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Abstract
The present paper deals with the design of optimized Robin-Schwarz methods
for the algorithm of optimal control proposed in [1]. In both overlapping
and non-overlapping cases, a full analysis of the problem is provided, and is
illustrated with numerical tests.

1 Introduction

Let Ω be a bounded open set of R2, z ∈ L2(Ω), and ν > 0. We consider the
following elliptic control problem described in [1] (see also [9, Chapter 2])

min
u∈L2(Ω)

∫
Ω

|y(u)− z|2dx+ ν

∫
Ω

|u|2dx, (1)

where, for a given function f ∈ L2(Ω), y(u) is the unique H1
0 (Ω) solution to

−∆y = f + u in Ω, y = 0 on ∂Ω. (2)

It is well known that the optimal control u (solution to (1)) is related to the
adjoint state p by u = − p

ν , and (y, p) ∈ H1
0 (Ω)2 is solution of the coupled

problem

−∆y = f − p

ν
−∆p = y − z (3)

Introducing the new unknown w = y+ i√
ν
p (see [1]), Problem (3) is equivalent

to the complex Helmholtz problem: find w ∈ H1
0 (Ω) such that
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−∆w − i√
ν
w = g in Ω g = f − i√

ν
z. (4)

In [2], Benamou and Després proposed a Robin’s non-overlapping domain
decomposition algorithm. Let us describe this algorithm (written here also for
overlapping subdomains like in the original Schwarz algorithm). We consider
the case where Ω = R2 is split into two subdomains Ω1 =] −∞, L2 [×R and

Ω2 =]− L
2 ,+∞[×R. Here, L is a non-negative parameter that corresponds to

the width of the overlapping zone between Ω1 and Ω2. We denote by nj the
outward unit normal vector to Ωj , ∂nj the normal derivative on the boundary

of Ωj . Letting λ0 ∈ H1/2(∂Ω1) and ` ∈ C, we construct iteratively the
sequences (wn1 )n∈N, (wn2 )n∈N as follows: for any n ∈ N\{0}, find wn1 ∈ H1(Ω1)
and wn2 ∈ H1(Ω2) such that{
−∆wn1 − i√

ν
wn1 = g in Ω1,

∂n1
wn1 + `wn1 = λn−1 on ∂Ω1,

{
−∆wn2 − i√

ν
wn2 = g in Ω2,

∂n2
wn2 + `wn2 = ∂n2

wn1 + `wn1 on ∂Ω2,

(5)

λn = ∂n1
wn2 + `wn2

∣∣∣
∂Ω1

.

It is easily seen ([1, Theorem 1]) that the problems defining wn1 and wn2 are
well-posed if ` belongs to the angular sector A defined by

A = {z ∈ C such that Im(z) < 0, Im(z) + Re(z) > 0} . (6)

Moreover, it is proved in [1, Theorem 2] (see also [2]), in the non-overlapping
case, that the algorithm (5) converges, namely the sequence wn1 (resp. wn2 )
tends to w (solution to (4)) in H1(Ω1) (resp. w in H1(Ω2)).

The objective of the present work is to find a parameter ` ∈ A that optimizes
the rate of convergence of this algorithm. In the case of strongly elliptic
real equation, this problem has been solved in [7] for Robin and Ventcel
transmission conditions. In the former case, explicit values of the coefficients
were given, whereas in the Ventcel case, only asymptotic formulas in terms
of the mesh size are available. Extension to real Helmholtz equations were
given in [6, 8]. Following these approaches, we consider the errors en1 = wn1−w
and en2 = wn2 − w and we denote by ên1 and ên2 their Fourier transform with
respect to y, with Fourier variable k. It is easily seen that ên1 and ên2 follow a
geometrical progression: more specifically, there exists two complex constants
a1 and a2 such that

ênj = aj δ(`, k)2n e−ω(k)|x|, δ(`, k) = e−ω(k)L
ω(k)− `
ω(k) + `

, ω(k) =

√
k2 − i√

ν
,

In the previous formulas, . Moreover, here and all over the text, the complex
number

