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1 Heterogeneous problems and partition of unity decomposition

We are interested in solving linear PDEs of the form

L (u) = f in Ω , u = g̃ on ∂Ω , (1)

where Ω is a bounded domain in Rd with d = 1,2, L is a linear (elliptic) differential
operator, f and g̃ are the data, and u is the solution to (1). The weak form of (1) with
a Hilbert space (V,〈·, ·〉) of functions v : Ω → R is

a(u,v) = `(v) ∀v ∈V0, with u = g̃ on ∂Ω , (2)

where V0 := {v ∈ V : v = 0 on ∂Ω}, a : V ×V → R is the bilinear form corre-
sponding to the operator L , and ` : V → R is the linear functional induced by f .
We assume that (2) has a unique solution u ∈ {v ∈ V : v = g̃ on ∂Ω}, and that u
is “heterogeneous”, behaving very differently in different parts of Ω . Typical ex-
amples are advection-diffusion problems, where there are advection dominated and
diffusion dominated regions (subdomains), and the boundaries in between are not
clearly defined, see [8, 10] and references therein. Apart from the χ-method [6, 1],
there are no methods to determine such subdomain decompositions, and our goal is
to present and study a new such method. We thus introduce (see [18, 11])

Definition 1 (Membership function). Let Ω ⊂Rd be a set. A membership function
ϕ is a map ϕ : Ω → [0,1], and its support S⊂Ω is S := {x ∈Ω : ϕ(x) 6= 0}.

Given two membership functions ϕ1,ϕ2 : Ω→ [0,1] that form a partition of unity on
Ω , ϕ1(x)+ϕ2(x) = 1 for all x ∈Ω , their supports provide then a domain decompo-
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sition Ω = suppϕ1∪ suppϕ2. We introduce the approximation udd := ϕ1u1+ϕ1u2 ≈
u, where u1 and u2 represent two different possible behaviors of u, and we assume
that udd = g̃ on ∂Ω . We proceed as follows to define the spaces that udd , u1 and u2
are to be sought in: first, we introduce two approximate problems,

L1(u1) = f1 in Ω , B1(u1, g̃) = g, and L2(u2) = f2 in Ω , B2(u2, g̃) = 0. (3)

Here L j are approximation operators of L , f j are approximations of f , and B j are
operators to define the boundary conditions of (3), see Section 3 for concrete exam-
ples. The function g represents a control and belongs to an appropriate Hilbert space
W . Notice that g is different from the actual boundary data g̃: the latter is defined
on ∂Ω , while we will define the former only on a subset of ∂Ω . We assume1 that
(3) (left) is uniquely solvable in V for any g ∈W and (3) (right) has a unique solu-
tion u2 ∈ V . To reformulate (3) (left), we introduce two operators A : V → V ∗ and
Bg̃ : W →V ∗, such that (3) (left) becomes Au1 = Bg̃g+ f1. Notice that Bg̃ represents
the boundary conditions of (3) (left) and takes into account also g̃. This problem is
formally solved by u1 = A−1Bg̃g+A−1 f1, where A−1 is well defined if (3) (left) is
well posed. Now, we define the spaces V1 := {v ∈ V : v = A−1(Bg̃q+ f1), q ∈W},
and V2 := {u2}. Here V1 represents the space of all possible solutions to the first
problem in (3) generated by all the possible (control) functions in W , while V2
is a singleton containing only the unique solution u2 to (3) (right). Finally, we
use the definition of a “partition of unity method” space (PUM-space [2, 13])
VPUM := ϕ1V1+ϕ2V2 ⊂V , where ϕ1,ϕ2 are membership functions. VPUM , V1 and V2
are the spaces that the approximations udd , u1 and u2 have to be sought in. In particu-
lar, for the approximation udd the functions ϕ1, ϕ2 and g have to be computed. These
are defined as solutions to optimal control problems, as described in Section 2. Here
we need to remark that our approach could be computationally expensive. However,
it is motivated by applications in astrophysics governed by hyperbolic equations like
the Boltzmann equation. In many cases, like for supernova explosion, physical phe-
nomena are modeled using two different (limiting) regimes. However, this would
require an a-priori knowledge of the transition regime; see, e.g. [8, 3, 11] and ref-
erences therein. This is exactly the role of the partition of unity functions obtained
by our computational framework. In practice, one could use our computationally
expensive approach to obtain the partition of unity functions for one representative
case and then reuse them (as approximations) in a domain decomposition fashion to
compute approximate solutions of other cases of interest.

