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1 Introduction

The optimized Schwarz method (OSM) is recognized as one of the most
efficient domain decomposition strategies without overlap for the solution to
wave propagation problems in harmonic regime. For the Helmholtz equation,
this approach originated from the seminal work of Després [4, 5], and led to
the development of an abundant literature offering more elaborated but more
efficient transmission conditions, see [1, 6, 7, 8] and references therein. Most
contributions focus on transmission conditions based on local operators.

In [2, 9, 10], the authors introduced non-local transmission conditions that
can improve the convergence rate of OSM. In [9, Chap.8] the performance of
this strategy was shown to remain robust up to GHz frequency range. Such
an approach was proposed only for the Helmholtz equation, and has still not
been adapted to electromagnetics.

In the present contribution we investigate such an approach for Maxwell’s
equations in a simple spherical geometry that allows explicit calculus by
means of separation of variables. We study an Optimized Schwarz Method
(OSM) where the transmission conditions are based on impedance type
traces. The novelty lies in our impedance operator that we choose to be
non-local. More precisely, it is chosen as a variant of the so-called Electric
Field integral operator (see [11, §5.5]) where the wave number is purely imag-
inary. We show that the iterative solver associated to our strategy converges
at an exponential rate.
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2 Maxwell’s equations in harmonic regime

As a model problem we consider an electromagnetic transmission problem
stemming from Maxwell’s equations in harmonic regime where the whole
space R3 is partitioned in two sub-domains R3 = Ω+ ∪ Ω− with Ω− being
the unit open ball centered at 0, and Ω+ = R3 \Ω−. Denote by nσ the vector
field normal to Γ directed toward the exterior of Ωσ, σ = ±. With a constant
wave number κ > 0, this is written

curl(E±)− ıκH± = 0, curl(H±) + ıκE± = 0 in Ω±,

lim
ρ→∞

∫
∂Bρ

|H+ × x̂−E+|2dσρ = 0,

γ+t (E) = + γ−t (E) + gt , with γ±t (E) := n± × (E±|Γ × n±),
γ+r (H) = −γ−r (H) + gr , with γ±r (H) := n± ×H±|Γ ,

(1)

with Bρ := {x ∈ R3, |x| < ρ} and x̂ := x/|x|. In this problem, gt, gr

are given source terms assumed to be supported on Γ only. Considering
some invertible impedance operator Z that we shall define in Section 4, the
transmission conditions in (1) can be reformulated as

γ+t (E) + Zγ+r (H) = γ−t (E)−Zγ−r (H) + gt + Zgr,

γ−t (E) + Zγ−r (H) = γ+t (E)−Zγ+r (H)− gt + Zgr.
(2)

For any tangential vector field v and σ = ± define the magnetic-to-electric
operator Tσ(v) := γσt (U) where (U,V) is the unique solution to curl(U)−
ıκV = 0 in Ωσ, curl(V)+ıκU = 0 in Ωσ and γσr (V) = v (and Silver-Müller’s
radiation condition if σ = +). Taking uσ = γσt (E) + Zγσr (H), σ = ± as
unknowns of our iterative procedure, Problem (1) is then equivalent to

u−σ = Aσ(uσ) + fσ, σ = ±,
with Aσ := (Tσ −Z)(Tσ + Z)−1,

(3)

and f± := (Z(gr) ± gt). An optimized Schwarz strategy to solve Problem
(1) now consists in a fixed point iterative method applied to (3), using the

approximation u± = γ±t (E) + Zγ±r (H) = limn→∞ u
(n)
± where u

(n)
± follows

the recurrence[
u
(n+1)
+

u
(n+1)
−

]
=

[
1− r rA+

rA− 1− r

]
·

[
u
(n)
+

u
(n)
−

]
+

[
rf+

rf−

]
. (4)

In this iterative method, r > 0 is a relaxation parameter whose effective value
shall be discussed in the sequel.
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3 Separation of variables on the sphere

To study the convergence of (4), we rely on the spherical symmetry of
our model problem, and decompose the fields by means of vector spheri-
cal harmonics. According to e.g. [11, Thm.2.4.8], any tangential vector field
u ∈ L2

t(Γ ) := {v : Γ → C,
∫
Γ
|v|2dσ < +∞, x · v(x) = 0 on Γ} can be

decomposed as

u(x) =

+∞∑
n=0

∑
|m|≤n

udn,mXd
n,m(x) + ucn,mXc

n,m(x),

with Xd
n,m := 1√

n(n+1)
∇ΓYm

n , Xc
n,m := x̂×Xd

n,m,

where x̂ := x/|x| and ∇Γ is the surface gradient. Denoting (θ, φ) ∈ [0, π] ×
[0, 2π] the spherical coordinates on Γ , spherical harmonics are defined by

Ym
n (θ, φ) :=

√
2n+ 1

4π

√
(n− |m|)!
(n+ |m|)!

