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1 Introduction and Model Problem

The SHEM (Spectral Harmonically Enriched Multiscale) coarse space is a
new coarse space for arbitrary overlapping or non-overlapping domain de-
composition methods. In contrast to recent new coarse spaces like GenEO
[13] or the one in [12] that improve certain Rayleigh quotients in the con-
vergence analysis of the underlying domain decomposition method, SHEM is
based on understanding the stationary iterates of the domain decomposition
method itself (see [6] for details), and can thus be constructed and used also
for domain decomposition methods which do not (yet) have such a conver-
gence analysis, like for example Restricted Additive Schwarz (RAS) [7], or
optimized Schwarz [4]. SHEM is based on the approximation of an optimal
coarse space which was discovered in [3], and further studied in [5, 4, 7], see
[6] for a general introduction, and also [9] for the specific case of Additive
Schwarz (AS). SHEM can use spectral information, as its name indicates,
but can also be constructed avoiding eigenvalue problems, for examples, see
[8]. If a convergence analysis for the domain decomposition method is avail-
able, SHEM can improve the corresponding convergence estimate, see [8] for
a condition number estimate when SHEM is used with AS. We are interested
here to test numerically if in this case

1. the hypothesis of small overlap (one or two mesh sizes) in the proof in [9]
is necessary for the condition number estimate to hold in practice;

2. the quadratic growth in the factor H/h in the condition number estimate
from [9] is really present when the method is used numerically.
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We consider as our model problem the following variational formulation of a
second order elliptic boundary value problem with Dirichlet boundary con-
ditions: find u ∈ H1

0 (Ω) such that

a(u, v) =

∫
Ω

α(x)∇u · ∇v dx =

∫
Ω

fv dx ∀v ∈ H1
0 (Ω), (1)

where Ω is a bounded convex domain in R2, f ∈ L2(Ω) and α ∈ L∞(Ω) such
that α ≥ α0 for some positive constant α0. Discretizing this problem using P1
finite elements from the finite element space Vh with associated mesh Th(Ω)
leads to the linear system

Au = f . (2)

Let Ω be partitioned into non-overlapping open, connected Lipschitz poly-
topes {Ωi : i = 1, . . . , N} such that Ω =

∪N
i=1Ωi, where each Ωi is assumed

to consist of elements from Th(Ω). We assume that this partitioning is shape-
regular. By extending each subdomain Ωi with a distance δ in each direction,
we create a further decomposition of Ω into overlapping subdomains {Ω′

i}Ni=1.
As usual, we assume that each point x ∈ Ω is contained in at most N0 sub-
domains (finite covering). The layer of elements in Ωi touching the boundary
∂Ωi is denoted by Ωh

i and we assume that the triangles corresponding to this
layer are shape regular with minimum diameter hi := min

K∈Th(Ωh
i )
hK , where hK

is the diameter of the triangle K. The interfaces between two subdomains,
Ωi and Ωj , are defined as Γ ij := Ωi ∩ Ωj . The sets of vertices of elements
in Th(Ω) (nodal points) belonging to Ω, Ωi, ∂Ω, ∂Ωi and Γij are denoted
by Ωh, Ωih, ∂Ωh, ∂Ωih and Γijh. With each interface we define the space of
finite element functions restricted to Γij and zero on ∂Γij as V 0

h (Γij).
We define the restriction of the bilinear form a(·, ·) to an interface Γij

shared by two subdomains as

aΓij
(u, v) :=

(
α|Γij

(x)Dτu,Dτv
)
L2(Γij)

,

where α|Γij
(x) := lim

y∈Ωi→x
α(y) and Dτ denotes the tangent derivative with

respect to Γij . In order to obtain continuous basis functions across subdomain
interfaces, we define a second bilinear form on each interface Γij ,

āΓij
(u, v) := (αij(x)Dτu,Dτv)L2(Γij)

,

where αij is taken as the maximum of α|Γij
and α|Γji

.

Given a partition of unity {χi}Ni=1 subordinate to the overlapping decom-
position defined above and corresponding restriction matrices Ri, as well as
a suitable coarse space V0 with restriction operator R0, the two-level additive
Schwarz method may be defined for i = 0, . . . N as
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M−1
AS,2 =

N∑
i=0

RT
i A

−1
i Ri where Ai := RiAR

T
i . (3)

Classically, coarse spaces for Additive Schwarz methods consist of finite ele-
ments on a coarser triangulation TH of Ω. This type of choice for the coarse
space, however, is not robust with respect to large variations in the coefficient
α.

