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Abstract We present a family of preconditioners based on the auxiliary
space method for a discontinuous Galerkin discretization on cubical meshes of
H(curl;Ω)- elliptic problems with possibly discontinuous coefficients. We address
the influence of possible discontinuities in the coefficients on the asymptotic perfor-
mance of the proposed solvers and present numerical results in two dimensions.

1 Introduction

Let Ω ⊂ R3 be a simply connected bounded domain with Lipschitz boundary and
let fff ∈ L2(Ω)3. We consider the following H(curl;Ω)-elliptic problem{

∇× (ν∇×uuu)+βuuu = fff in Ω ,

uuu×n = 0 on ∂Ω .
(1)

where ν = ν(x) ≥ ν0 > 0 and β = β (x) ≥ β0 > 0 are assumed to be in L∞(Ω)
but possibly discontinuous, and represent properties of the medium or material:
ν is typically the inverse of the magnetic permeability and β is proportional to
the ratio of electrical conductivity and the time step. Problem (1) arises in the
modelling of magnetic diffusion and also after implicit time discretization of
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resistive magneto-hydrodynamics (MHD). In connection with the MHD application
the use of hexahedral meshes is typically preferred over to family partitions made
of simplices [Pagliantini(2016)].
Finite element discretizations using edge elements of the first family
[Nédélec(1980)] are probably the most satisfactory methods to approximate
(1) from a theoretical point of view. Only recently, a new compatible element
(corresponding to an edge element of the second family) has been introduced
in [Arnold and Awanou(2014)]. Discontinuous Galerkin (DG) methods offer an
attractive alternative to conforming FE edge elements [Houston et al.(2005)] and
allow for great flexibility in incorporating the discontinuities of the medium.
For both methods, the condition number of the resulting linear systems de-
grades with mesh refinement and the size of the variations of the coefficients.
Hence, designing a preconditioner able to cope with the combined effect
of the mesh width and of highly varying coefficients turns out to be essen-
tial. For constant coefficients, efficient solvers for FE edge discretizations
have been successfully developed using domain decomposition (DD) and the
Auxiliary Space (AS) method [Hiptmair and Xu(2007)]. For discontinuous coef-
ficients, a non-overlapping BDDC algorithm has been proposed and analyzed in
[Dohrmann and Widlund(2016)], improving previous results in the DD literature,
see e.g. [Toselli(2006)]. Recently, in [Ayuso de Dios et al.(2017)], we have de-
veloped a family of AS preconditioners for DG discretizations of (1), providing
the analysis for simplicial meshes and in the case of cubical meshes when edge
elements of the first kind are used as local spaces. In this paper, we report on the
construction of the AS preconditioners focusing on the case of cubical meshes,
discussing also their performance in the case of jumping coefficients. The proposed
preconditioners rely on H(curl;Ω)-conforming auxiliary spaces (as auxiliary
space) and hence is presumed the availability of a (direct) solver for standard
H(curl;Ω)-conforming Galerkin discretizations.

2 SIPG Discretization on Hexahedral Meshes

Let Th be a family of shape-regular partitions of Ω into cubes T . For each T ∈ Th,
let hT = diam(T ) and set h = maxT∈Th hT . We assume that Th is conforming and
resolves the piece-wise constant coefficients β and ν . (i.e., νT ,βT ∈ P0(T ) for all
T ∈ Th).We denote by Fh the set of all faces of the partition; F o

h and F ∂
h refer

respectively, to the collection of all interior and boundary faces. Similarly, Eh =
E o

h ∪E ∂
h denote the set of all edges of the skeleton of Th; with E o

h and E ∂
h referring

to interior and boundary edges, respectively. We define the sets:

T (e) := {T ∈ Th : e ⊂ ∂T} ; E (T ) := {e ∈ Eh : e ⊂ ∂T} ;
F (T ) := { f ∈ Fh : f ⊂ ∂T} ; F (e) := { f ∈ Fh : e ⊂ ∂ f} .