1 This specific approximation is motivated by asymptotic expansion techniques providing in gen-
eral two problems, one that is uniquely determined and a second one that is determined up to some
constants for asymptotic matching [15].
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2 Optimal control approaches

To compute ϕ1, ϕ2 and g, we embed the PUM formulation into an optimal control
framework. We begin by inserting udd into (2) and obtain the bounded linear func-
tional r : V → R defined by r(v) := a(ϕ1u1 +ϕ2u2,v)− `(v), where v ∈ V . In the
case that v = ϕ1w and v = ϕ2w with w ∈V , we get the functionals

r j(w) := r(ϕ jw) = a(ϕ1u1 +ϕ2u2,ϕ jw)− `(ϕ jw) ∀w ∈V, for j = 1,2.

Since w ∈V 7→ r j(w), j = 1,2, are bounded linear functionals, they are elements in
V ∗, and by the Riesz representation theorem [7], there exist R1 and R2 in V such that

〈R j,v〉= a(ϕ1u1 +ϕ2u2,ϕ jv)− `(ϕ jv) ∀v ∈V0, j = 1,2, (4)

where we used V0, since udd is exact on ∂Ω and thus R1 and R2 must vanish there.
Now, we define ϕ := ϕ1 with ϕ2 = 1−ϕ , and recall that ‖r j‖V ∗ = ‖R j‖V . Minimiz-
ing the norms of the residuals ‖R j‖V leads to the optimal control problem

min
R1,R2,u1,g,ϕ

J(R1,R2,g,ϕ) :=
1
2
‖R1‖2

V +
1
2
‖R2‖2

V +
α

2
‖ϕ‖2

V +
β

2
‖g‖2

W

s.t. 〈R1,v〉= a(ϕu1 +(1−ϕ)u2,ϕv)− `(ϕv) ∀v ∈V0,

〈R2,v〉= a(ϕu1 +(1−ϕ)u2,(1−ϕ)v)− `((1−ϕ)v) ∀v ∈V0,

Au1 = Bg̃g+ f1, g ∈W, u2 ∈V2, ϕ ∈V, 0≤ ϕ ≤ 1 a.e. in Ω ,

(5)

where α,β > 0 are two regularization parameters used to tune the cost of ϕ and g,
and f1 is the same approximation to f introduced in (3).

Solving (5) by an iterative procedure [5, 17] requires at each iteration to solve
the two equations (4) for R1 and R2, and (3) for u1. A less expensive optimal control
problem is obtained by summing (4) for j = 1,2, and we obtain with R := R1 +R2

〈R,v〉= a(ϕu1 +(1−ϕ)u2,v)− `(v) ∀v ∈V0, (6)

which is a Petrov-Galerkin type equation that we could have obtained directly ap-
plying a Petrov-Galerkin method to (2) using VPUM and V as trial and test spaces.
Using (6), we get the less expensive optimal control problem

min
R,u1,g,ϕ

J(R,g,ϕ) :=
1
2
‖R‖2

V +
α

2
‖ϕ‖2

V +
β

2
‖g‖2

W

s.t. 〈R,v〉= a(ϕu1 +(1−ϕ)u2,v)− `(v) ∀v ∈V0,

Au1 = Bg̃g+ f1, g ∈W, u2 ∈V2, ϕ ∈V, 0≤ ϕ ≤ 1 a.e. in Ω .

(7)
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Fig. 1 Example of a boundary decomposition ∂Ω = ∂Ω1∪∂Ω2.

3 Optimal control for elliptic boundary-layer problems

As main test cases we consider elliptic problems of the form

L (u) :=−µ∆u+a ·∇u+ cu = f in Ω , u = g̃ on ∂Ω , (8)

where Ω is a bounded domain in Rd , for d = 1,2, g̃ ∈ C(∂Ω), f is sufficiently
smooth, and the components of a are assumed to be strictly-positive. The assump-
tion on a is restrictive, but it simplifies the presentation below and can be relaxed.
The corresponding weak problem is to find a u ∈

{
v ∈ H1(Ω) |v = g̃ on ∂Ω

}
such

that

a(u,v) :=
∫

Ω

µ∇u ·∇v+a ·∇uv+ cuvdx =
∫

Ω

f vdx =: `(v) ∀v ∈ H1
0 (Ω).