2 The SHEM Coarse Space

SHEM is based on enriching a particular underlying coarse space, which in
the case of high contrast problems is the multiscale finite element coarse
space, see [1, 10]. We use the variant that generates the multiscale elements
by solving lower dimensional problems along the edges, and then extend-
ing the result harmonically into the interior of the element. In the case of
Laplace’s equation on a rectangular domain decomposition, this underlying
coarse space would just be Q1 finite elements on the subdomains, see [5]. Note
that SHEM is also interesting in this case, since it systematically improves
the overall convergence of the underlying domain decomposition method in
an optimized way, see [9]. We choose here for SHEM a harmonic enrichment
based on solutions of local eigenvalue problems along the interfaces between
subdomains1:

Definition 1 (Generalized Interface Eigenvalue Problem). For each
interface Γij , we define the generalized eigenvalue problem: find ψ and λ,
such that

āΓij (ψ, v) := λbΓij (ψ, v) ∀v ∈ V 0
h (Γij), (4)

where bΓij (ψ, v) := h−1
i

∑
k∈Γijh

βkψkvk and βk =
∑

K∈Th(Ω)
k∈dof(K)

αK .

We will test the following two types of SHEM coarse spaces:

• SHEMm, where m is an integer: here we choose the m eigenfunctions
associated with the smallest m eigenvalues of (4), and extend each of them
harmonically into the two subdomains Ωi and Ωj adjacent to the interface
Γij with zero Dirichlet boundary conditions on the remaining part of the
subdomain boundaries. These functions are then added to the underlying
multiscale coarse space to form SHEMm.

• SHEMτ , where τ is a given tolerance: here we choose adaptively on each in-
terface Γij to include all eigenfunctions associates with eigenvalues smaller

1 Any other Sturm Liuville problem could be used as well to get a different variant of
SHEM, for example more expensive Schur complements corresponding to the Dirichlet to

Neumann maps [11], or one could construct even cheaper interface basis functions without

eigenvalue problem, see [8].
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than τ , extend them harmonically like above and add them to the under-
lying multiscale coarse space to form SHEMτ .

Theorem 1 (Condition Number Estimate [8]). If the overlap is one or
two mesh sizes, then the condition number of the two level Schwarz operator
(3) with the SHEMm coarse space can be bounded by

κ(M−1
AS,2A) ⪯ C2

0 (N0 + 1), (5)

where C2
0 ≃

(
1 + 1

λm+1

)
and λm+1 := min

i
min

Γij⊂∂Ωi

λijmij+1.

The restriction on the overlap size is necessary in the proof based on the
abstract Schwarz framework. The convergence estimate in Theorem 1 also
indicates a quadratic dependence of the condition number on the mesh ratio
H/h, even for the case without enrichment, because the inverse of the smallest
eigenvalues of (4) have a quadratic dependence on the ratio H/h. In the case
of Laplace’s equation and without enrichment, such that our coarse space
is just the normal Q1 coarse space, standard domain decomposition theory
says that the condition number of additive Schwarz should depend linearly
on the mesh ratio H/h. We investigate now numerically if these restrictions
are really also properties of SHEMm, or just artefacts in the analysis.

3 Numerical Investigation of the SHEM coarse space

We solve problem (1) with f = 1 on a unit square domain Ω = (0, 1)2, and the
coefficient α(x) represents various (possibly discontinuous) distributions. We
use AS with SHEMm as a preconditioner for the conjugate gradient method,
and stop the iteration when the l2 norm of the residual is reduced by a factor
of 10−6. If not stated otherwise, the coefficient α(x) is equal to 1 for all the
numerical examples, except in the areas marked with red where the value of
α(x) is equal to α̂. All the experiments were carried out using Matlab 9.0 on
a serial workstation. For the interface eigenvalue problems, we have in our
implementation exploited the fact that we are able to extract exactly the 1D
stiffness and mass matrix corresponding to the bilinear forms in Definition 1
algebraically from the global problem.

