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Abstract We present a scalable solver for the three-dimensional cardiac electro-
mechanical coupling (EMC) model, which represents, currently, the most com-
plete mathematical description of the interplay between the electrical and mechan-
ical phenomena occurring during a heartbeat. The most computational demanding
parts of the EMC model are: the electrical current flow model of the cardiac tissue,
called Bidomain model, consisting of two non-linear partial differential equations
of reaction-diffusion type; the quasi-static finite elasticity model for the deformation
of the cardiac tissue. Our finite element parallel solver is based on: Block Jacobi
and Multilevel Additive Schwarz preconditioners for the solution of the linear sys-
tems deriving from the discretization of the Bidomain equations; Newton-Krylov-
Algebraic-Multigrid or Newton-Krylov-BDDC algorithms for the solution of the
non-linear algebraic system deriving from the discretization of the finite elasticity
equations. Three-dimensional numerical test on two linux clusters show the effec-
tiveness and scalability of the EMC solver in simulating both physiological and
pathological cardiac dynamics.
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1 Introduction

In the last twenty years, computer modeling has become an effective tool to push
forward the understanding of the fundamental mechanisms underlying the origin
of life-threatening arrhythmias and contractile disorders in the human heart and to
provide theoretical support to cardiologists in developing more successful pharma-
cological and surgical treatments for these pathologies.

The spread of the electrical impulse in the cardiac muscle and the subsequent
contraction-relaxation process are quantitatively described by the cardiac electro-
mechanical coupling (EMC) model, which consists of the following four compo-
nents: the quasi-static finite elasticity model of the deforming cardiac tissue, de-
rived from a strain energy function which characterizes the anisotropic mechanical
properties of the myocardium; the active tension model, consisting of a system of
non-linear ordinary differential equations (ODEs), describing the intracellular cal-
cium dynamics and cross bridges binding; the electrical current flow model of the
cardiac tissue, called Bidomain model, which is a degenerate parabolic system of
two non-linear partial differential equations of reaction-diffusion type, describing
the evolution in space and time of the intra- and extracellular electric potentials; the
membrane model of the cardiac myocyte, i.e. a stiff system of ODEs, describing the
flow of the ionic currents through the cellular membrane.

This complex non-linear model poses great theoretical and numerical challenges.
At the numerical level, the approximation and simulation of the cardiac EMC model
is a very demanding and expensive task, because of the very different space and
time scales associated with the electrical and mechanical models, as well as their
non-linear and multiphysics interactions.

In this paper, we present the finite element solver that we have developed to sim-
ulate the cardiac electro-mechanical activity on parallel computational platforms.
The solver is based on a Multilevel Additive Schwarz preconditioner for the linear
system arising from the discretization of the Bidomain model and on a Newton-
Krylov-BDDC method for the non-linear system arising from the discretization of
finite elasticity. Three-dimensional numerical tests show the effectiveness and scala-
bility of the solver on Linux clusters, in both normal physiological and pathological
situations.

2 Cardiac electro-mechanical models

a) Mechanical model of cardiac tissue. The deformation of the cardiac tissue is
described by the equations of three-dimensional non-linear elasticity

Div(FS) = 0, X ∈ Ω̂ , (1)

where X = (X1,X2,X3)
T are the material coordinates of the undeformed cardiac

domain Ω̂ (x = (x1,x2,x3)
T are the spatial coordinates of the deformed cardiac do-
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main Ω(t) at time t), and F(X, t) = ∂x
∂X is the deformation gradient. The second

Piola-Kirchoff stress tensor S = Spas +Svol +Sact is assumed to be the sum of pas-
sive, volumetric and active components. The passive and volumetric components
are defined as

Spas,vol
i j =

1
2

(
∂W pas,vol

∂Ei j
+

∂W pas,vol

∂E ji

)
i, j = 1,2,3, (2)

where E = 1
2 (C− I) and C = FT F are the Green-Lagrange and Cauchy strain ten-

sors, W pas is an exponential strain energy function (derived from [7]) modeling the
myocardium as an orthotropic (or transversely isotropic) hyperelastic material, and
W vol =K (J−1)2 is a volume change penalization term accounting for the nearly in-
compressibility of the myocardium, with K a positive bulk modulus and J = det(F).

