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1 Introduction

Solving Helmholtz problem numerically is challenging [?] mainly because of the
lack of coercivity of the continuous operator or highly oscillatory solutions. Krylov
subspaces methods like GMRES are still used in regards of their robustness but they
require a good preconditioner1 to be fast enough. Among many proposed precon-
ditioners like Incomplete LU, Analytic ILU or domain decomposition based pre-
conditioner, the shifted Helmholtz preconditioner [?, ?, ?, ?] has received a lot of
attention over the last decade thanks to its simplicity and its relevance to heteroge-
neous media.

This paper focus on the recent idea of expansion preconditioner [?, ?] which is
based on the fact that the inverse of the discrete Helmholtz operator can be writ-
ten as a superposition of inverse of discrete shifted Helmholtz operator only. This
is achieved using the Taylor’s expansion, around β = 0, of the matrix-valued func-
tion f (β ) = (−∆h− (1+ iβ )k2)−1, where ∆h corresponds to a finite difference dis-
cretization of the usual Laplace operator. The expansion-preconditioner is then de-
fined as the truncation of the Taylor’s series hence converging to the exact inverse
of the discrete Helmholtz operator if the Taylor series actually converges. They also
proposed to compute each inverse of shifted Helmholtz with some iteration of multi-
grid which is known to converge with a number of iterations independent of the
wavenumber (see e.g. [?, ?]). We emphasize that the rate of convergence of the ex-
pansion preconditioner toward A−1

0 = f (0) is computed in [?] and is given to be a
O(β n). However, the latter does not involves bounds on the higher derivative of f
which can deteriorate the performance of the proposed preconditioner and no addi-
tional analysis is performed.
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1 For a linear system Cx = y, a good preconditioner refer to a matrix B for which the spectrum of
B−1C is clustered around 1 (see e.g Elman’s estimate [?]).
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The goal of this paper is to give a theoretical insight of the performances of the
expansion preconditioner and to extend its definition to Finite Element discretiza-
tion. We first build the expansion preconditioner using the generalized resolvent
formula and study its performances. We next show, as proved in [?], that it is manda-
tory to have a shift of the order of the wavenumber to get wavenumber independant
convergence of GMRES. This paper ends with some numerical simulations.

2 General analysis of the expansion preconditioner

Let Ω be a convex polygon of Rd , with d = 1,2,3. The shifted Helmholtz equation
with impedance boundary conditions is{

−∆u(x)− (k2 + iε)u(x) = f (x), x ∈Ω ,
∂nu− iηu = 0, on ∂Ω ,

(1)

where n is the unitary normal vector directed outward ∂Ω , ε > 0 is the so-called
shift, and η > 0 is the impedance parameter. The Helmholtz equation with approx-
imate radiation condition is recovered from (??) by setting ε = 0 and η = k.

The variational form of (??) is given below{
Find u ∈ H1(Ω) such that for all v ∈ H1(Ω) :

aη(u,v) :=
∫

Ω

∇u ·∇v− (k2 + iε)uvdx− iη
∫

∂Ω

uvdσ =
∫

Ω

f vdx. (2)

Let Vl be the finite element space obtained with piecewise linear polynomials

Vl =
{

v ∈ C (Ω) | v|T ∈ P1 for all T ∈Tl
}
= Span(φ1, · · · ,φN),

where
{

φ j
}N

j=1 is the finite element nodal basis. The discrete problem is then{
Find ul ∈ Vl such that :

aε(ul ,vl) =
∫

Ω

f vldx, ∀vl ∈ Vl .
(3)

The latter is equivalent to the linear system Aε zl = bl where ul =Fhzl is the Galerkin
solution and

Fh : x = (x1, · · · ,xN) ∈ CN 7→
N

∑
j=1

x jφ j ∈ Vh.

Denoting by S, M, N respectively the stiffness, mass and boundary mass matrix,
one gets

Aε = S− (k2 + iε)M− iηN.

We denote by A0 the discrete Helmholtz operator obtained with ε = 0 and η =
k. We emphasize that this matrix is invertible thanks to the impedance boundary
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condition. Also, if Dirichlet or Neumann’s boundary conditions are used, we assume
throughout this paper that A0 is invertible.

We now give a generalized resolvent formula whose proof can be done by routine
computations.