3.1 Is small overlap necessary for SHEM?

We start by studying the dependence on the overlap for the contrast func-
tion α(x) shown in Figure 1. For the case of overlap δ = 2h and δ = 8h,
we show the iteration counts and condition number estimates in Table 1 for
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Fig. 1 Distribution of α for a geometry with h = 1
128

, H = 16h. The regions marked with

red are where α has a large value α̂.

the classical multiscale coarse space (MS), SHEMm and the adaptive variant
SHEMτ=6e−3. We see that even though the theory only addressed small over-
lap, SHEMm works very well also with larger overlap, and overlap improves
the performance like usual. We even see that independence of the contrast
arrives for the large overlap already with two enrichment functions instead of
three. This is because the middle of the three channels crossing the interfaces
in Figure 1 is shorter, and for the large overlap case included in the overlap,
and thus not a convergence problem any more for the underlying AS; there
are therefore only two channels left the coarse space has to treat, see [6] pre-
sented at this conference. In the current adaptive variant SHEMτ=6e−3 it is
not clear how to take into account the overlap, and thus the same number of

MS SHEM1 SHEM2 SHEM3 SHEM4 SHEMτ=6e−3

dim. 49 161 273 385 497

α̂ #it. (κ) #it. (κ) #it. (κ) #it. (κ) #it. (κ) #it. (κ) dim.

100 21 (1.29e1) 16 (7.45e0) 15 (5.99e0) 13 (5.19e0) 13 (5.15e0) 21 (1.29e1) 49
102 122 (3.74e2) 70 (1.17e2) 47 (6.70e1) 19 (6.77e0) 16 (5.66e0) 25 (1.10e1) 233

104 367 (3.64e4) 248 (1.10e4) 187 (6.22e3) 19 (6.78e0) 17 (5.73e0) 25 (1.09e1) 233

106 610 (3.64e6) 423 (1.10e6) 290 (6.22e5) 19 (6.78e0) 17 (5.73e0) 25 (1.09e1) 233

100 16 (5.57e0) 15 (4,88e0) 15 (4.82e0) 15 (4.94e0) 15 (4.95e0) 16 (5.47e0) 49
102 47 (4.08e1) 28 (1.53e1) 19 (5.58e0) 18 (5.02e0) 18 (4.99e0) 21 (6.26e0) 233

104 145 (3.48e3) 55 (1.08e3) 20 (6.03e0) 18 (5.06e0) 18 (4.99e0) 21 (6.55e0) 233
106 241 (3.48e5) 78 (1.08e5) 20 (6.03e0) 18 (5.06e0) 18 (4.99e0) 21 (6.56e0) 233

Table 1 Top half: overlap δ = 2h. Bottom half: overlap δ = 8h. Iteration count and con-
dition number estimate for the channel distribution in Figure 1 for the classical multiscale

coarse space, SHEMm, m = 1, 2, 3, 4 and SHEMτ=6e−3 for h = 1
128

, H = 16h. Here ’dim’

denotes the dimension of the coarse space.
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Fig. 2 Distribution of α for a geometry with h = 1
128

, H = 16h. The regions marked with
red are where α has a large value α̂.

enrichment functions was chosen. Larger overlap can however also be taken
into account by a different construction of SHEM for AS, see [9].

We next perform the same test also on the irregular high contrast structure
shown in Figure 2. The corresponding results in Table 2 show that also in
this case SHEM works very well with larger overlap, and that difficulties can
be either remedied by increasing the overlap, or enriching the coarse space:
SHEM with one enrichment function is enough to get robust convergence with
large overlap, but with small overlap, SHEM needs 2-3 enrichment functions.

MS SHEM1 SHEM2 SHEM3 SHEM4 SHEMτ=6e−3

dim. 49 161 273 385 497

α̂ #it. (κ) #it. (κ) #it. (κ) #it. (κ) #it. (κ) #it. (κ) dim.

100 21 (1.29e1) 16 (7.45e0) 15 (5.99e0) 13 (5.19e0) 13 (5.15e0) 21 (1.29e1) 49
102 72 (1.09e2) 53 (6.49e1) 27 (1.52e1) 22 (9.47e0) 20 (6.45e0) 36 (2.14e1) 165

104 288 (9.43e3) 98 (5.46e3) 29 (1.60e1) 23 (9.60e0) 21 (6.54e0) 38 (2.44e1) 169
106 524 (9.41e6) 156 (5.49e5) 32 (1.60e1) 24 (9.59e0) 22 (6.28e0) 39 (2.44e1) 169

100 16 (5.57e0) 15 (4,88e0) 15 (4.82e0) 15 (4.94e0) 15 (4.95e0) 16 (5.47e0) 49
102 29 (1.31e1) 22 (7.75e0) 19 (5.54e0) 18 (5.10e0) 18 (5.05e0) 22 (7.89e0) 165

104 72 (7.56e2) 28 (1.36e1) 20 (5.68e0) 19 (5.12e0) 19 (5.07e0) 25 (9.97e0) 169
106 121 (7.50e4) 32 (1.43e2) 21 (5.41e0) 20 (5.05e0) 20 (5.02e0) 26 (1.01e1) 169

