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Abstract 
Mixed-dimensional	partial	differential	equations	arise	in	several	physical	applications,	wherein	parts	of	
the	domain	have	extreme	aspect	ratios.	In	this	case,	it	is	often	appealing	to	model	these	features	as	
lower-dimensional	manifolds	embedded	into	the	full	domain.	Examples	are	fractured	and	composite	
materials,	but	also	wells	(in	geological	applications),	plant	roots,	or	arteries	and	veins.		

In	this	manuscript,	we	survey	the	structure	of	mixed-dimensional	PDEs	in	the	context	where	the	sub-
manifolds	are	a	single	dimension	lower	than	the	full	domain,	including	the	important	aspect	of	
intersecting	sub-manifolds,	leading	to	a	hierarchy	of	successively	lower-dimensional	sub-manifolds.	We	
are	particularly	interested	in	partial	differential	equations	arising	from	conservation	laws.	Our	aim	is	to	
provide	an	introduction	to	such	problems,	including	the	mathematical	modeling,	differential	geometry,	
and	discretization.		

1. Introduction 
Partial	differential	equations	(PDE)	on	manifolds	are	a	standard	approach	to	model	on	high-aspect	
geometries.	This	is	familiar	in	the	setting	of	idealized	laboratory	experiments,	where	1D	and	2D	
representations	are	used	despite	the	fact	that	the	physical	world	is	3D.	Similarly,	it	is	common	to	
consider	lower-dimensional	models	in	applications	ranging	from	geophysical	applications.	Some	
overview	expositions	for	various	engineering	problems	can	be	found	in	[1,	2,	3].	

Throughout	this	paper	we	will	consider	the	ambient	domain	to	be	3D,	and	our	concern	is	when	models	
on	2D	submanifolds	are	either	coupled	to	the	surrounding	domain,	and/or	intersect	on	1D	and	0D	
submanifolds.	Such	models	are	common	in	porous	media,	where	the	submanifolds	may	represent	either	
fractures	(see	e.g.	[4])	or	thin	porous	strata	(see	[1]),	but	also	appear	in	materials	[3].	In	all	these	
examples,	elliptic	differential	equations	representing	physical	conservation	laws	are	applicable	on	all	
subdomains,	and	the	domains	of	different	dimensionality	are	coupled	via	discrete	jump	conditions.	
These	systems	form	what	we	will	consider	as	mixed-dimensional	elliptic	PDEs,	and	we	will	limit	the	
exposition	herein	to	this	case.		

In	order	to	establish	an	understanding	for	the	physical	setting,	we	will	in	section	2	present	a	short	
derivation	of	the	governing	equations	for	fractured	porous	media,	emphasizing	the	conservation	
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structure	and	modeling	assumptions.	This	derivation	will	lead	to	familiar	models	from	literature	(see	e.g.	
[4,	5,	6,	7]	and	references	therein).		

We	develop	a	unified	treatment	of	mixed-dimensional	differential	operators	on	submanifolds	of	various	
dimensionality,	using	the	setting	of	exterior	calculus,	and	thus	recast	the	physical	problem	in	the	sense	
of	differential	forms.	We	interpret	the	various	subdomains	as	an	imposed	structure	on	the	original	
domain,	and	provide	a	decomposition	of	differential	forms	onto	the	mixed-dimensional	structure.	By	
introducing	a	suitable	inner	product,	we	show	that	this	mixed-dimensional	space	is	a	Hilbert	space.	On	
this	decomposition	we	define	a	semi-discrete	exterior	derivative,	which	leads	to	a	de	Rham	complex	
with	the	same	co-homology	structure	as	the	original	domain.	It	is	interesting	to	note	that	the	differential	
operators	we	define	were	independently	considered	by	Licht	who	introduced	the	concept	of	discrete	
distributional	differential	forms	[8].	A	co-differential	operator	can	be	defined	via	the	inner	product,	and	
it	is	possible	to	calculate	an	explicit	expression	for	the	co-differential	operator.	This	allows	us	to	
establish	a	Helmholtz	decomposition	on	the	mixed-dimensional	geometry.	We	also	define	the	mixed-
dimensional	extensions	of	the	familiar	Sobolev	spaces.		

Having	surveyed	the	basic	ingredients	of	a	mixed-dimensional	calculus,	we	are	in	a	position	to	discuss	
elliptic	minimization	problems.	Indeed,	the	mixed	dimensional	minimization	problems	are	well-posed	
with	unique	solutions	based	on	standard	arguments,	and	we	also	state	the	corresponding	Euler	
equations	(variational	equations).	With	further	regularity	assumptions,	we	also	give	the	strong	form	of	
the	minimization	problems,	corresponding	to	conservation	laws	and	constitutive	laws	for	mixed-
dimensional	problems.		

This	paper	aims	to	provide	a	general	overview	and	roadmap	for	the	concepts	associated	with	
hierarchical	mixed-dimensional	partial	differential	equations,	more	complete	and	detailed	analysis	will	
necessarily	due	to	space	be	considered	in	subsequent	publications.		

2. Fractured porous media as a mixed-dimensional PDE 
This	section	gives	the	physical	rationale	for	mixed-dimensional	PDE.	As	the	section	is	meant	to	be	
motivational,	we	will	omit	technical	details	whenever	convenient.	We	will	return	to	these	details	in	the	
following	sections.		