b) Mechanical model of active tension. The active component of the stress
tensor is given by Sact = Ta

âl⊗âl
âT

l Câl
, where âl is the fiber direction and Ta =

Ta

(
Cai,λ ,

dλ

dt

)
is the fiber active tension, obtained by solving a biochemical dif-

ferential system depending on intracellular calcium concentrations, the myofiber

stretch λ =
√

âT
l Câl and stretch-rate dλ

dt (see [11]).
c) Bioelectrical model of cardiac tissue: the Bidomain model. The evolution

of the cardiac extracellular and transmembrane potentials ue,v, gating variable w,
and ionic concentrations c, is given by the Bidomain model. Its parabolic-elliptic
formulation on the deformed configuration Ω(t) reads:{

cm
∂v
∂ t
−div(Di∇(v+ue))+ iion(v,w,c,λ ) = iapp

−div(Di∇v)−div((Di +De)∇ue) = 0.
(3)

In the Lagrangian framework, after the pull-back on the reference configuration
Ω̂ × (0,T ), the Bidomain system becomes cmJ

(
∂ v̂
∂ t
−F−T Grad v̂ ·V

)
−Div(J F−1D̂iF−T Grad(v̂+ ûe))+ J iion(v̂, ŵ, ĉ,λ ) = J îapp

−Div(J F−1D̂iF−T Grad v̂)−Div(J F−1(D̂i + D̂e)F−T Grad ûe) = 0,
(4)

where cm and iion are the membrane capacitance and ionic current per unit volume,

respectively, and V =
∂u
∂ t

is the rate of deformation; see [4] for the detailed deriva-
tion. These two partial differential equations (PDEs) are coupled through the reac-
tion term iion with the ODE system of the membrane model, given in Ω(t)× (0,T )
by

∂w
∂ t
−Rw(v,w) = 0,

∂c
∂ t
−Rc(v,w,c) = 0. (5)

This system is completed by prescribing initial conditions, insulating boundary con-
ditions, and the applied current îapp. Since the extracellular potential ûe is defined
up to a time dependent constant in space, we fix it by imposing that ûe has zero aver-
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age on the cardiac domain; see [4] for further details. The orthotropic conductivity
tensors in the deformed configuration are given by

Di,e = σ
i,e
t I +(σ i,e

l −σ
i,e
t )al⊗al +(σ i,e

n −σ
i,e
t )an⊗an,

where σ
i,e
l , σ

i,e
t , σ

i,e
n are the conductivity coefficients in the intra- and extracellular

media measured along and across the fiber direction al ,at ,an.
d) Ionic membrane model and stretch-activated channel current. The ionic

current in the Bidomain model (3) is iion = χIion, where χ is the membrane sur-
face to volume ratio and Iion(v,w,c,λ ) = Im

ion(v,w,c)+ Isac(v,c,λ ) is the sum of the
ionic term Im

ion(v,w,c) given by the ten Tusscher model (TP06) consisting of 17 or-
dinary differential equations, [20, 21], available from the cellML depository (mod-
els.cellml.org/cellml), and a stretch-activated current Isac. In this work, we adopt the
model of Isac proposed in [13] as the sum of non-selective and selective currents
Isac = Ins + IKo. We will consider two calibrations where the Isac equilibrium poten-
tial (denoted in the following by Vsac, i.e. the value such that Isac(Vsac) = 0) is either
Vsac =−60 mV or Vsac =−19 mV . We recall that, for v >Vsac, the stretch-activated
current Isac is positive, thus it has a hyperpolarizing effect, while, for v < Vsac, Isac
is negative, resulting in a depolarizing effect. For further details, we refer to [5].

