∞
‖∇𝑢̃L(𝑢̃ (𝑘)

ℓ
,𝜆(𝑘) ) ‖∞

, where

𝑢̃
(𝑘)
ℓ+1 is the current iterate in the computation of 𝑔1 (𝜆

(𝑘) ) and 𝑢̃ (𝑘)
ℓ
is the previous one.

In a similar way, we compute also the NL-4 part of 𝑔3 (𝜆 (𝑘) ) inexactly. Let us remark
that we use a globalizedNewtonmethodwith a computation of the Newton step using
a direct sparse solver for theNewton equation. This can be afforded since this is an op-
eration local to the subdomains and for 𝑔1 this involves also the (small) coarse space.
As Krylov methods in Fig. 1, we use GMRES. In Table 1, we show the number

of (outer) iterations for the 2𝐷 Neo-Hookean beam bending benchmark problem
with a homogeneous material model, see upper part of Table 1, and (mildly) almost
incompressible inclusions, see lower part of Table 1. We report the iterations for the
standard nonlinear FETI–DP methods NL-1, NL-2, and NL-2 with simplified back-
tracking, which includes also the inexact nonlinear elimination and the new approach
outlined in section 2, NL-2/4, with simplified backtracking and inexact nonlinear
elimination. In brackets, we show the cumulative iterations for the nonlinear elimi-
nation corresponding to the NL-2 elimination set, we refer to this as inner iterations.
This does not include the iterations for the nonlinear elimination corresponding to
the NL-4 part in NL-2/4.
In the upper part of Table 1 shows that there is a small increase in the number of

outer iterations for NL-2 simpl. compared to the standard NL-2 method; the number
of inner iterations, however, decreases significantly. For NL-2/4 simpl., the increase
of the number of outer iterations is more significant, but the number of inner itera-
tions stays the same or decreases slightly, again, compared with the NL-2 method.
Let us remark that for 4 000 subdomains and NL-2, we need 6 outer iterations instead
of the previous 2, since we need to make 4 gradient steps, which are not as effective
as Newton steps.
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Table 1: Nonlinear FETI–DP-1, 2 (NL-1, 2), nonlinear FETI–DP-2 with simplified backtracking (NL-2 simpl.), and
nonlinear FETI–DP-2/4 with simplified backtracking (NL-2/4 simpl.); 𝐻/ℎ ≈ 21; beam bending problem in 2𝐷;
coarse space: vertices, edge, and rotational averages; globalization based on 𝑃 and using Fig. 1 for NL-2 linear. and
NL-2/4 linear. for NL-1, 2 see [5, 6]; start penalty parameter 𝜇0 = 100; exact diff penalty method; number of iteration
is shown, in brackets the cumulative number of nonlinear elimination steps for the NL-2 part; stopping criterion:
‖∇L (𝑘) ‖∞ < 10−6.

using globalization: NL-1,2, see [6, 5]; NL-2 linear., NL-2-4 linear. see Fig. 1

homogeneous Neo-Hooke

body force 𝑓 = (0, −1.0)𝑇

Standard Methods New Methods

#d.o.f. #Sub. NL-1 NL-2 NL-2 simpl. NL-2/4 simpl.

963 202 250 16 2 [16] 3 [11] 5 [16]
3 844 392 1 000 15 1 [15] 3 [11] 5 [16]
15 360 772 4 000 15 1 [15] 3 [11] 5 [15]

body force 𝑓 = (0, −2.0)𝑇

Standard Methods New Methods

#d.o.f. #Sub. NL-1 NL-2 NL-2 simpl. NL-2/4 simpl.

963 202 250 17 2 [19] 4 [14] 6 [17]
3 844 392 1 000 17 2 [19] 4 [14] 6 [17]
15 360 772 4 000 17 6 [28] 3 [13] 6 [18]

incomp. inclusions (𝜈 = 0.499)

body force 𝑓 = (0, −1.0)𝑇

Standard Methods New Methods

#d.o.f. #Sub. NL-1 NL-2 NL-2 simpl. NL-2/4 simpl.

963 202 250 36 2 [36] 9 [26] 13 [33]
3 844 392 1 000 36 2 [38] 9 [25] 13 [34]
15 360 772 4 000 35 2 [38] 8 [24] 13 [35]

body force 𝑓 = (0, −2.0)𝑇

Standard Methods New Methods

#d.o.f. #Sub. NL-1 NL-2 NL-2 simpl. NL-2/4 simpl.

963 202 250 43 2 [46] 12 [30] 16 [41]
3 844 392 1 000 44 2 [46] 11 [32] 15 [42]
15 360 772 4 000 44 2 [48] 11 [30] 16 [41]

In the lower part of Table 1, we observe a significant increase of the outer
iterations for NL-2 simpl. and NL-2/4 simpl. compared to NL-2, but the number
of inner iterations descreases significantly for NL-2 simpl. and there is a small
improvement for NL-2/4 simpl.
In our experiments, NL-2 simpl. seems to be a give better results than NL-2/4,

which was not expected; we suspect that this is due to our large coarse space which
includes edge averages and rotations. Hence, the jump at the interface is not large
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and therefore the correction part on the interface, which includes NL-4, does not
lead to a significant improvement. We guess that this will change if the jump of the
interface is larger. Note, however, that using a smaller coarse space resulted in very
ill-conditioned tangent systems, i.e., the number Krylov iterations was high.
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Biot Model with Generalized Eigenvalue
Problems for Scalability and Robustness
to Parameters

Pilhwa Lee

1 Introduction

Poroelasticity, i.e., elasticity of porous media with permeated Darcy flow, is pi-
oneered by Biot [2, 3]. In this paper, we propose a numerical scheme for solving
the Biot model with three-fields linear poroelasticity. We consider a discontinuous
Galerkin discretization, i.e., the displacement and Darcy flow flux discretized as
piecewise continuous in 𝑃1 elements, and the pore pressure as piecewise constant in
the 𝑃0 element with a stabilizing term. The emerging formulation is a saddle-point
problem, and more specifically, a twofold saddle-point problem.
This indefinite system is computational challengingwith slow convergence in iter-

ativemethods. It is necessary to incorporate relevant preconditioners for saddle-point
problems. There have been decomposition methods through overlapping Schwarz
methods [6, 9, 11, 13]. We use GMRES as the outer iterative solver accelerated
by a parallelized block-triangular preconditioner with overlapping additive Schwarz
method (OAS) for displacement, and Darcy flow flux and Schur complement for
pressure by Cholesky factorizations. In order to make the scheme scalable and ro-
bust to broad ranges of parameters and their potential heterogeneous distributions,
the coarse grid should be well constructed. In the paper, we take the approach
of constructing coarse spaces with eigenfunctions based on generalized eigenvalue
problems [4, 8, 14]. Specifically, we devise a parallel preconditioner of two-level
OAS with coarse grid construction by Generalized Eigenvalue problems in the Over-
laps (GenEO) [15].

Pilhwa Lee
Department of Mathematics, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, MD,
USA, e-mail: Pilhwa.Lee@morgan.edu
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2 Linear poroelastic model

Poroelastic models describe the interaction of fluid flows and deformable elastic
porous media saturated in the fluid. Let 𝒖 be the elastic displacement, 𝑝 be the pore
pressure. We assume that the permeability is homogeneous:K = 𝜅I. Denote 𝒛 as the
Darcy volumetric fluid flux. The quasi-static Biot model reads as:

−∇ · (𝜎(𝒖) − 𝛼𝑝I) = 𝒇 , (1)

K−1𝒛 + ∇𝑝 =𝒃, (2)
𝜕

𝜕𝑡
(𝛼∇ · 𝒖 + 𝑐0𝑝) + ∇ · 𝒛 =𝑔, (3)

where 𝜎(𝒖) is the deviatoric stress, 𝒇 is the body force on the solid, 𝒃 is the body
force on the fluid, 𝑔 is a source or sink term, 𝑐0 > 0 is the constrained specific
storage coefficient, 𝛼 is the Biot-Willis constant which is close to 1. For the ease
of presentation, we consider mixed partial Neumann and partial Dirichlet boundary
conditions. Specifically, the boundary 𝜕Ω is divided into the following:

𝜕Ω = Γd ∪ Γt and 𝜕Ω = Γp ∪ Γf ,

where Γd and Γt are for displacement and stress boundary conditions; Γp and Γf are
for pressure and flux boundary conditions. Accordingly, the boundary conditions
are the following:

𝒖 =0 on Γd, (𝜎(𝒖) − 𝛼𝑝I) · 𝒏 = t on Γt, (4)
𝑝 =0 on Γp, 𝒛 · 𝒏 = 𝑔2 on Γf . (5)

For simplicity, the Dirichlet conditions are assumed to be homogeneous.

3 Saddle-point problem: discretization of P1 − P1 − 𝑷0

We apply the finite element method where domains are normally shaped as triangles
in R2. Let Tℎ be a partition of Ω into non-overlapping elements 𝐾 . We denote by ℎ
the size of the largest element in Tℎ . On the given partition Tℎ we apply the following
finite element spaces [1].

𝑽ℎ :={𝒖ℎ ∈ (𝐶0 (Ω))𝑑 : uℎ |𝐾 ∈ P1 (𝐾) ∀𝐾 ∈ T ℎ , 𝒖ℎ = 0 on Γd} (6)

𝑾ℎ :={𝒛ℎ ∈ (𝐶0 (Ω))𝑑 : zℎ |𝐾 ∈ P1 (𝐾) ∀𝐾 ∈ T ℎ , 𝒛ℎ · 𝒏 = 0 on Γf} (7)

𝑄ℎ :={𝑝ℎ : 𝑝ℎ |𝐾 ∈ P0 (𝐾) ∀𝐾 ∈ T ℎ} (8)

The problem is to find (𝒖𝑛
ℎ
, 𝒛𝑛
ℎ
, 𝑝𝑛
ℎ
) ∈ 𝑽ℎ ×𝑾ℎ ×𝑄ℎ at the time step 𝑛 such that
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𝑎(𝒖𝑛

ℎ
, 𝒗ℎ) − (𝑝𝑛

ℎ
,∇ · 𝒗ℎ) = ( 𝒇 𝑛, 𝒗ℎ) + ( 𝒕𝑛, 𝒗ℎ)Γt , ∀𝒗ℎ ∈ 𝑽ℎ

(𝐾−1𝒛𝑛
ℎ
,𝒘ℎ) − (𝑝𝑛

ℎ
,∇ · 𝒘ℎ) = (𝒃𝑛,𝒘ℎ), ∀𝒘ℎ ∈ 𝑾ℎ

(∇ · 𝒖𝑛
Δ𝑡 ,ℎ

, 𝑞ℎ) + (∇ · 𝒛𝑛
ℎ
, 𝑞ℎ) + 𝑐0

𝛼
(𝑝𝑛
ℎ
, 𝑞ℎ) + 𝐽 (𝑝𝑛Δ𝑡 ,ℎ , 𝑞ℎ) =

1
𝛼
(𝑔𝑛, 𝑞ℎ), ∀𝑞ℎ ∈ 𝑄ℎ

(9)
where

𝐽 (𝑝, 𝑞) = 𝛿STAB
∑︁
𝐾

∫
𝜕𝐾\𝜕Ω

ℎ𝜕𝐾 [𝑝] [𝑞]𝑑𝑠

is a stabilizing term [5], and 𝑝𝑛
Δ𝑡 ,ℎ

= (𝑝𝑛
ℎ
−𝑝𝑛−1

ℎ
)/Δ𝑡. The finite element discretization

will lead to a twofold saddle-point problem of the following form:
𝐴𝒖 0 𝐵𝑇1
0 𝐴𝒛 𝐵𝑇2
𝐵1 𝐵2 −𝐴𝑝



𝒖ℎ

𝒛ℎ

𝑝ℎ

 =

𝒇1

𝒇2

𝒇3

 . (10)

Denote the block matrices of 𝐴, 𝐵, and the Schur complement 𝑆 in the following:

𝐴 =

[
𝐴𝒖 0
0 𝐴𝒛

]
, 𝐵 =

[
𝐵1 𝐵2

]
, 𝑆 = −(𝐵𝐴−1𝐵𝑇 + 𝐴𝑝). (11)

Usually, for saddle-point problem of the form (10), one takes the preconditioner as
a block lower-triangular,

𝑇 =

[
𝐴 0
𝐵 𝑆

]
. (12)

3.1 Two-level additive Schwarz algorithm (OAS-2) for 𝑨𝒖

Wenow introduce the decomposition into local and coarse spaces. The local problems
are defined on the extended subdomains Ω′

𝑖
. To each of the Ω′

𝑖
, we associate a local

space
𝑽𝑖 = 𝑽ℎ (Ω′

𝑖) ∩ 𝑯10 (Ω
′
𝑖), (13)

and a bilinear form 𝑎′
𝑖
(𝒖𝑖 , 𝒗𝑖) := 𝑎(𝑅𝑇

𝑖
𝒖𝑖 , 𝑅

𝑇
𝑖
𝒗𝑖), where 𝑅𝑇𝑖 : 𝑽𝑖 → 𝑽ℎ , simply

extends any element of 𝑽𝑖 by zero outside Ω′
𝑖
. Then, as we will only consider

algorithms for which the local problems are solved exactly, we find that the local
operators are

𝐴′
𝑖 = 𝑅𝑖𝐴𝑅

𝑇
𝑖 , 𝑖 = 1, . . . , 𝑁. (14)

Given the local and coarse embedding operators 𝑅𝑇
𝑖
: 𝑽𝑖 → 𝑽ℎ , 𝑖 = 1, . . . , 𝑁 , and

𝑅𝑇0 : 𝑽0 → 𝑽ℎ , the discrete space 𝑽ℎ can be decomposed into coarse and local
spaces as

𝑽ℎ = 𝑅𝑇0 𝑽0 +
∑︁
𝑖

𝑅𝑇𝑖 𝑽𝑖 . (15)
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The coarse space on the coarse subdomain mesh 𝜏𝐻 is denoted by

𝑽0 = 𝑽𝐻 := {𝒗 ∈ 𝑽 : 𝒗 |Ω𝑖
∈ (P1 (Ω𝑖))𝑑 ∀Ω𝑖 ∈ 𝜏𝐻 }. (16)

3.2 Construction of coarse spaces by GenEO for 𝑨𝒖

For all subdomains 1 ≤ 𝑖 ≤ 𝑁 , the generalized eigenvalue problem is to find
(𝑉𝑖𝑘 , 𝜆𝑖𝑘 ) ∈ range(𝐴′

𝑖
) × R such that

𝐴′
𝑖𝑉𝑖𝑘 = 𝜆𝑖𝑘𝐷𝑖𝐴

′
𝑖𝐷𝑖𝑉𝑖𝑘 . (17)

where {𝐷𝑖}𝑁𝑖=1 defines a partition of unity,
∑𝑁
𝑖=1 𝑅

𝑇
𝑖
𝐷𝑖𝑅𝑖 = 𝐼. The GenEO coarse

space 𝑉0 is based on the following local contributions:

𝑍𝑖𝜏 = span{𝑉𝑖𝑘 |𝜆𝑖𝑘 < 𝜏}, (18)

which are weighted with the partition of unity as follows:

𝑉0 = ⊕𝑁𝑖=1𝑅
𝑇
𝑖 𝐷𝑖𝑍𝑖𝜏 . (19)

When 𝑍0 be a column matrix so that 𝑉0 is spanned by its columns, 𝑅0 = 𝑍𝑇0 .
Two-level overlapping Schwarz method by GenEO is summarized in Algorithm 1.