	

Figure	1:	Example	geometry	of	two	intersecting	fractures	in	2D,	and	the	logical	representation	of	the	
intersection	after	mapping	to	a	local	coordinate	system.		
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We	consider	the	setting	of	a	domain	𝐷 ∈ ℝ!.	In	sections	3	and	onwards	we	will	consider	arbitrary	𝑛,	
however	in	this	section	we	will	for	simplicity	of	exposition	consider	only	𝑛 = 3.	We	consider	a	fractured	
media,	where	we	are	given	explicit	knowledge	of	the	fractures,	thus	we	consider	the	domains	Ω!! 	as	
given,	where	𝑖 ∈ 𝐼	is	an	index	and	𝑑 = 𝑑 𝑖 	represents	the	dimensionality	of	the	domain.	We	denote	by	
𝑖 ∈ 𝐼! 	the	subset	of	indexes	in	𝐼	for	which	𝑑 𝑖 = 𝑑.	In	particular,	intact	material	lies	in	domains	of	
𝑑 = 3,	while	𝑑 = 2	represents	fracture	segments,	and	𝑑 = 1	represents	intersections,	see	Figure	1.	For	
each	domain	Ω!! 	we	assign	an	orientation	based	on	𝑛 − 𝑑	outer	normal	vectors	𝝂!".	

In	order	to	specify	the	geometry	completely,	we	consider	the	index	sets	𝑆! 	and	𝑆! 	as	the	𝑑 + 1	
dimensional	and	𝑑 − 1	dimensional	neighbors	of	a	domain	𝑖.	Thus	for	𝑑 = 2,	the	set	𝑆! 	contains	the	
domain(s)	Ω!!	which	are	on	the	positive	(and	negative)	side	of	Ω!!.	On	the	other	hand,	the	set	𝑆! 	contains	
the	lines	that	form	(parts	of)	the	boundary	of	Ω!.	Additionally,	the	set	of	all	lower-dimensional	neighbors	
is	defined	as		𝔖! = 𝑆! , 𝑆!! ,… 	We	will	define	Ω! = Ω!!!∈!! 	as	all	subdomains	of	dimension	𝑑,	while	
similarlty	Ω = Ω!!

!!! 	is	the	full	mixed-dimensional	stratification.	Note	that	since	the	superscript	
indicating	dimension	is	redundant	when	the	particular	domain	is	given,	we	will	(depending	what	offers	
more	clarity)	use	Ω! = Ω!! 	interchangeably.	

For	steady-state	flows	in	porous	media,	the	fluid	satisfies	a	conservation	law,	which	for	intact	rock	and	
an	𝑛-dimensional	fluid	flux	vector	𝒖	takes	the	form		

∇ ⋅ 𝒖 = 𝜙	 	 	 on		 𝐷	 	 	 (2.1)	

We	wish	to	express	this	conservation	law	with	respect	to	our	geometric	structure.	To	this	end,	let	us	first	
define	the	mixed-dimensional	flux	𝖚,	which	is	simply	a	𝑑-dimensional	vector	field	on	each	Ω!!.	We	write	
𝖚 = 𝒖!! 	when	we	want	to	talk	about	specific	components	of	𝖚.	We	similarly	define	other	mixed-
dimensional	variables,	such	as	the	source-term	𝔣.		

Now	clearly,	for	𝑑 = 𝑛,	we	recover	equation	(2.1).	Now	consider	𝑑 = 𝑛 − 1,	and	a	fracture	Ω!	of	
variable	Lipschitz-continuous	aperture	(illustrated	for	𝑑(1) = 1	in	figure	2).		

	

Figure	2:	Example	of	local	geometry	for	derivation	of	mixed-dimensional	conservation	law.		

Here	the	dashed	lines	indicate	a	fracture	boundary,	the	solid	black	line	is	the	lower-dimensional	
representation,	and	the	solid	gray	line	indicates	the	region	of	integration,	𝜔,	of	length	ℓ	and	width	𝜖 𝑥 .	
Evaluating	the	conservation	law	over	𝜔	leads	to		

∇ ⋅ 𝒖
!

 𝑑𝑎 = 𝒖 ⋅ 𝝂
!"

 𝑑𝑠 = 𝜙
!
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where	𝝂	are	the	external	normal	vectors.	Since	our	integration	area	is	in	the	limiting	case	of	ℓ → 0	a	
quadrilateral,	we	split	the	last	integral	into	parts	where	𝝂	is	constant,		

𝒖 ⋅ 𝝂
!"

 𝑑𝑠 = 𝝂! ⋅ 𝒖!!
!!!

 𝑑𝑠 + 𝝂! ⋅ 𝒖!!
!!!

  𝑑𝑠 + 𝝉 ⋅ 𝒖
!!!

 𝑑𝑠 − 𝝉 ⋅ 𝒖
!!!

 𝑑𝑠	

where	 𝑙!, 𝑙! ∈ 𝑆! 	is	the	domain	on	the	“+”	and	“-”	side	of	Ω!,	respectively,	and	denote	the	Left	and	
Right	side	of	the	integration	boundary	by	subindexes.	The	notation	𝝉	is	the	tangential	vector	to	Ω!.	
Clearly,	letting	the	length	ℓ	be	infinitesimal,	the	last	two	terms	satisfy	

lim
ℓ→!

𝝉 ⋅ 𝒖!!!
 𝑑𝑠 − 𝝉 ⋅ 𝒖!!!