√
z corresponds to the square root of z belonging to A. As a result,
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it suffices to minimize the modulus of δ (the square root of the convergence
factor) in order to accelerate the convergence of the domain decomposition
algorithm (5). As explained in [7, Section 4], we are interested in optimizing
δ over a bounded interval [kmin, kmax] (i.e. k ∈ [kmin, kmax]). In practice, the
interval depends on the geometry of the domain and the mesh size (kmax =
π
h where h denotes the characteristic length of the mesh). It leads us to
investigate the following homographic best approximation problem (see [7,
Section 4.2], [3] for the name in a time-dependent context): find δ∗ ∈ R such
that

δ∗ = inf
`∈C

sup
k∈[kmin,kmax]

|δ(ω(k), `)| (7)

2 General results of well-posedness

The existence and uniqueness of an optimal parameter `∗ are direct conse-
quences of the general results of [3, 4]:

Theorem 1 For L sufficiently small, there exists a unique `∗ ∈ A such that

δ∗ = inf
`∈C

sup
k∈[kmin,kmax]

|δ(ω(k), `)| = max
k∈[kmin,kmax]

|δ(ω(k), `∗)|. (8)

Moreover, there exists at least two distinct real numbers (k1, k2) ∈ [kmin, kmax]2

such that

max
k∈[kmin,kmax]

|δ(ω(k), `∗)| = |δ(ω(k1), `∗)| = |δ(ω(k2), `∗)|. (9)

Proof (Sketch of the proof of Theorem 1). By contradiction, one can verify
that if there exists `∗ ∈ C satisfying (8), then `∗ ∈ A (see e.g. [3, Lemma
4.5] for a similar proof). Then, the existence of `∗ ([3, Theorem 2.2 and The-
orem 2.8]) results from a compactness argument (k belongs to the compact
set [kmin, kmax]). Finally, in the non-overlapping case (L = 0), the uniqueness
is proved in [3, Theorem 2.6]. For L 6= 0 and sufficiently small, the unique-
ness proof results from an adaptation of [4, Theorem 8]. In both cases, the
uniqueness is a consequence of convexity properties and the equi-oscillation
property (9)([3, Theorem 2.5 and Theorem 2.11]).

3 Characterization of the optimal parameter in the
non-overlapping case

Theorem 2 The best parameter `∗ defined by (8) is given by
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`∗ =
√
ωminωmax, δ∗ =

∣∣∣∣√ωmin −
√
ωmax√

ωmin +
√
ωmax

∣∣∣∣ (10)

where ωmin = ω(kmin) and ωmax = ω(kmax). Moreover, if kmax = π
h , δ∗ and

`∗ admit the following asymptotic expansion

δ∗ = 1 − 2h1/2
Re(
√
ωmin)√
π

+ o(h1/2), `∗ = h−1/2
(√
π
√
ωmin + o(1)

)
.

(11)

We remark that Formula (10) is the same as in the real positive case (see
[7, Theorem 4.4]). The reminder of this section is dedicated to the proof of
Theorem 2. First, we remark that in the non-overlapping case (and as in the
real case), the equi-oscillation property (9) holds for exactly two points that
are nothing but kmin and kmax (the proof of this result may be done using
either a geometrical argument or a direct investigation of the derivative of
|δ(k, `)|2 with respect to k, see [5]):

Lemma 1 Let `∗ be defined by (8). Then,

max
k∈[kmin,kmax]

|δ(ω, `∗)| = |δ(ωmin, `
∗)| = |δ(ωmax, `

∗)|, (12)

and, for any k ∈]kmin, kmax[, |δ(ω(k), `∗)| < |δ(ωmin, `
∗)|.

The previous lemma motivates us to consider the curve of equioscillation Π
defined by

Π =
{
` = reiθ ∈ A such that |δ(ωmin, `)| = |δ(ωmax, `)|

}
, (13)

so that the optimization problem (8) can then be rewritten as follows: find
`∗ ∈ Π such that

δ∗ = min
`∈Π
|δ(ωmin, `)| = min

`∈Π
|δ(ωmax, `)|. (14)

Note that, unlike in the real case, the set Π is not reduced to the sin-
gleton {p =

√
ωminωmax}. Nevertheless,

√
ωminωmax still belongs to Π.

