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1 Introduction

We propose a new finite difference method (FDM) with optimized dispersion cor-
rection for the Helmholtz equation

Lku :=−∆u− k2u = f , inΩ ⊂ R2, (1)

where ∆ is the Laplacian, k is the wave number, and we assume boundary conditions
such that the problem is well posed. The Helmholtz equation has important applica-
tions in many fields of science and engineering, e.g., acoustic and electromagnetic
waves, and obtaining more accurate numerical discretizations has attracted signifi-
cant research interest, see [2, 1, 8, 9, 12] and the references therein.

It is well known that all grid based numerical methods, e.g. finite element or fi-
nite difference methods, suffer from the so called pollution effect, which can not
be eliminated [2], and the wave number of the numerical solution is different from
that of the exact solution, leading to numerical dispersion [7, 6]. To keep the pollu-
tion effect and numerical dispersion under control, classical discretizations require a
very fine mesh, which leads to very large discrete systems, especially when the fre-
quency increases. To reduce the numerical dispersion of the standard 5-point finite
difference scheme, a rotated 9-point FDM was proposed in [8] which minimizes the
numerical dispersion, see also [3, 10, 13, 4] for more recent such approaches. Min-
imizing numerical dispersion is also important for effective coarse grid corrections
in domain decomposition and for constructing efficient multigrid solvers: in 1D it is
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even possible to obtain perfect multigrid efficiency using dispersion correction [5],
see also [11] for an approximation in higher dimensions.

We develop here a new dispersion minimizing FDM for the Helmholtz equation
(1) using as a new idea a modified wave number. Compared with the finite difference
scheme of [8] which minimizes already the numerical dispersion, our new scheme
using the same stencil, but a modified wave number, has substantially less dispersion
error and thus much more accurate phase speed. Our examples also indicate that for
plane wave solutions, our new FDM is sixth-order accurate.

2 Dispersion correction for standard FDM

We first recall the definition of the dispersion relation and some notation. Given an
operator P, e.g. the continuous operator Lk in (1) or any finite difference approxi-
mation for Lk, its symbol is

σP(ξ ) := e−iξ ·x(Peiξ ·x). (2)

The dispersion relation of the operator P is then defined to be the set

{ξ ∈ R2|σP(ξ ) = 0}, (3)

where ξ = (ξ1,ξ2) denotes the wave vector. A direct computation using (2) gives for
the continuous operator Lk in (1) the dispersion relation set {ξ ∈R2|ξ 2

1 +ξ 2
2 = k2}.

For ξ such that σP(ξ ) = 0, the number ν = k
‖ξ‖ is called the (normalized) phase

speed associated with a plane wave with angle θ given by tanθ = ξ2/ξ1. For the
operator Lk in (1), the phase speed is equal to 1 for any angle. For any discretization
scheme, we will consider the phase speed as a function of a dimensionless quantity,
the number of points per wavelength G = 2π

kh , or its inverse 1/G.
For any discretization Lh

k of Lk, numerical dispersion can be defined as the dif-
ference between the dispersion relation of Lk and Lh

k . The numerical dispersion can
also be evaluated by the difference of phase speed of Lh

k and 1 for different angles.
A key idea for dispersion correction is to use a different numerical wave number
k̂ in the discretized operator Lh

k̂
to minimize the numerical dispersion [5]. Take for

example the 1D Helmholtz equation

−∂ 2u
∂x2 − k2u = f , (4)

where the dispersion relation is {ξ | |ξ |= k}. The standard 3-point FDM of (4) is

(Lh, f d3
k u)i = h−2(2ui−ui−1−ui+1)− k2ui. (5)

Using (2), the dispersion relation of Lh, f d3
k is {ξ ∈ R |2h−2(1− cos(ξ h)) = k2},

which is quite different from {ξ | |ξ | = k}. In order to make (5) have the same dis-
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Fig. 1 Phase speed curves for 5-point FDM. Left: no dispersion correction. Right: dispersion cor-
rection for θ = 20◦.

persion as (4), it was proposed in [5] to use a different wave number in (5), denoted
by k̂. Choosing k̂ = |

√
2h−2(1− cos(kh))| implies

{ξ ∈ R |2h−2(1− cos(ξ h)) = k̂2}= {ξ | |ξ |= k},

and hence there is no numerical dispersion!
We investigate now if a similar approach can be used for the 2D Helmholtz equa-

tion (1), whose standard 5-point FDM is given by

(Lh, f d5
k u)i, j = h−2(4ui, j−ui−1, j−ui+1, j−ui, j−1−ui, j+1)− k2ui, j, (6)

Using (2), its dispersion relation of Lh, f d5
k can readily be computed to be

{ξ ∈ R2|h−2(4−2cos(hξ1)−2cos(hξ2)) = k2}. (7)