 𝑑𝑠

ℓ
= ∇!! ⋅ 𝝉 ⋅ 𝒖

!!!

!!!
 𝑑𝑠 = ∇!! ⋅ 𝜖𝒖! 	

where	∇!! ⋅	is	the	in-plane	divergence	and		

𝒖! ≡
!
!

𝝉 ⋅ 𝒖!!!
!!!

 𝑑𝑠	 	 	 	 	 (2.3)	

Considering	similarly	the	limits	of	ℓ → 0	for	the	two	first	terms,	we	obtain	for	the	positive	side		

lim
ℓ→!

𝝂! ⋅ ℓ!! 𝒖!!
! !!

!!!
 𝑑𝑠 = 1 +

𝑑
𝑑𝑥

∇!! 𝜕!𝜔
! !/!

𝝂! ⋅ 𝒖!!
! !! 	

Combining	the	above,	we	thus	have		

limℓ→! ℓ!! ∇ ⋅ 𝒖!  𝑑𝑎 = 𝜆!! + 𝜆!! + ∇!! ⋅ 𝜖𝒖! = 𝜆 ! + ∇!! ⋅ 𝜖𝒖! 	 	 (2.4)	

where	𝜆	is	defined	as		

𝜆!! = 1 + !
!"
∇!! 𝜕!𝜔

! !/!
𝝂! ⋅ 𝒖!!

! !! 	 	 	 	 	 (2.5)	

and	(using	the	analogous	definition	for	𝜆!!)	

𝜆 ! = − 𝜆!!∈!! 	 	 	 	 	 		 (2.6)	

Note	that	we	have	made	no	approximations	in	obtaining	equation	(2.4)	–	the	left-hand	side	is	an	exact	
expression	of	conservation.	The	model	approximations	appear	later	when	deriving	suitable	constitutive	
laws.	Nevertheless,	since	the	fractures	have	a	high	aspect	ratio	by	definition,	the	pre-factor	in	equation	
(2.5)	is	in	practice	often	approximated	by	identity,	for	which	(2.5)	simplifies	to		

𝜆! ≈ 𝝂± ⋅ 𝒖! 		 	 	 	 	 	 (2.7)	

The	derivation	above	(including	the	definition	in	equation	(2.4)),	generalizes	in	the	same	way	to	
intersection	lines	and	intersection	points,	thus	we	find	that	for	all	𝑑 < 𝑛	it	holds	that		

𝜖𝜆 ! + ∇!! ⋅ 𝜖!𝒖! = 𝜙! 	 	 	 	 	 (2.8)	

Here	the	hat	again	denotes	the	next	higher-dimensional	domains,	so	that	𝜖 = 𝜖!.	Since	𝑆! = Ø	for	𝑖 ∈ 𝐼!,		
equation	(2.8)	reduces	to	(2.1)	for	𝑑 = 𝑛,	and	thus	it	represents	the	mixed-dimensional	conservation	
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law	for	all	Ω!!.	In	this	more	general	setting,	𝜖	denotes	the	cross-sectional	width	(2D),	area	(1D)	and	
volume	(0D)	for	successively	lower-dimensional	intersections.		

For	porous	materials,	the	conservation	law	(2.1)	is	typically	closed	by	introducing	Darcy’s	law	as	a	
modeling	assumption,	stated	in	terms	of	a	potential	𝑝	on	the	domain	𝐷	as	

𝒖 = −𝐾∇𝑝	 	 	 	 	 	 (2.9)	

The	coefficient	𝐾	is	in	general	a	tensor.	Unlike	for	the	conservation	law,	it	is	not	possible	to	derive	an	
exact	expression	for	the	mixed-dimensional	constitutive	law,	but	by	making	some	(reasonable)	
assumptions	on	the	structure	of	the	solution,	it	is	usually	accepted	that	Darcy’s	law	is	inherited	for	each	
subdomain	(see	extended	discussion	in	[1],	but	also	[9]),	i.e.	

𝒖! = −𝐾!∇!!𝑝! 	 	 	 	 	 	 (2.10)	

To	close	the	model,	it	is	also	necessary	to	specify	an	additional	constraint,	where	the	two	most	common	
choices	are	that	either	the	potential	is	continuous	(see	discussion	in	[10])	

𝑝! = 𝑝!	 	 	 	 	 (2.11)	

or,	more	generally,	that	the	pressure	is	discontinuous	but	related	to	the	normal	flux	above	

𝜆! = −2𝐾!,±
!!!!±

!!
!

!!!
	 	 	 	 	 (2.12)		

The	model	equations	(2.8-2.12)	are	typical	of	those	used	in	practical	applications	[11].	However,	to	the	
authors’	knowledge,	our	work	is	the	first	time	they	are	explicitly	treated	as	a	mixed-dimensional	PDE	
(see	also	[12,	13]).		

3. Exterior calculus for mixed-dimensional geometries 
We	retain	the	same	geometry	as	in	the	previous	section,	but	continue	the	exposition	in	the	language	of	
exterior	calculus	(for	introductions,	see	[14,	15,	16]).	Throughout	the	section,	we	will	assume	that	all	
functions	are	sufficiently	smooth	for	the	derivatives	and	traces	to	be	meaningful.	We	also	point	out	that	
similar	structures	to	those	discussed	in	this	section	have	been	considered	previously	by	Licht	in	a	
different	context	[8].			