Algorithm 1 Two-level overlapping Schwarz method by GenEO [10]
1. Solve the local generalized eigenvalue problem:

𝐴′
𝑖
𝑦𝑖 = 𝜆𝑖 𝑅̃𝑖𝑅

𝑇
𝑖
𝐴′
𝑖
𝑅𝑖 𝑅̃

𝑇
𝑖
𝑦𝑖 .

{𝑅̃𝑖 }𝑁𝑖=1 are the same operators as {𝑅𝑖 }𝑁𝑖=1 except that entries on the overlap are set to 0 [7].
2. Collect the 𝜈𝑖 smallest eigenpairs {𝑦𝑖 𝑗 , 𝜆𝑖 𝑗 }

𝜈𝑖
𝑗=1.

3. Assemble a local deflation dense matrix:
𝑊𝑖 = [𝐷𝑖𝑦𝑖1 · · ·𝐷𝑖𝑦𝑖𝜈𝑖 ].
{𝐷𝑖 = 𝑅̃𝑖𝑅

𝑇
𝑖
}𝑁
𝑖=1 defines the partition of unity.

4. Define a global deflation matrix:
𝑃 = [𝑅𝑇

1 𝑊1 · · · 𝑅
𝑇
𝑁
𝑊𝑁 ].

5. Define a two-level preconditioner using the Galerkin product of 𝐴 and 𝑃:
𝑀−1 =

∑𝑁
𝑖=1 𝑅̃

𝑇
𝑖
(𝑅𝑖𝐴𝑅

𝑇
𝑖
)−1𝑅𝑖 ,

𝑄 = 𝑃 (𝑃𝑇 𝐴𝑃)−1𝑃𝑇 ,
𝑀−1
additive = 𝑄 +𝑀−1 or 𝑄 +𝑀−1 (𝐼 − 𝐴𝑄) .



Biot Model with Generalized Eigenvalue Problems 491

4 Numerical experiments

A test problem is formulated with 𝛼 = 1, 𝑐0 = 0, Ω = [0, 1]2 and 𝑡 ∈ [0, 0.25]:

−(𝜆 + 𝜇)∇(∇ · 𝒖) − 𝜇∇2𝒖 + ∇𝑝 = 0,
K−1𝒛 + ∇𝑝 = 0, (20)
∇ · (𝒖𝑡 + 𝒛) = 𝑔1.

The involving initial and boundary conditions are the following:
𝒖 = 0 on 𝜕Ω = Γd,
𝒛 · 𝒏 = 𝑔2 on 𝜕Ω = Γf ,
𝒖(𝒙, 0) = 0, 𝒙 ∈ Ω,

𝑝(𝒙, 0) = 0, 𝒙 ∈ Ω.

(21)

We consider the following analytic solution

𝒖 =
−1

4𝜋(𝜆 + 2𝜇)

[
cos(2𝜋𝑥) sin(2𝜋𝑦) sin(2𝜋𝑡)
sin(2𝜋𝑥) cos(2𝜋𝑦) sin(2𝜋𝑡)

]
,

𝒛 = −2𝜋𝑘
[
cos(2𝜋𝑥) sin(2𝜋𝑦) sin(2𝜋𝑡)
sin(2𝜋𝑥) cos(2𝜋𝑦) sin(2𝜋𝑡)

]
, (22)

𝑝 = sin(2𝜋𝑥) sin(2𝜋𝑦) sin(2𝜋𝑡),

and derive the compatible source term of 𝑔1.

4.1 Numerical implementation

As the focus of this paper is to justify the effectiveness and the efficiency of the
algorithm, we mainly study the performance of the parallel preconditioner discussed
as above. In our implementation, we use a fiinite element library, libMesh. We apply
triangular element with 3 nodes. The GMRES method and overlapping Schwarz
preconditioners are based on PETSc. The initial guess is zero and the stopping
criterion is set as a 10−8, reduction of the residual norm. In each test, we count the
iterations. For unstructured domain partition, we apply ParMETIS, and DMPlex for
overlapping subdomains [12]. In our implementation, 𝐴𝒖 is approximated by using
the two-level additive Schwarz preconditioner from PETSc with PCHPDDM [10]
and SLEPc for GenEO.
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4.2 Dependency on the subdomain number 𝑵

Scalability of GMRES-block triangular preconditioner is tested increasing the num-
ber of subdomains 𝑁 . The subdomain size is set with 𝐻/ℎ = 8, and the overlapping
width is set with 𝛿/ℎ = 1. Two cases are considered, 1) compressible and strongly
permeable, 2) almost incompressible and weakly permeable. In the compressible
and weakly permeable case, there comes a moderate scalable trend through 𝑁 = 49
and 𝑁 = 64 (Table 1, Left).

Table 1 Left: Scalability of GMRES-block triangular preconditioner. Iteration counts for increas-
ing number of subdomains 𝑁 . Fixed 𝐻/ℎ = 8, 𝛿/ℎ = 1, deflation 𝑁 = 15, 𝑟tol = 10−8. Right:
𝐻/𝛿-dependency of GMRES-block triangular preconditioner. Iteration counts for increased over-
lapping. Fixed 𝑁 = 16 and 𝐻/ℎ = 64, 𝑟tol = 10−8.

𝜈 = 0.3 𝜈 = 0.4999
𝜅 = 10−2 𝜅 = 10−9

𝑁 iteration iteration
4 4 6
9 5 9
16 7 12
25 7 14
36 9 17
49 11 19
64 11 20

𝜈 = 0.3 𝜈 = 0.4999
𝜅 = 10−2 𝜅 = 10−9

𝐻/𝛿 iteration iteration
8 52 56
16 59 52
32 60 48
64 78 50

4.3 Dependency on 𝑯/𝜹

𝐻/𝛿 dependency of GMRES-block triangular preconditioner is tested with the over-
lap changed from 1 to 8 with the domain size in each dimension 𝐻/ℎ = 64 and the
number of subdomains 𝑁 = 16. The increment of overlap does reduce the GMRES
iterations for the compressible and strongly permeable case. However, for the almost
incompressible and weakly permeable case, the GMRES iterations increase with the
change of 𝐻/𝛿 from 32 to 16 and 8 (Table 1, Right).

4.4 Dependency on permeability 𝒌

The robustness to 𝜅 of the GMRES-block triangular preconditioner is tested with 𝜅
changed from 1 to 10−9. Whether compressible or almost incompressible, GM-
RES iterations show biphasic pattern of decrease from 𝜅=1 to 10−3 and increase
when 𝜅 changes towards 𝜅 = 10−9 (Table 2, Upper). Overall, the numerical scheme
of GMRES-block triangular preconditioner show evident robustness in broad ranges
of permeability both in compressible and almost incompressible regimes.
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4.5 Dependency on heterogeneous material properties of 𝝂 and 𝜿

To test the block preconditioner and GenEO two-level OAS solver for the displace-
ment, the primary parameters of Poisson ratio 𝜈 and permeability 𝜅 are treated as
nonuniform. Figure 1(a) is in the pattern of checkboard and jump across subdo-
mains and Figure 1(b) is in the pattern of jump along subdomains. Compressible and
strongly permeable poroelasticity (𝜈=0.3 and 𝜅 = 10−2) is prescribed to yellow re-
gions, and almost incompressible and weakly permeable poroelasticity (𝜈 = 0.4999
and 𝜅 = 10−9) is prescribed to black regions. The proposed GMRES-block trian-
gular preconditioner solver shows robustness to material heterogeneity with finite
iterations for both patterns of non-uniformity (Table 2, Lower).

𝜈 = 0.3 𝜈 = 0.4999
𝑘 iteration iteration
1 51 43
10−1 19 17
10−3 7 9
10−5 14 9
10−7 16 14
10−9 16 47

(𝜈 = 0.3 and 𝜅 = 10−2) vs.
(𝜈 = 0.4999 and 𝜅 = 10−9)

heter. − subdomain 175
heter. − along 87

Fig. 1 (a) Jump across subdomains. (b) Jump along subdomains. Table 2: Robustness to 𝑘
of GMRES-block triangular preconditioner. Iteration counts for decreasing permeability. Fixed
𝑁 = 16 and 𝐻/ℎ = 8, deflation 𝑁 = 15, 𝑟tol = 10−10.

5 Conclusion

We proposed domain decomposition preconditioners for the saddle point problem
of the three-field Biot model and performed numerical experiments for scalability
and robustness in parameters. GMRES with block triangular preconditioner with
two-level OAS with coarse space by GenEO for 𝒖 and LU for 𝒛 and 𝑝 is scalable and
robust in broad ranges of parameters (𝜈, 𝜅) and their heterogeneity. Future works are
1) some theoretical analysis on condition number bounds of proposed preconditioned
systems, e.g. field-of-value analysis, 2) domain decomposition preconditioners for
3D poroelastic large deformation.
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Adaptive Schwarz Method for
a Non-Conforming Crouzeix-Raviart
Discretization of a Multiscale Elliptic Problem

Leszek Marcinkowski and Talal Rahman

1 Introduction

In many physical or engineering practical applications, we see a heterogeneity of
coefficients; e.g., in ground flow problems in heterogeneous media. We also see
that many models of those phenomena are differential ones, i.e. the physical
phenomenon is modeled by partial differential equations. Then, if those PDEs
models are discretized by a finite element method, one gets the discrete system
which is quite often very hard to solve by standard iterative methods without
a proper precondition; see, e.g., [21].
The Domain Decomposition Methods (DDMs) approach, in particular, Schwarz

methods; see, e.g., [24], allow us to construct a large class of parallel and effective
preconditioners. A very important role in such construction is taken by a carefully
defined coarse space. The classical DDMs constructed in the 1990s and 2000s
are well suited only for problems with coefficients that are constant or slightly
varying in subdomains. However, those ’classical’ methods are not effectivewhen the
coefficients may be highly varying and discontinuous almost everywhere. Since the
classical coarse spaces of Schwarzmethods do not give us efficient and robust solvers
for multiscale problems with heterogeneous coefficients we will propose a way of
enrichment of the coarse spaces which made DDMs effective for heterogeneous
problems. That gives us new adaptive coarse spaces which are independent or robust
for the jumps of the coefficients, i.e., the convergence of the constructed DDM is
independent of the distribution and the magnitude of the coefficients of the original
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problem. We refer to [9], [23] and the references therein for similar earlier works on
domain decomposition methods used adaptively in the construction of coarse spaces.
In recent years there appeared many new research results on this topic; see,

e.g., [3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20] and many others.
In our paper, we consider a minimal overlap Schwarz method for the

nonconforming Crouzeix-Raviart (CR) element discretization, also called the
nonconforming 𝑃1 element discretization; see, e.g., [1]. We extend the results
from [10] where the conforming 𝑃1 element is considered to the case of the CR
non-conforming discretization applied to highly heterogeneous coefficients.
The remainder of the paper is organized as follows: in Section 2 we introduce our

differential problem and its CR discretization. In Section 3 a classical overlapping
Additive Schwarz method is presented and the theoretical bound for the condition
number of the resulting system is given.