We show in Figure 1 (left) the phase speed v f d5 we computed using (7) for the
angles 0◦,15◦,30◦ and 45◦ when k = 10. We can clearly see that the numerical dis-
persion increases as we decrease the number of points per wavelength G. Using the
dispersion correction idea from the 1D Helmholtz equation, we can do dispersion
correction as well, but only for a specific direction. Given an angle θ , for wave
number k and mesh size h, we choose the numerical wave number to be

k̂(θ ,k,h) = |
√

h−2(4−2cos(khcos(θ))−2cos(khsin(θ)))|. (8)

The 5-point FDM with dispersion correction is then given by

(Lh, f d5
k̂

u)i, j = h−2(4ui, j−ui−1, j−ui+1, j−ui, j−1−ui, j+1)− k̂2ui, j, (9)

and its dispersion relation is

{ξ ∈ R2|h−2(4−2cos(hξ1)−2cos(hξ2)) = k̂2}. (10)
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Fig. 2 Dispersion relation of operator L, fd5 and fd5-dc with dispersion correction for angle 15◦

and G = 4 (left) and G = 2.5 (right).

By the definition of k̂ in (8), one can see that the dispersion correction is used to
ensure that the phase speed v f d5−dc = 1 for the specific angle θ , i.e. there is no
dispersion error in that direction. However, for other angles, we still have numerical
dispersion, as shown in Figure 1 (right), where we did dispersion correction for
θ = 15◦, and then computed the phase speed v f d5−dc for the angles 0◦,15◦,30◦

and 45◦ when k = 10. In Figure 2, we show the dispersion relation of L, Lh, f d5
k

and Lh, f d5
k̂

, where k̂ is again the dispersion correction with θ = 15◦. We see that
the discrete corrected dispersion relation is much closer to that of the continuous
operator Lk than the uncorrected one. However, numerical dispersion still exists, it
is not possible to make the phase speed v f d5−dc = 1 for all angles using a modified
wave number alone.

3 An optimized 9-point FDM with dispersion correction

To improve dispersion errors, a parametrized 9-point FDM was introduced in [8],
where −∆ is discretized by a tensor product of a 1D mass matrix with stencil
[(1− a)/2,a,(1− a)/2]T and the standard second order difference with stencil
[−h−2,2h−2,−h−2]T , and the the mass term −k2 is discretized by the symmetric
9-point stencil (1−b− c)/4 c/4 (1−b− c)/4

c/4 b c/4
(1−b− c)/4 c/4 (1−b− c)/4

 .
This leads with α = [a,b,c] and our numerical wave number k̂ to the new 9-point
FDM

(Lh,α
k̂

u)i, j = ( 4a
h2 − k̂2b)ui, j +( 1−2a

h2 − k̂2c
4 )(ui−1, j +ui+1, j +ui, j−1 +ui, j+1)

−( 1−a
h2 + k̂2 1−b−c

4 )(ui−1, j−1 +ui+1, j−1 +ui−1, j+1 +ui+1, j+1).
(11)
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Computing its dispersion relation {ξ ∈ R2|(e−iξ ·x)i, j(L
h,α
k̂

eiξ ·x)i, j = 0} gives

(4ah−2− k̂2b)+2( 1−2a
h2 − k̂2c

4 )(cos(hξ1)+ cos(hξ2))

−2( 1−a
h2 + k̂2 1−b−c

4 )(cos(h(ξ1 +ξ2))+ cos(h(ξ1−ξ2))) = 0.
(12)

For a vector ξ that satisfies the dispersion relation (12), we define

η
α

k̂ := ‖ξ‖, (13)

which is a function that depends on θ . Then the phase speed of the operator Lh,α
k̂

is
vα

k̂
= k

ηα

k̂
. For the phase speed vα

k̂
to be close to 1, we need that ηα

k̂
is close to k. We

thus would need to solve the L2 minimization problem1

min
α,k̂

∫ 2π

0
(ηα

k̂ (θ)− k)2dθ . (14)

Because we can not explicitly compute (13) from the transcendental relation (12),
we propose a different minimization approach based on the reasonable

Assumption 3.1 Given a mesh size h, there exist sets K and P such that

• ∀ k̂ ∈K , ∀α ∈P , the set of the dispersion relation (12) is not empty;
• Given α ∈P , the mapping of K to {ηα

k̂
| k̂ ∈K } is injective.

Let F h,α : p(θ)→ q(θ) be the operator which computes for given p(θ), θ ∈ [0,2π]
the solution q(θ) of

(e−i[p(θ)cos(θ),p(θ)sin(θ)]T ·x)i, j(Lh,α
q ei[p(θ)cos(θ),p(θ)sin(θ)]T ·x)i, j = 0. (15)

Since k̂2 appears only linearly in the 9-point FDM (11), F h,α is easy to compute nu-
merically. In addition, by the definition of ηα

k̂
in (13) and Assumption 3.1, we have

F h,α(ηα

k̂
)= k̂. Thus, instead of solving (14), we solve min

α∈P,k̂∈K
∫ 2π

0 (F h,α(ηα

k̂
(θ))−

F h,α(k))2dθ , which, combined with F h,α(ηα

k̂
) = k̂, yields

min
α∈P,k̂∈K

∫ 2π

0
(k̂−F h,α(k))2dθ , (16)

where k can be interpreted as a constant function in θ . Using that k̂ does not depend
on θ , the objective function in (16) becomes by a direct calculation

∫ 2π

0
(k̂−F h,α(k))2dθ = 2π

(
k̂− 1

2π

∫ 2π

0
F h,α(k)dθ

)2

+
∫ 2π

0
F h,α(k)2dθ − 1

2π

(∫ 2π

0
F h,α(k)dθ

)2

.

