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Abstract A parallel domain decomposition algorithm is considered for solving an
optimal control problem governed by a parabolic partial differential equation. The
proposed algorithm relies on non-iterative and non-overlapping domain decompo-
sition, which uses some implicit sub-domain problems and explicit flux approxima-
tions at each time step in every iteration. In addition, outer iterations are introduced
to achieve the parallelism. Numerical experiments are supplied to show the efficien-
cy of our proposed method.

1 Introduction

In [1], Dawson and Dupont presented non-overlapping domain decomposition
schemes to solve parabolic equation by some explicit flux exchange on inner bound-
aries and implicit conservative Galerkin procedures in each sub-domain. Here, ex-
plicit flux prediction are simple to compute for the unit outward normal vector (see
definition in Section 2). A time step limitation, which is less severe than that of a
fully explicit method, is induced to maintain stability because of the explicit pre-
diction. Recently, an improved strategy was considered in [2] to avoid the loss of
H−

1
2 factor for space variable in the work of Dawson and Dupont. We would like to

mention that another two calculation methods on inner boundaries were studied by
Ma and Sun (see [6] and sequent research papers) based on the integral mean value
or extrapolation. In previous work [3], we have shown that explict/implict domain
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decomposition method in [2] could be applied in optimal control problems governed
by partial differential equations. The main goal of this paper is to develop the cor-
responding results for second order procedures based on the analysis and schemes
designed to solve single PDE in [4].

2 Model problem and optimality condition

We consider the following distributed convex optimal control problems

min
u∈K

{∫ T

0

(
‖y− yd‖2

L2(Ω)+‖u‖
2
L2(Ω)

)
dt
}

(1)

subject to  ∂ty−∆y = f +u, in Ω , 0 < t ≤ T ;
y = 0, on ∂Ω , 0 < t ≤ T ;
y = y0, in Ω , t = 0,

(2)

where u ∈ K is the control and K is a convex admissible set for control, y is
the state variable, yd is the observation, y0 is the initial function. Fix V = H1

0 (Ω)
and U = L2(Ω). In the following, we will write state space W = {y ∈ L2(0,T ;V );
yt ∈ L2(0,T ; H−1(Ω))} and the control space U = L2(0,T ;U). In addition, K is a
closed convex set in U and K = L2(0,T ;K) is a closed convex set in the space U .

2.1 Optimality Condition and discretization

We use standard notation for Sobolev spaces. Define A(u,v) : V ×V → R to be a
bilinear form satisfying

A(u,v) = (∇u,∇v) ∀ u,v ∈V. (3)

Then the optimal control problem can be transformed into optimality condition in
the following lemma:

Theorem 1. A pair (y,u) in W ×K is the solution of (1)-(2) if and only if there is a
co-state p ∈W such that the triplet (y, p,u) in W ×W ×K satisfies the following
optimality conditions:{

(∂ty,w)+A(y,w) = ( f +u,w), ∀ w ∈V ;
y|t=0 = y0;

(4)

{
− (∂t p,q)+A(q, p) = (y− yd ,q), ∀ q ∈V ;
p|t=T = 0;

(5)
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0
(u+ p,v−u)≥ 0, ∀ v ∈K . (6)

Here only the case K = {u ≥ 0} are considered. Therefore, the third inequality in
the optimality conditions is equivalent to

(u+ p,v−u)≥ 0, ∀ v ∈ K, 0≤ t ≤ T. (7)

In general, for time-dependent optimal control problems, optimality condition,
which is a large scale of nonlinear coupled system with respect to time and spacial
variables, contains forward and backward PDEs with the variational inequality un-
der consideration. It is very difficult and challenging to solve directly this non-linear
system. Domain decomposition method, which could save huge time in calculation
by solving the question at the same time, is especially suitable for this kind of com-
plicated problem. To use domain decomposition method, we divide Ω into many
non-overlapping sub-domains {Ωi}I

i=1 such that Ω̄ =
⋃I

i=1 Ω̄i. Set Γi = ∂Ωi\∂Ω

and Γ =
⋃I

i=1 Γi, which is the set of inner boundaries of sub-domains. We recall
some definitions which are necessary for deriving the discrete form of (4)-(6). In-
troduce

φ(x) =


(x−2)/12, 1≤ x≤ 2,
−5x/4+7/6, 0≤ x≤ 1,
5x/4+7/6, −1≤ x≤ 0,
−(x+2)/12, −2≤ x≤−1,
0. |x|> 2.