First,	we	note	that	the	components	of	the	mixed-dimensional	flux	discussed	in	section	2	all	correspond	
to	𝑑 − 1	forms,		𝒖!! ∈ Λ!!! Ω!! ,	while	the	components	of	pressure	all	correspond	to	𝑑-forms,	
𝑝!! ∈ Λ! Ω!! .	This	motivates	us	to	define	the	following	mixed-dimensional	𝑘-form		

𝔏! Ω = Λ!!(!!! ! ) Ω!!!∈! 	 	 	 	 	 (3.1)	

From	here	on,	it	is	always	assumed	that	𝔏! 	is	defined	over	Ω,	and	the	argument	is	suppressed.		

Moreover,	we	note	that	equation	(2.7)	is	(up	to	a	sign)	the	trace	with	respect	to	the	inclusion	map	of	the	
submanifold,	thus	for	a	mixed-dimensional	variable	𝔞 ∈ 𝔏! 	the	jump	operator	is	naturally	written	as		

𝕕𝔞 !
! = −1 !!!  𝜀 Ω!! , 𝜕!Ω!!!! Tr!!!  𝑎!!!!!∈!! 	 	 	 (3.2)	
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Here	we	have	exchanged	the	bracket	notation	of	equation	(2.5b),	which	is	common	in	applications,	with	
a	simpler	notation,	𝕕,		which	more	clearly	emphasizes	that	this	is	a	(discrete)	differential	operator,	in	the	
normal	direction(s)	with	respect	to	the	submanifold.	We	use	the	notation	𝜀 Ω!! , 𝜕!Ω!!!! 	to	indicate	the	
relative	orientation	(positive	or	negative)	of	the	arguments.	

We	obtain	a	mixed-dimensional	exterior	derivative,	which	we	denote	𝔡,	by	combining	the	jump	operator	
with	the	exterior	derivative	on	the	manifold,	such	that	for	𝔞 ∈ 𝔏! 	

𝔡𝔞 !
! = 𝑑𝑎!! + 𝕕𝔞 !

! 	 	 	 	 	 	 (3.3)	

This	expression	is	meaningful,	since	both	𝑑𝑎!! , 𝕕𝔞 !
! ∈ Λ!! !!! !! Ω!! ,	and	thus	clearly	𝔡𝔞 ∈ 𝔏!!!.	A	

straight-forward	calculation	shows	that	𝑑 𝕕𝔞 !
! = − 𝕕𝑑𝔞 !

!,	thus	for	all	𝔞		

𝔡𝔡𝔞 = 0	 	 	 	 	 	 (3.4)	

and	it	can	furthermore	be	shown	that	if	𝔞 = 0,	and	if	𝐷	is	contractible,	then	there	exists	𝔟 ∈ 𝔏!!!	such	
that	𝔞 = 𝔡𝔟.	Thus	the	mixed-dimensional	exterior	derivative	forms	a	de	Rham	complex,		

0 → ℝ
⊂
𝔏!

𝔡
𝔏!

𝔡
…

𝔡
𝔏! → 0	 	 	 	 	 (3.5)	

which	is	exact	(for	the	proof	of	this,	and	later	assertions,	please	confer	[13]).		

Due	to	the	jump	terms	in	the	differential	operators,	the	natural	inner	product	for	the	mixed-dimensional	
geometry	must	take	into	account	the	traces	on	boundaries,	and	thus	takes	the	form	for	𝔞, 𝔟 ∈ 𝔏! 	

𝔞, 𝔟 = 𝑎!! , 𝑏!! + Tr!!! !  𝑎!! ,Tr!!! !  𝑏!!  !∈𝔖!
!!∈! 	 	 	 (3.6)	

Note	that	Λ! Ω!! = Ø	whenever	𝑘 ∉ 0,𝑑 ,	thus	many	of	the	terms	in	(3.6)	are	void.	It	is	easy	to	verify	
that	equation	(3.6)	indeed	defines	an	inner	product,	and	thus	forms	the	norm	on	𝔏! 	

𝔞 = 𝔞, 𝔞 !/!	 	 	 	 	 	 (3.7)	

The	codifferential	𝔡∗:𝔏! → 𝔏!!!	is	defined	as	the	dual	of	the	exterior	derivative	with	respect	to	the	
inner	product,	such	that	for	𝔞 ∈ 𝔏! 	

𝔡∗𝔞, 𝔟 = 𝔞, 𝔡𝔟 + Tr 𝔟,Tr∗𝔞 !!	 for	all	𝔟 ∈ 𝔏!!!		 	 	 (3.8)	

It	follows	from	the	properties	of	inner	product	spaces	that	the	codifferential	also	forms	an	exact	de	
Rham	sequence.	Thus,	when	𝐷	is	contractible,	we	have	the	following	Helmholtz	decomposition:	For	all	
𝔞 ∈ 𝔏!,	there	exist	𝔞𝔡 ∈ 𝔏!!!	and		𝔞𝔡∗ ∈ 𝔏!!!	such	that		

𝔞 = 𝔡𝔞𝔡 + 𝔡∗𝔞𝔡∗ 		 	 	 	 	 (3.9)	

In	view	of	the	uncertainty	in	the	modeling	community	of	the	correct	constitutive	laws	for	mixed-
dimensional	problems	(as	per	the	discussion	of	equation	(2.11)	and	(2.12)),	it	is	of	great	practical	utility	
to	be	able	to	explicitly	calculate	the	co-differential,	since	this	will	have	the	structure	of	the	constitutive	
law.	Utilizing	equations	(3.6)	and	(3.8),	we	obtain		

𝔡∗𝔟 !
! = 𝑑∗𝑏!! 	 	 	 on	Ω!! 	 	 	 (3.10)	
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and		

Tr!!!!!  𝔡∗𝔟 !
! = 𝑑∗Tr!!!!!  𝑏!! + Tr!!!!!