1 We could also use different norms leading to different optimized dispersion corrections.
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Fig. 3 Dispersion relation of L, fd9-jss and fd9-dc when G = 4 (left) and G = 2.5 (right).

For any fixed α , we can then take k̂ = 1
2π

∫ 2π

0 F h,α(k)dθ to make the objective
function reach its minimum, since the other terms do not depend on k̂, and thus the
minimization problem (16) is after a short calculation equivalent to minimizing the
variance,

minα∈P

∫ 2π

0
(

1
2π

∫ 2π

0
F h,α(k)dθ −F h,α(k))2dθ . (17)

This leads to the following algorithm to compute optimized α∗ and k̂∗:

Algorithm 3.1 (Optimized parameters α∗ and k̂∗ for dispersion correction)
1◦ Input wave number k and mesh size h;
2◦ Construct operator F h,α in (15);
3◦ Solve minimization problem (17) to obtain α∗;
4◦ Compute k̂∗ = 1

2π

∫ 2π

0 F h,α∗(k)dθ ;
5◦ Output α∗ and k̂∗.

4 Numerical examples

We use a Riemann sum, discretizing θ in Algorithm 3.1 from 0 to 2π with step size
π/100, and solve (17) using Nelder Mead with initial guess α0 = [1,1,0], which
corresponds to the standard 5-point FDM. We denote our new 9-point FDM with
dispersion correction by fd9-dc, and compare it to the the FDM of Jo, Shin and Suh
in [8] denoted by fd9-jss. The parameters for fd9-jss do not depend on h and k and
are given by α = [0.7731,0.6248,0.3752].

We first compare in Figure 3 the dispersion relation of fd9-jss and fd9-dc
when k = 10. Algorithm 3.1 gives as optimized parameters for G = 4 the val-
ues α∗ = [0.8027,1.0532,0.0002], k̂∗ = 8.7725, and for G = 2.5 the values α∗ =
[0.7662,1.0553,0.0003], k̂∗ = 7.2186. We see on the left that both schemes seem
very good for G = 4, compared to the five point schemes in Figure 2, but on the
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Fig. 4 Phase speed curves for fd9-jss (left) and fd9-dc (right) when k = 10.

h fd5 fd9-jss fd9-dc
0.05 1.30E5 5.41E3 5.35E3
0.1 5.57E2 1.70E3 1.36E3
0.2 1.28E16 4.37E2 3.77E2

Table 1 Condition number comparison for the linear systems obtained with the different schemes
for varying mesh size when k = 10.

right for G = 2.5 the dispersion relation of fd9-dc is much better, still looking per-
fect for only 2.5 points per wavelength!

Figure 4 shows the phase speed curves vα∗

k̂∗
for fd9-jss and fd9-dc for the angles

0◦,15◦,30◦ and 45◦ when k = 10 as a function of 1/G. We can clearly see that the
phase speed of fd9-dc is much closer to 1 than for fd9-jss (note the different scales).

We next investigate the accuracy in h. We consider the Helmholtz equation on
Ω =(−1,1)×(−1,1) with the exact plane wave solution uθ

e (x)= ei(k cos(θ)x1+k sin(θ)x2)

and Dirichlet boundary conditions. The corresponding numerical solutions of fd9-
jss and fd9-dc are ufd9−jss,θ

h and ufd9−dc,θ
h , and the interpolated exact solution uθ

e on
the mesh with size h by uθ

i,h. We then measure the relative error of fd9-jss and fd9-dc
by

errfd9−jss(h,θ) =
‖ufd9−jss,θ

h −uθ
i,h‖

‖uθ
i,h‖

, errfd9−dc(h,θ) =
‖ufd9−dc,θ

h −uθ
i,h‖

‖uθ
i,h‖

.

In Figure 5, we show how the θ averaged errors

errfd9−jss(h)=
1

2π

∫ 2π

0
errfd9−jss(h,θ)dθ , errfd9−dc(h)=

1
2π

∫ 2π

0
errfd9−dc(h,θ)dθ ,

behave when h becomes small, for k = 5,10. We can clearly see that fd9-dc is 6-th
order accurate, while fd9-jss is just second order accurate. We show in Table 1 the
condition number of the corresponding linear systems for the different schemes for
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Fig. 5 Averaged relative errors of fd9-jss and fd9-dc for different mesh size h when k = 5 (left)
and k = 10 (right).

different mesh sizes when k = 10. We can clearly see that our new method (fd9-dc)
also reduces the condition number compared to the original FDM (fd5) or the FDM
proposed by Jo, Shin and Suh (fd9-jss).
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