2 Discrete problem

Our model differential problem is the following elliptic second order boundary value
problem: Find 𝑢∗ ∈ 𝐻10 (Ω) such that∫

Ω

𝛼(𝑥)∇𝑢∗∇𝑣 𝑑𝑥 =

∫
Ω

𝑓 𝑣 𝑑𝑥, ∀𝑣 ∈ 𝐻10 (Ω),

where Ω is a polygon in R2, 0 < 𝛼0 ≤ 𝛼(𝑥) ≤ 𝛼1 is a coefficient, 𝛼0, 𝛼1 are positive
constant, and 𝑓 ∈ 𝐿2 (Ω).
We need a quasi-uniform triangulationTℎ = {𝐾} ofΩ consisting of open triangles

such that Ω =
⋃
𝐾 ∈Tℎ 𝐾 . Let further, ℎ𝐾 be the diameter of 𝐾 ∈ Tℎ , and we define

ℎ = max𝐾 ∈Tℎ ℎ𝐾 as the triangulation diameter.
We also introduce a coarse non-overlapping partitioning of Ω (see, Fig. 1) into

open, connected Lipschitz polygonal subdomains (substructures) Ω𝑖 such that

Ω =

𝑁⋃
𝑖=1

Ω𝑖 ,

which are aligned to the fine triangulation, i.e. we have that any fine triangle 𝐾 ∈
Tℎ is contained in a coarse substructure Ω𝑘 . Thus each substructure Ω 𝑗 has its
local triangulation Tℎ (Ω 𝑗 ) of triangles from Tℎ which are contained in Ω 𝑗 . For
the simplicity of presentation, we further assume that these substructures form a
coarse triangulation of the domain which is shape-regular in the sense of [2] and let
𝐻 = max 𝑗 diam(Ω 𝑗 ) be its coarse parameter. Let Γ𝑖 𝑗 denote the open edge common
to subdomains Ω𝑖 and Ω 𝑗 not in 𝜕Ω and let Γ be the union of all 𝜕Ω𝑘 \ 𝜕Ω.
However, it is good to note that the theory of this paper holds also for the case

when the coarse partition is obtained by a mesh partitioner. Then naturally an edge
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Ω

Ω

i

j

Γij

Fig. 1 An example of a coarse partition of Ω, where Γ𝑖 𝑗 is an edge on the interface.

(interface) Γ𝑖 𝑗 is not a straight segment but a 1D curve made of respective edges of
some fine triangles.
Let Ω𝐶𝑅

ℎ
, 𝜕Ω𝐶𝑅

ℎ
, Ω𝐶𝑅

𝑖,ℎ
, 𝜕Ω𝐶𝑅

𝑖,ℎ
, and Γ𝐶𝑅

𝑖 𝑗,ℎ
be defined as the sets of midpoints of

fine edges of the elements of Tℎ , contained in Ω, 𝜕Ω, Ω𝑖 , 𝜕Ω𝑖 , and Γ𝑖 𝑗 , respectively.
We call those sets the CR nodal points of the respective sets.
The discrete solution space is the Crouzeix-Raviart finite element space, (see,

e.g., [1]), or nonconforming 𝑃1 element space defined as:

𝑉ℎ (Ω) = 𝑉ℎ = {𝑣 ∈ 𝐿2 (Ω) : 𝑣 |𝐾 ∈ 𝑃1 (𝐾), 𝑣 continuous at Ω𝐶𝑅ℎ ,

𝑣(𝑚) = 0 𝑚 ∈ 𝜕Ω𝐶𝑅ℎ },

where 𝑃1 (𝐾) is the space of linear polynomials defined on 𝐾 .

Fig. 2 The CR nodal points, i.e., the degrees of freedom of the Crouzeix-Raviart finite element
space on a fine triangle.

The degrees of freedom of a CR finite element function 𝑢 on a triangle 𝐾 with
the three edges 𝑒𝑘 𝑘 = 1, 2, 3, are: {𝑢(𝑚𝑒𝑘 )}𝑘=1,2,3, where 𝑚𝑒𝑘 is the midpoint of
the fine edge 𝑒𝑘 ; see, Fig. 2. Note that a function in𝑉ℎ is multivalued on boundaries
of all fine triangles of Tℎ except the midpoints of the edges (CR nodal points). Thus
𝑉ℎ ⊄ 𝐻10 (Ω) is a space of discontinuous functions. 𝑉ℎ is only a subspace of 𝐿

2 (Ω),
and in this lies the non-conformity of this discretization.
We introduce the following Crouzeix-Raviart discrete problems: find 𝑢∗

ℎ
∈ 𝑉ℎ

such that :
𝑎ℎ (𝑢∗ℎ .𝑣) = 𝑓 (𝑣) ∀𝑣 ∈ 𝑉ℎ , (1)

where the broken bilinear form 𝑎ℎ : (𝑉ℎ ∪ 𝐻10 (Ω)) × (𝑉ℎ ∪ 𝐻10 (Ω)) → R is defined
as 𝑎ℎ (𝑢, 𝑣) =

∑
𝐾 ∈Tℎ

∫
𝐾
𝛼 |𝐾 (𝑥)∇𝑢∇𝑣 𝑑𝑥. It is easy to see that the broken form is 𝑉ℎ

elliptic; see, e.g., [1], and we see that our discrete problem has a unique solution.
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We see that ∇𝑢ℎ for 𝑢ℎ ∈ 𝑉ℎ is constant over any fine triangle 𝐾 ∈ Tℎ , thus∫
𝐾

𝛼∇𝑢∇𝑣 𝑑𝑥 = (∇𝑢) |𝐾 (∇𝑣) |𝐾
∫
𝐾

𝛼(𝑥) 𝑑𝑥.

Hence, we can further assume that 𝛼 is piecewise constant function over the elements
of Tℎ .

3 Additive Schwarz method (ASM)

In this section, we present our Schwarz method for solving (1) which is based on
the abstract Additive Schwarz Method framework; see, e.g., [24]. Our method is of
minimal overlap, however, the same estimates hold if we introduce a more generous
overlap. In the abstract scheme of ASM one has to introduce a decomposition of
the discrete space into subspaces, usually, a coarse space and local subspaces. We
also need local bilinear forms defined on those subspaces respectively. In our case
for simplicity of presentation, all bilinear forms are taken as equal to the original
broken-form 𝑎ℎ (𝑢, 𝑣).
The local spaces are defined as:

𝑉𝑖 = {𝑣 ∈ 𝑉ℎ : 𝑣(𝑚) = 0 𝑚 ∉ Ω
𝐶𝑅

𝑖,ℎ },

i.e.𝑉𝑖 is formed by all discrete CR FEM functions which are zero at all CR nodes not
in Ω𝑖 . Thus, it is a minimal overlap subspace since a function 𝑢 ∈ 𝑉𝑖 can be nonzero
on Ω𝑖 and the fine triangles which have an edge on the boundary of Ω𝑖 . We see that
𝑉ℎ =

∑𝑁
𝑖=1𝑉𝑖 .

In our case, the coarse space will be a harmonically enriched CR version of
the multiscale coarse space introduced in [11] for standard conforming linear finite
element space. Let Tℎ (Ω𝑘 ) be a local triangulation ofΩ𝑘 inherited from Tℎ . We now

Ω5
Ω6

Ω2

Ω4

Ω3Ω1

Ω9Ω7 Ω8

Γ
56

δ

Fig. 3 An edge patch.
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introduce a patch around a coarse interface Γ𝑘𝑙 the common edge of Ω𝑘 ,Ω𝑙 . We
define Γ𝛿𝑘𝑙 as the closure of the boundary patch around Γ𝑘𝑙 the union of all closed
fine triangles, such that each fine triangle of the patch has a vertex on Γ𝑘𝑙 . The open
patch Γ𝛿

𝑘𝑙
is then defined as the interior of Γ𝛿𝑘𝑙; see, Fig. 3.

For simplicity of presentation, we assume that if two edges Γ𝑘𝑙 , Γ𝑘 𝑗 which have
a common vertex (crosspoint - a common vertex of Ω𝑘 ,Ω 𝑗 ,Ω𝑙) then the
patches Γ𝛿

𝑘𝑙
, Γ𝛿
𝑘 𝑗
are disjoint. Each patch Γ𝛿

𝑘𝑙
can be split into two subpatches – the

respective subsets contained in one of two subdomains:

Γ
𝛿,𝑖

𝑘𝑙
= Γ𝛿𝑘𝑙 ∩Ω𝑖 , 𝑖 = 𝑘, 𝑙.

Naturally,we have thatΓ𝛿
𝑘𝑙

= Γ
𝛿,𝑙

𝑘𝑙
∪ Γ

𝛿,𝑘

𝑘𝑙
.Wenext introduce the interior boundary

layer of Ω𝑘 :
Ω
𝑖𝑛, 𝛿

𝑘
=

⋃
Γ𝑘𝑙⊂𝜕Ω𝑘∩Γ

Γ
𝛿,𝑘

𝑘𝑙
.

We also define the local subspaces: let 𝑉ℎ,𝑘 be formed by the restrictions to Ω𝑘 of
the functions from 𝑉ℎ , i.e.

𝑉ℎ,𝑘 = {𝑣 ∈ 𝐿2 (Ω𝑘 ) : 𝑣 |𝐾 ∈ 𝑃1 (𝐾), 𝐾 ∈ Tℎ (Ω𝑘 ),
𝑣 − continuous at CR nodes, 𝑣 |𝜕Ω𝐶𝑅

ℎ
= 0}

Let 𝑉0
ℎ,𝑘

⊂ 𝑉ℎ,𝑘 be space of functions that are zero at 𝜕Ω𝐶𝑅𝑘,ℎ and at the CR nodes
in the interior Ω𝑖𝑛, 𝛿

𝑘
. Any 𝑢 ∈ 𝑉0

ℎ,𝑘
can be extended by zero to the whole Ω and we

will further identify 𝑉0
ℎ,𝑘
with the subspace of 𝑉ℎ formed by such zero extensions of

functions in this local space.
Let P𝑘 : 𝑉ℎ → 𝑉0

ℎ,𝑘
be the orthogonal projection:

𝑎𝑘,ℎ (P𝑘𝑢, 𝑣) = 𝑎ℎ (P𝑘𝑢, 𝑣) = 𝑎ℎ (𝑢, 𝑣) ∀𝑣 ∈ 𝑉0ℎ,𝑘 , (2)

where 𝑎𝑘,ℎ (𝑢, 𝑣) is the local bilinear form defined as the restriction of the broken
form to Ω𝑘 . Let P𝑢 =

∑𝑁
𝑘=1 P𝑘𝑢, (P𝑘𝑢 extended by zero to Ω). Then the discrete

harmonic operator is set asH = 𝐼−P and we say that 𝑢 ∈ 𝑉ℎ is discrete harmonic if:

𝑢 = H𝑢. (3)

Next, we need to set a local edge related space 𝑉𝑘𝑙 ⊂ 𝑉ℎ:

𝑉𝑘𝑙 = {𝑣 ∈ 𝑉ℎ : 𝑣(𝑚) = 0 𝑚 ∉ Γ
𝛿,𝐶𝑅

𝑘𝑙,ℎ }.

The support of any function 𝑢 ∈ 𝑉𝑘𝑙 is not contained in the patch Γ𝛿𝑘𝑙 .
We also need a subspace of 𝑉 𝑣

𝑘𝑙
defined as:

𝑉 𝑣𝑘𝑙 = {𝑣 ∈ 𝑉𝑘𝑙 : 𝑣(𝑚) = 0 𝑚 ∈ V(Γ𝑘𝑙)},
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whereV(Γ𝑘𝑙) ⊂ Γ𝐶𝑅
𝑘𝑙,ℎ
comprise the two CR nodes of the edge which are next to the

ends of this edge.
Let 𝑉𝑚𝑠𝑐0 ⊂ 𝑉ℎ be the multiscale part of the coarse space (analogous to the one

in [11]), i.e., the space of discrete harmonic functions; see, (3), which satisfy

𝑎𝑘𝑙,ℎ (𝑢, 𝑣) = 0 ∀𝑣 ∈ 𝑉 𝑣𝑘𝑙 , (4)

where 𝑎𝑘𝑙,ℎ (𝑢, 𝑣) =
∑
𝐾 ⊂Γ𝛿

𝑘𝑙

∫
𝐾
𝛼 |𝐾∇𝑢∇𝑣 𝑑𝑥 for any edge Γ𝑘𝑙 ⊂ Γ.

Let us introduce the local generalized eigenvalue problem, which is to find all
eigenpairs: (𝜆𝑘𝑙

𝑖
, 𝜓𝑘𝑙
𝑖
) ∈ R+ ×𝑉 𝑣𝑘𝑙 such that

𝑎𝑘𝑙,ℎ (𝜓𝑘𝑙𝑖 , 𝑣) = 𝜆𝑘𝑙𝑖 𝑏𝑘𝑙 (𝜓𝑘𝑙𝑖 , 𝑣), ∀𝑣 ∈ 𝑉 𝑣𝑘𝑙 , (5)

where 𝑏𝑘𝑙 (𝑢, 𝑣) = ℎ−2
∫
Γ𝛿
𝑘𝑙

𝛼𝑢𝑣 𝑑𝑥.

Any eigenfunction 𝜓𝑘𝑙
𝑗
can be extended further onto other patches as zero and

then, further to the interiors of all subdomains as a discrete harmonic function. Then,
we will further denote it by Ψ𝑘𝑙

𝑗
. We can number the eigenvalues in increasing order:

0 < 𝜆𝑘𝑙1 ≤ 𝜆𝑘𝑙2 ≤ . . . ≤ 𝜆𝑘𝑙
𝑀𝑘𝑙
for 𝑀𝑘𝑙 = dim(𝑉 𝑣𝑘𝑙). Next, we introduce the local

spectral component of the coarse space for all Ω 𝑗 :

𝑉
𝑒𝑖𝑔

𝑘𝑙
= Span(Ψ𝑘𝑙𝑖 )𝑛𝑘𝑙

𝑖=1 , (6)

where 0 ≤ 𝑛𝑘𝑙 ≤ 𝑀𝑘𝑙 can be pre-selected by the user. It can be decided using the
experience or by some rule; e.g., one can include all eigenfunctions for which related
eigenvalues are below a certain threshold. The coarse space 𝑉0 is introduced as:

𝑉0 = 𝑉
𝑚𝑠𝑐
0 +

𝑁∑︁
Γ𝑘𝑙⊂Γ

𝑉
𝑒𝑖𝑔

𝑘𝑙
.