We introduce the (family of) DG finite element spaces
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VDG
h = {vvv ∈ L2(Ω)3 : vvv ∈ M (T ), T ∈ Th} , M (T )⊆Qk(T )

3

where the local space M (T ) of vector-valued polynomials can be of three types:
1. Nédélec elements of first family on cubical meshes [Nédélec(1980)]

M (T ) = N I(T ) :=Qk−1,k,k(T )×Qk,k−1,k(T )×Qk,k,k−1(T ), k ≥ 1,

where Q`,m,n(T ) is the space of polynomials of degree at most `,m,n in each vector
variable.
2. Compatible elements (of second kind) [Arnold and Awanou(2014)]:

M (T ) = Sk(T ) := (Pk(T ))3+span{[yz(w2(x,z)−w3(x,y)) , zx(w3(x,y)−w1(y,z)) ,

xy(w1(y,z)−w2(x,z)) ]+∇s(x,y,z)} ,

where each wi ∈ Pk and s ∈ Pk(T ) has superlinear degree (ordinary degree ignoring
variables which appear linearly) at most k+1, with k ≥ 1.
3. Full polynomials: We set the local space M (T ) = (Qk(T ))3, and k ≥ 1.

For each choice of the resulting VDG
h space, the corresponding H0(curl,Ω)-

conforming finite element spaces are defined as:

Vc
h := VDG

h ∩H0(curl,Ω) = {vvv ∈ H0(curl,Ω) : vvv ∈ M (T ), T ∈ Th}. (2)

For a piecewise smooth vector-valued function vvv, we denote by vvv± the traces of vvv
taken from within T±. The tangential jump, indicated by [[ · ]]τ , is defined by

[[vvv ]]τ := n+× vvv++n−× vvv− on f ∈ F o
h , [[vvv ]]τ := n× vvv on f ∈ F ∂

h

where n+ and n− denote the unit normal vectors on f = ∂T+∩ ∈ ∂T− pointing
outwards from T+ and T−, respectively. We will also use the notation

(θuuu,vvv)Th = ∑
T∈Th

∫
T

θT uuuvvvdx, 〈uuu,vvv〉Fh = ∑
f∈Fh

∫
f
uuuvvvds ∀uuu,vvv ∈ VDG

h

where θ ∈ P0(Th) will be either θ = ν or θ = β .
The SIPG-DG method. We consider a symmetric Interior Penalty method (SIPG)
introduced recently in [Ayuso de Dios et al.(2017)] for approximating (1) robustly
(w.r.t the discontinuous coefficients). The method reads:

Find uuuh ∈ VDG
h such that aDG(uuuh,vvv) = ( fff ,vvv)Th ∀vvv ∈ VDG

h , (3)

with aDG(·, ·) defined by

aDG(uuu,vvv) := (ν∇×uuu,∇×vvv)Th +(βuuu,vvv)Th −〈{{ν∇×uuu}}
γ
, [[vvv ]]τ〉Fh

−〈[[uuu ]]τ ,{{ν∇×vvv}}
γ
〉Fh + ∑

T∈Th

αT (ν) ∑
e∈E (T )

∑
f∈F (e)

(s f [[uuu ]]τ , [[vvv ]]τ)0, f . (4)
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In (4), the weighted average {{·}}
γ

is defined as the plain trace for a boundary face,
whereas for ∂T+∩∂T− = f ∈ F o

h , is given by

{{uuu}}
γ

:= γ
+
f uuu++ γ

−
f uuu− with γ

±
f =

ν∓

ν++ν− , ν
± := ν|T± .

The penalization is defined by s f := ch−1
f on all f ∈ Fh with some c > 0 and the

mesh function h f = min{hT+ ,hT−} on f ∈ F o
h and h f = hT on f = ∂T ∩∂Ω .

The coefficient function (αT (ν))T∈Th ∈ P0(Th) is defined by

αT (ν) := max f∈F (T ) {{ν}}∗, f with {{ν}}∗, f :=


max

T∈T (e)
e⊂∂ f

νT f ∈ F o
h ,

νT f ∈ F ∂
h .

Notice that αT (ν) picks the maximum conductivity coefficient over a patch
of elements surrounding T . In Figure 1 a 2D sketch of such patch is given.