To continue the proof, it is useful to introduce the perpendicular bisector
∆ of the segment [ωmin, ωmax], i.e. ∆ = {z = x+ iy ∈ C s.t. y = ax+ b}
where a = −Re(ωmax−ωmin)

Im(ωmax−ωmin)
and b = |ωmax|2−|ωmin|2

2Im(ωmax−ωmin)
. For any ` ∈ C, we

also consider the signed distance between ` and ∆, namely the function

d(`) = aRe(`)−Im(`)+b√
1+a2

. Using the intercept theorem, it is easily seen that

the best parameter `∗ corresponds to the point of Π for which the distance
between Π and ∆ is minimal:

Lemma 2 The function η : Π → R, defined by η(`) = |δ(`, ωmin)| =
|δ(`, ωmax)| is a strictly increasing function of the signed distance d: for any
(`1, `2) ∈ Π2 such that d(`1) < d(`2), η(`1) < η(`2).
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In other words it suffices to study the variations of the distance function d over
Π in order to characterize the best parameter `. By a standard investigation
of d we prove the following lemma:

Lemma 3 The function d reaches its minimum over Π for `∗ =
√
ωminωmax.

The proof of Theorem 2 is completed by a standard asymptotic expansion of
δ∗ for kmax large.

4 Asymptotics of the optimal parameter in the
overlapping case

In the overlapping case (L > 0), we are not able to obtain an explicit char-
acterization of the best parameter `∗. Nevertheless, we are able to compute
its asymptotic behaviour for h small when the overlapping parameter L = h
and kmax = π

h ,

Theorem 3 Assume that L = h and kmax = π
h .

- For h sufficiently small, there exists k∗ ∈]kmin, kmax[ such that

max
k∈[kmin,kmax]

|δ(ω, `∗)| = |δ(ωmin, `
∗)| = |δ(ω(k∗), `∗)|, (15)

and, for any k ∈]kmin, k
∗[∪]k∗, kmax], |δ(ω(k), `∗)| < |δ(ωmin, `

∗)|.

- The optimal parameter `∗ and the corresponding convergence factor δ∗ admit
the following asymptotic expansion:

`∗ = h−1/3 ((cx − icy) + o(1)) and δ∗ = 1− crh1/3 + o(h1/3), (16)

where, introducing rmin = Re(ωmin) and imin = Im(ωmin),

cx =

(
rmin +

√
r2min + i2min

2
√

2

)2/3

, cy = − imin

2
√

2cx
, and cr = 2

√
2cx. (17)

Proof. The proof of Theorem 3 is divided into two main parts. We first con-
struct a formal asymptotic expansion of `∗ that we justify a posteriori. To
start with, we make an ’ansatz’ on the asymptotic behaviour of the optimal
parameter `∗. We assume that

`∗ ∼ ch−α with α ∈]0, 1[ and c = cx − icy (cx > 0, cy > 0).

Then, computing explicitly the derivative of |δ(`, k)|2, we prove that, in this
asymptotic regime, the equi-oscillation property (9) holds for exactly two
points k1 = kmin and k2 = k∗, where k∗ admits the following asymptotic:
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k∗ = 21/4(cx)1/4h(−α−1)/4 + o(h(−α−1)/4), and

|δ(ω(k∗), `
∗)|2 ∼ 1− 4(2cx)1/2h

1−α
2 |δ(ωmin, `

∗)|2 ∼ 1− 4hα
(cxrmin − cyimin)

|c|2

Identifying the previous two expansions leads to

α =
1

3
and

√
2cx(c2x + c2y)− (cxrmin − cyimin) = 0. (18)

Thus, in order to minimize the convergence factor (in this asymptotic regime),
it suffices to find the couple (cx, cy) satisfying (18)(right) and such that cx is
maximal. A direct analysis of equation (18) leads to (17).