Next, we define the projection operators 𝑇𝑖 : 𝑉ℎ → 𝑉𝑖 for 𝑖 = 0, . . . , 𝑁 as

𝑎ℎ (𝑇𝑖𝑢, 𝑣) = 𝑎ℎ (𝑢, 𝑣), ∀𝑣 ∈ 𝑉𝑖;

see, e.g., [22]. Note that to compute the 𝑇𝑖𝑢, 𝑖 = 1, . . . , 𝑁 we have to solve 𝑁
independent local problems.
Let 𝑇 :=

∑𝑁
𝑖=0 𝑇𝑖 , be the additive Schwarz operator; see, e.g., [22]. We further

replace (1) by the following equivalent problem: Find 𝑢∗
ℎ
∈ 𝑉ℎ such that

𝑇𝑢∗ℎ = 𝑔,

where 𝑔 =
∑𝑁
𝑖=0 𝑔𝑖 and 𝑔𝑖 = 𝑇𝑖𝑢

∗
ℎ
. The functions 𝑔𝑖 may be computed without

knowing the solution 𝑢∗
ℎ
of (1); see, e.g., [22].

The following theoretical estimate of the condition number can be obtained:

Theorem 1 For all 𝑢 ∈ 𝑉ℎ , the following holds,
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𝑐

(
1 + max

Γ𝑘𝑙⊂Γ

(
𝜆𝑘𝑙𝑛𝑘𝑙+1

)−1)−1
𝑎ℎ (𝑢, 𝑢) ≤ 𝑎ℎ (𝑇𝑢, 𝑢) ≤ 𝐶 𝑎ℎ (𝑢, 𝑢),

where 𝐶 and 𝑐 are positive constants independent of the coefficient 𝛼, the mesh
parameter ℎ and the subdomain size 𝐻, and 𝜆𝑘𝑙

𝑛𝑘𝑙+1 is defined in (5) for both types of
the coarse space.

Below we give a very brief sketch of the proof, which is based on the standard
abstract ASM Method framework; see, [24]. We have to prove three key
assumptions, the most technical is the stable splitting ass., namely, we show that for
any 𝑢 ∈ 𝑉ℎ there exists: 𝑢 𝑗 ∈ 𝑉 𝑗 𝑗 = 0, . . . , 𝑁 such that∑𝑁
𝑗=0 𝑎ℎ (𝑢 𝑗 , 𝑢 𝑗 ) ≤ 𝑐−1

(
1 +maxΓ𝑘𝑙

(
𝜆𝑘𝑙
𝑛𝑘𝑙+1

)−1)
𝑎(𝑢, 𝑢). The two others

assumptions are easy to verify.
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A Variational-Based Multirate Time-Integrator
for FETI and Structural Dynamics:
Lagrange-Multiplier with Micro-Discretization

Andreas S. Seibold and Daniel J. Rixen

1 Introduction

The FETI-method is well known for its scalability and applicability to nonlinear
structural dynamics [3, 4]. In case of models with different fast dynamics, the
classical FETI-method with common time-discretizations can become inefficient,
as the subdomain with slow dynamics has to be solved more often, than necessary.
The PH-method [8] and BGC-macro-method [1] enable subcycling of a macro-
time-discretization, but suffer from spurious oscillations and are not variational
methods. In literature, a variational framework for multiple time-discretizations has
been introduced [7]. In this work, we further extend this approach to a micro-
discretization. In section 2, the FETI-method and nonlinear BGC-macro method are
introduced. In section 3, the variational-based multirate method is derived with its
modifications and in section 4 both methods are compared in numerical experiments.

2 Nonlinear BGC-macro method for the FETI-method

2.1 Model problem and FETI-method

The dynamic behavior over time of a solid elastic body with nonlinear material can
be modeled by a nonlinear hyperbolic partial differential equation (PDE). For the
solution of such a hyperbolic PDE, consider a geometrical discretization with the
Finite Element method and the Finite Element Tearing and Interconnecting (FETI)
for the spacial non-overlapping domain decomposition into 𝑁𝑠 subdomains. Hence,

Andreas S. Seibold, Daniel J. Rixen
Chair of Applied Mechanics, TUM School of Engineering and Design, Technical University of
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the spacially discretized, time-continuous differential equation of motion of a sub-
domain 𝑠 and the compatibility condition for velocities are

M(𝑠) ¥q(𝑠) + f𝑖𝑛𝑡 (q(𝑠) ) + B(𝑠)𝑇 𝝀 − f (𝑠)𝑒𝑥𝑡 (𝑡) = 0,
𝑁𝑠∑︁
𝑠=1

B(𝑠) ¤q(𝑠) = 0.

Here, q(𝑠) describes the nodal displacements and its time-derivatives ¤q(𝑠) and ¥q(𝑠)

are the velocities and accelerations. M(𝑠) is the mass-matrix, f𝑖𝑛𝑡 are the nonlin-
ear internal forces and f (𝑠)𝑒𝑥𝑡 are the external forces of the subdomain. The dual
quantity or interface-force is described by 𝝀 and B(𝑠) is a signed boolean matrix
mapping the subdomain’s geometrical degrees of freedom (dof) to interface-dofs.
The unknowns q(𝑠) , its derivatives and 𝝀 are discretized in time, with a common
time-step-size Δ𝑡 and to time-nodal values q̂(𝑠)

𝑚 and 𝝀̂𝑚 at a time-step 𝑚, as depicted
in Fig. 1a. For the time-stepping from time-step𝑚 to𝑚+1, a time-integration scheme
is applied, such as the Newmark-𝛽 scheme.

1

2

𝑡

𝑡q̂(2)
𝑚

𝝀̂𝑚

𝑚 = 0 𝑁𝑚

𝝀

𝑡

(a) Time-discretization in nodal values at time-
steps 𝑚.

1

2

𝑡

𝑡

𝝀

𝑛 𝑛 + 1

𝑚𝑡𝑛 = 𝑡𝑚=0 𝑁𝑚

(b) Subcycling of the time-discretization of two
subdomains.

Fig. 1 Time-discretizations for two exemplary subdomains 1 and 2 and the Lagrange-multipliers.

2.2 Multirate with nonlinear BGC-macro method

Having different time-step-sizes in the FETI-method can be achieved by the BGC-
macro method [1], later adapted for nonlinear problems and FETI [9]. The time-
discretization on the subdomain with the smaller time-step-size, also referred to
as the micro-discretization, subcycles subdomains with a larger time-step-size, the
macro-discretization, as depicted in Fig. 1b. The Lagrange-multipliers are discretized
with the macro-discretization and interpolated linearly on the micro-discretized
subdomain. Hence, the dynamic equation of motion and the compatibility condition,
which is enforced at the macro-discretization, follow as

M(𝑠) ¥̂q(𝑠)
𝑚 + f𝑖𝑛𝑡 (q̂(𝑠)

𝑚 ) + B(𝑠)𝑇 𝝀𝑚 − f (𝑠)𝑒𝑥𝑡 (𝑡𝑚) = 0
𝑁𝑠∑︁
𝑠=1

B ¤̂q𝑠
𝑛 = 0
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with the interpolated Lagrange-multiplier

𝝀𝑚 =
𝑡𝑛+1 − 𝑡𝑚

𝑡𝑛+1 − 𝑡𝑛
𝝀𝑛 +

𝑡𝑚 − 𝑡𝑛

𝑡𝑛+1 − 𝑡𝑛
𝝀𝑛+1.

3 Variational multirate method with micro discretization of the
dual field

The equation of motion (1) and the well-knownNewmark-𝛽 time-integration scheme
can also be derived from the variational principle for 𝛾 = 0.5 and 𝛽 = 0.25, as
shown by Kane e.a. [5]. We define the time-continuous kinetic energy of a sub-
domain as T = 1

2 ¤q
(𝑠)𝑇 M ¤q(𝑠) , the nonlinear potential energy V(q(𝑠) ) and the

interface-energy G = g(q(1) , . . . , q(𝑁𝑠) )𝑇 𝝀 with the gap on interface g, corre-
sponding to the Lagrange-multipliers 𝝀. In case of the FETI-method this gap is
g(q(1) , . . . , q(𝑁𝑠) ) = ∑𝑁𝑠

𝑠=1 B(𝑠)q(𝑠) , which has not been explicitly specified in liter-
ature [7]. The Lagrangian then follows as

L( ¤q(1) , q(1) , . . . , ¤q(𝑁𝑠) , q(𝑁𝑠) , 𝝀) =
𝑁𝑠∑︁
𝑠=1

(
T ( ¤q(𝑠) ) − V(q(𝑠) )

)
+ G. (1)

According to Hamilton’s principle, the mechanical system will move such that the
action integral of this Lagrangian is stationary. Hence, we first discretize the La-
grangian in time with time-shape-functions Φ(𝑠) (𝑡) and Θ(𝑡), that fulfill partition of
unity, we can approximate displacements, velocities and Lagrange-multipliers as

q(𝑠) (𝑡) ≈
𝑁

(𝑠)
𝑚∑︁

𝑚=0
Φ

(𝑠)
𝑚 (𝑡)q̂(𝑠)

𝑚 , ¤q(𝑠) (𝑡) ≈
𝑁

(𝑠)
𝑚∑︁

𝑚=0

𝑑Φ
(𝑠)
𝑚 (𝑡)
𝑑𝑡

q̂(𝑠)
𝑚 , 𝝀(𝑡) ≈

𝑁 𝑗∑︁
𝑗=0

Θ 𝑗 𝝀̂ 𝑗 .

Throughout this paper, we assume linear time-shape-functions. This results in the
discrete Lagrangian

L𝑑 (q̂(𝑠)
0 , . . . , q̂(𝑠)

𝑁𝑚
, 𝝀̂0, . . . , 𝝀̂𝑁 𝑗

, 𝑡) =
𝑁𝑠∑︁
𝑠=1

(
T (q̂(𝑠) , 𝑡) − V(q̂(𝑠) , 𝑡)

)
+ G(𝑡) (2)

which is then integrated with a numerical quadrature rule, such as the generalized
midpoint-rule, to the discrete action integral

S𝑑 =

𝑁𝑘∑︁
𝑘=0

Δ𝑡𝑘L𝑑 (𝑡𝑘+𝛼), (3)

where we have 𝑁𝑘 common integration-segments and L𝑑 is evaluated at a general-
ized mid-point of these segments 𝑡𝑘+𝛼. This discrete action integral has to remain
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stationary
∑𝑁𝑠

𝑠=1
∑𝑁

(𝑠)
𝑚

𝑚=0
𝜕S𝑑

𝜕q̂(𝑠)
𝑚

𝛿q̂(𝑠)
𝑚 +∑𝑁 𝑗

𝑗=0
𝜕S𝑑

𝜕𝝀̂ 𝑗
𝛿𝝀̂ 𝑗 = 0 for arbitrary variations of time-

nodal quantities, while the endpoints 𝛿q̂(𝑠)
0 and 𝛿q̂(𝑠)

𝑁𝑚
remain fixed. This way, we also

obtain a local variational integration scheme, such as the non-dissipative Newmark-𝛽
method and a variational coupling condition. A variational method comes with some
beneficial properties by design, such as symplecticity, conservation of momentum
and energy-oscillations remain bounded [6]. We could now solve this problem with
a Newton-Raphson scheme and solve the Lagrange-multipliers at each Newton-
iteration with a FETI-solver. However, in general, all equations have to be solved
at once and a more memory-efficient time-stepping can only be applied on the
subdomain-level [9]. The constraint equation for Lagrange-multiplier 𝑗

𝜕S𝑑

𝜕𝝀̂ 𝑗

=

𝑁𝑘∑︁
𝑘=0

Δ𝑡𝑘Θ 𝑗 (𝑡𝑘+𝛼)
𝑁𝑠∑︁
𝑠=1

B(𝑠)
𝑁

(𝑠)
𝑚∑︁

𝑚=0
Φ

(𝑠)
𝑚 (𝑡𝑘+𝛼)q̂(𝑠)

𝑚 = 0,

is a constraint for several time-nodal displacements q̂(𝑠)
𝑚 . Hence, In the following

sections 3.1 and 3.2, we introduce special cases and some modifications to this
variational method, to still enable time-stepping.

3.1 Downsampling of Lagrange-multipliers

The quadrature (3) suggests the evaluation of the discrete Lagrangian is performed
at each time-step 𝑡𝑘+𝛼 regardless of each subdomain’s time-discretization and there-
fore the evaluation of the nonlinear potential energy derivative 𝜕V

𝜕q . Hence, in
terms of computational efficiency, one could as well choose a micro-discretization
in all subdomains. In the following, we consider a subcycled time-discretization
on all subdomains and Lagrange-multipliers. If the macro-discretization is cho-
sen for the Lagrange-multiplier, one can just evaluate at the local time-step’s mid-
point, as depicted in Fig. 2b to properly integrate the Lagrangian. This high num-
ber of evaluations is especially needed if the time-discretization of the Lagrange-
multiplier is chosen as a micro-discretization, as shown in Fig. 2a. For such cases,
we introduce a downsampling of the Lagrange-multiplier by inserting an addi-
tional local Lagrange-multiplier field 𝝀̄ (𝑠) , as depicted in Fig. 3. With an artificial

q2 (𝑡)

𝝀 (𝑡) 𝑡

q1 (𝑡)

𝑚2 = 0 𝑚2 = 𝑁 2𝑚

𝑚1 = 0 𝑚1 = 𝑁 1𝑚

𝜆-micro
𝑓𝑖𝑛𝑡 (q(𝑡)) evaluation

(a) Evaluation-points for micro-discretization of
the Lagrange-multiplier.

q2 (𝑡)

𝝀 (𝑡) 𝑡

q1 (𝑡)

𝑚2 = 0 𝑚2 = 𝑁 2𝑚

𝑚1 = 0 𝑚1 = 𝑁 1𝑚

𝜆-macro

(b) Evaluation-points for macro-discretization of
the Lagrange-multiplier.