∗  𝑏!! − −1 !!!𝜀 Ω!!!!, 𝜕!Ω!!  𝑏!!!!!∈!!
! 	 on	𝜕Ω!! 	

	 (3.11)	

We	close	this	section	by	noting	that	the	differential	operators	provide	the	basis	for	extending	Hilbert	
spaces	to	the	mixed-dimensional	setting.	In	particular,	we	are	interested	in	the	first	order	differential	
spaces,	and	therefore	the	norms	of	𝐻𝔏! 	and	𝐻∗𝔏! 	by		

𝔞 ! = 𝔞 + 𝔡𝔞 	 and		 𝔞 !∗ = 𝔞 + 𝔡∗𝔞 	 	 	 (3.12)	

from	which	we	obtain	the	spaces		

𝐻𝔏! ≔ 𝔞 ∈ 𝔏!   𝔞 ! < ∞}	 and	 𝐻∗𝔏! ≔ 𝔞 ∈ 𝔏!  𝔞 !∗ < ∞}	 	 (3.13)	

We	use	the	convention	that	a	circle	above	the	function	space	denotes	homogeneous	boundary	

conditions,	i.e.	𝐻
∘
𝔏!: 𝔞 ∈ 𝐻𝔏!  Tr!" 𝔞 = 0}	and	𝐻

∘
∗𝔏!: 𝔞 ∈ 𝐻∗𝔏!  Tr!"

∗  𝔞 = 0}.	The	spaces 𝐻𝔏! 	and	
𝐻∗𝔏! 	can	be	characterized	in	terms	of	product	spaces	of	functions	defined	on	domains	Ω!! 	and	its	
boundary	components	𝜕!Ω!!,	see	e.g.	[13,	12].		

Then,	the	Poincaré	inequality	holds	for	contractible	domains	in	the	mixed-dimensional	setting	for	either	

𝔞 ∈ 𝐻
∘
𝔏! ∩ 𝐻∗𝔏! 	or	𝔞 ∈ 𝐻𝔏! ∩ 𝐻

∘
∗𝔏!:		

𝔞 ≤ 𝐶! 𝔡𝔞 + 𝔡∗𝔞 	 	 	 	 	 (3.14)	

4. Mixed-dimensional elliptic PDEs 
Based	on	the	extension	of	the	exterior	derivative	and	its	dual	to	the	mixed-dimensional	setting,	we	are	
now	prepared	to	define	the	generalization	of	elliptic	PDEs.	We	start	by	considering	the	minimization	
problem	equivalent	to	the	Hodge	Laplacian	for	𝔞 ∈ 𝔏! 	

𝔞 = arg inf
𝔞∈!

∘
𝔏!∩!∗𝔏!

𝐽𝔎 𝔞! 	 	 	 	 	 (4.1)	

where	we	define	the	functional	by		

𝐽𝔎 𝔞! = !
!
𝔎𝔡∗𝔞!, 𝔡∗𝔞! + !

!
𝔎∗𝔡𝔞!, 𝔡𝔞! − 𝔣, 𝔞! 	 	 	 	 (4.2)	

The	material	coefficients		𝔎	are	spatially	variable	mappings	from	Λ!!(!!! ! ) Ω!! 	onto	itself,	defined	
independently	for	all	terms	in	the	inner	product	(3.6).	In	particular,	with	reference	to	section	2,	𝔎	
contains	all	instances	of	the	proportionality	constants	𝐾	appearing	in	(2.9),	(2.10)	and	(2.12).		

For	equation	(4.1)	to	be	well-posed	and	have	a	unique	solution,	we	need	 𝔎𝔡∗𝔞!, 𝔡∗𝔞! + 𝔎∗𝔡𝔞!, 𝔡𝔞! 	to	
be	continuous	and	coercive,	i.e.	we	need	to	impose	constraints	on	𝔎	and	𝔎∗.	Indeed,	by	reverting	to	the	
definition	of	the	inner	product,	we	define	the	ellipticity	constant	𝛼𝔎	as	the	minimum	eigenvalue	of	𝔎,	
and	similarly	for		𝛼𝔎∗.	We	require	both	these	constants	to	be	bounded	above	zero,	such	that		

𝔎𝔡∗𝔞!, 𝔡∗𝔞! + 𝔎∗𝔡𝔞!, 𝔡𝔞! ≥ min 𝛼𝔎,𝛼𝔎∗ 1 + 𝐶! ! 𝔞! ! 	
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The	minimum	of	equation	(4.1)	must	satisfy	the	Euler-Lagrange	equations,	thus	𝔞 ∈ 𝐻
∘
𝔏! ∩ 𝐻∗𝔏! 	

satisfies		

𝔎𝔡∗𝔞, 𝔡∗𝔞! + 𝔎∗𝔡𝔞, 𝔡𝔞! = 𝔣, 𝔞! 	 	 	 for	all	𝔞′ ∈ 𝐻
∘
𝔏! ∩ 𝐻∗𝔏! 		 	 (4.3)	

