
Balancing Domain Decomposition by
Constraints algorithms for curl-conforming
spaces of arbitrary order

Stefano Zampini, Panayot Vassilevski, Veselin Dobrev and Tzanio Kolev

Abstract We construct Balancing Domain Decomposition by Constraints methods
for the linear systems arising from arbitrary order, finite element discretizations
of the H(curl) model problem in three-dimensions. Numerical results confirm that
the proposed algorithm is quasi-optimal in the coarse-to-fine mesh ratio, and poly-
logarithmic in the polynomial order of the curl-conforming discretization space.
Additional numerical experiments, including higher-order geometries, upscaled fi-
nite elements, and adaptive coarse spaces, prove the robustness of our algorithm. A
scalable three-level extension is presented, and it is validated with large scale exper-
iments using up to 16384 subdomains and almost a billion of degrees of freedom.

1 Introduction

We construct Balancing Domain Decomposition by Constraints (BDDC) methods
[8] for the linear systems arising from three-dimensional, arbitrary order finite ele-
ment discretizations of the H(curl) bilinear form∫

Ω
α ∇×uuu ·∇× vvv+β uuu · vvv dx, α ≥ 0, β > 0. (1)

The proposed algorithm is quasi-optimal in the coarse-to-fine mesh ratio, and poly-
logarithmic in the polynomial order of the finite element discretization space, which
is confirmed by the numerical results in Section 3. Our results will be equally valid
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for the Finite Element Tearing and Interconnecting Dual-Primal (FETI-DP) method
[12], due to the well known duality between BDDC and FETI-DP [25].

The bilinear form (1) originates from implicit time-stepping schemes of the
quasi-static approximation of the Maxwell’s equations in the time domain [30].
The coefficient α is the reciprocal of the magnetic permeability, assumed con-
stant, whereas β is proportional to the conductivity of the medium; positive definite
anisotropic tensor conductivities can be handled as well. We only present results
for essential boundary conditions, but the generalization of the algorithms to natu-
ral boundary conditions is straightforward. Magnetostatic problems with β = 0 are
not covered in the present work, and they can be the subject of future research. The
same bilinear form appears in block preconditioning techniques for the frequency
domain case [13], mixed form of Brinkman (Darcy-Stokes) [39], and in incompress-
ible magneto-hydrodynamics [24].

The operator ∇× is the curl operator, defined, e.g., in [4]; the vector fields belong
to H(curl), the Sobolev space of square-integrable vector fields having a square-
integrable curl. The space H(curl) is often discretized using Nédélec elements [26];
those of lowest order use polynomials with continuous tangential components along
the edges of the elements. While most existing finite element codes for electromag-
netics use lowest order elements, those of higher order have shown to require fewer
degrees of freedom (dofs) for a fixed accuracy [31, 13].

The design of solvers for edge-element approximations of (1) poses significant
difficulties, since the kernel of the curl operator is non-trivial. An even greater
challenge for domain decomposition solvers consists in finding logarithmically sta-
ble decompositions in three dimensions, due to the strong coupling that exists be-
tween the dofs located on the subdomain edges and those lying on the subdomain
faces. Among non-overlapping methods, it is worth citing the wirebasket algorithms
[9, 18, 19], Neumann-Neumann [32], and one-level FETI [36, 28]. Overlapping
Schwarz methods have also been studied [33, 6].

The edge-element approximation of (1) has also received a lot of attention by the
multigrid community; Algebraic Multigrid (AMG) methods have been proposed in
[29], [5], and [17]. For geometric multigrid, see [14]. Robust and efficient multigrid
solvers can be obtained combining AMG and auxiliary space techniques, that re-
quire some extra information on the mesh connectivity and on the dofs [15, 16, 22].

In this work, we follow the approach proposed by Toselli for three-dimensional
FETI-DP with the lowest order Nédélec elements [34], where a stable decomposi-
tion is obtained by using a change of basis for the dofs located on the subdomain
edges. The same approach has been pursued recently by Dohrmann and Widlund
[11], who were able to improve Toselli’s results, and obtain sharp and quasi-optimal
condition number bounds (in the lowest order case) by using the deluxe variant
of BDDC [10]. This is critical for obtaining iteration counts and condition num-
ber estimates independent of the jumps of α and β aligned with the subdomain
interface. Finally, it has to be noted that BDDC deluxe algorithms for high-order
Nédélec elements in two dimensions, and for the lowest order Nédélec elements in
three dimensions have been already presented by the first author in [40, 42].
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In Section 2, we complement the results in [34, 11] by proposing an algorithm
for the change of basis that does not make any assumption on the mesh, the asso-
ciated discretization space, and the domain decomposition. Inspired by the success
of the auxiliary space technique [15], we construct the change of basis by using the
so-called discrete gradient, a linear operator that maps gradients of scalar functions
to their representation in the curl-conforming discretization space. Numerical ex-
periments, provided in Section 3, confirm that the robustness of our approach is not
confined to the more standard Nédélec elements, but it also extends to the case of
elements with curved boundaries, and to upscaled H(curl) spaces constructed by
preserving the de Rham sequence on agglomerations of fine scale elements. Due to
page restrictions, we refer the interested reader to [23] for a thorough description of
these kind of elements.