Table 2 Top half: overlap δ = 2h. Bottom half: overlap δ = 8h. Iteration count and

condition number estimate for the distribution in Figure 2 for the classical multiscale

coarse space, SHEMm, m = 1, 2, 3, 4 and SHEMτ=6e−3 for h = 1
128

, H = 16h. Here ’dim’
denotes the dimension of the coarse space.
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MS SHEM1 SHEM2 SHEM3 SHEM4
H
h

#it. (κ) #it. (κ) #it. (κ) #it. (κ) #it. (κ)

8 18 (7.67e0) 14 (5.36e0) 14 (5.02e1) 14 (5.07e0) 13 (5.12e0)

16 21 (1.29e1) 16 (7.45e0) 15 (5.99e0) 13 (5.19e0) 13 (5.15e0)

32 29 (2.37e1) 20 (1.22e1) 18 (8.97e5) 15 (7.52e0) 14 (6.55e0)
64 41 (4.52e1) 26 (2.23e1) 22 (1.56e1) 19 (1.32e1) 18 (1.03e1)

128 58 (8.85e1) 36 (4.25e1) 30 (2.88e1) 25 (2.23e1) 23 (1.82e1)
256 80 (1.75e2) 50 (8.83e1) 41 (5.57e1) 34 (4.24e1) 31 (3.42e1)

16 367 (3.64e4) 248 (1.10e4) 187 (6.78e3) 19 (6.78e0) 17 (5.73e0)

32 525 (7.47e4) 326 (2.32e4) 252 (1.32e4) 22 (9.33e0) 19 (7.74e0)
64 740 (1.51e5) 458 (4.76e4) 329 (2.72e4) 28 (1.70e1) 22 (1.25e1)

128 1062 (3.05e5) 665 (9.62e4) 457 (5.52e4) 38 (3.15e1) 29 (2.25e1)
256 1522 (6.12e5)∗ 980 (1.94e5)∗ 679 (1.11e5)∗ 52 (6.06e1) 41 (4.28e1)

16 288 (9.43e3) 98 (5.46e3) 29 (1.60e1) 23 (9.60e0) 21 (6.54e0)
32 443 (1.97e4) 129 (1.14e4) 38 (2.75e1) 28 (1.53e0) 23 (8.00e0)
64 612 (4.03e4) 170 (2.31e4) 51 (5.07e1) 36 (2.73e1) 29 (1.27e1)

128 856 (8.17e4) 232 (4.65e4) 70 (9.82e1) 48 (5.20e1) 38 (2.26e1)
256 1207 (1.64e5) 315 (9.33e4) 98 (1.94e2) 66 (1.02e2) 52 (4.30e1)

* Stagnation.

Table 3 Top: α = 1. Middle: Distribution of α from Figure 1 with α̂ = 104. Bottom:
Distribution of α from Figure 2 with α̂ = 104. Iteration count and condition number
estimate for the classical multiscale coarse space and SHEMm, m = 1, 2, 3, 4, solving

Problem 1 for decreasing h, H = 1
8
and overlap δ = 2h.

3.2 What is the condition number growth in H/h?

We now test numerically the dependence on the mesh ratio H/h for the case
where α = 1 and for the high contrast cases given in Figure 1 and 2 with
α̂ = 104. The iteration counts and condition number estimates are given
in Table 3 for decreasing h while the subdomain diameter is kept fixed at
H = 1/8. We clearly see that the convergence rate is linearly dependent
on the mesh ratio H/h, for both the constant coefficient case and the high
contrast cases. This confirms that the restrictions in the analysis in [9] are
not a property of SHEM itself, but rather restrictions of the analysis. We also
see that for very high contrast, SHEM can even fix stagnation when using
the appropriate amount of enrichment.

4 Conclusions

The numerical experiments we presented indicate that the first convergence
estimate for SHEM in Theorem 1 might not need the technical assumption
of small overlap, and also that the convergence bound with the square de-
pendence on the mesh ratio H/h is too pessimistic. Another important ob-
servation is that the dimension of the coarse space is not larger than the
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dimension of the largest subdomain in our experiments, and thus the coarse
space solve remains less expensive than the subdomain solves. Based on this
numerical investigation, we are currently carefully studying the technical es-
timates in the proof of Theorem 1 to see under which conditions on the high
contrast parameter α the overlap restriction and the quadratic dependence
on the mesh ratio in the condition number estimate can be removed. We are
also working on the extension to three dimensional problems, see [2], and on
a parallel implementation.
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