We also assume that Ω is such that the boundary ∂Ω can be decomposed into ∂Ω =
∂Ω1∪∂Ω2, where the intersection ∂Ω1∩∂Ω2 has a non-zero measure, as illustrated
in Figure 1. To obtain udd = ϕu1 +(1−ϕ)u2 ≈ u, we define Γ := ∂Ω \ ∂Ω1 and
introduce the operator L1 :=−µ∆ +c. Then, as in (3), for any choice of the control
g ∈ H1

0 (Γ ) the corresponding approximate problem for u1 is∫
Ω

µ∇u1 ·∇v+cu1 vdx = 0 ∀v ∈ H1
0 (Ω),

u1 ∈
{

w ∈ H1(Ω) |w = g̃ on ∂Ω1, w = g̃+g on Γ , τ(w) ∈C(∂Ω)
}
,

(9)

where τ is the trace operator on ∂Ω . Notice that we have chosen f1 = 0. As be-
fore, we introduce the operator A : H1(Ω)→ H−1(Ω) defined as 〈Au,v〉H−1,H1 :=∫

Ω
µ∇u ·∇v+ cuvdx for all v ∈ H1

0 (Ω), and the operator Bg̃ : H1
0 (Γ )→ H−1(Ω)

such that v 7→ (Bg̃g)(v) is a bounded linear functional in H−1(Ω). The operator Bg̃
represents the Dirichlet boundary conditions of (9). Au1 = Bg̃g is then equivalent to
(9). The corresponding set V1 is given by

V1 = {v ∈ H1(Ω) : Av = Bg̃q for any q ∈ H1
0 (Γ )}.

Now, consider the operator L2 := a ·∇+ c and f2 = f . The problem for u2 is then

L2(u2) = a ·∇u2 + cu2 = f in Ω , u2 = g̃ on ∂Ω2, (10)
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which we assume uniquely solvable in H1(Ω)∩C(Ω). Notice that (10) is a pure
advection problem and the subset ∂Ω2 is given as the set of points where the char-
acteristic curves enter the domain Ω . This is the main assumption we make on ∂Ω2
for the problem (10) to be well posed. The set V2 contains only the solution to (10),
i.e. V2 = {u2}. The approximation udd ≈ u is then obtained as udd = ϕ1u1 +ϕ2u2,
where the membership functions ϕ1 = ϕ,ϕ2 = 1−ϕ ∈ H1(Ω) form a partition of
unity, and ϕ is such that

ϕ(x) ∈


{1} if x ∈ ∂Ω \∂Ω2,

[0,1] if x ∈ ∂Ω1∩∂Ω2,

{0} if x ∈ Γ ,

(11)

with τ(ϕ) ∈C(∂Ω). Notice that this definition of ϕ makes udd exact on the bound-
ary ∂Ω , τ(udd) = τ(ϕ1u1 +ϕ2u2) = g̃.

In what follows, we study the control problem (7) ((5) would have a similar
structure) to optimize ϕ and g for computing the approximation udd to the solution
to (8). In particular, we first show well-posedness, and then we derive the first-
order optimality system. We consider directly a 2-dimensional problem (d = 2),
since the analysis of the 1-dimensional version is simpler and relies on the same
arguments. To define our optimal control problem, as in (7), we consider the cost
functional J(R,g,ϕ) := 1

2‖R‖
2
H1(Ω)

+ α

2 ‖ϕ‖
2
H1(Ω)

+ β

2 ‖g‖
2
H1(Γ )

. Now, we introduce
the control-to-state maps g 7→ u1(g) and (g,ϕ) 7→ R(u1(g),ϕ), where u1(g) and
R(u1(g),ϕ) solve (9) and

〈R,v〉H1(Ω) =
∫

Ω

µ∇udd ·∇v+a ·∇udd v+ cudd v− f vdx ∀v ∈ H1
0 (Ω). (12)

Notice that the left-hand side of (12), that is 〈R,v〉H1(Ω) =
∫

Ω
∇R ·∇v+Rvdx, is of

a similar form to the left-hand side in (9). These maps are well defined according
to the lemmas below and allow us to define the reduced cost functional J̃(g,ϕ) :=
J(R(u1(g),ϕ),g,ϕ) and the optimal control problem

min
g,ϕ

J̃(g,ϕ) s.t. 0≤ ϕ(x)≤ 1 in Ω and (11) holds. (13)