2 Design of the algorithm

2.1 Domain decomposition and discrete spaces

We follow the framework of iterative substructuring [37, Chapters 4-6], and we
decompose the domain Ω into N non-overlapping open Lipschitz subdomains Ωi,

Ω =
N∪

i=1

Ω i, Γ :=
∪
i ̸= j

∂Ω j ∩∂Ωi,

with Γ the interface between the subdomains. We further assume that Ω and each Ωi
are simply connected (does not contain any holes). We denote by Vh(Ω) and Sh(Ω)
the curl- and H1- conforming finite element spaces of polynomial order p, respec-
tively, together with their subdomain counterparts V(i)

h :=Vh(Ωi) and S(i)h := Sh(Ωi).
We denote by W the global finite element space in which we seek the solution of
problems coming from the bilinear form (1), and by W(i) the corresponding sub-
domain spaces. We note that Vh coincides with W when using Nédélec elements;
however, our algorithm covers also the case Vh ⊂ W, as it is the case of upscaled
finite elements that preserve the de Rham sequence [23], or of three-level extensions
of the BDDC algorithm for (1) (see Section 2.4).

The success of the algorithm depends on the analysis of the interface, that leads
to the detection of equivalence classes such as the subdomain faces, i.e. sets of con-
nected dofs shared by the same two subdomains, and the subdomain edges, i.e. sets
of connected dofs shared by 3 or more subdomains. We assume that a subdivision of
Γ in face and edge disjoint subsets has been found; moreover, we assume that each
subdomain edge has exactly two endpoints, and none of the edge endpoints lie in the
interior of another subdomain edge. As noted in [11, Section 5], this guarantees that
the change of basis (defined in the next section) leads to a new well-posed problem.
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2.2 BDDC method

The recipe for the construction of a BDDC preconditioner consists in the design of
a partially continuous interface space W̃Γ , the direct sum of a continuous primal
space WΠ and a discontinuous dual space W∆ , and in the choice of an averaging
operator ED for the partially continuous dofs, which drives the analysis and the
design of robust primal spaces [25].

Following Toselli [34], we characterize the primal space WΠ by using two primal
constraints per subdomain edge E as given by

s0,E(www) := 1
|E|

∫
E www · tttE ds, www ∈ Vh, (2)

s1,E(www) := 1
|E|

∫
E swww · tttE ds, www ∈ Vh, (3)

where tttE|e := ttte, with ttte the vector oriented in the direction of a fine mesh edge e
belonging to E. For implementation details of the primal space, see Remark 3.

2.3 Change of basis

As in [34, 11], we consider a change of basis for the dofs of Vh that are located on
each subdomain edge E, and we split a finite element function www into a constant
component ΦΦΦE and gradient components ∇ϕ jE associated with the nodal dofs of Sh
lying in the interior of the edge, i.e.

www|E = s0,E(www)ΦΦΦE +
nE−1

∑
j=1

w jE(www)∇ϕ jE +wwwEc,

with nE the number of Vh dofs on E, and wwwEc the finite element function (if any)
identified by the dofs of W that lie on E and are not in Vh.

The change of basis in BDDC methods is performed by projection as T T AT ,
where the columns of T represents the new basis in terms of the old dofs [21], and
A results from the discretization of the bilinear form (1). The structure of T for
three-dimensional curl-conforming spaces is as follows [34, 11, 40, 42]

T =


IC 0 0 . . . 0
0 IF TFE1 . . . TFEn

0 0 TE1E1 0 0

0 0 0
. . . 0

0 0 0 0 TEnEn

 ,

where IC and IF are identity matrices of appropriate sizes. Here, F denotes the set
of dofs of Vh that belong to the subdomain faces, and C denotes all the remaining
dofs of W that do not belong to F or to any of the subdomain edge dofs of Vh.
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Differently from a conventional change of basis in BDDC, the one used for curl-
conforming spaces is not local to the subdomain edges, as it also involves, through
the sparse off-diagonal blocks TFEi , the dofs of F that are located on the fine mesh
edges sharing a mesh vertex with any of the Ei.