P|m|n (cos θ)eımφ,

where P
|m|
n (t) are the associated Legendre functions, see e.g. [3, §2.3]. The

tangent fields Xd
n,m,X

c
n,m, 0 ≤ |m| ≤ n yield an orthonormal Hilbert basis

of L2
t(Γ ). The operators T± are diagonalized by the functions Xd

n,m,X
c
n,m.

Indeed we have T±(X?
n,m) = t?n,±X

?
n,m for ? = d,c where, according to

Formula (53) in [13],

tdn,− = 1/tcn,− = +ıJ′n(κ)/Jn(κ),

tdn,+ = 1/tcn,+ = −ıH′n(κ)/Hn(κ).
(5)

Here Jn(x) :=
√
πx/2 Jn+1/2(x) with Jn(x) denoting the Bessel function

of the first kind of order n, and Hn(x) :=
√
πx/2 H

(1)
n+1/2(x) with H

(1)
n (x)

denoting the Hankel function of the first kind of order n. The following result
follows from [11, Thm.5.3.5].

Proposition 1.
We have <e{

∫
Γ
u T−(u)dσ} = 0 and <e{

∫
Γ
u T+(u)dσ} > 0 for all u ∈

L2
t(div, Γ ) \ {0} where L2

t(div, Γ ) := {v ∈ L2
t(Γ ), divΓ (v) ∈ L2(Γ ) }.

This result is related to energy balance in Ω±. With <e{
∫
Γ
u T−(u)dσ} = 0,

the energy coming in Ω− equals the outgoing energy. On the other hand, in
Ω+, there is energy radiated toward infinity as <e{

∫
Γ
u T+(u)dσ} > 0. A

direct consequence in terms of separation of variables is

<e{t?n,+} > <e{t?n,−} = 0 for ? = d,c, ∀n ≥ 0. (6)
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That <e{t?n,−} = 0 can also be seen directly from expression (5) since the
Jn(z) are proportional to Bessel functions hence real valued. Assuming that
the impedance is chosen so that Z(X?

n,m) = z?nX
?
n,m for ? = d,c and n ≥ 0

where zn,? ∈ C, we have

A±(X?
n,m) = a?n,±X?

n,m with a?n,σ =
t?n,σ − z?n
t?n,σ + z?n

. (7)

The exponential convergence of the optimized Schwarz method is guaranteed
provided that the spectral radius %osm of the iteration operator in (4) is
strictly smaller than 1,

%osm = sup
n≥0

%n < 1, with %n := max
σ=±,?=d,c

|1− r ± r
√
a?n,+a

?
n,−|. (8)

First observe that, for any r ∈ (0, 1), we have |1 − r + rλ| < 1 as soon as
λ 6= 1 and |λ| ≤ 1. Since |(z − 1)/(z + 1)| ≤ 1 if and only if <e{z} ≥ 0,
a necessary condition of convergence is that %n < 1 for each n which boils
down to <e{t?n,σ/z?n} ≥ 0 for each n, σ, ?. According to (6), the later condition
holds provided that z?n ∈ (0,+∞).

4 Non-local impedance operator

Now let us discuss our construction of the impedance operator Z. Compared
to existing literature on optimized Schwarz strategies in the context of elec-
tromagnetics, the peculiarity of the present contribution lies in our choice of
Z that is non-local. We choose

Z(u) := α

∫
Γ

Gα(x− y)u(y)dσ(y)− 1

α
∇Γ
∫
Γ

Gα(x− y)divΓu(y)dσ(y) (9)

where the kernel Gα(x) := exp(−α|x|)/(2π|x|) satisfies −∆Gα + α2Gα = 2δ0
in R3, and α > 0 is a parameter whose value shall be discussed later. The
operator given by (9) is a classical object of potential theory that can be
understood as a dissipative version of the so-called Electric Field Integral
operator (EFIE). Defined in this manner, the operator Z is diagonalized by
the X?

n. According to Formula (54) in [13] we have

zdn = 2J′n(ıα)H′n(ıα) and zcn = 2Jn(ıα)Hn(ıα). (10)

According to Rayleigh’s formulas, see [12, Chap.10], we have Jn(ıx) = (ıx)n+1

(x−1∂x)n(sinh(x)/x) and Hn(ıx) = −(ıx)n+1(x−1∂x)n(exp(−x)/x). It is
clear from (10) that zdn, z

c
n > 0 for all n ≥ 0.