Fig. 2 Subcycling time-discretization of two subdomains and evaluation-points for quadrature.
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q2 (𝑡)

𝝀 (𝑡) 𝑡

q1 (𝑡)

𝑚2 = 0 𝑚2 = 𝑁 2𝑚

𝑚1 = 0 𝑚1 = 𝑁 1𝑚

𝜆-micro

𝝀̄
1 (𝑡)

𝝀̄
2 (𝑡)

time-stepping with single-step-formulation

time-stepping with single-step-formulation

fourth field of intermediate displacements

𝝀 (𝑡)

𝝀̄
1 (𝑡)

ū1 (𝑡) 𝑡

Fig. 3 Additional local Lagrange-multiplier-field and artificial displacement-field for local down-
sampling.

displacement-field ū(𝑠) , connecting both Lagrange-multiplier fields, we can refor-

mulate the constraint-energy G =

(∑𝑁𝑠

𝑠=1 B(𝑠) ∑𝑁
(𝑠)
𝑚

𝑚=0 Φ
(𝑠)
𝑚 (𝑡)ū(𝑠)

𝑚

)𝑇 ∑𝑁 𝑗

𝑗=0 Θ 𝑗 (𝑡)𝝀̂ 𝑗 +∑𝑁𝑠

𝑠=1

((∑𝑁
(𝑠)
𝑚

𝑚=0 Φ
(𝑠)
𝑚 (𝑡)q̂(𝑠)

𝑚 −∑𝑁
(𝑠)
𝑚

𝑚=0 Φ
(𝑠)
𝑚 (𝑡)ū(𝑠)

𝑚

)𝑇 ∑𝑁
(𝑠)
𝑚

𝑚=0 Φ
(𝑠)
𝑚 (𝑡)𝝀̄ (𝑠)

𝑚

)
and apply the

generalized midpoint-rule and variational calculus to obtain constraints 𝜕G
𝜕𝝀̂ 𝑗

= 0

and 𝜕G
𝜕𝝀̄

(𝑠)
𝑚

= 0, that are fulfilled in a weak sense. With the variation for ū(𝑠)
𝑚 follows

the downsampling-equation

𝑁𝑘∑︁
𝑘=0

Δ𝑡𝑘
©­«B(𝑠)𝑇 Φ(𝑠)

𝑚 (𝑡𝑘+𝛼)
𝑁 𝑗∑︁
𝑗=0

Θ 𝑗 (𝑡𝑘+𝛼)𝝀̂ 𝑗 −Φ
(𝑠)
𝑚 (𝑡𝑘+𝛼)

𝑁
(𝑠)
𝑚∑︁

𝑚=0
Φ

(𝑠)
𝑚 (𝑡𝑘+𝛼)𝝀̄

(𝑠)
𝑚

ª®¬ = 0

and from
∑𝑁

(𝑠)
𝑚

𝑚=0 Δ𝑡𝑚Φ
(𝑠)
𝑚 (𝑡𝑚+𝛼)

∑𝑁
(𝑠)
𝑚

𝑚=0 Φ
(𝑠)
𝑚 (𝑡𝑚+𝛼)𝝀̄

(𝑠)
𝑚 follows together with the ki-

netic and potential part of the discrete Lagrangian the local equation of motion
and the time-stepping-scheme. All these equations can now be solved by a Newton-
Raphson scheme. Due to 𝝀̂ at the macro-discretization influencing both sides, the
left and the right, the interface-problem still has to be solved all at once.

3.2 Reduce to time-stepping

To enable at least a time-stepping on the interface-problem from onemacro-time-step
to the next and only solve the subcycled Lagrange-multipliers between two macro-
time-steps at once, we have to reduce the global integration and introduce some
errors that way. The integration of the previously introduced equations is no longer
performed from 0 to 𝑁𝑘 , but only from one macro-time-step to the next one, which
is visualized in Fig. 4a. While the global Lagrange-multiplier-field itself stays con-
tinuous, this requires the local Lagrange-multiplier to become discontinuous at the
macro-time-steps, as can be seen in Fig. 4b. Finally, we have to apply some numeri-
cal dissipation or formulate the constraints for velocities, instead of displacements.
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segmented integration

𝝀 𝑡

𝝀 𝑡

(a) Segmentation of integration of global
Lagrange-multipliers.

𝝀̄ 𝑡

𝝀̄ 𝑡

two nodes
(b) Discontinuous local Lagrange-multipliers.

Fig. 4 Segmentation of integration of Lagrange-multipliers according to macro-discretization.

Otherwise, high-frequency instabilities might prevent the solver from converging as
pointed out by Farhat e.a. [2]. Hence, we replace the nodal displacements in the con-
straints with nodal velocities. Of course, with these modifications, our framework is
no longer a variational method, but as shown in section 4, some beneficial properties
of variational methods are still preserved, which is why we call it a variational-based
framework instead.

4 Numerical experiments

In this section, we compare the accuracy of the BGC-macro method with our
variational-based multirate method. To this end, we apply both methods to a non-
linear split Duffing-oscillator, as proposed by Prakash e.a. [8] and depicted in Fig. 5
and solve the interface-problem with a GMRes-method. The velocities from the
BGC-macro in Fig. 6a exhibit the well-known spurious oscillations [8, 9], leading
to rather large incompatibilities in the displacements. These spurious oscillations
are reduced by the micro-discretization of the variational based method in Fig. 6b,
which improves the compatibility of displacements. The solution from the BGC-
macro method shows slightly less phase-error, as the displacement-curve is closer
to the fine-solution, compared to the variational-based method, but the solution still
remains in the margin between the fine and the coarse singlerate Newmark solution.
The energy-behavior of the variational-based method in Fig. 7b is also still better
compared to the BGC-macro method in Fig. 7a, despite the modifications made. The
total energy’s oscillations remain bounded, while we can observe a slight decline in
the BGC-macro’s total energy. Also the amplitude of the interface-energy’s oscilla-
tions is smaller for the variational-based method. However, all this comes at the cost
of a larger interface-problem.

Fig. 5 Split Duffing-oscillator
with stiffnesses 𝑘 (1) (𝑞 (1) ) =
1 𝑁
𝑚

· 𝑞 (1) + 1 𝑁
𝑚

· 𝑞 (1)3 ,
𝑘 (2) (𝑞 (2) ) = 10 𝑁

𝑚
· 𝑞 (2) −

5 𝑁
𝑚

· 𝑞 (2)3 , masses 𝑚(1) =

1𝑘𝑔, 𝑚(2) = 1𝑘𝑔, time-
step-sizes Δ𝑡 (1) = 0.5𝑠,
Δ𝑡 (2) = 0.1𝑠.

𝑘𝐴 (𝑞𝐴)

𝑘𝐵 (𝑞𝐵)

𝑚𝐴

𝑚𝐵

𝜆

𝑞𝐴

𝑞𝐵
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𝑡/𝑠 →

q/
𝑚
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d

¤ q/
𝑚 𝑠

→

Displacement A Velocity A
Displacement B Velocity B
Newmark coarse Newmark fine

(a) BGC-macro.

0 2 4

−2

0

2

𝑡/𝑠 →
Displacement A Velocity A
Displacement B Velocity B
Newmark coarse Newmark fine

(b) Variational-based multirate integrator.

Fig. 6 Displacements and Velocities of the split Duffing-oscillator.

0 2 4

0

2

4

𝑡/𝑠 →

𝐸
/𝑁

𝑚
→

interface-energy total energy
potential energy kinetic energy

(a) BGC-macro.

0 2 4

0

2

4

𝑡/𝑠 →

interface-energy total energy
potential energy kinetic energy

(b) Variational-based multirate integrator.

Fig. 7 Energies of the split Duffing-oscillator.

5 Conclusions

The derived variational-based multirate method and its interface-problem is solved
by a FETI-solver. The method enables a macro-time-stepping and still exhibits
a better accuracy than the BGC-macro method. This comes at the cost of a larger
interface-problem. A suitable preconditioner remains to be constructed.
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Accelerated Convergence of the Pipelined
Dynamic Iteration Method for RLC Circuits

Hélèna Shourick, Damien Tromeur-Dervout, and Laurent Chédot

1 Introduction

Since the pioneering work of Lelarasme et al. [9] that analyze in time domain large-
scale problems arising from the modeling of integrated circuits, waveform relaxation
methods (WR) [10] also known as dynamic iteration methods, a term first introduced
byMiekkala and Nevanlinna [13, Eq. (2.2)], arouses more and more interest with the
development of parallel computers. Let us recall the method of dynamic iteration as
it was described by Miekkala[12] for ODE systems and adapted by Jiang & Wing
for DAE systems [7]: Let 𝑀 ∈ C𝑛1×𝑛1 , 𝐴 ∈ C𝑛1×𝑛1 , 𝐵 ∈ C𝑛1×𝑛𝑎 , 𝐶 ∈ C𝑛𝑎×𝑛1 ,
𝐷 ∈ C𝑛𝑎×𝑛𝑎 matrices and 𝑓1 : ]0, 𝑇] → C𝑛1 , 𝑓2 : ]0, 𝑇] → C𝑛𝑎 functions, 𝑥0 ∈ C𝑛1
initial state value. We define the DAE system in its state-space form:

𝑀 ¤𝑥(𝑡) + 𝐴𝑥(𝑡) + 𝐵𝑦(𝑡) = 𝑓1 (𝑡), 𝑡 ∈ [0, 𝑇],
𝐶𝑥(𝑡) + 𝐷𝑦(𝑡) = 𝑓2 (𝑡), 𝑡 ∈ [0, 𝑇],

𝑥(0) = 𝑥0,
(1)

where 𝑥 : ]0, 𝑇] → C𝑛1 are the 𝑛1 searched state solutions and 𝑦 : ]0, 𝑇] → C𝑛𝑎 are
the 𝑛𝑎 searched algebrical solutions.

Definition 1 (Dynamic Iteration for linear DAE) The Dynamic Iteration scheme
for (1) considers the splitting ofmatrices𝑀, 𝐴, 𝐵, 𝐶, 𝐷 as𝑀 = 𝑀1−𝑀2, 𝐴 = 𝐴1−𝐴2,
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𝐵 = 𝐵1 − 𝐵2, 𝐶 = 𝐶1 − 𝐶2, 𝐷 = 𝐷1 − 𝐷2, where matrices 𝑀1 and 𝐷1 are assumed
non-singular (which implies that the DAE system has index one)

𝑀1 ¤𝑥 (𝑘) (𝑡) + 𝐴1𝑥
(𝑘) (𝑡) + 𝐵1𝑦

(𝑘) (𝑡) = 𝑀2 ¤𝑥 (𝑘−1) (𝑡) + 𝐴2𝑥
(𝑘−1) (𝑡) + 𝐵2𝑦

(𝑘−1) (𝑡)
+ 𝑓1 (𝑡), 𝑡 ∈ [0, 𝑇]

𝐶1𝑥
(𝑘) (𝑡) + 𝐷1𝑦

(𝑘) (𝑡) = 𝐶2𝑥
(𝑘−1) (𝑡) + 𝐷2𝑦

(𝑘−1) (𝑡)
+ 𝑓2 (𝑡), 𝑡 ∈ [0, 𝑇],

𝑥 (𝑘) (0) = 𝑥0,

(2)

This fixed-point process must be contracting to converge. We propose to combine
the DI method with the Restricted Additive Schwarz splitting and the Aitken’s
acceleration of the convergence technique to obtain a DI method less sensitive to
the contracting property even with applying it on a pipeline of several time step
or on a nonlinear problem. Related works on improvement of DI are that follow.
Arnold & Gunther [1] proposed several techniques for preconditioning the fixed-
point problem. Some waveform successive overrelaxation (SOR) techniques have
been proposed by Janssen and Vandewalle [6] to accelerate the standard waveform
method. Leimkuhler proposed to accelerate the WR by solving the defect equations
with a larger timestep, or by using a recursive procedure based on a succession
of increasing timesteps [8]. Lumdaisne & Wu proposed to accelerate the WR by
Krylov subspace techniques (WGMRES) [11] to solve time-dependent problems.
Gausling & al [5] analyzed the contraction and the rate of convergence of the co-
simulation process for a test circuit subjected to uncertainties on the parameters
of its components. In section 2, we consider the Restrictive Additive Schwarz [3]
for the Eq. (1) with 𝑀 = 𝐼 and we show that is a DI scheme with a specific
splitting. Then we can apply the Aitken’s acceleration of the convergence technique
to obtain the true solution whether the DI is contracting or not (it must not stagnate).
Section 3 considers advantages and drawbacks of the sequential (time step after
time step) and the pipelined (several time steps at once) implementations of DI and
their acceleration of convergence. Section 4 gives some numerical results of the
pipelined DI accelerated by the Aitken’s technique while section 5 concludes.

2 DI with RAS splitting

Let us consider Eq. (1) resulting from themodeling of an electrical networkwhere we
choose 𝑀 = 𝐼, this choice corresponds to a change of variables on the voltage terms
in the Kirchhoff’s law. According to the RAS method notation of Cai & Sarkis [3]

applied to the graph of the operator
(
𝐼 0
0 0

)
+

(
𝜖 𝐴 𝐵

𝐶 𝐷

)
, where the 𝜖 is chosen in order

to keep all data dependencies, we define the associated restriction operators 𝑅𝑝

𝑖

and 𝑅̃0
𝑖
. Then, the 𝑘 𝑡ℎ RAS iteration can be written as:
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¤𝑥 (𝑘)
𝑖

(𝑡) + 𝐴𝑖𝑥
(𝑘)
𝑖

(𝑡) + 𝐵𝑖𝑦
(𝑘)
𝑖

(𝑡) = 𝑏𝑏
𝑖
(𝑡) − 𝐸𝑑

𝑖,𝑑
𝑥
(𝑘−1)
𝑖𝑒

(𝑡) − 𝐸𝑎
𝑖,𝑑

𝑦
(𝑘−1)
𝑖𝑒

(𝑡),
𝐶𝑖𝑥

(𝑘)
𝑖

(𝑡) + 𝐷𝑖𝑦
(𝑘)
𝑖

(𝑡) = 𝑏𝑎
𝑖
(𝑡) − 𝐸𝑑

𝑖,𝑎
𝑥
(𝑘−1)
𝑖𝑒

(𝑡) − 𝐸𝑎
𝑖,𝑎

𝑦
(𝑘−1)
𝑖𝑒

(𝑡),
𝑥
(𝑘)
𝑖

(0) = 𝑅
𝑝,𝑑

𝑖
𝑥0, 𝑡 ∈ [0, 𝑇] .

