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Abstract Adaptive, partial differential equation (PDE) based, mesh generators are
introduced. The mesh PDE is typically coupled to the physical PDE of interest and
one has to be careful not to introduce undue computational burden. Here we pro-
vide an overview of domain decomposition approaches to reduce this computational
overhead and provide a parallel solver for the coupled PDEs. A preview of a new
analysis for optimized Schwarz methods for the mesh generation problem using the
theory of M–functions is given. We conclude by introducing a two-grid method with
FAS correction for the grid generation problem.

1 Introduction

Automatically adaptive and possibly dynamic meshes are often introduced to solve
partial differential equations (PDEs) whose solutions evolve on disparate space and
time scales. In this paper we will review a class of PDE based mesh generators
in 1D and 2D – a PDE is formulated and its solution provides the mesh used to
approximate the solution of the physical PDE of interest. The physical PDE and
mesh PDE are coupled and are solved in a simultaneous or decoupled manner. The
hope is that the cost of computing the mesh, by solving the mesh PDE, should not
substantially increase the total computational burden and ideally the mesh solution
strategy should fit within the overall solution framework.

Meshes which automatically react to the solution of the physical PDE fall into
(at least) two broad categories: hp-refinement and r–refinement — PDE based mesh
generation which evolves a fixed number of mesh points with a fixed topology. The
choice of mesh generator is often predicated on the class of problem and experience
of the practitioner. The PDE based mesh generators, motivated by r-refinement, dis-
cussed here, can be designed to capture dynamical physics, Lagrangian behaviour,
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symmetries, conservation laws or self–similarity features of the physical solution,
and achieve global mesh regularity.

In this overview paper, we review parallel solution strategies for the mesh PDE
and the coupled system using domain decomposition (DD) and survey various
known theoretical results. The analysis of the optimized Schwarz method (OSM)
uses several classical tools including Peaceman-Rachford iterations and monotone
convergence using the theory of M-functions. We present previews of two exten-
sions of our previous work. We provide an analysis of OSM on two subdomains
using the theory of M–functions. We also introduce a coarse correction for the mesh
PDE to improve convergence of DD as the number of subdomains increases.

In this paper we provide a brief review of PDE based mesh generation (Section
2), an overview of, and theoretical convergence results for, Schwarz methods to
solve the mesh PDE (Section 3), a new strategy for the analysis of OSM and a new
coarse correction algorithm to solve the nonlinear mesh PDE (Section 4).

2 PDE based mesh generation

We consider PDEs whose numerical solution can benefit from automatically chosen
non-uniform meshes. r-refinement adapts an initial grid by relocating a fixed number
of mesh nodes. The mesh is determined by solving a mesh PDE simultaneously, or
in an iterative fashion, with the physical PDE. Suppose the PDE defined on the
physical domain x ∈ Ωp = [0,1] is difficult to solve in the physical co-ordinate x.
We compute a mesh transformation, x = x(ξ , t), so that solving the problem on
a uniform mesh ξi =

i
N , i = 0,1, . . . ,N, with moderate N, is sufficient. In one

dimension, such a mesh transformation can be constructed by the equidistribution
principle of de Boor [4]. Given some measure of the error in the physical solution,
M (called the mesh density function), we require∫ xi(t)

xi−1(t)
M(t, x̃,u)dx̃ =

1
N

∫ 1

0
M(t, x̃,u)dx̃,

which says that the error in the solution is equally distributed across all intervals.
If we assume some approximation to the physical solution u is given, then in the

steady case a continuous form of the mesh transformation can be found by solving
the nonlinear boundary value problem (BVP)

∂

∂ξ

{
M(x(ξ ))

∂

∂ξ
x(ξ )

}
= 0, subject to x(0) = 0 and x(1) = 1. (1)

The boundary conditions ensure mesh points at the boundaries of the physical do-

main. This is equivalent to minimizing the functional I[x] = 1
2
∫ 1

0

(
M(x) dx

dξ

)2
dξ .