For well-posedness of this optimization problem, we need four Lemmas:

Lemma 1. Let z ∈ H1(∂Ω) with Ω ⊂ R2 convex and ∂Ω Lipschitz. Then the prob-
lem ∫

Ω

µ∇u1 ·∇v+ cu1 vdx = 0 ∀v ∈ H1
0 (Ω) (14)

with u1 = z on ∂Ω is uniquely solvable by u1 ∈ H1(Ω)∩C(Ω), and there exists a
positive constant c such that ‖u1‖H1(Ω) ≤ c‖z‖H1(∂Ω).

Proof. To show that there exists a unique u1 ∈ C(Ω), we define w as the har-
monic extension of z in Ω . Recalling the embedding H1 ↪→C for one-dimensional
domains, we have that z ∈ C(∂Ω). Therefore, since Ω is a Lipschitz domain,
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w ∈C2(Ω)∩C(Ω); see, e.g., [12]. Now, consider the problem −µ∆v+ cv = −cw
in Ω with v = 0 on ∂Ω . Since Ω is convex, Theorems 3.2.1.2-3 in [14] ensure
that this problem is uniquely solved by v ∈ H2(Ω)∩H1

0 (Ω). Since Ω ⊂ R2, the
Sobolev embedding H2(Ω) ↪→ C(Ω) [7] ensures that v ∈ C(Ω). Noticing that the
function w+ v solves (14), u1 ∈C(Ω) and is unique by the linearity of (14). Next,
we show that u1 ∈H1(Ω) with ‖u1‖H1(Ω)≤ c‖z‖H1(∂Ω). Consider the trace operator
τ : H1(Ω)→H1/2(∂Ω). Since Ω is a Lipschitz domain, by [16, Theorem 3.37, page
102] this operator has a bounded right-inverse τ−1 : H1/2(∂Ω)→H1(Ω). Now, we
define w := τ−1z and note that w ∈ H1(Ω). So, if we decompose u1 as u1 = w+ ṽ,
then ṽ must solve in a weak sense the problem −µ∆ ṽ+ cṽ = −(−µ∆w+ cw) in
Ω with ṽ = 0 on ∂Ω . By the Lax-Milgram theorem we have that the unique solu-
tion is ṽ ∈ H1

0 (Ω) and there exists a constant C such that ‖ṽ‖H1(Ω) ≤ C‖w‖H1(Ω).
Therefore, u1 ∈H1(Ω) and using the decomposition u1 =w+ ṽ we get ‖u1‖H1(Ω) ≤
(1+C)‖w‖H1(Ω) = (1+C)‖τ−1z‖H1(Ω) ≤ K‖z‖H1(∂Ω), for some positive constant
K, where we used the boundedness of τ−1 [16].

Lemma 2. Let ϕ ∈ H1(Ω) such that 0≤ ϕ(x)≤ 1 a.e. in Ω . Then for any function
v ∈ H1(Ω)∩C(Ω) it holds that ϕv ∈ H1(Ω).

Proof. An application of Theorem 1 in [9, page 247] shows that ∇(vϕ) = v∇ϕ +
ϕ∇v. Then a simple estimate of the norm ‖∇(vϕ)‖L2(Ω) allows us to obtain the
result.

Lemma 3. Let {zn}n be a sequence that converges weakly in H1(∂Ω) to a weak
limit ẑ ∈ H1(∂Ω), i.e. zn ⇀ ẑ in H1(∂Ω). Define the sequence {u1,n}n by u1,n :=
u1(zn), where u1(zn) solves (14) with u1 = zn on ∂Ω . Then there exists a subse-
quence u1,n j that converges weakly in H1(Ω) and strongly in L2(Ω) to the limit
û1 = u1(ẑ) ∈ H1(Ω), i.e., u1,n j ⇀ û1 in H1(Ω) and u1,n j → û1 in L2(Ω).