3 Numerical methods

Space discretization. We discretize the cardiac domain with a hexahedral struc-
tured grid Thm for the mechanical model (1) and The for the electrical Bidomain
model (4), where The is a refinement of Thm . We then discretize all scalar and vector
fields of both mechanical and electrical models by isoparametric Q1 finite elements
in space.
Time discretization. The time discretization is performed by a semi-implicit
splitting method, where the electrical and mechanical time steps can be different.
At the n−th time step,

a) given vn, wn, cn, solve the ODE system of the membrane model with a
first-order IMEX method to compute the new wn+1, cn+1.

b) given the calcium concentration Can+1
i , which is included in the concentration

variables cn+1, solve the mechanical problems (1) and the active tension differential
system to compute the new deformed coordinates xn+1, providing the new defor-
mation gradient tensor Fn+1.

c) given wn+1, cn+1, Fn+1 and Jn+1 = det(Fn+1), solve the Bidomain system (4)
with a first order IMEX method and compute the new electric potentials vn+1, un+1

e
with an operator splitting method, where the parabolic and elliptic PDEs are
decoupled; see [4] for further details.
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4 Parallel solver

4.1 Computational kernels

Due to the discretization strategies described above, the main computational kernels
of our solver at each time step are the following:

1- solve the non-linear system deriving from the discretization of the mechanical
problem (1) using an inexact Newton method. At each Newton step, a non-
symmetric Jacobian system Kx = f is solved inexactly by the GMRES iterative
method preconditioned by a BDDC preconditioner, described in the next section.

2- solve the two linear systems deriving from the discretization of the parabolic
and elliptic equations of the Bidomain model, by using the Conjugate Gradient
method preconditioned by the Block Jacobi and Multilevel Additive Schwarz
preconditioners, respectively, developed in [14].

4.2 Mechanical solver

Schur Complement System. To keep the notation simple, in the remainder of this
section and the next, we denote the reference domain by Ω instead of Ω̂ . Let us
consider a decomposition of Ω into N nonoverlapping subdomains Ωi of diameter
Hi (see e.g. [22, Ch. 4]) Ω =

⋃N
i=1 Ωi, and set H = maxHi. As in classical itera-

tive substructuring, we reduce the problem to the interface Γ :=
(⋃N

i=1 ∂Ωi

)
\∂Ω

by eliminating the interior degrees of freedom associated to basis functions with
support in the interior of each subdomain, hence obtaining the Schur complement
system

SΓ xΓ = gΓ , (6)

where SΓ = KΓ Γ −KΓ IK−1
II KIΓ and gΓ = fΓ −KΓ IK−1

II fI are obtained from the
original discrete problem Kx = f by reordering the finite element basis functions in
interior (subscript I) and interface (subscript Γ ) basis functions.
BDDC preconditioner. The Schur complement system (6) is solved iteratively by
the GMRES method using a BDDC preconditioner M−1

BDDC

M−1
BDDCSΓ xΓ = M−1

BDDCgΓ . (7)

Once the interface solution xΓ is computed, the internal values xI can be recovered
by solving local problems on each subdomain Ωi.

BDDC preconditioners represent an evolution of balancing Neumann-Neumann
methods where all local and coarse problems are treated additively due to a choice of
so-called primal continuity constraints across the interface of the subdomains. These
primal constraints can be point constraints and/or averages or moments over edges
or faces of the subdomains. BDDC preconditioners were introduced in [6] and first
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SIM2: TRANSMEMBRANE POTENTIAL SNAPSHOTS
t=110 ms t=235 ms t=440 ms t=1270 ms

SIM3: TRANSMEMBRANE POTENTIAL SNAPSHOTS
t=110 ms t=235 ms t=440 ms t=1270 ms

Fig. 1 Test 1: Snapshots of transmembrane potentials computed from SIM2 (ventricular tachycar-
dia) and SIM3 (ventricular fibrillation). The units in the colorbars are given in mV .

analyzed in [12]. We remark that BDDC is closely related to FETI-DP algorithms,
see, e.g. [10, 9], defined with the same set of primal constraints as BDDC, since
it is known that in such a case the BDDC and FETI-DP operators have the same
eigenvalues with the exception of zeros and ones. For the construction of BDDC
preconditioners applied to the non-linear elasticity system constituting the cardiac
electromechanical coupling problem, we refer to [16].