Discretizing and solving gives the physical mesh locations directly, however the
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Euler-Lagrange (EL) equations are nonlinear, and a system of nonlinear algebraic
equations must be solved upon discretization.

Fig. 1 An example of an equidistributing grid for
a boundary layer function.

As an example, consider construct-
ing an equidistributing grid for the
function u(x) = (eλx− 1)/(eλ − 1) for
large λ . A uniform grid in the physi-
cal co-ordinate x would require a large
number of mesh points to resolve the
boundary layer near x = 1. Instead we
solve the nonlinear BVP above on a
uniform grid ξi =

i
N with M(x,u) ∼√

1+ |uxx|2 and we obtain the grid lo-
cations corresponding to the abscissa of
the green circles in Figure 1. The solu-
tion on a uniform grid (white squares)
is shown for comparison.

Alternatively, we can solve for the
the inverse transformation, ξ (x), as the solution of

d
dx

(
1

M(x)
dξ

dx

)
= 0, ξ (0) = 0, ξ (1) = 1,

or as the minimizer of the functional I[ξ ] = 1
2
∫ 1

0
1

M(x)

(
dξ

dx

)2
dx.

The EL equations are now linear, and discretizing on a uniform grid in x gives
a linear system for the now non-uniform points in the computational co-ordinate ξ .
We have to invert the transformation to find the required physical mesh locations. It
is easier to ensure well-posedness in higher dimensions (d ≥ 2) for this formulation.

In two dimensions, solution independent, but boundary fitted meshes, can be
found by generalizing the formulations above, but setting the mesh density to be the
identity function. The mesh transformation x= [x(ξ ,η),y(ξ ,η)] : Ωc→Ωp can be
found by minimizing

I[x,y] =
1
2

∫
Ωc

[(
∂x
∂ξ

)2

+

(
∂x
∂η

)2

+

(
∂y
∂ξ

)2

+

(
∂y
∂η

)2
]

dξ dη .

The EL eqns are
∂ 2x
∂ξ 2 +

∂ 2x
∂η2 = 0,

∂ 2y
∂ξ 2 +

∂ 2y
∂η2 = 0.

Solving the EL equations subject to boundary conditions, which ensure mesh points
on the boundary of Ωp, gives a boundary fitted co-ordinate system. Care is required,
however, as folded meshes may result if Ωp is concave (see the left of Figure 2
where Ωp is L-shaped and Ωc = [0,1]2).

If instead we solve for the inverse mesh transformation ξ = [ξ (x,y),η(x,y)] :
Ωp→Ωc by minimizing
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x,y : Ωc→Ωp ξ ,η : Ωp→Ωc

Fig. 2 PDE generated physical grid lines on L–shaped domains.

I[ξ ,η ] =
1
2

∫
Ωp

[(
∂ξ

∂x

)2

+

(
∂ξ

∂y

)2

+

(
∂η

∂x

)2

+

(
∂η

∂y

)2
]

dxdy,

or solving the EL equations

∂ 2ξ

∂x2 +
∂ 2ξ

∂y2 = 0,
∂ 2η

∂x2 +
∂ 2η

∂y2 = 0,

subject to appropriate boundary conditions, we obtain the mesh on the right of Fig-
ure 2. This is the equipotential mesh generation method of Crowley [7]. The phys-
ical grid lines are obtained as level curves ξ = C, η = K. This approach is more
robust – well-posed if the domain Ωc (which we get to choose) is convex, see [8].
But as mentioned previously it is more complicated to get the physical mesh.

Solution dependent meshes in higher dimensions can be constructed by speci-
fying a scalar mesh density function M = M(u,x) > 0, characterizing where addi-
tional mesh resolution is needed, and minimizing I[x] = 1

2
∫

Ωp
1
M ∑i(∇ξi)

T ∇ξidx.
The EL equations give the variable diffusion mesh generator of Winslow [26],
which requires the solution of the elliptic PDEs −∇ ·

( 1
M ∇ξi

)
= 0, i = 1,2, . . . ,d.