Proof. Since the sequence {zn}n converges weakly in H1(∂Ω), it is bounded in the
norm ‖ · ‖H1(∂Ω). By Lemma 1, we have that ‖u1,n‖H1(Ω) ≤ c‖zn‖H1(∂Ω) ≤ K, for
some positive constant K, and the sequence u1,n is bounded in H1(Ω). Since H1(Ω)
is reflexive, there exists a weakly convergent subsequence u1,n j ⇀ û1 in H1(Ω).
Now, from (14), we have that for any v ∈ H1

0 (Ω)∫
Ω

µ∇u1,n j ·∇v+ cu1,n j vdx→
∫

Ω

µ∇û1 ·∇v+ c û1 vdx.

Moreover, the weak convergence zn j ⇀ ẑ and the continuity of the trace operator
τ : H1(Ω)→H1/2(∂Ω) [16, Theorem 3.37] implies that zn j = τ(u1,n j)⇀ τ(û1) = ẑ,
weakly in H1/2(∂Ω). Therefore, û1 = u1(ẑ). We conclude by recalling the Sobolev
compact embedding H1(Ω)b L2(Ω); see, e.g., [7].

Lemma 4. Let {u1,n}n be the sequence defined in Lemma 3 such that u1,n j ⇀ û1

(weakly) in H1(Ω). Consider a sequence {ϕn}n in H1(Ω) such that 0≤ ϕn(x)≤ 1
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and ϕn ⇀ ϕ̂ (weakly) in H1(Ω) with 0 ≤ ϕ̂(x) ≤ 1. Then there exist two subse-
quences {ϕn j} j and {u1,n j} j such that ϕn j → ϕ̂ and u1,n j → û1 (strongly) in L2(Ω),
and for any v ∈ H1

0 (Ω)∫
Ω

∇(ϕn j u1,n j) ·∇v+ϕn j u1,n j vdx→
∫

Ω

∇(ϕ̂ û1) ·∇v+ ϕ̂ û1vdx.

Proof. The existence of the subsequences {ϕn j} j and {u1,n j} j such that ϕn j → ϕ̂

and u1,n j → û1 (strongly) in L2(Ω) follows from the fact that ϕn ⇀ ϕ̂ (weakly in
H1(Ω)), Lemma 3, and the Sobolev (compact) embedding H1(Ω) b L2(Ω) [7].
Now, recalling Lemma 1 and according to the proof of Lemma 2 it holds that
∇(u1,n j ϕn j) = u1,n j ∇ϕn j +ϕn j ∇u1,n j . Therefore, to treat the products of sequences
û1.n j ∇ϕ̂n j , ϕn j ∇u1,n j , and ϕn j u1,n j , we use [7, Theorem 5.12-4] to obtain for any
v ∈ H1

0 (Ω) that∫
Ω

∇(ϕn j u1,n j )∇v+ϕn j u1,n j vdx=
∫

Ω

u1,n j ∇ϕn j ∇v+ϕn j ∇u1,n j ∇v+ϕn j u1,n j vdx

→
∫

Ω

û1∇ϕ̂∇v+ϕ̂∇û1∇v+û1 ϕ̂vdx=
∫

Ω

∇(ϕ̂ û1)·∇v+ϕ̂ û1v+û1 ϕ̂vdx.

We are now ready to prove that (13) is well posed.

Theorem 1. Let α,β > 0, then there exists a solution to problem (13).

Proof. Consider a minimizing sequence {(Rn,ϕn,u1,n,gn)}n, where gn is extended
by zero on ∂Ω . Since J is coercive in ϕ and g we have the bounds ‖ϕn‖H1(Ω) ≤ c
and ‖gn‖H1(∂Ω) ≤ c′, for two positive constants c,c′; see, e.g., [17]. The reflexivity
of H1(Ω) and H1(∂Ω) ensures the existence of weakly convergent subsequences:
ϕn j ⇀ ϕ̂ in H1(Ω) and gn j ⇀ ĝ in H1(∂Ω). By the Sobolev (compact) embedding
H1(Ω)b L2(Ω) [7], the sequence {ϕn j} j converges strongly in L2(Ω) to ϕ̂ . Since
the set {v ∈ L2(Ω) : 0 ≤ v(x) ≤ 1 a.e. in Ω} is (weakly) closed in L2(Ω) [17],
we have 0 ≤ ϕ̂(x) ≤ 1. Consider now the sequence {u1,n}n and the corresponding
subsequence u1,n j = u1(gn j). By Lemma 3, we have that u1,n j ⇀ û1 = u1(ĝ) weakly
in H1(Ω) and u1,n j → û1 = u1(ĝ) strongly in L2(Ω). Consider the sequence {Rn}n.
Since Rn satisfies

