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1 Summary
We review some important ideas in the design and analysis of robust overlap-
ping domain decomposition algorithms for high-contrast multiscale problems.
In recent years, there have been many contributions to the application of dif-
ferent domain decomposition methodologies to solve high-contrast multiscale
problems. We mention two- and multi-levels methods, additive and additive
average methods, iterative substructuring and non-overlapping methods and
many others. See [11]. Due to page limitation, we focus only on two-levels
overlapping methods developed by some of the authors that use a coarse-grid
for the construction of the second level. We also propose a domain decompo-
sition method with better performance in terms of the number of iterations.
The main novelty of our approaches is the construction of coarse spaces,
which are computed using spectral information of local bilinear forms. We
present several approaches to incorporate the spectral information into the
coarse problem in order to obtain minimal (locally constructed) coarse space
dimension. We show that using these coarse spaces, we can obtain a domain
decomposition preconditioner with the condition number independent of con-
trast and small scales. To minimize further the number of iterations until
convergence, we use this minimal dimensional coarse spaces in a construction
combining them with large overlap local problems that take advantage of the
possibility of localizing global fields orthogonal to the coarse space. We ob-
tain a condition number close to 1 for the new method. We discuss possible
drawbacks and further extensions.
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2 High-contrast problems. Introduction
The methods and algorithms, discussed in the paper, can be applied to various
PDEs, even though we will focus on Darcy flow equations. Given D ⊂ R2,
f : D → R , and g : ∂D → R, find u : D → R such that

∂

∂xi

(
κij

∂u

∂xj

)
= f

with a suitable boundary condition, for instance u = 0 on ∂D. The coefficient
κij(x) = κ(x)δij represents the permeability of the porous media D. We
focus on two-levels overlapping domain decomposition and use local spectral
information in constructing “minimal” dimensional coarse spaces (MDCS)
within this setting. After some review on constructing MDCS and their use in
overlapping domain decomposition preconditioners, we present an approach,
which uses MDCS to minimize the condition number to a condition number
closer to 1. This approach requires a large overlap (when comparted to coarse-
grid size) and, thus, is more efficient for small size coarse grids. We present
the numerical results and state our main theoretical result. We assume that
there exists κmin and κmax with 0 < κmin ≤ κ(x) ≤ κmax for all x ∈ D. The
coefficient κ has a multiscale structure (significant local variations of κ
occur across D at different scales). We also assume that the coefficient κ is
a high-contrast coefficient (the constrast is η = κmax/κmin). We assume that
η is large compared to the coarse-grid size.

It is well known that performance of numerical methods for high-contrast
multiscale problems depends on η and local variations of κ across D. For
classical finite element methods, the condition to obtain good approximation
results is that the finite element mesh has to be fine enough to resolve the
variations of the coefficient κ. Under these conditions, finite element approx-
imation leads to the solution of very large (sparse) ill-conditioned problems
(with the condition number scaling with h−2 and η). Therefore, the perfor-
mance of solvers depends on η and local variations of κ across D. This was
observed in several works, e.g., [8, 10, 1]1.

Let T h be a triangulation of the domain D, where h is the size of typical
element. We consider only the case of discretization by the classical finite
element method V = P1(T h) of piecewise (bi)linear functions. Other dis-
cretizations can also be considered. The application of the finite element dis-
cretization leads to the solution of a very large ill-conditioned system Ax = b,
where A is roughly of size h−2 and the condition number of A scales with η
and h−2. In general, the main goal is to obtain an efficient good approxima-
tion of solution u. The two main solution strategies are:
1. Choose h sufficiently small and implement an iterative method. It
is important to implement a preconditioner M−1 to solve M−1Au = M−1b.
Then, it is important to have the condition number of M−1A to be small
and bounded independently of physical parameters, e.g., η and the multi-
scale structure of κ.

1 Due to the page limitation, only a few references are cited throughout.
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2. Solve a smaller dimensional linear system (T H with H > h) so that
computations of solutions can be done efficiently2. This usually involves the
construction of a downscaling operator R0 (from the coarse-scale to fine-scale
v0 7→ v) and an upscaling operator (from fine-scale to coarse-scale, v 7→ v0)
(or similar operators). Using these operators, the linear system Au = b be-
comes a coarse linear system A0u0 = b0 so that R0u0 or functionals of it
can be computed. The main goal of this approach it to obtain a sub-grid
capturing such that ||u−R0u0|| is small.