Fig. 3 A mesh generated using a Winslow gener-
ator on an L–shaped domain.

This gives an isotropic mesh generator.
Godunov and Prokopov [10], Thomp-
son et al. [25] and Anderson [2], for ex-
ample, add terms to the mesh PDEs to
better control the mesh distribution and
quality. As an example, in Figure 3, we
illustrate the mesh obtained by adapt-
ing a mesh for a solution with a rapid
transition at x = 3/4 and using an arc-
length based M.

If the physical solution has strong
anisotropic behaviour, corresponding
mesh adaptation is desired. This can
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be achieved by using a matrix–valued diffusion coefficient [6] and minimizing
I[x] = 1

2
∫

Ωp ∑i(∇ξi)
TM−1(∇ξi)dx whereM is a spd matrix.

These approaches can be extended to the time dependent situation, where x =
x(ξ, t) or ξ = ξ(x, t); we obtain moving mesh PDEs as the modified gradient flow
equations for the adaptation functionals.

In addition to the variational approach to derive the mesh PDEs mentioned above,
there are other PDE based approaches including harmonic maps, Monge–Ampère,
and geometric conservation laws, see [15] for a recent extensive overview.

3 Domain Decomposition approaches and analysis for nonlinear
mesh generation

We wish to design and analyze parallel approaches to solve the continuous (and
discrete forms) of the PDE mesh generators discussed above. Our research goal
is to systematically analyze DD based implementations to solve mesh PDEs and
coupled mesh–physical PDE systems.

3.1 Mesh/Physical PDE solution strategies

There are several approaches to introduce parallelism, by domain decomposition,
while solving PDEs which require or benefit from a PDE based mesh generator. As
an example we consider generating a time dependent mesh for a moving interior
layer problem. In [14] we apply DD in the physical co-ordinates by partitioning
Ωp, and use an adaptive, moving mesh solver in each physical domain. This is illus-
trated in the left of Figure 4 for two overlapping subdomains; the solver tracks a front
which develops and moves to the right. In each physical subdomain, the mesh points
react and follow the incoming front. In general, this approach needs hr–refinement
to predict the number of mesh points in each subdomain and could result in a severe
load balancing issue. Alternatively, one could fix the total number of mesh points
and apply DD in the fixed, typically uniform, computational co-ordinates, by par-
titioning Ωc. This gives rise to time dependent or moving subdomains, as viewed
in the physical co-ordinate system, as shown in the right of Figure 4 for a similar
moving front. The subdomains are shaded dark and light gray, with the overlap in
between.
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Fig. 4 DD in Ωp (left) and DD in Ωc (right).

In Figure 5 we illustrate a two dimensional mesh computed using a classical

Fig. 5 DD solution of two-dimensional mesh
generator

Schwarz iteration applied in Ωc, on two
overlapping subdomains (the overlap is
shown in green). DD is applied to the
two dimensional nonlinear mesh gener-
ator of [16]. Here the mesh is adapted
to the physical solution given by

u = tanh(R(
1

16
− (x− 1

2
)2− (y− 1

2
)2))

and

M =
a2∇u ·∇uT

1+b∇uT ∇u
+ I,

where a = 0.2 and b = 0.

3.2 PDE Based Mesh Generation using Schwarz methods

Here we will focus on the analysis of DD methods for the mesh PDE applied in
the computational co-ordinates, assuming an approximation to the solution of the
physical PDE is given. To generate the physical mesh locations directly, we are
interested in the solution of the nonlinear BVP (1).