In our code, we use T T AT as iteration matrix; however, in order to preserve a one-
to-one correspondence between old and new subdomain dofs, we construct the pre-
conditioner using the subdomain matrices Ã(i) := R(i)T T R(i)T A(i)R(i)T R(i)T , where
A(i) is the discretization matrix on W(i), and R(i) is the usual restriction operator
from W to W(i). Note that T T AT = ∑N

i=1(T
T R(i)T )A(i)(R(i)T ) ̸= ∑N

i=1 R(i)T Ã(i)R(i).
The functions ΦΦΦE and ∇ϕ jE are explicitly constructed in [34, 11]; however, the

procedures used therein possess strong limitations, as they need to access the under-
lying mesh and to understand how the edge dofs are related with the orientation of
the fine mesh edges; moreover, they are limited to the lowest order Nédélec space
only. In this work, we propose a construction of the change of basis by using the
information contained in the discrete gradient operator G, the matrix representation
of the mapping ϕ ∈ Sh → ∇ϕ ∈ Vh, that is also used by the auxiliary space method,
see [15] and [22, Section 4]. We note that, when using Nédélec elements, there are
p dofs associated to each fine mesh edge, and that the number of nonzeros per row
of G is p+ 1, with p the polynomial order of the finite element space used for Sh.
For upscaled elements, the number pe of dofs of Vh associated to each fine mesh
edge e may vary from one fine mesh edge to another, but the number of nonzeros of
the corresponding rows of G is always pe +1.

For each subdomain edge E, we construct the corresponding column block of T
as follows. We first extract the matrix GEE̊ , where E̊ is the set of dofs of Sh that is
associated with those basis functions being nonzero on the nodes in the interior of
E; note that GEE̊ has full-column rank, and that nE = nE̊ +1. We then compute the
representation of the subdomain edge constant function ΦΦΦE in Vh as the eigenvector
corresponding to the nonzero eigenvalue of the orthogonal complement of GEE̊ , i.e.
I−GEE̊(G

T
EE̊

GEE̊)
−1GT

EE̊
. The dofs defining ∇ϕ jE are simply given by the columns

of G that correspond to E̊. The change of basis block relative to E is[
TFE
TEE

]
:=

[
0 GEcE̊

ΦΦΦE GEE̊

]
,

with E ∪Ec the set of row indices corresponding to the nonzero values in the E̊
columns.

Remark 1. The construction of our change of basis just needs sub-matrix extraction
operations and the computation of the orthogonal complement of GEE̊ , which can
be obtained by doing a singular value decomposition of the same matrix, of size
nE × nE̊ : note that nE is usually very small, on the order of ten, and we can thus
efficiently use algorithms for dense matrix storages. After having changed the basis,
the sparsity pattern of the local matrices is not spoiled, and optimal nested dissection
orderings for the direct solves of the subdomain problems can be found.
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Remark 2. For the lowest order Nédélec elements, G has two nonzeros per row;
the values are +1 or −1 depending on the orientation of the element edge. When
hexahedral meshes and box subdomains are considered, our change of basis is the
same as that proposed by Toselli [34].

Remark 3. The constraint given in eq. (2) is obtained by selecting the dofs corre-
sponding to each ΦΦΦE as primal; arithmetic averages for the remaining dofs on the
subdomain edges are used to impose the constraint (3), see also [11, Section 2.2].

Remark 4. Our algorithm does not require the user to input the mesh connectivity.
From G, we can infer the dofs connectivity which will lead to a well-posed change of
basis, since the sparsity pattern of the matrices GT G and GGT carry the information
of a vertex-to-vertex, and an edge-to-edge mesh connectivity graph, respectively.

2.4 Three-level extension of the algorithm

Three-level extensions of the algorithm [38] are crucial for large scale simulations,
as the solution of the coarse problem in BDDC (as with all two-level methods) can
become a bottleneck when many subdomains are considered, see [41, Section 3.6]
and the references therein for additional details. The minimal coarse space presented
in Section 2.2 can be naturally split in two disjoint subsets; the one arising from
the constraints given in eq. (2) resembles a lowest-order Nédélec space defined on
the coarse element (i.e., the subdomain). The rest of the coarse dofs are instead
generated by gradients of scalar functions, and a scalable coarse space can be thus
obtained by considering arithmetic averages defined on the coarse subdomain edges.