The rest of the paper will focus on the design of overlapping domain de-
composition methods by constructing appropriate coarse spaces. First, we will
review existing results, which construct minimal dimensional coarse spaces,
such that the condition number of resulting preconditioner is independent of
η. These coarse spaces use local spectral problems to extract the information,
which cannot be localized. This information is related to high-conductivity
channels, which connect coarse-grid boundaries and it is important for the
performance of domain decomposition preconditioners and multiscale sim-
ulations. Next, using these and oversampling ideas, we present a “hybrid”
domain decomposition approach with a condition number close to 1 by ap-
propriately selecting the oversampling size (i.e., overlapping size). We state
our main result, discuss some limitations and show a numerical example. We
compare the results to some existing contrast-independent preconditioners.

3 Classical overlapping methods. Brief review
We start with a non-overlapping decomposition {Di}NS

i=1 of the domain D

and obtain an overlapping decomposition {D′i}
NS
i=1 by adding a layer of width

δ around each non-overlapping subdomain. Let Aj be the Dirichlet matrix
corresponding to the overlapping subdomain D′j . The one level method solves

M−11 A = M−11 b with M−11 =
∑NS

j=1Rj(Aj)
−1RTj and the operators RTj ,

j = 1, . . . , NS , being the restriction to overlapping subdomain D′j operator
and with the Rj being the extension by zero (outside D′j) operator. We

have the bound Cond(M−11 A) ≤ C (1 + 1/δH). For high-contrast multiscale
problems, it is known that C � η.

Next, we introduce a coarse space, that is, a subspace V0 ⊂ V of small di-
mension (when compared to the fine-grid finite element space V). We consider
A0 as the matrix form of the discretization of the equation related to sub-
space V0. For simplicity of the presentation, let A0 be the Galerkin projection
of A on the subspace V0. That is A0 = R0AR

T
0 , where R0 is a downscaling

operator that converts coarse-space coordinates into fine-grid space coordi-
nates. The two-levels preconditioner uses the coarse space and it is defined by
M−12 = R0A

−1
0 RT0 +

∑NS

j=1Rj(Aj)
−1RTj = R0A

−1
0 RT0 +M−11 . It is known that

Cond(M−1A) � η (1 +H/δ) . The classical two-levels method is robust with
respect to the number of subdomains but it is not robust with respect to η.

2 The coarse mesh does not necessarily resolve all the variations of κ.
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The condition number estimates use a Poincaré inequality and small overlap
trick; [13]. Without the small overlap trick Cond(M−1A) � η(1 +H2/δ2).

There were several works addressing the performance of classical domain
decomposition algorithms for high-contrast problems. Many of these works
considered simplified multiscale structures3, see e.g., [13] for some works by O.
Widlund and his collaborators. We also mention the works by Sarkis and his
collaborators, where they introduce the assumption of quasi-monotonicity [4].
Sarkis also introduced the idea of using “extra” or additional basis functions
as well as techniques that construct the coarse spaces using the overlapping
decomposition (and not related to a coarse mesh); [12]. Scheichl and Graham
[10] and Hou and Aarnes [1], started a systematic study of the performance of
classical overlaping domain decomposition methods for high-contrast prob-
lems. In their works, they used coarse spaces constructed using a coarse grid
and special basis functions from the family of multiscale finite element meth-
ods. These authors designed two-levels domain decomposition methods that
were robust (with respect to η) for special multiscale structures. None of the
results available in the literature (before the method in papers [8, 9] was in-
troduced) were robust for a coefficient not-aligned with the construction of
the coarse space (i.e., not aligned either with the non-overlapping decompo-
sion or the coarse mesh if any), i.e., the condition number of the resulting
preconditioner is independent of η for general multiscale coefficients.

4 Stable decomposition and eigenvalue problem. Review
A main tool in obtaining condition number bounds is the construction of a
stable decomposition of a global field. That is, if for all v ∈ V = P 1

0 (D, T h)

there exists a decomposition v = v0 +
∑NS

j=1 vj with v0 ∈ V0 and vj ∈ Vj =

P 1
0 (D′j , T h), j = 1, . . . , N , and

∫
D

κ|∇v0|2 +

NS∑
j=1

∫
D′j

κ|∇vj |2 ≤ C2
0

∫
D

κ|∇v|2

for C0 > 0. Then, cond(M−12 A) ≤ c(T h, T H)C2
0 . Existence of a suitable

coarse interpolation I0 : V → V0 = span{Φ} implies the stable decomposition
above. Usually such stable decomposition is constructed as follows.