5 Numerical Results

In this section, we present the results of parallel numerical experiments performed
on the Linux cluster Marconi (http://www.hpc.cineca.it/hardware/marconi) of the
Cineca Consortium (www.cineca.it). Our code is built on top of the FORTRAN90
wrappers of the open source PETSc library [1]. In the mechanical solver, at each
Newton iteration, the non-symmetric Jacobian system is solved iteratively by GM-
RES preconditioned by the BoomerAMG or the BDDC preconditioner, with zero
initial guess and stopping criterion a 10−8 reduction of the relative residual l2-norm.
The BDDC method is available as a preconditioner in PETSc and it has been con-
tributed to the library by S. Zampini, see [25].



Scalable cardiac electro-mechanical solvers and reentry dynamics 7

Fig. 2 S1 beat of physiological test SIM1 over 500 msec.: time plots at an epicardial point of the
indicated electrical (left) and mechanical (right) quantities

5.1 Test 1: comparison of solver performance on normal and
pathological dynamics

We consider an idealized left ventricle, represented by a truncated ellipsoid dis-
cretized by an electrical grid of 384× 192× 48 Q1 finite elements, yielding a total
amount of about 3.6 ·106 nodes, thus the degrees of freedom (dofs) of the parabolic
and elliptic Bidomain linear systems are 3.6 · 106. The mechanical mesh is eight
times coarser than the electrical one, i.e. 48× 24× 6 Q1 finite elements, with a to-
tal amount of 8400 nodes, thus the dofs of the finite elasticy non-linear system are
25200. The electrical time step is 0.05 ms, while the mechanical time step is 0.5 ms.
The simulations are run on 24 processors. The tissue is assumed to be axisymmetric.
The mechanical non-linear system is solved by the Newton-Krylov-AMG method.

We first compare the performance of the electro-mechanical solver in three dif-
ferent situations:

• a normal physiological heartbeat (SIM1) without reentry;
• a ventricular tachycardia dynamics (SIM2), with Vsac =−19 mV ;
• a ventricular fibrillation dynamics (SIM3), with Vsac =−60 mV .
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Fig. 3 Periodic test SIM2 with slope = 1.8, Vsac = −19 mV over 2000 msec.: time plots at an
epicardial point of the indicated electrical (left) and mechanical (right) quantities

In SIM1, the external stimulus is applied at the endocardial apical region, the
interior bottom part of the truncated ellipsoid, and the total simulation run is 500 ms.
The activation wavefront propagates starting from the endocardial apical regions,
where the stimulus is delivered, towards the whole ventricle (not shown, but similar
to the propagation displayed in Fig. 6).

In SIM2 and SIM3, we apply first an S1 stimulus as in SIM1. 280 ms after the
S1 stimulus is delivered, we apply a premature S2 cross-gradient stimulation current
from the base to the apex and across the wall thickness, covering about a third of
ventricular volume, to induce a ventricular reentry consisting of a pair of counter-
rotating scroll waves. We run the simulation for 2000 ms after the S2 delivery. The
SAC parameter Vsac is set to−19 mV and−60 mV is SIM2 and SIM3, respectively.

In SIM2, the two scroll waves generated by the S2 stimulus continue to rotate
without breaking, leading to a stable periodic ventricular tachycardia pattern, see
Fig. 1.

In SIM3 instead, after the first rotation, the two scroll waves break up into sev-
eral smaller scroll waves, generating irregular transmembrane potential distributions
characterized by high electrical turbulence, often associated with ventricular fibril-
lation, as shown in the snapshots of Fig. 1. Thus, the low SAC reversal potential
(Vsac =−60 mV ) seems to induce deterioration of the stability of scroll waves, pro-
moting the onset of ventricular fibrillation.