For some H > 0, define

φ(τ) = H−1
ϕ
( τ

H

)
, τ ∈ R1.

where H is the width of the local averaging interval, which plays an important role
for stability of explicit/implicit scheme. Following Dawson-Dupont’s idea, we do
not use the exact normal derivative along inner boundaries. A proper approximation
is (see [1, 2]):

B(ψ)(xxx) =−
∫ 2H

−2H
φ
′(τ)ψ(xxx+ τnnnΓ )dτ, x ∈ Γi∩Γj, 1≤ i < j ≤ I. (8)

From definitions above, we note that function v has a well-defined jump

[v](xxx) = v(xxx+)− v(xxx−), ∀ xxx on Γ (9)

where
v(xxx±), lim

t→0±
v(xxx+ tvvvΓ ) (10)

Make a time partition: 0 = t0 < t1 < · · · < tN = T and set ∆ tn = tn − tn−1 and
∆ t = max

1≤n≤N
∆ tn. For simplicity, we may take ∆ tn = ∆ t for n = 1,2, . . . ,N. For a

given function g(xxx, t), let gn = g(xxx, tn) and
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∂̄tgn =
gn−gn−1

∆ t
, ḡn− 1

2 =
gn +gn−1

2
,

ĝn− 1
2 = 2ḡn− 3

2 − ḡn− 5
2 , g̃n+ 1

2 = 2ḡn+ 3
2 − ḡn+ 5

2 .

For i = 1,2, . . . , I, denote Mh
i ⊂V be the corresponding continuous piecewise linear

finite element space associated with conforming trangualtion T h
i . Let Mh be the

subspace of V such that wh ∈ Mh if and only if wh|Ωi ∈ Mh
i for each 1 ≤ i ≤ I.

Similarly, we can define piecewise constant finite element space UhU ⊂U for control
variable u. Let KhU = K

⋂
UhU . Then the discrete form that we want to solve is:

Y 0 = y0; Y 1 = y0 +∆ t( f 0 +∆y0 +U0); Y 2 = y0 +2∆ t( f 0 +∆y0 +U0);

(∂̄tY n,V )+A(Y n− 1
2 ,V )− (B(Ŷ n− 1

2 ), [V ])Γ − (B(V ), [Ŷ n− 1
2 ])Γ

= ( f̄ n− 1
2 +Ūn− 1

2 ,V ), ∀ V ∈Mh, n = 3,4, . . . ,N;
(11)

PN = 0; PN−1 = ∆ t(Y N− yN
d ); PN−2 = 2∆ t(Y N− yN

d );

− (∂̄tPn−2,V )+A(V, P̄n− 5
2 )− (B(P̃n− 5

2 ), [V ])Γ − (B(V ), [P̃n− 5
2 ])Γ

= (Ȳ n− 5
2 − ȳ

n− 5
2

d ,V ), ∀ V ∈Mh, n = N,N−1, . . . ,3;

(12)

(Ūn− 1
2 + P̄n− 5

2 , Z̄n− 1
2 −Ūn− 1

2 )≥ 0, ∀ Z ∈ KhU , n = 3,4, . . . ,N; (13)

U0 = max{0,−P0}, U1 = max{0,−P1}, U2 = max{0,−P2}. (14)

We see that the original optimal control problem (4)-(6), which is normally large
in size, is now decomposed into a set of subproblems with much smaller sizes. In
fact, discrete solution of (11)-(14) does not always exist. One could use contraction
mapping principle to ensure the existence and uniqueness of system. Taking the
limitation of the length into consideration, we will give a rigorous analysis on this
and convergence of the following iterative algorithm in a forthcoming paper [5]. In
addition, a priori estimates will also be included.