For the coarse part of the stable decomposition, we introduce a partition
of unity {χi} subordinated to the coarse mesh (supp χi ⊂ ωi where ωi is the
coarse-block neighborhood of the coarse-node xi). We begin by restricting
the global field v to ωi. For each coarse node neighborhood ωi, we identify
local field that will contribute to the coarse space Iωi

0 v so that the coarse
space will be defined as V0 = Span{χiIωi

0 v}. In classical methods Iωi
0 v is the

average of v in ωi. Later we present some more general examples for Iωi
0 . We

3 These works usually assume some alignment between the coefficient heterogeneities and

the initial non-overlapping decomposition.
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assemble a coarse field as v0 = I0v =
∑NS

i=1 χi(I
ωi
0 v). Note that in each block

v − v0 =
∑
xi∈K χi(v − I

ωi
0 v).

For the local parts of the stable decomposition, we introduce a partition
of unity {ξj} subordinated to the non-overlapping decomposition (supp ξj ⊂
D′j). The local part of the stable decomposition is defined by vj = ξj(v− v0).
For instance, to bound the energy of vj , we have in each coarse-block K,∫

K

κ|∇vj |2 �
∫
K

κ|∇ξj

(∑
xi∈K

χi(v − Iωi
0 v)

)
|2

�
∑
i∈K

∫
K

κ(ξjχi)
2|∇(v − Iωi

0 v)|2 +
∑
xi∈K

∫
K

κ|∇(ξjχi)|2|v − Iωi
0 v|2.

Adding up over K, we obtain,∫
D′j

κ|∇vj |2 �
∑
xi∈D

′
j

∫
D′j

κ(ξjχi)
2|∇(v − Iωi

0 v)|2

+
∑
xi∈ωj

∫
D′j

κ|∇(ξjχi)|2|v − Iωi
0 v|2

and we would like to bound the last term by C
∫
D′j
κ|∇v|2.

For simplicity of our presentation, we consider the case when the coarse
elements coincide with the non-overlapping decomposition subdomains. That
is, D′j = ωj . In this case, we can replace ξ by χ and replace ∇(χ2) by ∇χ so

that we need to bound
∑
xi∈ωj

∫
ωj
κ|∇χi|2|v− Iωi

0 v|2. We refer to this design

as coarse-grid based.

Remark 1 (General case and overlapping decomposition based design). Sim-
ilar analysis holds in the case when there is no coarse-grid and the coarse
space is spanned by a partition of unity {ξj}. We can replace χ by ξ and
∇(ξ2) by ∇ξ. In general these two partitions are not related (see Sec. 4.1).

We now review the three main arguments to complete the required bound:
1) A Poincaré inequality. 2) L∞ estimates. 3) Eigenvalue problem.

1. A Poincaré inequality: Classical analysis uses a Poincaré inequality
to obtain the required bound above. That is, the inequality 1

H2

∫
ω

(v − v̄)2 ≤
C
∫
ω
|∇v|2 to obtain

∑
xi∈ωj

∫
ωj
κ|∇χi|2|v − Iωi

0 v|2 � 1
H2

∫
ωi
κ|v − Iωi

0 v|2 �
C
∫
ωi
κ|∇v|2. In this case, Iωi

0 v is the average of v on the subdomain. For
the case of high-contrast coefficients, C depends on η, in general. For quasi-
monotone coefficient it can be obtained that C is independent of the contrast
[4]. We also mention [8] for the case locally connected high-contrast
region. In this case Iωi

0 v is a weighted average. From the argument given in
[8], it was clear that when the high-contrast regions break across the domain,
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defining only one average was not enough to obtain contrast independent
constant in the Poincaré inequality.

2. L∞ estimates: Another idea is to use an L∞ estimate of the form∑
xi∈K

∫
ωi

κ|∇χi|2|v − Iωi
0 v|2 �

∑
xi∈K

||κ|∇χi|2||∞
∫
ωi

|v − Iωi
0 v|2.