(3)

With 𝐴𝑖 = 𝑅
𝑝,𝑑

𝑖
𝐴(𝑅𝑝,𝑑

𝑖
)𝑇 , 𝐵𝑖 = 𝑅

𝑝,𝑑

𝑖
𝐵(𝑅𝑝,𝑎

𝑖
)𝑇 , 𝐶𝑖 = 𝑅

𝑝,𝑎

𝑖
𝐶 (𝑅𝑝,𝑑

𝑖
)𝑇 , 𝐷𝑖 =

𝑅
𝑝,𝑎

𝑖
𝐷 (𝑅𝑝,𝑎

𝑖
)𝑇 , 𝐸𝑑

𝑖,𝑑
=𝑅

𝑝,𝑑

𝑖
𝐴(𝑅𝑝,𝑑

𝑖,𝑒
)𝑇 , 𝐸𝑎

𝑖,𝑑
=𝑅

𝑝,𝑑

𝑖
𝐵(𝑅𝑝,𝑎

𝑖,𝑒
)𝑇 , 𝐸𝑑

𝑖,𝑎
=𝑅

𝑝,𝑎

𝑖
𝐶 (𝑅𝑝,𝑑

𝑖,𝑒
)𝑇

and 𝐸𝑎
𝑖,𝑎

= 𝑅
𝑝,𝑎

𝑖
𝐷 (𝑅𝑝,𝑎

𝑖,𝑒
)𝑇 . The operator 𝑅𝑝,𝑑

𝑖
(respectively 𝑅𝑝,𝑎

𝑖
) is the restriction

to the differential variables (respectively algebraical variables) of 𝑅𝑝

𝑖
. We also define

𝑅̃
0,𝑑
𝑖
and 𝑅̃0,𝑎

𝑖
such that 𝑅̃0

𝑖
=

(
𝑅̃
0,𝑑
𝑖

0𝑛𝑖1×𝑛2
0𝑛𝑖2×𝑛1 𝑅̃

0,𝑎
𝑖

)
as we have chosen to separate the

differential and algebraic parts.

By summing up the contribution of each RAS partition, we can show that
the 𝑘 𝑡ℎ RAS iteration for solving (1) (with 𝑀 = 𝐼) is a DI as defined in (2) as-
sociated to the following splitting of the operators 𝐴 = 𝐴𝑑

1 − 𝐴𝑑
2 , 𝐵 = 𝐵𝑑

1 − 𝐵𝑑
2 ,

𝐶 = 𝐶𝑎
1 − 𝐶𝑎

2 , 𝐷 = 𝐷𝑎
1 − 𝐷𝑎

2 :
¤𝑥 (𝑘) (𝑡) + 𝐴𝑑

1 𝑥
(𝑘) (𝑡) + 𝐵𝑑

1 𝑦
(𝑘) (𝑡) = 𝑏𝑑 (𝑡) + 𝐴𝑑

2 𝑥
(𝑘−1) (𝑡) + 𝐵𝑑

2 𝑦
(𝑘−1) (𝑡),

𝐶𝑎
1 𝑥

(𝑘) (𝑡) + 𝐷𝑎
1 𝑦

(𝑘) (𝑡) = 𝑏𝑎 (𝑡) + 𝐶𝑎
2 𝑥

(𝑘−1) (𝑡) + 𝐷𝑎
2 𝑦

(𝑘−1) (𝑡),
𝑥 (𝑘) (0) = 𝑥0, 𝑡 ∈ [0, 𝑇] .

(4)

with

𝐴𝑑
1 =

𝑁−1∑︁
𝑖=0

𝑅̃
0,𝑑
𝑖

𝐴𝑖𝑅
𝑝,𝑑

𝑖
, 𝐴𝑑

2 =−
𝑁−1∑︁
𝑖=0

𝑅̃
0,𝑑
𝑖

𝐸𝑑
𝑖,𝑑𝑅

𝑝,𝑑

𝑖𝑒
, 𝑏𝑑 (𝑡) =

𝑁−1∑︁
𝑖=0

𝑅̃
0,𝑑
𝑖

𝑅
𝑝,𝑑

𝑖
𝑏𝑑 (𝑡),

𝐵𝑑
1 =

𝑁−1∑︁
𝑖=0

𝑅̃
0,𝑑
𝑖

𝐵𝑖𝑅
𝑝,𝑎

𝑖
, 𝐵𝑑
2 = −

𝑁−1∑︁
𝑖=0

𝑅̃
0,𝑑
𝑖

𝐸𝑎
𝑖,𝑑𝑅

𝑝,𝑎

𝑖𝑒
,

𝐶𝑎
1 =

𝑁−1∑︁
𝑖=0

𝑅̃
0,𝑎
𝑖

𝐶𝑖𝑅
𝑝,𝑑

𝑖
, 𝐶𝑎
2 = −

𝑁−1∑︁
𝑖=0

𝑅̃
0,𝑎
𝑖

𝐸𝑑
𝑖,𝑎𝑅

𝑝,𝑑

𝑖𝑒
,

𝐷𝑎
1 =

𝑁−1∑︁
𝑖=0

𝑅̃
0,𝑎
𝑖

𝐷𝑖𝑅
𝑝,𝑎

𝑖
, 𝐷𝑎

2 =−
𝑁−1∑︁
𝑖=0

𝑅̃
0,𝑎
𝑖

𝐸𝑎
𝑖,𝑎𝑅

𝑝,𝑎

𝑖𝑒
, 𝑏𝑎 (𝑡) =

𝑁−1∑︁
𝑖=0

𝑅̃
0,𝑑
𝑖

𝑅
𝑝,𝑎

𝑖
𝑏𝑎 (𝑡).

Thus, the RAS method applied to DAE system belongs to the DI methods with
a specific splitting of the operators. Then we can reduce this specific DI method
to an interface problem and we can accelerate its convergence to the true solu-
tion with the Aitken’s acceleration of the convergence technique as in [4]. Denot-
ing 𝑊 𝑝,𝑑

𝑖,𝑒
and 𝑊 𝑝,𝑎

𝑖,𝑒
the differential and algebraical components of 𝑊 𝑝

𝑖,𝑒
, we define

Γ𝑑 = {𝑊 𝑝,𝑑

0,𝑒 , . . . ,𝑊
𝑝,𝑑

𝑁−1,𝑒}, Γ
𝑎 = {𝑊 𝑝,𝑎

0,𝑒 , . . . ,𝑊
𝑝,𝑎

𝑁−1,𝑒} and Γ = {Γ𝑑 , Γ𝑎} and 𝑅Γ the

restriction to the global interface 𝑅Γ =

(
𝑅𝑑
Γ
0

0 𝑅𝑎
Γ

)
with 𝑅𝑑

Γ
= (𝑅𝑝,𝑑

0,𝑖𝑒, . . . , 𝑅
𝑝,𝑑

𝑁−1,𝑖𝑒)
𝑇 ,

𝑅𝑎
Γ
= (𝑅𝑝,𝑎

0,𝑖𝑒, . . . , 𝑅
𝑝,𝑎

𝑁−1,𝑖𝑒)
𝑇 and finally 𝑧 (𝑘) = (𝑥 (𝑘)𝑇 , 𝑦 (𝑘)𝑇 )𝑇 and 𝑧 (𝑘)

Γ
= 𝑅Γ𝑧

(𝑘) .



514 Hélèna Shourick, Damien Tromeur-Dervout, and Laurent Chédot

The DI with RAS splitting defined by Eq. (4) applied to a linear DAE system
with 𝐷𝑎

1 invertible has an error operator 𝑃𝑡 ,Γ, 𝑡 ∈]0, 𝑇] for the problem interface
that does not depend on the iteration number, such that the restriction of the iteration
to the global interface satisfies: 𝑧 (𝑘)

Γ
= 𝑃𝑡 ,Γ𝑧

(𝑘−1)
Γ

+ 𝑐. Therefore, the convergence
of the DI to the true solution 𝑧 (∞) can be performed using the Aitken’s technique
for accelerating the convergence, if 1 does not belong to the spectrum of 𝑃𝑡 ,Γ, as
follows:

𝑧
(∞)
Γ

= (𝐼 − 𝑃𝑡 ,Γ)−1 (𝑧 (1)Γ
+ 𝑃𝑡 ,Γ𝑧

(0)
Γ

) (5)

Numerically, the time derivative in Eq. (4) must be discretized using backward
Euler scheme with a regular time step Δ𝑡 for example. We write the DI with RAS
splitting on the discretized system as:

𝐴̃𝑑
1 𝑥

𝑛+1, (𝑘+1) + 𝐵̃𝑑
1 𝑦

𝑛+1, (𝑘+1) = 𝑏̃𝑛+1,𝑑 + 𝐴̃𝑑
2 𝑥

𝑛+1, (𝑘) + 𝐵̃𝑑
2 𝑦

𝑛+1, (𝑘) ,
𝐶𝑎
1 𝑥

𝑛+1, (𝑘+1) + 𝐷𝑎
1 𝑦

𝑛+1, (𝑘+1) = 𝑏𝑛+1,𝑎 + 𝐶𝑎
2 𝑥

𝑛+1, (𝑘) + 𝐷𝑎
2 𝑦

𝑛+1, (𝑘) ,
𝑥0, (𝑘+1) = 𝑥0.

(6)

with 𝐴̃𝑑
1 = 𝐼𝑑

𝑛,1+Δ𝑡𝐴
𝑑
1 , 𝐵̃

𝑑
1 = Δ𝑡𝐵𝑑

1 , 𝐴̃
𝑑
2 = Δ𝑡𝐴𝑑

2 , 𝐵̃
𝑑
2 = Δ𝑡𝐵𝑑

2 , 𝑏̃
𝑛+1,𝑑 = 𝑥𝑛,∗+Δ𝑡𝑏𝑛+1,𝑑

where 𝑥𝑛,∗ = 𝑥𝑛, (𝑘+1) or 𝑥𝑛,∗ = 𝑥𝑛, (∞) leading to the sequential DI or pipelined DI
strategies. Locally, it is written, with 𝑥0, (𝑘+1)

𝑖
= 𝑅

𝑝,𝑑

𝑖
𝑥0:(

𝑥
𝑛+1, (𝑘+1)
𝑖

𝑦
𝑛+1, (𝑘+1)
𝑖

)
︸          ︷︷          ︸

𝑧
𝑛+1, (𝑘+1)
𝑖

=

(
𝐴̃𝑖 𝐵̃𝑖

𝐶𝑖 𝐷𝑖

)−1
︸       ︷︷       ︸

Ã−1
𝑖

((
𝑏̃𝑛+1
𝑖,𝑑

𝑏𝑛+1
𝑖,𝑎

)
︸    ︷︷    ︸

𝑏̃𝑛+1
𝑖

−
(
𝐸̃𝑑
𝑖,𝑑

𝐸̃𝑎
𝑖,𝑑

𝐸𝑑
𝑖,𝑎

𝐸𝑎
𝑖,𝑎

)
︸         ︷︷         ︸

Ẽ𝑖

(
𝑥
𝑛+1, (𝑘)
𝑖,𝑒

𝑦
𝑛+1, (𝑘)
𝑖,𝑒

))
︸         ︷︷         ︸

𝑧
𝑛+1, (𝑘)
𝑖,𝑒

(7)

The choice for the term 𝑥𝑛,∗ has an impact on the implementation and the Aitken’s
acceleration of convergence technique as described in the next section.

3 Pipelined time stepping strategy for DI

Let’s consider the DI applied over a time interval [𝑡0, 𝑡𝐹 ] with a constant time stepΔ𝑡
satisfying 𝑡𝐹 − 𝑡0 = ΞΔ𝑡 with Ξ ∈ N∗.
The sequential DI strategy consists in iterating the DI method until convergence

on one time step before applying it to the next time step (Algorithm 1, 𝑥𝑛,∗ = 𝑥𝑛, (∞)

in (6)). In the pipelined DI strategy, each DI iteration is performed over several time
steps, these iterations are repeated until convergence (Algorithm 2, 𝑥𝑛,∗ = 𝑥𝑛, (𝑘)

in (6)). The two algorithms differ by the choice of 𝑥𝑛,∗ = 𝑥𝑛, (𝑘) but also by the
inversion of the order of loops 1 and 2.
In the following, we adapt the Aitken’s acceleration of the convergence technique

to accelerate the pipelined DI with RAS splitting.
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Algorithm 1 Sequential DI strategy
1: for 𝑛 = 0 . . .Ξ − 1 do
2: for 𝑘 = 1 . . . until convergence do
3: Solve 𝑧

𝑛+1, (𝑘+1)
𝑖

= Ã−1
𝑖
𝑏̃𝑛+1
𝑖

−
Ẽ𝑖𝑧

𝑛+1, (𝑘)
𝑖,𝑒

.
4: end for
5: end for

Algorithm 2 Pipelined DI strategy
1: for 𝑘 = 1 . . . until convergence do
2: for 𝑛 = 0 . . .Ξ − 1 do
3: Solve 𝑧

𝑛+1, (𝑘+1)
𝑖

= Ã−1
𝑖
𝑏̃𝑛+1
𝑖

−
Ẽ𝑖𝑧

𝑛+1, (𝑘)
𝑖,𝑒

.
4: end for
5: end for

Definition 2 We note 𝑍
(𝑘)
𝑖

∈ CΞ𝑛 the (𝑘)𝑡ℎ DI iteration corresponding to the
concatenation over the Ξ time steps of the 𝑖𝑡ℎ partition 𝑊

𝑝

𝑖
of the (𝑘 + 1)𝑡ℎ

pipelined DI iteration: 𝑍 (𝑘)
𝑖

= ((𝑧1, (𝑘)
𝑖

)𝑇 , . . . , (𝑧Ξ, (𝑘)
𝑖

)𝑇 )𝑇 , and the dependencies
as 𝑍 (𝑘)

𝑖,𝑒
= ((𝑧1, (𝑘)

𝑖,𝑒
)𝑇 , . . . , (𝑧Ξ, (𝑘)

𝑖,𝑒
)𝑇 )𝑇 .