From	the	perspective	of	applications,	and	mirroring	the	distinctions	between	conservation	laws	and	
constitutive	laws	discussed	in	Section	2,	we	will	be	interested	in	the	mixed	formulation	of	equation	(4.3)	
obtained	by	introducing	the	variable	𝔟 = 𝔎𝔡∗𝔞,	where	𝔟	is	the	generalization	of	the	various	fluxes	𝒖.	
Then	we	may	either	consider	a	constrained	minimization	problem	derived	from	equation	(4.1),	or	for	
the	sake	of	brevity,	proceed	directly	to	the	Euler-Lagrange	formulation:	Find	 𝔞, 𝔟 ∈ 𝐻𝔏!×𝐻𝔏!!!	which	
satisfy	

𝔎!!𝔟, 𝔟! − 𝔞, 𝔡𝔟! = 0	 	 	 for	all	𝔟! ∈ 𝐻𝔏!!!	 	 	 (4.4)		

𝔡𝔟, 𝔞! + 𝔎∗𝔡𝔞, 𝔡𝔞! = 𝔣, 𝔞! 	 	 	 for	all	𝔞′ ∈ 𝐻𝔏! 		 	 	 (4.5)	

The	saddle-point	formulation	is	well-posed	subject	to	Babuška-Aziz	inf-sup	condition.	Due	to	the	
presence	of	a	Helmholtz	decomposition,	this	follows	by	standard	arguments.	From	equations	(4.4)	and	
(4.5)	we	deduce	the	strong	form	of	the	Hodge	Laplacian	on	mixed	form,	corresponding	to	the	equations		

𝔟 = 𝔎𝔡∗𝔞	 and	 𝔡𝔟 + 𝔡∗ 𝔎∗𝔡𝔞 = 𝔣	 	 	 (4.6)	

Of	the	various	formulations,	equations	(4.4)	and	(4.5)	are	particularly	appealing	from	the	perspective	of	
practical	computations,	as	they	do	not	require	the	coderivative.			

An	important	remark	is	that	the	relative	simplicity	of	the	well-posedness	analysis	for	the	mixed-
dimensional	equations	relies	on	the	definition	of	the	function	spaces	and	norms.	In	particular,	due	to	the	
definition	of	𝐻𝔏! 	via	the	mixed-dimensional	differential	𝔡,	the	norm	on	the	function	space	is	inherently	
also	mixed-dimensional,	and	cannot	simply	be	decomposed	into,	say	norms	on	the	function	spaces	
𝐻Λ!!(!!!) Ω!! .	For	this	reason,	analysis	in	terms	of	“local	norms”	becomes	significantly	more	involved	
[17,	18,	11].		

5. Finite-dimensional spaces 
In	order	to	exploit	the	mixed-dimensional	formulations	from	the	preceding	section,	and	in	particular	
equations	(4.4-4.5)	we	wish	to	consider	finite-dimensional	subspaces	of	𝐻𝔏!.	These	spaces	should	be	
constructed	to	inherit	the	de	Rham	structure	of	equation	(3.5),	and	with	bounded	projection	operators.	
A	natural	approach	is	to	consider	the	polynomial	finite	element	spaces	as	a	starting	point	[15].		

From	the	finite	element	exterior	calculus	(FEEC	-	[15]),	we	know	that	on	the	highest-dimensional	
domains	Ω!!,	we	may	choose	any	of	the	finite	element	de	Rham	sequences,	and	in	particular,	we	may	
consider	the	standard	spaces	from	applications	for	a	simplicial	tessellation	𝒯!! = 𝒯 Ω!! 	

𝒫!Λ! 𝒯!! 	 	 and		 	 𝒫!!Λ! 𝒯!! 	 	 	 (5.1)	

These	correspond	to	the	full	and	reduced	polynomial	spaces	of	order	𝑟,	respectively,	in	the	sense	of	
[15].	In	order	to	build	a	finite	element	de	Rham	sequence,	we	recall	that	(while	still	commuting	with	
bounded	projection	operators)	the	full	polynomial	spaces	reduce	order	
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𝒫!Λ! 𝒯!
!
𝒫!!!Λ!!! 𝒯! 	 	 	 	 	 (5.2)	

while	the	reduced	spaces	preserve	order	

𝒫!!Λ! 𝒯!
!
𝒫!!Λ!!! 𝒯! 	 	 	 	 	 (5.3)	

Thus,	any	of	these	combinations	of	spaces	are	acceptable	for	Ω!!,	and	consider	therefore	the	choice	as	
given,	and	denoted	by	Λ!

!,!	and	Λ!
!!!,!.			