2.2 Parallel iterative algorithm

We note that discrete system (11)-(14) is still a nonlinear system of a forward sys-
tem for the state variable and a backward system for the co-state variable, which
are coupled by the control variable. We introduce outer iterations to decouple the
system. Thus, the proposed algorithm could be performed in parallel once domain
decomposition is used. Then, fully parallel iterative algorithm is formulated as fol-
lows:
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PARALLEL DOMAIN DECOMPOSITION ITERATIVE ALGORITHM (PDDIA)

Step 1. Given initial approximation {Un
0 }N

n=1 ⊂ UhU and Y 0 ∈ Mh. Take the
ε > 0 as a tolerance and set k := 0.

Step 2. Update {Y n
k+1}N

n=0 ⊂Mh in parallel on each Ωi for 1≤ i≤ I:
Y 0

k+1 = Y 0; Y 1
k+1 = Y0 +∆ t( f 0 +∆Y 0 +U0

k ); Y 2
k+1 = Y0 +2∆ t( f 0 +∆Y 0 +U0

k );

(∂̄tY n
k+1,V )+A(Y

n− 1
2

k+1 ,V )− (B(Ŷ
n− 1

2
k+1 ), [V ])Γ − (B(V ), [Ŷ

n− 1
2

k+1 ])Γ

= ( f̄ n− 1
2 +Ū

n− 1
2

k ,V ), ∀ V ∈Mh, n = 3,4, . . . ,N;
(15)

Step 3. Update {Pn
k+1}N

n=0 ⊂Mh in parallel on each Ωi for 1≤ i≤ I:
PN

k+1 = 0; PN−1
k+1 = ∆ t(Y N− yN

d ); PN−2
k+1 = 2∆ t(Y N− yN

d );

− (∂̄tPn−2
k+1 ,V )+A(V, P̄

n− 5
2

k+1 )− (B(P̃
n− 5

2
k+1 ), [V ])Γ − (B(V ), [P̃

n− 5
2

k+1 ])Γ

= (Ȳ
n− 5

2
k+1 − ȳ

n− 5
2

d ,V ), ∀ V ∈Mh, n = N,N−1, . . . ,3;

(16)

Step 4. Update {Ūn− 1
2

hU ,k+1}
N
n=1 ⊂UhU such that

Ū
n− 1

2
k+ 1

2
= (1−ρ)Ū

n− 1
2

k −ρP̄
n− 5

2
k+1 ,

Ū
n− 1

2
k+1 = QhU Ū

n− 1
2

k+ 1
2
.

n = 3,4, . . . ,N; (17)

where ρ is a constant with 0 < ρ < 1 and QhU is the projection from UhU to KhU .

Define U0
k+1, U1

k+1 and U2
k+1 such that

U0
k+1 = max{0,−P0

k+1}, U1
k+1 = max{0,−P1

k+1}, U2
k+1 = max{0,−P2

k+1},
(18)

Step 5. Compute the iterative error:

eps =
N

∑
n=0

(
‖Ūn− 1

2
k −Ū

n− 1
2

k+1 ‖L2(Ω)+‖Ȳ
n− 1

2
k − Ȳ

n− 1
2

k+1 ‖L2(Ω)+‖P̄
n− 1

2
k − P̄

n− 1
2

k+1 ‖L2(Ω)

If eps≤ ε , then stop the iteration and output

Un =Un
k+1, Y n = Y n

k+1, Pn = Pn
k+1, n = 0,1,2, . . . ,N. (19)

Else set k := k+1 and return step 2 to restart new iteration.
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Compared to first order scheme proposed in [3], the computation on Γ requires
explicitly the value of three-level solutions, while only little computational cost will
be added. We also remark that the algorithm PDDIA is fully parallel.