We thus propose an approximate coarse discrete gradient to obtain a stable de-
composition of the coarse dofs generated by eq. (2), obtained by projecting the fine
discrete gradient G on the ΦΦΦE functions. The resulting coarse discrete gradient will
have two nonzero entries per row, with entries given by GT

E∂EΦΦΦE , with ∂E the in-
dices of the basis functions of Sh associated with the two endpoints of E. We then
construct the primal space of the coarse problem as outlined in the previous sec-
tions. Numerical results confirm that such an approach provides an optimal coarse
space for the second level of the BDDC operator, and leads to scalable three-level
algorithms in terms of number of iterations. We note that multilevel extensions, with
an arbitrary number of levels, can be obtained by recursion arguments.

3 Numerical results

Here we present numerical experiments that confirm the robustness of our algo-
rithm; we test the quasi-optimality, the dependence on the polynomial order of the
curl-conforming spaces, and the proposed three-levels extension. In addition, we test
the case of elements with curved boundaries. We also provide results for adaptive
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enrichment (see [41] and the references therein) of the minimal coarse space given
by eqs. (2) and (3) in the presence of heterogeneous coefficients. As quality met-
rics, we consider the experimental condition number (denoted by κ) and the num-
ber of conjugate gradient iterations needed to reduce by eight orders of magnitude
the initial residual norm, starting from zero initial guess and randomly distributed
right-hand side. Unless otherwise stated, the primal space consists of two dofs per
subdomain edge as described in Section 2.2, α = β = 1, and Ω = [0,1]3.

All the numerical results have been obtained using the discretization packages
MFEM [1] (for Nédélec elements and high-order geometries) and ParElag [2] (for
upscaled finite elements) developed at Lawrence Livermore National Laboratory,
and by using the BDDC implementation developed by the first author in the PETSc
library [3, 41]. Irregular decompositions of tetrahedral (TET) or hexahedral (HEX)
meshes obtained from the graph partitioner ParMETIS [20] are always considered;
deluxe scaling is always used to accommodate for spurious eigenvalues of the pre-
conditioned operator arising from possibly jagged subdomain interfaces [7].

In Figure 1 we report the results of a quasi-optimality test, performed by consid-
ering successive uniform refinements of a mesh decomposed in 40 subdomains, and
by using Nédélec elements of order p = 1 (lowest-order) and p = 2. The domain
decomposition is kept fixed, in order to fix the value of the maximum subdomain di-
ameter H. The results show a (1+ logH/h)2 dependence in all the cases considered.
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TET, p=1
TET, p=2
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Fig. 1: Quasi-optimality test. κ (left) and number of iterations (right) for successive uniform refine-
ments for Nédélec elements on hexahedra (HEX) and tetrahedra (TET); polynomial orders p = 1
and p = 2.

We then fix the mesh and the domain decomposition (i.e. H/h), and we increase
the polynomial order of the discretization spaces. Figure 2 contains results for the
Nédélec elements, going from p = 1 to p = 6; we note that we obtained the same
results when considering statically condensed spaces (relevant when p > 1 for the
HEX and p > 2 for the TET case, data not shown). In the same spirit, Figure 3
contains the results for upscaled curl-conforming elements, obtained by considering
two successive levels of structured aggregation (UP1 and UP2 respectively), and
with polynomial orders ranging from p = 1 to p = 4; results for Nédélec elements
(NED) on the same mesh are given for comparison. In both cases, Nédélec or up-
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scaled elements, our algorithm shows to be robust with the higher degree of the
polynomial space, and it leads to a poly-logarithmic convergence rate. The results
of this test, together with those related with the quasi-optimality, suggest a condition
number bound of the type (1+ log(p2H/h))2 for the preconditioned operator.

Fig. 2: Polynomial order test. κ and number of iterations as a function of the polynomial order for
Nédélec elements on hexahedra (HEX) and tetrahedra (TET).
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Fig. 3: Polynomial order test. κ and number of iterations as a function of the polynomial order
for Nédélec elements (NED), and upscaled curl-conforming elements. UP1 one level of element
aggregation with structured coarsening, UP2 two levels.
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Further numerical evidence for the robustness of our approach is given by the
results shown in Table 1, where condition numbers and number of iterations are
reported by testing against third-order geometries, in combination with Nédélec el-
ements of order p = 1,2. The meshes used to run the tests have been obtained from
2 levels of uniform refinements of those shown in Figure 4, and they are available
with the MFEM source code as escher-p3.mesh and fichera-q3.mesh.
The number of subdomains considered is 40.
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Fig. 4: Third-order meshes used for
the results in Table 1.