Lemma 1. Let A,B ∈Hom(Cn) with B invertible and p,z ∈C be two complex num-
bers in the resolvent set of AB−1. Let R(z) = (A−zB)−1 be the generalized resolvent
of A. The following formula then holds

R(p)−R(z) = (z− p)R(z)BR(p).

Using Neumann’s series, Lemma ?? allow to rewrite the inverse of the discrete
Helmholtz operator as a superposition of discrete shifted Helmholtz operator.

Theorem 1. The inverse of the discrete Helmholtz operator is given as follows

A−1
0 =

(
∑
j≥0

(−iε) j (A−1
ε M

) j
)

A−1
ε ,

where the serie converges with respect to the norm ‖x‖M =
√
〈Mx,x〉= ‖Fhx‖L2(Ω) .

Proof. Lemma ?? applied with A = A0, B = M, p = 0 and z = iε yields

A−1
0 = (Id + iεA−1

ε M)−1A−1
ε .

Note that A−1
ε M = (M−1Aε)

−1. Let z ∈ CN such that Aε z = Mb for some b ∈ CN .
From the definition of the mass matrix M, the operator Fh and Aε , one gets

aη(Fhz,Fhz) = 〈Mb,z〉=
(
Fhb,Fhz

)
L2(Ω)

.

Cauchy-Schwartz inequality and the next lower bound

|aη(Fhz,Fhz)|> |I aη(Fhz,Fhz)|= ε ‖Fhz‖2
L2(Ω)+η ‖Fhz‖2

L2(∂Ω) ,

show that ‖z‖M < ‖b‖M ε−1, and thus
∥∥εA−1

ε M
∥∥

M < 1. Finally, (Id + iεA−1
ε M)−1

can be expanded as a Neumann’s serie and the proof is finished.

Remark 2 The mass matrix is symmetric and positive definite so it admits a square
root M1/2. For any B ∈ Hom(CN), the matrix norm induced by ‖·‖M is then defined
by ‖B‖M =

∥∥M1/2BM−1/2
∥∥

2. This yields∥∥εA−1
ε M

∥∥
M = ε

∥∥∥M1/2A−1
ε M1/2

∥∥∥
2
= ε

∥∥A−1
ε M

∥∥
2 < 1,

and thus the series from Theorem ?? converges with respect to the 2-norm as well.

Following [?], the expansion preconditioner of order n ∈ N∗ is defined as a trun-
cation of the Neumann’s serie given in Theorem ??



4 Pierre-Henri Cocquet, Martin J. Gander

EX(n) =

(
n−1

∑
j=0

(−iε) j (A−1
ε M

) j+1
)

M−1 =

(
n−1

∑
j=0

(−iε) j (A−1
ε M

) j
)

A−1
ε . (4)

The preconditioned problem is thus given as follow

EX(n)A0zl = EX(n)bl . (5)

From Elman’s estimate (see e.g. Theorem 1.8 [?]), the rate of convergence of
GMRES used for solving Cx = y only depend on the upper bound of ‖I−C‖2. We
now compute this term for the expansion preconditioner.

Theorem 3. For any shift ε > 0, impedance parameter η > 0, meshsize h and n∈N,
the expansion preconditioner satisfies the following bounds

N (Id−EX(1)A0)≤ εN
(
A−1

ε M
)
,

∀n≥ 1, N (Id−EX(n)A0)≤
1+ εN

(
A−1

ε M
)

1− εN
(
A−1

ε M
) (εN

(
A−1

ε M
)
)n,

where N (B) denotes any matrix norm or ρ(B).

Proof. The first item follows from I−EX(1)A0 = I−A−1
ε A0 = iεA−1

ε M. For the
second one, we compute

I−EX(n)A0 = (A−1
0 −EX(n))A0 =

(
∑
j≥n

(−iε) j(A−1
ε M) j

)
A−1

ε A0.

Note that A−1
ε A0 = Id + iεA−1

ε M and thus A−1
ε A0 and A−1

ε M commute. Now, using
that ερ(A−1

ε M) ≤ ε
∥∥A−1

ε M
∥∥

2 < 1, we can use Gelfand’s formula to get the con-
vergence of the Neumann series with respect to any matrix norm. Majoring and
expanding using geometric serie then give

N (I−EX(n)A0) ≤ N
(
Id + iεA−1

ε M
)
(εN

(
A−1

ε M
)
)n

∑
j≥0

(εN
(
A−1

ε M
)
) j

≤
1+ εN

(
A−1

ε M
)

1− εN
(
A−1

ε M
) (εN

(
A−1

ε M
)
)n.