Figures 2, 3, 4 report the time evolution of the mathematical parameters of the
electro-mechanical solver (CG iterations, condition numbers, Newton iterations,
GMRES iterations) and the CPU times needed to solve the parabolic, elliptic and
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Fig. 4 Turbulent test SIM3 with slope = 1.8, Vsac = −60 mV over 2000 msec.: time plots at an
epicardial point of the indicated electrical (left) and mechanical (right) quantities

proc itpar timepar itell timeell Π =V Π =V E
nit lit timesnes nit lit timesnes

32 3 2.24e-1 20 9.56e-1 4 39 12.90 4 38 13.23
64 3 1.24e-1 20 5.37e-1 4 48 5.03 4 47 5.36
128 3 7.71e-2 20 3.17e-1 4 48 3.67 4 47 3.50
256 3 3.78e-2 20 2.40e-1 4 45 2.55 4 44 2.88

Table 1 Strong scaling test on a whole heartbeat simulation. itpar: CG iteration to solve the
parabolic linear system (average per time step). timepar: CPU time to solve the parabolic linear
system (average per time step). itell : CG iteration to solve the elliptic linear system (average per
time step). timeell : CPU time to solve the elliptic linear system (average per time step). nit: New-
ton iteration to solve the mechanical system (average per time step). lit: GMRES iteration to solve
the Jacobian system (average per Newton iteration). timesnes: CPU time to solve the mechanical
system (average per time step). All CPU times are given in seconds.

non-linear systems (TIME PARAB., TIME ELL., TIME SNES, respectively) ob-
tained from the SIM1, SIM2, SIM3, respectively. The results show that all the
components of the solver are quite robust with respect to the different simulation
dynamics considered, physiological and pathological. The condition number of the
elliptic solver increases slightly when the contraction is more pronounced, but it
always remains bounded betweem 10 and 15.
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Fig. 5 Strong scaling test on a whole heartbeat simulation. Time evolution of electrical and me-
chanical solvers parameters.

5.2 Test 2: strong scaling on a normal heartbeat

We then perform a strong scaling test on a whole heartbeat lasting 400 ms. The
three-dimensional cardiac domain considered is a truncated ellipsoid modeling the
left ventricle, discretized by an electrical mesh of 384 · 192 · 48 Q1 finite elements,
yielding the same Bidomain dofs as in the previous test, about 3.6 ·106. The mechan-
ical mesh size is now four times coarser than the electrical one in each direction,
thus the mechanical elements are 96 ·48 ·12, resulting in 183456 displacement dofs.
The number of subdomains (processors) increases from 32 to 256 whereas the num-
ber of degrees of freedom per subdomain is reduced as the number of subdomains
increases. The tissue is assumed to be orthotropic. The mechanical non-linear sys-
tem is solved by the Newton-Krylov-BDDC method. We choose as BDDC primal
constraints vertices (Π =V ) and vertices + edges (Π =V E). To start the electrical
excitation, the external stimulus is applied at the endocardial apical region, in four
points modeling an idealized Purkinje network.

Fig. 6 reports selected snapshots of transmembrane and extracellular potentials
on the deforming domain during the entire heartbeat. The results reported in Table 1
(averages) and Fig. 5 (time evolution) show a good scalability of both the electrical
and mechanical components of the parallel solver, with linear and non-linear itera-
tions remaining about constant, while the CPU times decrease when the number of
processors increases.
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TRANSMEMBRANE POTENTIAL SNAPSHOTS
t=5 ms t=50 ms t=100 ms t=150 ms

t=200 ms t=250 ms t=300 ms t=375 ms

EXTRACELLULAR POTENTIAL SNAPSHOTS
t=5 ms t=50 ms t=100 ms t=150 ms

t=200 ms t=250 ms t=300 ms t=375 ms

Fig. 6 Snapshots of transmembrane and extracellular potentials during a whole heartbeat. The
units in the colorbars are given in mV .