3 Numerical experiments

In this section, we test the performance and convergence of the proposed PDDIA
with respect to the exact solutions:

y = sin(2πx)sin(2πy)t,
p = sin(2πx)sin(2πy)(T − t),
u = max(−p,0),

yd = y+
∂ p
∂ t

+∆ p,

f =−u+
∂y
∂ t
−∆y.

Let T = 0.5. Domain Ω = [0,2]× [0,1] is partitioned into two uniform non-
overlapping areas with the inner-domain boundary are Γ = {1}× [0,1]. The mesh
in the x-axis and y-axis varies uniformly from 1/36, 1/49, 1/64 to 1/81 in each
sub-domain, respectively.

Table 1 L2(0,T ;L2(Ω))-norm error for PDDIA (r = 1)

Grids y−Y order u−U order p−P order

36×36 1.625×10−3 7.324×10−3 1.597×10−3

49×49 8.770×10−4 2.00 5.382×10−3 0.99 8.473×10−4 2.06
64×64 5.294×10−4 1.89 4.153×10−3 0.97 5.020×10−4 1.96
81×81 3.376×10−4 1.91 3.283×10−3 1.00 3.129×10−4 2.01

For domain decomposition, we set ∆ t = 0.1h and H2 = rh to balance error accu-
racy, where parameter r is a constant. The algorithm stops after that error of adjacent
iterative step defined in step 5 of the algorithm is less than 10−6.

In all of the numerical tests, the state variable y and co-state variable p are ap-
proximated by using piecewise linear functions while control solution u are treated
with piecewise constant functions. Compared to the scheme proposed in [3], the
number presented in Table 1 to Table 3 are the sum of average value of two neigh-
bouring layer, which is a good approximation for exact solution evaluating at the
middle of two adjacent time layer. We present numerical simulations in Table 1 for
r = 1. The L2-norm error of the numerical solutions are listed in Table 2 for r = 4.
We present the corresponding results when r = 9 in Table 3.
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Table 2 L2(0,T ;L2(Ω))-norm error for PDDIA (r = 4)

Grids y−Y order u−U order p−P order

36×36 4.835×10−3 8.069×10−3 4.856×10−3

49×49 2.525×10−3 2.11 5.654×10−3 1.15 2.523×10−3 2.12
64×64 1.389×10−3 2.24 4.258×10−3 1.06 1.379×10−3 2.26
81×81 8.077×10−4 2.30 3.325×10−3 1.05 7.952×10−4 2.34

Inferred from the tables, we can see that the error of the state variable y and co-
state variable p are the second order accuracy with respect to the time and space
sizes, whereas the error of the control variable u is only first order to the spatial
variable because of the modeling space.

Table 3 L2(0,T ;L2(Ω))-norm error for PDDIA (r = 9)

Grids y−Y order u−U order p−P order

36×36 1.939×10−2 1.588×10−2 1.964×10−2

49×49 1.173×10−2 1.63 1.006×10−2 1.48 1.186×10−2 1.63
64×64 7.137×10−3 1.86 6.623×10−3 1.57 7.202×10−3 1.87
81×81 4.429×10−3 2.03 4.678×10−3 1.47 4.453×10−3 2.04

In addition, we could get a brief relationship about the ∆ t-H constraint. Because
one can take more larger H than h for keeping the optimal order accuracy for the
spatial variable, the constraint ∆ t = O(H2) is less severe than that for fully explicit
algorithms.

4 Conclusion

In this paper, an efficient domain decomposition algorithm for an optimal control
problem governed by a linear parabolic partial differential equation has been pro-
posed. The algorithm can solve coupled optimality condition accurately and effi-
ciently based on the non-overlapping domain decomposition scheme given in [4].
The efficient calculation strategy on the inner boundaries and the outer iterations en-
able excellent extensibility and usability in parallel. Because of the implict/explict
strategy, it is necessary to preserve stability from the explicit prediction, but less
severe than that for fully explicit algorithms. Further, second order convergence in
time allow us to use larger time step in calculations.
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