The idea in [10, 1] was then to construct a partition of unity such that
||κ|∇χi|2||∞ is bounded independently of the contrast and then to use clas-
sical Poincaré inequality estimates. Instead of minimizing the L∞, one can
intuitively try to minimize

∫
K
κ|∇χi|2. This works well when the multiscale

structure of the coefficient is confined within the coarse blocks. For instance,
for a coefficient and coarse-grid as depicted in Figure 1 (left picture), we
have that a two-level domain decomposition method can be proven to be
robust with respect the value of the coefficient inside the inclusions. In fact,
the coarse space spanned by classical multiscale basis functions with linear
boundary conditions (−div(κ∇χi) = 0 in K and linear on each edge of ∂K)
is sufficient and the above proof works. Now consider the coefficient in Figure
1 (center picture). For such cases, the boundary condition of the basis func-
tions is important. In these cases, basis functions can be constructed such
that the above argument can be carried on. Here, we can use multiscale basis
functions with oscillatory boundary condition in its construction4.

Fig. 1 Examples o multiscale coefficients with interior high-contrast inclusions (left),
boundary inclusions (center) and long channels(right).

For the coefficient in Figure 1, right figure, the argument above using L∞

cannot be carried out unless we can work with larger support basis functions
(as large as to include the high-contrast channels of the coefficient). If the
support of the coarse basis function does not include the high-contrast region,
then ||κ|∇χi|2||∞ increases with the contrast leading to non-robust two-level
domain decomposition methods.

4 We can include constructions of boundary conditions using 1D solution of the problem
along the edges. Other choices include basis functions constructed using oversampling

regions, energy minimizing partition of unity (global), constructions using limited global

information (global), etc.
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3. Eigenvalue problem. We can write
∑
xj∈ωi

∫
ωi

κ|∇χj |2|v − Iωi
0 v|2 �

1

H2

∫
ωi

κ|(v − Iωi
0 v)|2 � C

∫
ωi

κ|∇v|2, where we need to justify the last in-

equality with constant independent of the contrast. The idea is then to con-

sider the Rayleigh quotient, Q(v) :=

∫
ωi
κ|∇v|2∫

ωi
κ|v|2

with v ∈ P 1(ωi). This

quotient is related to an eigenvalue problem and we can define Iωi
0 v to be

the projection on low modes of this quotient on ωi. The associated eigen-
problem is given by −div(k(x)∇ψ`) = λ`k(x)ψi in ωi with homogeneous
Neumann boundary condition for floating subdomains and a mixed homoge-
neous Neumann-Dirichlet condition for subdomains that touch the bound-
ary. It turns out that the low part of the spectrum can be written as
λ1 ≤ λ2 ≤ ... ≤ λL < λL+1 ≤ ... where λ1, ..., λL are small, asymptoti-
cally vanishing eigenvalues and λL can be bounded below independently of
the contrast. After identifying the local field Iωi

0 v, we then define the coarse
space as V0 = Span{Ihχiψωi

j } = Span{Φi}.
Eigenvalue problem with a multiscale partition of unity. Instead of

the argument presented earlier, we can include the gradient of the partition
of unity in the bounds (somehow similar to the ideas of L∞ bounds). We
then need the following chain of inequalities,∫
ωi

 ∑
xj∈ωi

κ|∇χj |2


︸ ︷︷ ︸
:= H−2κ̃

|v − Iωi
0 v|2 =

1

H2

∫
ωi

κ̃|v − Iωi
0 v)|2 �

∫
ωi

κ|∇v|2. Here

we have to consider Rayleigh quotient Qms(v) :=

∫
ωi
κ|∇v|2∫

ωi
κ̃|v|2 , v ∈ P 1(ωi) and

define Iωi
0 v as projection on low modes. Additional modes “complement” the

initial space spanned by the partition of unity used so that the resulting
coarse space leads to robust methods with minimal dimension coarse spaces;
[9].

If we consider the two-level method with the (multiscale) spectral coarse
space presented before, then

cond(M−1A) ≤ C(1 + (H/δ)2), (1)

where C is independent of the contrast if enough eigenfunctions in each node
neighborhood are selected for the construction of the coarse spaces. The con-
stant C and the resulting coarse-space dimension depend on the partition of
unity (initial coarse-grid representation) used.
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4.1 Abstract problem eigenvalue problems
We consider an abstract variational problem, where the global bilinear
form is obtained by assembling local bilinear forms. That is a(u, v) =∑
K aK(RKu,RKv), where aK(u, v) is a bilinear form acting on functions

with supports being the coarse block K. Define the subdomain bilinear form
aωi(u, v) =

∑
K⊂ωi

aK(u, v). We consider the abstract problem
a(u, v) = F (v) for all v ∈ V.