We define the operator I𝑑,𝑖 such that: I𝑑,𝑖𝑧𝑛, (𝑘)𝑖
=

(
Δ𝑡 𝑥

𝑛, (𝑘)
𝑖

0𝑛𝑖,𝑎

)
. We also define

𝑍
(𝑘)
Γ

∈ CΞ𝑛Γ denote the 𝑘 𝑡ℎ pipelined DI iterations of the global interface values of
the Ξ time steps: 𝑍 (𝑘)

Γ
= ((𝑧1, (𝑘)

Γ
)𝑇 , . . . , (𝑧Ξ, (𝑘)

Γ
)𝑇 )𝑇 and let I𝑑 be the operator that

follows: I𝑑 = (I𝑇
𝑑,1, . . . , I

𝑇
𝑑,Ξ

)𝑇 .

Proposition 1 The 𝑘 𝑡ℎ pipelined DI iteration applied on to Ξ time steps Δ𝑡 is written
locally on the partition 𝑊

𝑝

𝑖
:

©­­­­«
Ã𝑖

−I𝑑,𝑖 Ã𝑖

. . .
. . .

−I𝑑,𝑖 Ã𝑖

ª®®®®¬
𝑍
(𝑘)
𝑖

=

©­­­­«
𝑏1
𝑖
+ I𝑑,𝑖𝑧0𝑖
𝑏2
𝑖
...

𝑏Ξ
𝑖

ª®®®®¬
−

©­­­­«
Ẽ𝑖
Ẽ𝑖

. . .

Ẽ𝑖

ª®®®®¬
𝑍
(𝑘−1)
𝑖,𝑒

(8)

Equation (8) has the same form (and the same properties) than the sequential DI.
We can then apply the same methodology as in the sequential case. That is to say: as
the convergence is purely linear one can thus build an operator of error PΓ and use the
Aitken acceleration of the convergence method. PΓ can be computed algebraically or
numerically. It will be of size Ξ𝑛Γ ×Ξ𝑛Γ and we will need Ξ𝑛Γ + 1 RAS iterations to
calculate it numerically. Nevertheless, we can take advantage of the structure of PΓ
for linear DAE with regular time stepping as the PΓ operator and the 𝑃Γ operator are
linked as shown below.
By noting𝑀−1

𝑛,𝑅𝐴𝑆
the RAS operator (defined as in [3]) and 𝑃𝑛,Γ the error operator

associated to the 𝑛𝑡ℎ time step. Then, similarly to the sequential DI, we can restrict
the pipelined DI iteration to the global interface of (5) of all the Ξ time steps:

Proposition 2 The 𝑘 𝑡ℎ iteration of the pipelined DI can be written on the global
interface of the Ξ time steps:
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𝑍
(𝑘)
Γ

=
©­­«

𝐼

𝑀−1
2 𝐼

. . .
. . .

𝑀−1
Ξ

𝐼

ª®®¬
−1 ©­­«

𝑃1,Γ
𝑃2,Γ

. . .

𝑃Ξ,Γ

ª®®¬ 𝑍
(𝑘−1)
Γ

+
©­­«
𝑅Γ𝑀

−1
1,𝑅𝐴𝑆

I𝑑 𝑧
0 + 𝑐1

𝑐2
.
.
.

𝑐𝑚

ª®®¬ (9)
where 𝑀−1

𝑖
= 𝑅Γ𝑀

−1
𝑖,𝑅𝐴𝑆

I𝑑𝑅
𝑇
Γ
, 𝑖 = 2 . . .Ξ

The error operator can be calculated in two ways algebraically or numerically.
We recall that the global interface Γ is defined as the concatenation of 𝑊 𝑝

𝑖,𝑒
, that is

Γ =

{
𝑊

𝑝

0,𝑒, . . . ,𝑊
𝑝

𝑁−1,𝑒

}
of size 𝑛Γ =

∑𝑁−1
𝑖=0 𝑛𝑖,𝑒. It is pointed out that to numerically

calculate the error operator, it is necessary to perform one more iteration than the
size of the vector to be accelerated.
In the sequential DI strategy, we can apply the Aitken’s technique for accelerating

convergence, after 𝑛Γ + 1 DI iterations for the first regular time step, in order to
numerically build the 𝑃Γ operator. Then, if we use the same time step size for the
following time steps, and if there is no non-linearity and no change in the topology,we
can perform the Aitken’s convergence acceleration technique after one DI iteration.
However, it is necessary to recalculate the error operator 𝑃Γ at each change of
topology or at each change of time step. Indeed the matrices A and E which have an
impact in the 𝑃Γ are modified by the changes in topology and changes in time step
size (because of the discretization).
Moreover, in the pipelined DI strategy, the interface to be accelerated is the

concatenation of the interfaces over the entire period of interest (ΞΔ𝑡 here). This
interface is of size Ξ × 𝑛Γ, it will therefore take Ξ × 𝑛Γ + 1 DI iterations in order to
compute the error operator PΓ, whether or not there is a change in topology or time
step. On the other hand, changes in the size of the time steps must be planned before
launching the simulation.
Table 1 summarizes the number of iterations needed to simulate the problem on

the period ΞΔ𝑡, depending on the strategy chosen.

Table 1 Number of iterations needed to performed the simulation using the DI method accelerated
with the Aitken acceleration technique

DI Strategy Sequential First time step sequential,
computation of the error
operator then pipelined

Pipelined

no non-linearity& fixed and equidistant
time steps

Ξ + 𝑛Γ 2(Ξ − 1) + 𝑛Γ + 1 Ξ × 𝑛Γ + 1

fixed variable time step distribution with
𝑗 changes in time step length

Ξ − 𝑗 + 𝑗 × (𝑛Γ + 1) 2(Ξ − 𝑗) + 𝑗 × (𝑛Γ + 1) Ξ × 𝑛Γ + 1

non-fixed variable time step distribution
with 𝑗 changes in time step length

Ξ − 𝑗 + 𝑗 × (𝑛Γ + 1) Strategy non valid Strategy non valid

presence of non-linear components Ξ × (𝑛Γ + 1) Strategy non valid Ξ × 𝑛Γ + 1
𝑗 non-linearity events Ξ − 𝑗 + 𝑗 × (𝑛Γ + 1) 2(Ξ − 𝑗) + 𝑗 × (𝑛Γ + 1) Ξ × 𝑛Γ + 1
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4 Numerical results

The numerical results are performed on the test circuit of Pade and Tischendorf [14],
with the sequential strategy we know from the spectrum of the error operator that the
convergence of the method depends on the value of the components but especially
on the size of the time step Δ𝑡. The size of the problem is 9 and the global interface Γ
size is 3.We refer to [2] for parallel results approximating 𝑃Γ by using singular values
decomposition of the RAS interface solution iterates and the Aitken’s acceleration
for solving large-scale elliptic Darcy flows 3D problems. Figure 1 (left) shows the
evolution of the spectral radius of PΓ computed numerically with respect to the
number of regular time steps in the pipeline. It shows that the convergence of the
pipelined DI with RAS splitting deteriorates with increasing number of pipelined
time steps. This result is corroborated by Figure 1 (middle) which shows the error
of the pipelined DI with RAS splitting between two consecutive iterations, with
respect to the RAS iterations, for each time step in the pipeline. Although the first
few time steps in the pipeline the DI converge, this is not the case for the last few
time steps. This shows the limitation of the pipeline size. Nevertheless, with Aitken’s
convergence acceleration, we can still accelerate the DI for all time steps. We should
note that we also have a limitation on the pipeline size due to numerical problems in
the numerical computation of the error operator if the DI diverges too strongly for
some time steps. Nevertheless, in the pipelined strategy, the numerically calculated
error operator can take into account some changes in the behavior of the electrical
components, which allows us to apply Aitken’s convergence acceleration technique
even in the presence of nonlinear components, as shown in the figure (right) with
a nonlinear resistor in the test circuit [14].
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Fig. 1 (left) Evolution of the spectral radius of the error operator depending on the number of
pipelined regular time steps of size Δ𝑡 = 1.1 10−3 (left, Ξ = 14), (middle) DI with the RAS splitting
convergence behavior ( log10 ( | |𝑧 (2𝑘) − 𝑧ref | |∞) ) on each of the pipelined time steps with respect to
the iterations, (right) Comparison between the DI with the RAS splitting with the Aitken’s technique
for accelerating convergence and the DAE monolithic reference with a non-linear component, with
Δ𝑡 = 1, 1.10−4, Ξ = 100.

5 Conclusion

Starting from the RAS method applied to a state-space DAE system, we show
that this method is a dynamic iteration method with a specific operator splitting.
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Then, the DI with RAS splitting inherits the property of reducing the size of the
error operator to the size of a global interface problem. It also inherits its pure
linear convergence/divergence when applied to a linear problem. We are then able to
accelerate the convergence byAitken acceleration byworking on the global interface,
thus, we get rid of the contracting constraint of the error operator. Writing RAS as
a DI with RAS splitting also makes us consider the implementation of the pipelined
strategy performing iteration over several time steps.We have shown the link between
the error operators of the sequential DI and pipelined DI strategies, which allows
us to apply Aitken’s convergence acceleration technique on the pipelined DI. The
optimal use cases for these strategies were also discussed. Numerical results show
that pipelined DI with RAS splitting successfully applies Aitken acceleration to both
contracting and non-contracting DI. It also opens up the Aitken acceleration of DI
convergence for nonlinear problems (using a different linearization of the nonlinear
problem on the time steps in the pipeline) and for pipelined steps with different sizes.
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GPU Optimizations for the Hierarchical
Poincaré-Steklov Scheme

Anna Yesypenko and Per-Gunnar Martinsson

1 Introduction

We describe methods for solving boundary value problems of the form{
A𝑢(𝑥) = 𝑓 (𝑥), 𝑥 ∈ Ω,

𝑢(𝑥) = 𝑔(𝑥), 𝑥 ∈ 𝜕Ω,
(1)

where A is a second order elliptic differential operator, and Ω is domain in two
dimensions with boundary 𝜕Ω. For the sake of concreteness, we will focus on the
case where A is a variable coefficient Helmholtz operator

A𝑢(𝑥) = −Δ𝑢(𝑥) − 𝜅2𝑏(𝑥)𝑢(𝑥), (2)

where 𝜅 is a reference wavenumber, and where 𝑏(𝑥) is a smooth non-negative
function that typically satisfies 0 ≤ 𝑏(𝑥) ≤ 1. Upon discretizing (1), one obtains
a linear system

Au = f (3)

involving a sparse coefficient matrix A ∈ R𝑁×𝑁 . The focus of this work is on ef-
ficiently solving the sparse system (3) for the Hierarchical Poincaré-Steklov (HPS)
discretization. HPS is a multi-domain spectral collocation scheme that allows for
relatively high choices of 𝑝, while interfacing well with sparse direct solvers. For (1)
discretized with HPS with local polynomial order 𝑝, the cost of factorizing A di-
rectly is

𝑇build = 𝑂

(
𝑝4𝑁

leaf operations
+ 𝑁3/2
direct solver

)
. (4)

Anna Yesypenko, Per-Gunnar Martinsson
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After the leaf operations are complete, the cost to factorize the system directly has
no pre-factor dependence on 𝑝. The pre-factor cost of the leaf operations, however,
has long been viewed as prohibitively expensive. This manuscript describes simple
GPU optimizations using batched linear algebra that substantially accelerate the leaf
operations and shows compelling results for 𝑝 up to 42. We also demonstrate that
the choice of 𝑝 does not have substantial effects on the build time for the direct
factorization stage, allowing 𝑝 to be chosen based on physical considerations instead
of practical concerns.
High order discretization is crucial in resolving variable-coefficient scattering

phenomena due to the well known “pollution effect” that generally requires the num-
ber of points per wavelength to increase, the larger the computational domain is.
The pollution effect is very strong for low order discretizations, but quickly gets less
problematic as the discretization order increases [2, 7]. HPS is less sensitive to pollu-
tion because the scheme allows for high choices of local polynomial order 𝑝 [11, 16].
Combining HPS discretization with efficient sparse direct solvers provides a power-
ful tool for resolving challenging scattering phenomena to high accuracy, especially
for situations where no efficient preconditioners are known to exist (e.g. trapped rays,
multiple reflections, backscattering) [9].