It remains to justify the obtained formal asymptotic. For h ∈ (0, 1) and ε > 0
sufficiently small, let

Lh =
{
` ∈ C, s. t. h1/3(`x, `y) ∈ [cx − ε , cx + ε]× [−cy − ε,−cy + ε]

}
,

where cx and cy are defined by (17). Then, for h sufficiently small (in order to
be able to define k∗), let Γh = {` ∈ Lh, |δ(ωmin, `)| = |δ(ω(k∗, `)|} . Because
Γh is closed and non empty, there exists `h∗ such that

|δ(ωmin, `
h
∗)| = inf

`∈Γh
|δ(ωmin, `)|. (19)

It is not difficult to prove that `h∗ admits the asymptotic expansion (16). The
end the proof of Theorem 3 consists in showing that `h∗ = `∗. This is done by
proving the following lemma:

Lemma 4 `h∗ is a strict local minimum for ` 7→ ‖R(ω(k), `)‖L∞(kmin,kmax).

Indeed, Corollary 2.16 in [3] guarantees that any strict local minimum of the
function ` 7→ ‖R(ω(k), `)‖L∞(kmin,kmax) is the global minimum. Consequently

`h∗ = `∗ and the proof is complete. The proof of Lemma (4) is an adaptation
of the proof of [3, Theorem 4.2].

5 Numerical illustration

Let Ω =]0, π[2, ν = 1 and f = z = 0 (hence g = 0), so that the exact
solution is 0. The discretization is done using a standard second order finite
difference scheme. We choose a similar discretization in the x and y directions
(hx = hy = h) and we set kmin = 1 and kmax = π

h . In the non-overlapping
case, we split the domain Ω into two domains Ω1 and Ω2 of equal size:
Ω1 =]0, π/2[×]0, π[ and Ω2 =]π/2, π[×]0, π[. In the overlapping case, we take
Ω1 =]0, π/2[×]0, π[ and Ω2 =]π/2 − h, π[×]0, π[ (i.e. L = h). The domain
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decomposition algorithm is initialized with a uniform (over ]0, 1[) random
data λ01. In the next experiments, we evaluate the numerical (or observed)
convergence rate δnum(`,N) defined by

δnum(`,N) =

(
eN
eN−1

)1/2

, en =
√
‖unh,1‖2 + ‖unh,2‖2 (20)

On Figure 1, we evaluate δnum(`,N) for different values of ` taking N = 60
and h = π/80. The red cross corresponds to theoretical optimal parameter
`∗: in the non-overlapping case, `∗ =

√
ωminωmax while in the overlapping

case, `∗ is numerically computed. Although the theoretical analysis is done
for a two dimensional unbounded domain, we remark that the theoretical op-
timal parameter `∗ and the observed optimal parameter are relatively closed.
Moreover, for L = 0, the convergence factor slowly varies with respect to the
imaginary part of ` (cf. [5]). Then, Figure 2a presents the evolution of the er-
ror en with respect to the number n of iterations of the domain decomposition
algorithm for two different values of `: ` = `∗ and ` = `∗num, where `∗num de-
notes the numerical optimized coefficient obtained by optimizing δnum(`,N).
Finally, Figure 2b shows the evolution of 1− δnum(`,N) with respect to the
discretization parameter h. The introduction of the overlap perceptibly im-
proves the observed convergence rate (although the asymptotic regime is not
entirely reached in this case).

0.
6

0.
6

0.6

0.
6

0.
6

0.6

0.
65

0.
65

0.65

0.
65

0.
65

0.65

0.7
0.7

0.7

0.7
0.7

0.
7

0.75
0.75

0.75

0.75
0.75

0.
75

0.8
0.8

0.8

0.85
0.85

0.85

0.
9

0.9
0.9

0.
95

0.
95

0.
95

Re(`)

I
m
(`
)

 

0 2 4 6 8 10 12 14 16 18 20
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

(a) L = 0.

0.
39

0.39

0.
42

0.
42

0.42

0.45

0.45

0.
45

0.450.48
0.48

0.48

0.
48

0.48

0.51

0.51 0.51

0.
51

0.51

0.54

0.
54

0.54

0.54

0.
54

0.54

0.57
0.57

0.
57

0.57

0.57

0.6
0.

6

0.
6

Re(`)

I
m
(`
)

 

1 1.5 2 2.5 3 3.5 4 4.5 5
−3

−2.5

−2

−1.5

−1

−0.5

(b) L = h

Fig. 1: Contour plot of δnum(`,N) for h = π/80, N = 60
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