Remark 4 The construction of the expansion preconditioner as well as Theorem ??
hold without any changes for high order Finite Element discretization.

The upper bound from Theorem ?? involves only εN
(
A−1

ε M
)
. If the latter is

bounded away from 1, the expansion preconditioner can greatly reduce the number
of GMRES iterations by considering a large enough n.
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3 Wavenumber-independance convergence of GMRES

We show in this section that, as proved in [?], taking ε ∼ k is mandatory to ensure
wavenumber-independant convergence of GMRES when using an expansion pre-
conditioner. This is done in the next result for two types of meshes: one for which
one has pollution-free FEM2 and one for h∼ k−2.

Theorem 5. Assume that one of the following assumptions holds
(A1) η ∼ k and k3h2 ≤C0 holds with C0 small enough.
(A2) η . k, k ≥ k0 for a given k0 > 0 and kh

√
|k2− ε| ≤C0 holds with C0 small

enough.
Then there exists a constant C2 > 0 depending only on Ω such that for any ε > 0

with εC2 < k, one has

∀ n≥ 1, N (Id−EX(n)A0)≤
(

C2ε

k

)n k+C2ε

k−C2ε
,

where N (.) = ρ(.) if (A1) hold and N (.) = ‖.‖2 if (A2) hold.

Proof. Assume that (A1) hold. Let λ ∈ C be an eigenvalue of M−1Aε = (A−1
ε M)−1

and v ∈ CN the associated eigenvector. One has

M−1Aε v =
(
M−1(S− iηN)− (k2 + iε)IN

)
v = λv.

Therefore, the spectrum of M−1Aε is given by

σ(M−1Aε) =
{

λ j + iε | λ j ∈ σ(M−1A0)
}
,

from which we infer that

ερ(A−1
ε M) = max

λ j∈σ(M−1A0)

ε

|λ j + iε|
(6)

Let b ∈ CN be fixed and ϕh ∈ CN be the solution to A0vh = Mb. Note that ϕh =
Fhvh ∈ Vh corresponds to the FEM discretization of the solution to (??) with f =
Fhb. Since f ∈ L2(Ω) and Ω is assumed to be convex, the solution to the Helmholtz
equation (??) belongs to H2(Ω). Since (A1) hold, one can apply [?, Corollary 4.4
p.12] to get

‖∇ϕh‖L2(Ω)+ k‖ϕh‖L2(Ω) . ‖ f‖L2(Ω) . (7)

Then (??) shows that

‖Fhvh‖L2(Ω) .
1
k
‖Fhb‖L2(Ω) .

Using [?, Eq. (4.2) p. 24], one has ‖Fh‖CN→Vh
∼ hd/2 which gives

‖vh‖2 =
∥∥A−1

0 Mb
∥∥

2 .
‖b‖

k
.

2 According to [?] no pollution effect occurs if k3h2 ≤C0 holds with C0 small enough.



6 Pierre-Henri Cocquet, Martin J. Gander

The above estimate holds for any b ∈ CN and thus∥∥A−1
0 M

∥∥
2 .

1
k
. (8)

The upper bound (??) proves that, for any µ ∈ σ(A−1
0 M), |µ| . k−1. Since any

λ ∈ σ(M−1A0) can be written as λ = 1/µ , one gets k . |λ |. We finally infer that
there exists C2 > 0 depending only on Ω such that

ρ(A−1
ε M)≤ C2

k
. (9)

Assuming now that (A2) hold allow to apply [?, Lemma 3.5 p.595] that gives the
quasi-optimality of the bilinear form aε on Vh with respect to the weighted norm
‖u‖2

1,k = ‖∇u‖2
L2(Ω)+ k2 ‖u‖2

L2(Ω). Using this, they proved [?, Lemma 4.1 p. 598]
that there exists a constant C2 depending only on Ω such that∥∥A−1

ε M
∥∥

2 ≤
C2

k
. (10)

Using now (??) and (??) together with the bound proved in Theorem ?? ends the
proof.

4 Numerical simulations

5 Conclusions
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