A general parallel Schwarz approach would partition ξ ∈ Ωc into two subdo-
mains Ω1 = (0,β ) and Ω2 = (α,1) with α ≤ β . Let xn

1 and xn
2 solve
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d
dξ

(
M(xn

1)
dxn

1
dξ

)
= 0 on Ω1

xn
1(0) = 0

B1(xn
1(β )) = B1(xn−1

2 (β ))

d
dξ

(
M(xn

2)
dxn

2
dξ

)
= 0 on Ω2

B2(xn
2(α)) = B2(xn−1

1 (α))

xn
2(1) = 1,

where B1,2 are transmission operators between the subdomains.
If 0 < m̌≤M(x)≤ m̂ < ∞, we show in [9] the overlapping (β > α) parallel clas-

sical Schwarz iteration (B1,2 = I) converges for any initial guess x0
1(α), x0

2(β ), with
a contraction factor ρ := α

β

1−β

1−α
< 1 which improves with the size of the overlap. As

expected α < β is needed for convergence. A multidomain result is also given in [9]
with a contraction rate that deteriorates as the number of subdomains increases. This
result motivates the need for a coarse correction (see Section 4). Optimal Schwarz
methods using non-local transmission conditions (TCs) giving finite convergence
have been proposed and analyzed in [9, 12]. This comes at a cost as nonlocal TCs
are expensive!

We can recover a local algorithm, an OSM, on 2 subdomains by approxi-
mating the non-local TCs. We decompose ξ ∈ [0,1] into two non–overlapping
subdomains Ω1 = [0,α] and Ω2 = [α,1] and approximate the optimal TCs with
nonlinear Robin TCs. Using the notation above, we choose B1(·) = M(·)∂ξ (·) +
p(·) and B2(·) = M(·)∂ξ (·)− p(·), where p is a constant chosen to improve
the convergence rate. The OSM is equivalent to a nonlinear Peaceman–Rachford
interface iteration for the interface values

(pI−R2)xn+1
2 (α) = (pI−R1)xn

1(α),

(pI +R1)xn+1
1 (α) = (pI +R2)xn

2(α),
(2)

where the operators R1 and R2, given by R1(x)= 1
β

∫ x
0 M dx̃ and R2(x)= 1

1−β

∫ 1
x M dx̃,

are strictly monotonic (increasing and decreasing respectively). This type of itera-
tion has been analyzed by Kellogg and Caspar [17] and Ortega & Rheinboldt [18].
In [9] we show convergence for all p > 0 and the contraction rate can be minimized
by an appropriate choice of p.

An analysis of the classical Schwarz algorithm at the discrete level has been pro-
vided in [13] in the steady and time dependent cases using a θ method to discretize
in time. Using the notion of M–functions, which we will revisit in the next sec-
tion, we have shown convergence of nonlinear Jacobi and Gauss–Seidel (and block
versions) starting from super and sub solutions or from a uniform initial guess.

A dramatically different parallel technique for PDE mesh generation has been
considered by Haynes and Bihlo in [3]. Motivated by the possible lower accuracy
requirements for mesh generation we have investigated stochastic domain decom-
position (SDD) methods, proposed by Acebrón et al. [1], Spigler [24], and Peirano
and Talay [19]. These methods use the Feynmac-Kac formula (and Monte-Carlo) to
approximate the linear mesh generator in 2D/3D along artificial interfaces. These
interface solutions then provide boundary conditions for the deterministic solves
in the subdomains. No iteration is required, and the method is fully parallel. The
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method may be expensive in the relatively rare situation that the mesh is needed
with high-accuracy due to the slow convergence of the Monte Carlo evaluations.

4 Some Extensions

In this section, we provide previews of two extensions of the work described above.

4.1 Optimized Schwarz on Many Subdomains

Her we show an alternate approach to obtain a sufficient condition for convergence
of the OSM for the grid generation problem. This approach, which guarantees a
monotonic convergence result, is generalizable to an arbitrary number of subdo-
mains. Here we will give a flavour of the analysis on two subdomains. The general
result was studied by Sarker [22] and will be published elsewhere.