Integral equation based optimized Schwarz method for electromagnetics 5

Satisfying %n < 1 for each n is necessary but not sufficient for (8) to be
fulfilled. We must also verify that lim supn→∞ %n < 1. Let us study the
asymptotic behaviour of %n for n → ∞. First, observe that (5) and (10)
provide explicit expressions for z?n and t?n,σ where ? = d,c and σ = ±.
According to [3, §2.4], we have Jn(x) ∼ xn+1n!2n/(2n + 1)! and Hn(x) ∼
−ıx−n(2n)!/(n!2n) for n→ +∞, and these asymptotics hold for both x ∈ R
and x ∈ ıR. Plugging this inside (5) and (10) yields, for n→ +∞,

zdn ∼
n→∞

n

α
, zcn ∼

n→∞

α

n
and tdn,± ∼

n→∞

ın

κ
.

We also deduce the asymptotics of tcn,± = 1/tdn,±. From this we obtain
tdn,±/z

d
n ∼ ıα/κ and tcn,±/z

c
n ∼ −ıκ/α. With (7) we conclude that

lim
n→∞

adn,± = +φ(α/κ) and lim
n→∞

acn,± = −φ(α/κ) where φ(γ) :=
ıγ − 1

ıγ + 1
.

Now we have limn→∞ %n = max | 1−r±rφ(α/κ) |. A natural idea for choosing
the parameters r and α consists in minimizing this quantity. The minimum
is obtained for α = κ and r = 1/2 and we have in this case (note that this
limit does not depend on κ)

lim
n→∞

%n = 1/
√

2 for α = κ, r = 1/2. (11)

The control of %n when n goes to infinity is crucial to obtain geometrical
convergence. It cannot be obtained when the impedance operator is a combi-
nation of local operators (with Padé approximants of the true impedance for
instance). The use of non-local and positive impedance operator is the price
to pay to achieve geometrical convergence.

5 Numerical illustration

Below we illustrate our analysis with effective numerical calculation1 of the
eigenvalues of the iteration operator of (4), taking systematically α = κ. In
Fig.1 below, we plot these eigenvalues for κ = 10. We see that the whole
spectrum is contained in the unit disc. The values ±ı clearly appear as the
accumulation points of the spectrum with no relaxation (r = 1).

For eigenvalues associated to the relaxation parameter r = 1/2, we see
that the accumulation points are located at (1/2,±1/2) whose modulus is
1/
√

2, which agrees with (11). Next, in Fig.2 we show the same plots at
higher frequency κ = 100. Once again, the whole spectrum is contained in
the unit disc.

1 Matlab scripts are available at: http://gitlab.lpma.math.upmc.fr/IEOSM/Matlab
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Fig. 1: Iteration eigenvalues with κ = 10 for r = 1 (left) and r = 1/2 (right)
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Fig. 2: Iteration eigenvalues with κ = 100 for r = 1 (left) and r = 1/2 (right)

Finally in Fig.3 we plot the values %n versus the modal index n for κ =
10, 30, 100. For low modal indices, it oscillates with growing amplitude until
it reaches a pick located around n ∼ κ. Then %n smoothly decays to 1/

√
2.

This scenario does not change as κ grows.
Although limn→∞ %n remains independent of κ, the spectral radius supn≥0 %n

(reached around n = κ) does depend on κ, and we see in Fig.3 that this max-
imum grows closer to 1 as κ → ∞. This suggests us that the values α = κ
and r = 1

2 may not be the optimal choice.

6 Conclusion

We have shown the convergence of the domain decomposition algorithm based
on a dissipative EFIE transmission condition. How to choose the parameter
α in a more optimal way should be further investigated. Moreover, it would
be worth examining variants of the transmission operator (9). Augmenting
it with additional local terms based on Padé approximants, in the manner of
[6], seems promising.
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Fig. 3: Values of %n versus n with r = 0.5 for κ = 10, 30, 100.

Besides, in a finite element context, the use of a non-local operator is ex-
pensive in terms of both CPU time and memory storage. Various approaches
could be considered for overcoming this problem. A possible solution may
consist in truncating the Green kernel so as to (quasi)-localize the operator.
The choice of the truncation and how it impacts the iteration operator should
then be further investigated.

Other extensions of the present work are possible. For non-spherical in-
terfaces, using the approach developed in [2], a convergent strategy would
be obtained by choosing the impedance operator according to (9). This re-
mark also holds in the case of multiple sub-domains, as long as there is no
junction point at interfaces. Our strategy can also be adapted to the case of
piecewise constant material characteristics. For this case also, the theory in
[2] suggests that our method is convergent although, this time, a choice of
impedance operator that varies according to the sub-domains may be more
optimal. Finally the case of fully heterogeneous media seems to be still a
widely open question.

Acknowledgment This work received support from the ANR research
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