We introduce {χj}, a partition of unity subordinated to coarse-mesh blocks
and {ξi} a partition of unity subordinated to overlapping decomposition (not
necessarily related in this subsection). We also define the “Mass” bilinear
form (or energy of cut-off) mωi and the Rayleigh quotient Qabs by

mωi
(v, v) :=

∑
j∈ωi

a(ξiχjv, ξiχjv) and Qabs(v) :=
aωi

(v, v)

mωi
(v, v)

.

For the Darcy problem, we have mωi
(v, v) =

∑
j∈ωi

∫
ωi
κ|∇(ξiχjv)|2 �∫

ωi
κ̃|v|2. The same analysis can be done by replacing the partition of unity

functions by partition of degree of freedom (PDoF). Let {χχχj} be PDoF sub-
ordianted to coarse mesh neighborhood and {ξξξi} be PDoF subordianted to
overlapping decomposition. We define the cut-off bilinear form and quotient,

mωi
(v, v) :=

∑
j∈ωi

a(ξξξiχχχjv,ξξξiχχχjv) and Qabs2(v) :=
aωi

(v, v)

mωi(v, v)
.

The previous construction alows applying the same design recursively and
therefore to use the same ideas in a multilevel method. See [6, 7].

4.2 Generalized Multiscale Finite Element Method
(GMsFEM) eigenvalue problem

We can consider the Rayleigh quotients presented before only in a suit-
able subspace that allows a good approximation of low modes. We call
these subspace the snapshot spaces. Denote by Wi the snapshot space
corresponding to subdomain ωi, then we consider the Rayleigh quotient,

Qgm(v) :=
aωi

(v, v)

mωi(v, v)
with v ∈Wi. The snapshot space can be obtained

by dimension reduction techniques or similar computations. See [5, 2]. For
example, we can consider the following simple example. In each subdomain
ωi, i = 1, . . . , NS :
(1) Generate forcing terms f1, f2, . . . , fM randomly (

∫
ωi
f` = 0);

(2) Compute the local solutions −div(κ∇u`) = f` with homogeneous Neu-
mann boundary condition;
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(3) Generate Wi = span{u`} ∪ {1};
(4) Consider Qgm with Wi in 3 and compute important modes.
In Table 1, we see the results of using the local eigenvalue problem versus
using the GMsFEM eigenvalue problem.

η MS Full 8 rand. 15 rand

106 209 35 37 37
109 346 38 44 38

Table 1 PCG iterations for different values η. Here H = 1/10 with h = 1/200. We use

the GMsFEM eigevalue problem with Wi = Vi (full local fine-grid space), column 2; Wi

spanned by 8 random samples, column 4, and Wi spanned by 15 samples, column 5.

5 Constrained coarse spaces, large overlaps, and DD
In this section, we introduce a hybrid overlapping domain decomposition
preconditioner. We use the coarse spaces constructed in [3], which rely on
minimal dimensional coarse spaces as discussed above. First, we construct
local auxiliary basis functions. For each coarse-block K ∈ T H , we solve

the eigenvalue problem with Rayleigh quotient Qms(v) :=
∫
K
κ|∇v|2∫

K
κ̂|v|2 , where

κ̂ = κ
∑
j |∇χj |2. We assume λK1 ≤ λK2 ≤ . . . and define the local auxiliary

spaces,
Vaux(K) = span{φKj |1 ≤ j ≤ LK} and Vaux = ⊕KVaux(K).

Next, define a projection operator πK as the orthogonal projection on Vaux
with respect to the inner product

∫
K
κ̂uv and πD = ⊕KπK . Let K+ be

obtained by adding l layers of coarse elements to the coarse-block K. The
coarse-grid multiscale basis ψKj,ms ∈ V (K+) = P 1

0 (K+) solve∫
K+

κ∇ψKj,ms∇v +

∫
K+̂

κπD(ψKj,ms)πD(v) =

∫
K+

κ̂φKj πD(v), ∀v ∈ V (K+).