Table 1: High-order geometry test. Size of linear systems
(dofs), condition number, (κ) and number of iterations (it)
for Nédélec elements of degree 1 and 2 with the meshes
shown in Figure 4.

TET, p = 1 , TET, p = 2
dofs 27K 144K

κ 11.8 23.7
it 26 37

HEX, p = 1 , TET, p = 2
dofs 12K 92K

κ 5.7 8.4
it 21 26

We next consider the case of heterogeneous coefficients; we fix α = 1, and vary
the distribution of β as pictured in Figure 5. For this test, we adaptively enrich the
minimal coarse space by means of the adaptive selection of constraints algorithm
described in [41, 40]; results have been obtained using either tetrahedral or hexahe-
dral meshes, 40 subdomains, and with Nédélec elements of order p = 1 and p = 2.
The number of dofs in the tetrahedral case is approximately 200 thousand (K) for
p = 1, and 1.2 million (M) for p = 2; in the hexahedral case, the number of dofs
are 330K and 3.5M, respectively. Results are reported in Table 2, together with the
adaptive threshold used (λ ), and the ratio between the number of generated coarse
dofs and the number of interface dofs (C/Γ ).

Fig. 5: Heterogeneous β distribu-
tion used for testing adaptive coarse
spaces.

Table 2: Adaptive coarse spaces. Condition number (κ),
number of iterations (it) and coarse-to-fine ratio (C/Γ ) for
different eigenvalue thresholds λ .

TET, p = 1 TET, p = 2
λ - 10 5 2.5
κ 150.2 7.5 4.6 2.2
it 54 15 12 8

C/Γ 0.01 0.05 0.06 0.09

λ - 10 5 2.5
κ 413.3 5.9 4.3 2.3
it 113 15 12 9

C/Γ 0.01 0.02 0.02 0.04

HEX, p = 1 HEX, p = 2
λ - 10 5 2.5
κ 203.4 5.8 3.2 2.0
it 62 13 10 7

C/Γ 0.02 0.05 0.06 0.09

λ - 10 5 2.5
κ 330.8 5.1 3.4 2.0
it 97 14 11 8

C/Γ 0.01 0.01 0.02 0.04

Without adaptive coarse spaces, the algorithm performs poorly (as expected)
since the jumps in β are not aligned with the (irregular) subdomain boundaries;
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on the other hand, the number of iterations and the condition numbers are consis-
tently (and constantly) reduced when considering adaptive coarse spaces associ-
ated with smaller and smaller tolerances λ . The ratio of coarse-to-fine dofs remain
bounded for all the tolerance values considered; interestingly, the coarsening pro-
cedure is more effective for p = 2 than for p = 1, as also observed experimentally
with Raviart-Thomas vector fields [27, 43].

We close this section by reporting the results of a weak scalability test. Since we
consider unstructured domain decompositions, we obtain subdomain problems of
approximately the same size by using uniform refinements of an hexahedral mesh;
at each level of refinement, we multiply by eight the number of subdomains used. As
a consequence, we cannot guarantee that the shape of the subdomains remains the
same. The total number of dofs in the test ranges from 186K to 94M with Nédélec el-
ements of degree p = 1, and from 1.5M to 742M for p = 2. In Figure 6, we compare
the results using a standard two-level BDDC algorithm (2L) and a three-level ap-
proach (3L), where the coarse subdomains have been obtained by aggregating 32
fine subdomains using ParMETIS; the condition number of the coarse BDDC pre-
conditioned operator is also provided (κc, left panel, dashed lines). The number of
iterations are scalable up to 16384 subdomains in both cases; condition numbers and
number of iterations are slightly larger for the 3L case, but the algorithm preserves
the convergence properties of the 2L case.

Fig. 6: Weak scalability test. κ and number of iterations as a function of the number of subdomains
for two-level (2L) and three-level BDDC (3L). Coarse condition number (κc) is also shown.
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4 Conclusions

We have constructed BDDC methods for arbitrary order, finite element discretiza-
tions of the H(curl) model problem. Numerical results have shown that the pro-
posed algorithm leads to a poly-logarithmic condition number bound, with a mild
dependence on the polynomial order of the approximation space, of the type
(1+ log(p2H/h))2. The robustness of our approach has been confirmed for various
cases, including high-order geometries, upscaled curl-conforming finite elements,
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and heterogeneous distributions of the coefficients. A scalable, three-level exten-
sion of the method has also been proposed; large scale parallel experiments using
up to 16384 subdomains and almost a billion of dofs have been provided to validate
the algorithm.
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