For	𝑑 < 𝑛,	we	must	consider	not	only	the	continuous	differential	operator	𝑑,	but	also	the	discrete	jump	
operator	𝕕.	It	is	therefore	clear	that	for	i.e.	𝑑 = 𝑛 − 1,	we	must	consider	the	traces	of	the	finite	element	
spaces	of	higher	dimensions.	In	particular,	we	require	for	all	pairs	of	dimensions	0 ≤ 𝑒 < 𝑑 ≤ 𝑛,	

Tr!!!  Λ!! 𝒯! ⊆ Λ!
!!(!!!) 𝒯! 	 	 	 	 	 (5.4)	

In	contrast	to	the	continuous	differential	order,	the	discrete	differential	operator	preserves	order	for	
both	the	full	and	reduced	spaces,	since	[15]:	

Tr!!  𝒫!Λ! 𝒯! = 𝒫!Λ!!(!!!) 𝒯! 		 and		 Tr!!  𝒫!!Λ! 𝒯! = 𝒫!!Λ!!(!!!) 𝒯! 	 	 (5.5)	

We	now	define	the	polynomial	subspaces	𝒫𝔯𝔪𝔏! ∈ 𝐻𝔏! 	as		

𝒫𝔯𝔪𝔏! !
! = 𝒫

!!
!
!!
!
Λ!! !!! 𝒯!! 		 	 	 	 (5.6)	

where	the	multi-indexes	𝔯	and	𝔪	have	values	𝑟!! ∈ ℙ	and	𝑚!
! ∈ [ ,−],	respectively.	When	the	multi-

indexes	are	chosen	to	satisfy	both	(5.2-5.3)	as	well	as	(5.4),	we	obtain	the	discrete	de	Rham	complex		

0 → ℝ ↪ 𝒫𝔯𝔪𝔏!
𝔡
𝒫𝔯𝔪𝔏!

𝔡
…

𝔡
𝒫𝔯𝔪𝔏! → 0	 	 	 	 (5.7)	

Due	to	the	existence	of	stable	projections	for	all	finite	element	spaces	in	𝒫𝔯𝔪𝔏!,	the	discrete	de	Rham	
sequence	can	be	shown	to	be	exact,	thus	equations	(4.4)	and	(4.5)	have	stable	approximations.		

The	discrete	spaces	for	𝐻∗𝔏! 	must	satisfy	similar	properties.	Equations	(5.2-5.3)	hold	in	the	dual	sense,	
i.e.	we	write	𝒫!∗Λ! 𝒯!! = 𝒫!∗Λ! 𝒯!! =⋆ (𝒫!Λ!!! 𝒯!! ,	and	𝑑∗𝒫!∗Λ! 𝒯!! ⊂ 𝒫!!∗Λ!!! 𝒯!! ⊂
𝒫!!!∗ Λ!!! 𝒯!! .	Furthermore,	the	coderivative	𝔡∗	imposes	the	inverted	condition	Λ!

!!(!!!) 𝒯! ⊆
Tr!!!!!

∗  Λ!! 𝒯! 	on	boundaries.		

6. Implications in terms of classical calculus 
We	take	a	moment	to	untangle	the	notation	from	Sections	3-5	in	order	to	extract	insight	into	modeling	
and	discretization	for	the	original	physical	problem.		

Our	initial	task	is	to	express	simplest	form	of	the	mixed-dimensional	Hodge	Laplacian	in	terms	of	
conventional	notation.	We	limit	the	discussion	to	the	case	where	𝑘 = 𝑛,	the	function	spaces	𝐻∗𝔏!	and		
𝐻𝔏!!!		correspond	to	𝐻!	scalars	and	𝐻(𝑑𝑖𝑣)	vectors	on	each	dimension	𝑑 ≥ 1.	For	𝑑 = 0,	only	the	
scalars	are	defined.	Furthermore,	the	term	𝔡𝔞 ∈ 𝔏!!! = Ø,	and	thus	we	arrive	from	(4.6)	to	the	simpler	
problem		

𝔟 = 𝔎𝔡∗𝔞	 and	 𝔡𝔟 = 𝔣	 	 	 	 	 (6.1)	
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In	this	case,	the	exterior	derivative	is	the	negative	divergence	plus	jumps	for	each	domain,	while	the	
codifferential	is	the	gradient	parallel	to	each	domain,	and	the	difference	from	boundaries	perpendicular.	
As	such,	we	arrive	exactly	at	the	model	equations	of	Section	2,	with	the	second	choice	of	modeling	
assumption	(2.12).		

Turning	our	attention	to	the	finite	element	spaces,	the	lowest	order	spaces	for	discretizing	(4.4-4.5)	are	
the	reduced	spaces	obtained	by	choosing	𝑟!! = 1	and	𝑚!

! = −,	from	which	we	obtain	piecewise	
constants	for	𝔞	on	all	domains,	while	we	obtain	for	𝔟	the	Nedelec	1st	kind	(div)	–	Raviart-Thomas	–	
continuous	Lagrange	elements	for	domains	with	dimensions	𝑑 = 3,2,1,	respectively	–	all	of	the	lowest	
order	[12]	(this	method	will	be	referred	to	as	“Mixed	Reduced”	in	the	next	section).		Interestingly,	if	we	
choose	Nedelec	2nd	kind	(div)	elements	of	lowest	order	for	𝑑 = 3,	equations	(5.2)	and	(5.5)	implies	that	
we	should	increase	the	order	in	the	lower-dimensional	domains,	obtaining	dG	elements	of	order	𝑛 − 𝑑	
for	pressure,	with	BDM	(2nd	order)	–	continuous	Lagrange	(3rd	order)	for	fluxes	in	domains	with	𝑑 = 2,1.	
This	is	a	new	method	resulting	from	the	analysis	herein.	We	refer	to	this	method	as	“Mixed	Full”.			