To demonstrate the difficulty of generalizing the OSM analysis to an arbitrary
number of subdomains, consider partitioning Ωc into three non–overlapping sub-
domains, [0,α1], [α1,α2] and [α2,1]. The analysis of the parallel OSM to generate
equidistributing grids requires us to study the interface iteration

pyn
1 +R1(xn

1,y
n
1) = pxn−1

2 +R2(xn−1
2 ,yn−1

2 ),

pxn
2−R2(xn

2,y
n
2) = pyn−1

1 −R1(xn−1
1 ,yn−1

1 ),

pyn
2 +R2(xn

2,y
n
2) = pxn−1

3 +R3(xn−1
3 ,yn−1

3 ),

pxn
3−R3(xn

3,y
n
3) = pyn−1

2 −R2(xn−1
2 ,yn−1

2 ),

(3)

where xn
1 = 0 and yn

3 = 1, Ri(xi,yi) =
1

αi−αi−1

∫ yi
xi

M(σ)dσ , and we define α0 ≡ 0 and
α3 ≡ 1.

The Peaceman–Rachford analysis relies on the monotonicity of the operators
which define the subdomain solutions. The difficulty in the analysis of (3) lies in the
coupled system of equations which arise from the middle subdomain. This coupled
system involves the operator pI +H. The operator H = (−R2,R2)

T is not mono-
tonic and hence the two subdomain analysis can not be repeated, at least not in a
straightforward way.

We pursue an alternate tack to obtain a sufficient condition for convergence. It is
well known that for linear systems, Ax = b, Gauss–Seidel and Jacobi will converge
for any initial vector if A is symmetric positive definite, or if A is an M–matrix (for
example if ai j ≤ 0, i 6= j, aii > 0 and A is strictly diagonally dominant). Analogous
results for nonlinear systems, Fx = b, where

Fx≡ ( f1(x1, . . . ,xn), f2(x1, . . . ,xn), . . . , fn(x1, . . . ,xn))
T and b=(b1,b2, . . . ,bn)

T ,
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were obtained by Schechter [23] who showed if F has a continuous, symmetric, and
uniformly positive definite (Frechet) derivative then nonlinear Gauss–Seidel con-
verges. The analogous M–matrix condition for convergence was extended to the
nonlinear case by Rheinboldt [21], with the introduction of M–functions. To be an
M–function requires F to have certain monotonicity, sign and diagonal dominance
properties. Rheinboldt gives the following sufficient condition to guarantee a non-
linear map F is an M–function.

Theorem 1. Let D be a convex and open subset of Rn. Assume F : D⊂ Rn→ Rn is
off-diagonally non-increasing, and that for any x∈D, the functions qi : Si⊂R→Rn

defined as

qi(τ) =
n

∑
j=1

f j(x+ τei), i = 1, . . . ,n, with Si = {τ : x+ τei ∈ D},

are strictly increasing. Then F is an M-function.

If F is an M–function and if Fx = b has a solution then it is unique. Moreoever,
Ortega and Rheinboldt [18] show that if F is a continuous, surjective M–function
then for any initial vector the nonlinear Jacobi and Gauss–Seidel processes will
converge to the unique solution. Results for the convergence of block versions of
these iterations exist [20]. This result generalizes the classical result of Varga for
M–matrices. We note that the parallel OSM (3) is a nonlinear block Jacobi iteration.

As an application of this theory we reconsider the two subdomain iteration (2).
The technique generalizes to an arbitrary number of subdomains. The iteration
(2) is well–posed. Existence and uniqueness for a given right hand side is trivial
since the functions are uniformly monotone and tend to ±∞ as x1,2 → ±∞. The
two subdomain interface solution would solve the system F = ( f1, f2)

T = 0 where
f1(x,y) = R1(x)−R2(y)+ px− py= 0 and f2(x,y) =−R2(y)+R1(x)+ py− px= 0.
In [22] Sarker obtains the following result.