2 HPS Discretization and interfacing with sparse direct solvers

Wenext discuss theHPSdiscretization and efficientmethods to interface the resulting
sparse linear system with direct solvers. We introduce the HPS briefly for the simple
model problem (1), and refer the reader to [1, 17, 13] for details and extensions. An
important limitation of the discretization is that we assume the solution is smooth
and that the coefficients in the operator A of (1) are smooth as well.
The domainΩ is partitioned into non-overlapping subdomains. The discretization

is described by two parameters, 𝑎 and 𝑝, which are the element size and local
polynomial order, respectively. On each subdomain, we place a 𝑝 × 𝑝 tensor product
mesh of Chebyshev points. Internal to each subdomain, the PDE is enforced locally
via spectral differentiation and direct collocation. On element boundaries, we enforce
that the flux between adjacent boundaries is continuous. On each subdomain of 𝑝2
nodes, the spectral differentiation operators lead to a dense matrix of interactions of
size 𝑝2 × 𝑝2. To improve efficiency of sparse direct solvers for HPS discretizations,
we “eliminate” the dense interactions of nodes interior to each subdomain. This
process is referred to as “static condensation” [4, 12]. The remaining active nodes
are on the boundaries between subdomains. As a result of the leaf elimination, we
produce a smaller system

Ãũ = f̃. (5)

of size ≈ 𝑁/𝑝 with equivalent body load f̃ on the active nodes located on the
boundaries between subdomains, as shown in Figure 2.
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Ω0,0

Ω0,1

Ω1,0

Ω1,1

⇒

Fig. 1 Prior to interfacing with
sparse direct solvers, we do static
condensation to produce an equiv-
alent system (5) to solve on the
remaining active nodes. The orig-
inal grid has 𝑁 points, and re-
maining grid has ≈ 𝑁 /𝑝 points.

Due to the domain decomposition used in HPS, the leaf operations required to
produce the equivalent system (5) can be done embarrassingly in parallel. The leaf
operations require independent dense linear algebraic operations (e.g., LU factoriza-
tion, matrix-matrix multiply) on 𝑁/𝑝2 systems, each of size 𝑝2 × 𝑝2, resulting in
an overall cost of 𝑂 (𝑝4𝑁). For 𝑝 up to about 42, these operations can be efficiently
parallelized with batched linear algebra (BLAS). However, for larger 𝑝, methods that
produce a sparser equivalent system may be more appropriate [3, 10].
Overhead costs can make achieving high arithmetic intensity for many small

parallel tasks a challenge. However, batched BLAS offers a solution. It is highly
optimized software for parallel operations on matrices that are small enough to fit in
the top levels of the memory hierarchy (i.e., smaller than the L2 cache size) [8]. The
framework groups small inputs into larger "batches" to automatically achieve good
parallel performance on high-throughput architectures such as GPUs.
The technique we present is most readily applicable to the case where the same

discretization order 𝑝 is used on every discretization patch. However, it would not be
too difficult to allow 𝑝 to be chosen from a fixed set of values (say 𝑝 ∈ {6, 10, 18, 36}
or something similar). This would enable many of the advantages of hp-adaptivity,
while still enabling batching to accelerate computations.

Remark 1 Since the leaf computations are very efficient, we saved memory and
reduced communication by not explicitly storing the factorizations of the local
spectral differentiation matrices. Instead, these are reformed and refactored after
each solve involving the reduced system (5).

We combined the fast leaf factorization procedure with two methods for solving
the reduced system (5). The first option for solving (5) uses a black-box sparse direct
solver with the nested dissection (ND) ordering. ND is a based on a multi-level graph
partitioning of nodes and produces a sparse factorization with minimal fill-in [5, 6].
In 2D, sparse factorization using the ND ordering requires 𝑂

(
𝑁3/2

)
time to build

and 𝑂 (𝑁 log 𝑁) time to apply.
As a second option for solving (5), we used a scheme we refer to as SlabLU, which

is a simplified two-level scheme (as opposed to standard hierarchical schemes) that is
designed for ease of parallelization [18]. To be precise, SlabLU uses a decomposition
of the domain into elongated “slab” subdomains, as shown in Figure 2. With this
decomposition, the linear system (5) has the block form
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𝐼1 𝐼3 𝐼5 𝐼7 𝐼9𝐼2 𝐼4 𝐼6 𝐼8

𝑛

𝑏

Fig. 2 Domain decomposition used in
SlabLU. The even-numbered nodes corre-
spond to the nodes interior to each sub-
domain. The odd-numbered nodes corre-
spond to interfaces between slabs. The slab
partitioning is chosen so that interactions
between slab interiors are zero. The slabs
have width of 𝑏 points.



Ã11 Ã12 0 0 0 . . .

Ã21 Ã22 Ã23 0 0 . . .

0 Ã32 Ã33 Ã34 0 . . .

0 0 Ã43 Ã44 Ã45 . . .
...

...
...

...
...

...





ũ1
ũ2
ũ3
ũ4
...


=



𝑓1
f̃2
𝑓3
𝑓4
...


. (6)

The nodes internal to each slab are eliminated by computing sparse factorizations of
the diagonal blocks Ã22, Ã44, . . . in parallel. This results in another block tridiagonal
coefficient matrix T that has much smaller blocks than Ã (and half as many). The
blocks of T are dense, but can be represented efficiently using data sparse formats
such as the H -matrix format of Hackbusch. The corresponding H -matrices have
significantly low ranks, due to the thinness of the slabs. The blocks of T can be
rapidly constructed inH -matrix format using the black-box randomized compression
techniques described in [14].
The reduced linear systemwith blocks havingH -matrix structure can in principle

be solved efficiently using rank-structured linear algebra. However, we found that for
2D problems, it is most efficient to relinquish the rank structure and simply convert
all blocks to a dense format before factorizing the block tridiagonal system. (In 3D,
this simplistic approach is possible only for small problems.) With a choice of slab
width 𝑏 that grows slowly with the problem size as 𝑏 ∼ 𝑛2/3, the resulting two-level
scheme has complexity 𝑂 (𝑁5/3) to factorize Ã directly and 𝑂

(
𝑁7/6

)
complexity

to apply the computed factors to solve (5). SlabLU is simple scheme that leverages
high concurrency and batched BLAS to achieve high performance on modern hybrid
architectures. Despite the asymptotically higher costs, SlabLU performs favorably
compared to multi-level nested dissection schemes in its build time and memory
footprint, as we demonstrate in Section 3. [18] provides details on SlabLU.

3 Numerical experiments

We demonstrate the effectiveness of the HPS discretization combined with sparse
direct solvers in solving high-frequency Helmholtz equations. The experiments were
conducted on a desktop computer equipped with a 16-core Intel i9-12900k CPU and
128GB of memory, and a NVIDIA RTX 3090 GPU with 24GB of memory.
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Fig. 3 Leaf operations for
HPS require 𝑂 (𝑝4𝑁 ) oper-
ations, though the practical
scaling for parallel operations
has a small constant prefac-
tor for 𝑝 up to 42. Paral-
lel HPS leaf operations are
further accelerated on GPUs,
with a speed-up of at least 4x.

We show that GPU optimizations enable efficient leaf operations for various local
polynomial orders, cf. Figure 3. After the leaf operations, we directly factorize the
reduced system (5) using efficient sparse direct solvers. We demonstrate that the
choice of 𝑝 does not significantly affect the time to factorize Ã. Having the freedom
to choose 𝑝 allows the user to resolve highly oscillatory PDEs to high-order accuracy
without worrying about how the choice may affect the cost of solving (3) directly.
To demonstrate the effectiveness of the HPS discretization resolving oscillatory

solutions to high accuracy, we report results for a PDEwith a known analytic solution{
−Δ𝑢(𝑥) − 𝜅2𝑢(𝑥) = 0, 𝑥 ∈ Ω = [0, 1]2,

𝑢(𝑥) = 𝑢true (𝑥), 𝑥 ∈ 𝜕Ω,
(7)

The true solution 𝑢true is given by 𝑢true = 𝐽0 (𝜅 |𝑥 − (−0.1, 0.5) |), where 𝑥 ↦→ 𝐽0 (𝜅 |𝑥 |)
is the free-space fundamental solution to the Helmholtz equation. We discretize (7)
using HPS for various choices of 𝑝 and set the wavenumber 𝜅 to increase with 𝑁

to maintain 10 points per wavelength with increasing problem size. After applying
a direct solver to solve (5) on the reduced HPS grid, we re-factorize the linear systems
on interior leaf nodes to calculate the solution ucalc on the full HPS grid. The leaf
solve requires time𝑂 (𝑝4𝑁) but is particularly efficient using the GPU optimizations
described. The reported build times and solve times include the leaf operations. We
report the relative error with respect to the residual of the discretized system (3).
When a true solution is known, we also report the relative error with respect to the
true solution utrue evaluated on the collocation points of the full HPS grid

relerrres =
‖Aucalc − f‖2

‖f‖2
, relerrtrue =

‖ucalc − utrue‖2
‖utrue‖2

. (8)

3.1 Comparison of sparse direct solvers

The system (5) is solved using two different sparse direct solvers, SuperLU and
SlabLU. SuperLU is a black-box solver that finds an appropriate ordering of the
system to minimize fill-in while increasing concurrency by grouping nodes into
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super-nodes [15]. We accessed SuperLU through the Scipy interface (version 1.8.1)
and called it with the COLAMD ordering. This version of Scipy uses the CPU only.
Not many GPU-aware sparse direct solvers are widely available, though this is an
active area of research. SuperLU uses a pivoting scheme that can exchange rows
between super-nodes to attain almost machine precision accuracy in the residual of
the computed solutions.
SlabLU, on the other hand, uses an ordering based on a decomposition of the

domain into slabs that has a limited pivoting scheme. Despite this limitation, SlabLU
can achieve 10 digits of accuracy in the residual, which also gives high-order true
relative accuracy, depending on the choice of 𝑝. SlabLU is a simple two-level
framework that achieves large speedups over SuperLU by leveraging batched BLAS
and GPU optimizations. Figure 4 provides a comparison between SuperLU and
SlabLU in factorizing Ã to solve (5). The figure shows that SlabLU is faster to build
and requires a smaller memory footprint than SuperLU, where the memory footprint
refers to how much main memory is required to store the sparse factorization of Ã.
Figure 5 presents a comparison of the accuracy of computed solutions when using
SlabLU and SuperLU.
Next we demonstrate the ability of HPS, combined with SlabLU, for various 𝑝 to

solve Helmholtz problems of size up to 900𝜆 × 900𝜆 (for which 𝑁=81M) to high-
order accuracy. Figure 6 reports build and solve times for various choices of 𝑝, and
Figure 7 reports the accuracy of the calculated solutions.

3.2 Convergence for scattering problems for various 𝒑

We will now demonstrate the ability of HPS, combined with SlabLU as a sparse
direct solver, to solve complex scattering phenomena on various 2D domains. For the
presented PDEs, we will show how the accuracy of the calculated solution converges
to a reference solution depending on the choice of 𝑝 in the discretization. Specifically,
we will solve the BVP (1) with the variable-coefficient Helmholtz operator (2) for
various Dirichlet data on smooth and rectangular domains.
We fix the PDE and refining the mesh to compare calculated solutions to a refer-

ence solution obtained on a fine mesh with high 𝑝, as the exact solution is unknown.
The relative error is calculated by comparing ucalc to the reference solution uref at
a small number of collocation points {𝑥 𝑗 }𝑀𝑗=1 using the 𝑙2 norm

relerrapprox =
‖ucalc − uref ‖2

‖uref ‖2
. (9)

We demonstrate the convergence on a unit square domainΩ = [0, 1]2 with a variable
coefficient field 𝑏crystal corresponding to a photonic crystal, shown in Figure 8. The
convergence plot is presented in Figure 9.
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Fig. 9 Convergence on square domain Ω for
reference solution uref on HPS discretization
for 𝑁=36M with 𝑝 = 42.

Next, we show the convergence on a curved domain Ψ with a constant-coefficient
field 𝑏 ≡ 1, whereΨ is given by an analytic parameterization over a reference square
Ω = [0, 1]2. The domain Ψ is parametrized as

Ψ =

{(
𝑥1,

𝑥2
𝜓(𝑥1)

)
for (𝑥1, 𝑥2) ∈ Ω = [0, 1]2

}
, where 𝜓(𝑧) = 1 − 1

4
sin(𝑧). (10)

Using the chain rule, (2) on Ψ takes the following form on Ω
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−𝜕2𝑢

𝜕𝑥21
− 2𝜓

′(𝑥1)𝑥2
𝜓(𝑥1)

𝜕2𝑢

𝜕𝑥1𝜕𝑥2
−

((
𝜓 ′(𝑥1)𝑥2
𝜓(𝑥1)

)2
+ 𝜓(𝑥1)2

)
𝜕2𝑢

𝜕𝑥22

− 𝜓 ′′(𝑥1)𝑥2
𝜓(𝑥1)

𝜕𝑢

𝜕𝑥2
− 𝜅2𝑢 = 0, (𝑥1, 𝑥2) ∈ Ω.

(11)

The solutions on Ψ are shown in Figure 10, and the convergence plot is presented in
Figure 11.

4 Conclusions

HPS is a high-order convergent discretization scheme that interfaces well with sparse
direct solvers. In this manuscript, we describe GPU optimizations of the scheme
that enable rapid and memory-efficient direct solutions of (3) for resulting linear
systems. First, we perform the leaf operations in parallel using batched BLAS.
Then, we factorize a smaller system (5) of size ≈ 𝑁/𝑝 using sparse direct solvers,
where 𝑝 denotes the local order of convergence, which we show can be chosen as
high as 42. The numerical results feature comparisons between sparse direct solvers
and demonstrate that SlabLU can factorize systems corresponding to domains of
size up to 900𝜆 × 900𝜆 (for which 𝑁=81M) in less than 20 minutes. The approach
is effective in resolving challenging scattering problems on various domains to high
accuracy.
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The techniques described are currently being implemented for three dimensional
problems. The parallelizations described are immediately applicable. The scaling
with 𝑝 deteriorates from 𝑂 (𝑝4𝑁) to 𝑂 (𝑝6𝑁), which limits how large 𝑝 can be
chosen. However, initial numerical experiments demonstrate that 𝑝 = 15 remains
viable on current hardware, which is high enough for most applications.
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