The	mixed	finite	element	discretization	has	the	advantage	of	a	strong	conservation	principle,	and	may	
be	hybridized	to	obtain	a	cheaper	numerical	scheme	(see	[12]	for	a	direct	approach	in	this	context,	but	
also	[6,	5]	for	direct	constructions	in	the	finite	volume	setting).	Alternatively,	we	consider	discretizing	
the	Euler-variation	of	the	unconstrained	minimization	problem,	equations	(4.3).	The	natural	finite	
element	spaces	are	𝒫𝔯

𝔪,∗𝔏!,	with	𝑟!! = 1	and	𝔪	does	come	into	play,	corresponding	to	1st-order	
continuous	Lagrange	elements	in	all	dimensions.	From	an	engineering	perspective,	a	similar	formulation	
has	been	described	in	[19],	we	refer	to	this	method	as	“Primal”	in	the	next	section.		

	

7. Computational example 
In	order	to	illustrate	the	concepts	discussed	in	the	preceding	sections,	we	will	continue	to	consider	
𝑘 = 𝑛,	and	thus	fractured	porous	media	as	a	computational	example,	using	the	three	numerical	
methods	obtained	using	the	lowest-order	elements	of	the	families	described	in	the	previous	section.		

The	example	consists	of	the	unit	square	with	two	fractures	crossing	through	the	domain,	intersecting	at	
a	right	angle,	as	illustrated	in	figures	3.		We	impose	unit	permeability	in	the	surroundings,	set	the	normal	
and	tangential	permeability	of	the	fractures	to	100	and	assume	the	apertures	of	both	fractures	as	
𝜖 = 10!!.	The	boundary	conditions	are	chosen	as	zero	pressure	at	the	bottom	and	no-flux	conditions	on	
the	sides.	Moreover,	a	boundary	pressure	of	one	is	imposed	on	the	fracture	crossing	the	top	boundary.	
All	computations	were	performed	with	the	use	of	FEniCS	[21].		



Proceedings	of	24th International Conference on Domain Decomposition Methods,	Svalbard,		
Lecture	Notes	in	Computational	Science	and	Engineering	

11	
	

		 	

Figure	3:	(Left)	Domain	of	computation	and	associated	boundary	conditions.	The	pressure	boundary	
condition	is	only	imposed	on	the	fracture	pressure.	(Right)	Example	of	calculated	solution	(pressure).		

The	results	show	that	all	three	methods	are	stable	and	convergent	(Table	1).	The	relative	errors	and	𝐿!-
convergence	rates	after	four	consecutive	refinements	(identified	by	the	characteristic	grid	size	ℎ)	are	
given	in	the	following	table.	Here,	we	compare	the	results	to	a	fine-scale	solution,	obtained	after	a	fifth	
refinement.	In	this	example,	all	grids	are	matching.		

	 	 Primal	 Mixed	Reduced	 Mixed	Full	
Domain	 Grid	

size	
Pressure	 Pressure	 Flux	 Pressure	 Flux	

	 ℎ	 Error	 Rate	 Error	 Rate	 Error	 Rate	 Error	 Rate	 Error	 Rate	

Ω!	
2!!	
2!!	
2!!	

2.66e-03	
8.45e-04	
2.15e-04	

1.53	
1.65	
1.97	

2.21e-03	
7.18e-04	
1.87e-04	

1.52	
1.62	
1.94	

N/A	 N/A	
2.89e-04	
8.99e-05	
2.26e-05	

1.61	
1.69	
1.99	

N/A	 N/A	

Ω!	
2!!	
2!!	
2!!	

2.54e-03	
9.57e-04	
3.23e-04	

1.46	
1.41	
1.57	

1.89e-02	
9.22e-03	
4.12e-03	

1.01	
1.04	
1.16	

6.32e-03	
2.49e-03	
7.82e-04	

1.22	
1.34	
1.67	

3.01e-04	
8.99e-05	
2.37e-05	

1.71	
1.74	
1.92	

1.84e-03	
7.44e-04	
2.61e-04	

1.28	
1.30	
1.51	

Ω!	
2!!	
2!!	
2!!	

4.25e-03	
1.36e-03	
3.60e-04	

1.53	
1.64	
1.92	

1.89e-02	
9.17e-03	
4.08e-03	

1.02	
1.05	
1.17	

8.21e-02	
4.75e-02	
2.47e-02	

0.74	
0.79	
0.94	

1.86e-02	
9.11e-03	
4.07e-03	

1.01	
1.03	
1.16	

3.16e-02	
1.87e-02	
1.04e-02	

0.75	
0.75	
0.86	

	Table	1:	Convergence	rates	for	the	three	FE	and	MFEM	discussed	for	the	fracture	problem	in	Section	6.	
With	reference	to	Figure	3,	the	domain	Ω!	is	the	intersection	point,	Ω!	represents	the	four	fracture	
segments,	while	Ω!	is	the	remaining	ambient	geometry.		

Each	method	captures	the	intersection	pressure	well,	with	second	order	convergence	over	all.	In	the	
surroundings,	the	pressure	convergence	with	second	order	for	the	primal	formulation	and	first	order	for	
both	mixed	formulations,	as	expected.	The	Mixed	Full	method	has	higher-order	elements	in	the	fracture,	
and	this	is	reflected	in	higher	convergence	rates	for	both	pressure	and	flux.		

0.25 0.75 0.
5 

1 0 

𝑝 =  0 

𝑢 ⋅ 𝑛 = 0 𝑢 ⋅ 𝑛 = 0 

𝑝! =  1 
𝑢 ⋅ 𝑛 = 0 
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