The coarse-grid multiscale space is defined as Vms = span{ψ(i)
j,ms}. We remark

that this space is used as the global coarse solver in our preconditioner. More
precisely, we define the (coarse solution) operator A−10,ms : H−1(κ̂, D) 7→ Vms
by,∫
D

κ∇A−10,ms(u)∇v = u(v) for all v ∈ Vms
where H−1(κ̂, D) is the space of bounded linear functionals on the weighted
sobolev space, H1(κ,D). In our preconditioner, we also need local solution
operators which are the operators A−1i,ms : H−1(κ̂, D) 7→ V (ω+

i ) defined by,∫
ω+

i

κ∇A−1i,ms(ui)∇v +

∫
ω+

i

κ̂π(A−1i (ui))πD(v) = ui(χiv) for all v ∈ V (ω+
i ),
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where ω+
i is obtained by enlarging ωi by k coarse-grid layers. Next, we can

define the preconditioner5 M by

M−1 = (I −A−10,msA)
(∑

iA
−1
i,ms

)
(I −AA−10,ms) +A−10,ms.

Note that this is a hybrid preconditioner as defined in [13]. We remark that
the constructions of the global coarse space and local solution operators are
motivated by [3], where a new multiscale space is developed and analyzed,
and it is shown to have a good convergence property independent of the
scales of the coefficient of the PDE. In addition, the size of the local problem
is dictated by an exponential decay property.

Using some estimates in [3], we can establish the following condition num-
ber estimate for cond(M−1A),

cond(M−1A) ≤
1 + C(1 + Λ−1)

1
2E

1
2 max{κ̃ 1

2 }
1− C(1 + Λ−1)

1
2E

1
2 max{κ̃ 1

2 }
(2)

where E = 3(1+Λ−1)
(

1+(2(1+Λ−
1
2 ))−1

)1−k
, C is a constant that depends

on the fine and coarse grid only and Λ = minK λ
K
LK+1. See [3] for the required

estimates of the coarse space. The analysis of the local solvers of the hybrid
method above will be presented elsewhere6. We see that the condition number
is close to 1 if sufficient number of basis functions is selected (i.e., Λ is not
close to zero)7. The overlap size usually involves several coarse-grid block
sizes and thus, the method is effective when the coarse-grid sizes are small.
We comment that taking the generous overlap δ = kH/2 in (1), we get the
bound C(1 + 4/k2) with C independent of the contrast. The estimate (2),
on the other hand, gives a bound close to 1 if the oversampling is sufficiently
large (e.g., the number of coarse-grid layers is related to log(η)), which is due
to the localization of global fields orthogonal to the coarse space.

Next, we present a numerical result and consider a problem with perme-
ability κ shown in Fig. 2. The fine-grid mesh size h and the coarse-grid mesh
size are considered as h = 1/200 and H = 1/20. In Table 2, we present the
number of iterations for using varying numbers of oversampling layers k, val-
ues of the contrast η and κM−1A − 1, which is the condition number of the
preconditioned matrix minus one. We observe that when k = 3, the condi-
tion number κM−1A is almost one, which confirms (2). In practice, one can
choose smaller local problems with a corresponding increase in the number
of iterations. This balance can be determined by practical needs.

We would like to emphasize that the proposed method has advantages if
the coarse mesh size is not very coarse. In this case, the oversampled coarse
regions are still sufficiently small and the coarse-grid solves can be relatively

5 Here we avoid restriction and extension operators for simplicity of notation.
6 We mention that the analysis does not use a stable decomposition so, in principle, a new

family of robust methods can be obtained.
7 Having a robust condition number close to 1 is important, especially in applications

where the elliptic equation needs to be solved many times.
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Fig. 2 Left: The coarse mesh used in the numerical experiments. We highlight a coarse

neighborhood and the results of adding 3 coarse-block layers to it. Right: The permeability

κ used in the experiments. The gray regions indicate high-permeability regions of order η
while the white regions indicates a low (order 1) permeability.