Theorem 2. The function F = ( f1, f2)
T above is a surjective M–function if p >

max{1/α,1/(1−α)}m̂. Hence, the iteration (2) will converge to the unique solution
of F = 0 for any initial vector. The convergence will be monotone if we start from a
super or sub solution.

Proof. Clearly the function F is continuous. By direct calculation and the bounds on
M we have ∂ f1

∂x = 1
α

M(x)+ p > 0 and ∂ f2
∂y = 1

1−α
M(y)+ p > 0, for all p > 0. Hence

f1 and f2 are strictly increasing. Therefore, F is strictly diagonally increasing. Fur-
thermore, ∂ f1

∂y = 1
1−α

M(y)− p and ∂ f2
∂x = 1

α
M(x)− p. Hence, if p > { m̂

α
, m̂

1−α
} then

F is off-diagonally decreasing. A super (sub) solution, a vector (x̂, ŷ) satisfying
F(x̂, ŷ)≥ 0(≤ 0), can easily be constructed [22]. Monotone convergence from (x̂, ŷ)
follows from Theorem 13.5.2 of [18].

To show that F is an M–function, we now consider the functions qi(t) =
∑

2
j=1 f j(X + tei) where ei ∈ R2 is the i-th standard basis vector, for i = 1,2. The

functions q1(t) and q2(t) are given by q1(t) = f1(x+ t,y)+ f2(x+ t,y) = 2R1(x+
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t)− 2R2(y) and q2(t) = f1(x,y + t) + f2(x, ,y + t) = 2R1(x)− 2R2(y + t). Hence
dq1
dt = 2

α
M(t)> 0 and dq2

dt = 2
1−α

M(t)> 0 and we conclude that qi is strictly increas-
ing, for i = 1,2. Hence F is an M-function from Theorem 1. Surjectivity requires a
super and sub solution for Fx = b for a general b, see [22]. The convergence from
any initial vector then follows from Theorem 13.5.9 of [18].

Fig. 6 Convergence history of the interface iteration for small and large p values.

In Figure 6 we see monotonic convergence (consistent with the M–function the-
ory) if p is large enough and non-monotonic convergence for small p (consistent
with the Peaceman–Rachford theory).

4.2 A Coarse Correction

The convergence rate of Schwarz methods suffers as the number of subdomains
increases, see the left plot in Figure 7. A coarse correction is able to improve the sit-
uation dramatically by providing a global transfer of solution information. Here we
propose a coarse correction for the (nonlinear) PDE based mesh generation problem
by using a two-grid method with a full approximation scheme (FAS) correction ap-
plied in the computational co-ordinates. This work was completed by Grant in [11]
and will be published in full elsewhere.

FAS [5] provides a solution strategy for nonlinear PDEs. FAS restricts an ap-
proximation (and corresponding residual) of the PDE, obtained on a fine grid, to a
coarse grid. The error in the approximation is found by solving a coarse problem.
This error is then interpolated back to the fine grid and used to update the solution
approximation.

FAS may be combined with a DD approach in a very natural way. We perform
one classical Schwarz iteration to obtain approximate subdomain solutions on a
fine grid. FAS is then applied to update the subdomain solutions before proceeding
with the next Schwarz iteration. As shown in the right plot of Figure 7, the effect
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Fig. 7 Schwarz convergence results on multidomains and multidomains with a coarse correction.

is dramatic. This promising result for the nonlinear PDE mesh generator suggests
the possibility of a two-grid FAS DD approach for the coupled mesh and physical
PDEs.

5 Conclusions

PDE based mesh generators can be useful for problems which would benefit from
automatically adaptive spatial grids. It is possible to analyze DD approaches for
nonlinear mesh generators which directly give the physical mesh locations. We can
then incorporate DD, within the coupled physical PDE/mesh PDE solution frame-
works in a theoretically sound way.
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