〈Rn,v〉H1(Ω) =
∫

Ω

µ∇udd,n ·∇v+a ·∇udd,n v+ cudd,n v− f vdx ∀v ∈ H1
0 (Ω),

where udd,n = ϕnu1,n + (1− ϕn)u2, from the Lax-Milgram theorem we have that
‖Rn‖H1(Ω)≤K(‖u1,n‖H1(Ω),‖ϕn‖H1(Ω)), where the constant K depends on ‖u1,n‖H1(Ω)

and ‖ϕn‖H1(Ω), which are bounded. Therefore, Rn is bounded as well, and by
Lemma 4, one can show that Rn j ⇀ R̂ = R(û1, ϕ̂) weakly in H1(Ω). Now, the weak-
lower semi-continuity of J implies the claim [17, 4].

To obtain the first-order optimality system, we rely on the Lagrange multiplier
approach and work in the reduced space of solutions of constraint and adjoint equa-
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tions; see, e.g., [5, 17]. We first recall the control-to-state maps g 7→ u1(g) and
(g,ϕ) 7→ R(u1(g),ϕ) and the reduced cost functional J̃(g,ϕ). Then we notice that
its derivatives, for δg ∈ H1

0 (Γ ) and δϕ ∈ H1
0 (Ω), are

Dg J̃(g,ϕ)(δg)=〈βg+Rg ,δg〉H1 (Γ ) , Dϕ J̃(w,ϕ)(δϕ)=〈αϕ+Rϕ ,δϕ〉H1 (Ω) .
(15)

Here Rg is the solution of the problem

〈Rg,δg〉H1
0 (Γ ) = 〈Bg̃δg,λ 〉H−1,H1 , (16)

where 〈·, ·〉H−1,H1 : H−1(Ω)×H1
0 (Ω)→ R denotes the duality pairing, and Rϕ is

the Riesz representative of the linear functional

δϕ 7→
∫

Ω

µ∇
[
(u1−u2)δϕ

]
·∇Rdx+a ·∇

[
(u1−u2)δϕ

]
R+ c(u1−u2)δϕ Rdx.

In (16), λ ∈ H1
0 (Ω) is a Lagrange multiplier that solves the adjoint equation∫

Ω

∇λ ·∇v+ cλ vdx =
∫

Ω

µ∇(vϕ) ·∇R+a ·∇(vϕ)R+ cvϕ Rdx, (17)

for all v ∈ H1
0 (Ω). Therefore, the first-order optimality system is given by (9), (12),

(17) and (16) together with the conditions [4, 17]

DgJ̃(g,ϕ)(δg) = 0,

for all δg ∈ H1
0 (Γ ), and for any arbitrary θ > 0

ϕ = PVad

(
ϕ−θ

(
αϕ +Rϕ

))
,

where PVad is the projection onto Vad := {v ∈ H1(Ω) : 0≤ v(x)≤ 1 a.e. in Ω}.

4 Numerical experiments

We present now numerical experiments for the one-dimensional elliptic problem

−µ∂xxu−∂xu = 1 in (0,1), with u(0) = 0, u(1) = 0, (18)

for given µ = 0.01, computing udd = ϕ1u1 +ϕ2u2, with

−µ∂xxu1 = 0 in (0,1),
u1(0) = 0, u1(1) = g,

and
−∂xu2 = 1 in [0,1),
u2(1) = 0.

We solve both the PUM and Petrov-Galerkin optimality systems discretized by lin-
ear finite-elements with a projected-LBFGS method with stopping tolerance 5 ·10−5
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Fig. 2 Comparison of the Petrov and PUM approaches: Left: partition of unity functions ϕ and
1−ϕ . Middle: exact solution and approximations. Right: Decay of the cost functional.

on the (relative) residual norm. The regularization parameters are α = β = 10−7. In
Figure 2 (left) we see that the ϕ and 1−ϕ obtained by the two approaches are very
similar, and catch well the boundary layer on the left. The small bumps in the right
part (close to x = 1) are due numerical effects and we checked that they disappear
for smaller tolerances. In Figure 2 (middle) the exact solution is compared with the
two approximations udd , and we see good agreement. In Figure 2 (right), we show
the decay of the cost functional with respect to the number of iterations, and we see
that the Petrov-Galerkin approach converges a bit faster.
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