# basis per ω k # iter κM−1A − 1

3 3 3 5.33e-04
3 4 2 2.57e-05

3 5 2 1.25e-06

3 6 1 5.50e-08

# basis per ω η # iter κM−1A − 1

3 1e+3 3 5.68e-04
3 1e+4 3 5.33e-04
3 1e+5 3 6.74e-04

Table 2 Condition number κM−1A and number of iterations until convergence for the
PCG with H = 1/20, h = 1/200 and tol = 1e− 10. Left: different number of oversampling

layers k with η = 1e+ 4. Right: different values of the contrast η with k = 3.

expensive. Consequently, one wants to minimize the number of coarse-grid
solves in addition to local solves. In general, the proposed approach can be
used in a multi-level setup, in particular, at the finest levels, while at the
coarsest level, we can use original spectral basis functions proposed in [8].
This is object of future research.

6 Conclusions
In this paper, we give an overview of domain decomposition precondition-
ers for high-contrast multiscale problems. In particular, we review the design
of overlapping methods with an emphasis on the stable decomposition for
the analysis of the method. We emphasize the use of minimal dimensional
coarse spaces in order to construct optimal preconditioners with the condi-
tion number independent of physical scales (contrast and spatial scales). We
discuss various approaches in this direction. Furthermore, using these spaces
and oversampling ideas, we design a new preconditioner with a significant re-
duction in the number of iterations until convergence if oversampling regions
are large enough (several coarse-grid blocks). We note that when using only
minimal dimensional coarse spaces in additive Schwarz preconditioner with
standard overlap size, we obtain around 19 iterations. in the new method,
our main goal is to reduce even further the number of iterations due to large
coarse problem sizes. We obtained around 3 iterations until convergence for
the new approach. A main point of the new methodology is that after remov-
ing the channels we are able to localize the remaining multiscale information
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via oversampling. Another interesting aspect of the new approach is that the
bound can be obtained by estimating directly operator norms and do not
require a stable decomposition.

References

[1] J.E. Aarnes and T. Hou. Multiscale domain decomposition methods for
elliptic problems with high aspect ratios. Acta Math. Appl. Sin. Engl.
Ser., 18:63–76, 2002.

[2] V. M. Calo, Y. Efendiev, J. Galvis, and G. Li. Randomized oversampling
for generalized multiscale finite element methods. Multiscale Modeling
& Simulation, 14(1):482–501, 2016.

[3] E. T Chung, Y. Efendiev, and W. T. Leung. Constraint energy min-
imizing generalized multiscale finite element method. arXiv preprint
arXiv:1704.03193, 2017.

[4] M. Dryja, M. Sarkis, and O. Widlund. Multilevel Schwarz methods
for elliptic problems with discontinuous coefficients in three dimensions.
Numer. Math., 72(3):313–348, 1996.

[5] Y. Efendiev, J. Galvis, and T. Hou. Generalized multiscale finite element
methods. Journal of Computational Physics, 251:116–135, 2013.

[6] Y. Efendiev, J. Galvis, and P.S. Vassilevski. Multiscale Spectral
AMGe Solvers for High-Contrast Flow Problems. Preprint available at
http://isc.tamu.edu/resources/preprints/2012/2012-02.pdf.

[7] Y. Efendiev, J. Galvis, and P.S. Vassilevski. Spectral element agglomer-
ate algebraic multigrid methods for elliptic problems with high-contrast
coefficients. In Domain decomposition methods in science and engineer-
ing XIX, volume 78 of Lect. Notes Comput. Sci. Eng., pages 407–414.
Springer, Heidelberg, 2011.

[8] J. Galvis and Y. Efendiev. Domain decomposition preconditioners for
multiscale flows in high contrast media. SIAM J. Multiscale Modeling
and Simulation, 8:1461–1483, 2010.

[9] J. Galvis and Y. Efendiev. Domain decomposition preconditioners for
multiscale flows in high contrast media. Reduced dimensional coarse
spaces. SIAM J. Multiscale Modeling and Simulation, 8:1621–1644, 2010.

[10] I.G. Graham, P. O. Lechner, and R. Scheichl. Domain decomposition
for multiscale PDEs. Numerische Mathematik, 106(4):589–626, 2007.

[11] C. P. and C. R. Dohrmann. A unified framework for adaptive BDDC.
Electron. Trans. Numer. Anal., 46:273–336, 2017.

[12] M. Sarkis. Partition of unity coarse spaces: enhanced versions, discontin-
uous coefficients and applications to elasticity. In Domain decomposition
methods in science and engineering, pages 149–158. Natl. Auton. Univ.
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