T

e

Fig. 1: 2D sketch of the
patch involved in defini-
tion of αT (ν) .

We stress that the weighted average {{·}}
γ

together with
{{·}}∗, f and the definition of αT (ν) ensure robustness
(with respect to the coefficients) of both the approximation
(3) in the energy norm (see [Ayuso de Dios et al.(2017),
Proposition 2.1], and [Pagliantini(2016), Proposition
5.1.1]) and the preconditioners, see Theorem 1 and
[Ayuso de Dios et al.(2017), Pagliantini(2016)] for details
in the analysis. Observe that when the variational for-
mulation (3) is restricted to Vc

h in (2), the corresponding
H0(curl,Ω)-conforming discretization of (1) is obtained. In
fact,

aW (uuu,vvv) := (ν∇×uuu,∇×vvv)Ω +(βuuu,vvv)Ω = aDG(uuu,vvv) ∀ uuu,vvv ∈ Vc
h. (5)

We denote by A : VDG
h −→ (VDG

h )′ the discrete operator (A uuu,www) = aDG(uuu,www)
and by A the matrix representation of A with respect to a localized “nodal” basis
of VDG

h (using any of the choices for M (T )). It can be verified that the spectral
condition number κ(A) is proportional to

h−2 maxT αT (ν)

minT νT
+

maxT βT

minT βT
.

3 Auxiliary Space Preconditioning

The Auxiliary Space Method (ASM) was introduced in [Xu(1996), Oswald(1996)]
as an expansion of the Fictitious Space Method [Nepomnyaschikh(1991)] providing
a neat methodology for developing and analysing preconditioners. To describe the
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preconditioners we propose, based on the AS methodology, we first review the basic
ingredients behind the Fictitious Space Method:

(1) the fictitious space: a real finite dimensional Hilbert space V , endowed with an
inner product ā(·, ·), induced operator A : V → V

′
and norm ‖·‖A .

(2) A continuous, linear and surjective transfer operator Π : V → VDG
h .

By virtue of [Nepomnyaschikh(1991)], an optimal preconditioner for A would re-
sult in an optimal preconditioner for A . The distinguishing feature of ASM is the
particular choice of V as a product space, including the original space as one of the
components. Here, we set V = VDG

h ×W , endowed with the inner product

a(vvv,vvv) = s(vvv0,vvv0)+a
W
(www,www), ∀vvv = (vvv0,www), vvv0 ∈ VDG

h , www ∈ W , (6)

where W is the (truly) so-called auxiliary space and a
W
(·, ·) is the auxiliary bi-

linear form. We will always take as W an H0(curl,Ω)-conforming space Vc
h. In

(6), s(·, ·) is the bilinear form associated with a relaxation operator S on VDG
h .

Denoting by A
W

the operator associated with a
W
(·, ·), the auxiliary space precon-

ditioner operator is B = S −1 +Π
W
◦A −1

W
◦Π ∗

W
where the linear transfer operator

Π
W

: W → VDG
h is the standard inclusion and its adjoint Π ∗

W
: VDG

h → W is defined

by a
W
(Π ∗

W
vvv,www) = a(vvv,Π

W
www), vvv ∈ VDG

h , www ∈ W . If S ∈ RN×N with N := dimVDG
h

and AW ∈ RNW×NW , NW := dimW , then the preconditioner in algebraic form reads

B= S−1 +PA−1
W PT, (7)

where P ∈ RN×NW is the matrix representation of the transfer operator Π
W

.
We now specify the precise components for the two preconditioners we propose:

1. Natural Preconditioner: We set W = Vc
h = VDG

h ∩H0(curl,Ω) for any choice
of the local space M (T ) and a

W
(·, ·) is as in (5). Hence, A

W
: Vc

h → (Vc
h)

′ is self-
adjoint and positive definite. As relaxation operator S it is sufficient to use a simple
Jacobi or block Jacobi smoother.
2. Coarser or Economical Preconditioner: When the local space is either
M (T ) = Sk(T ) or M (T ) = (Qk(T ))3 in the construction of the VDG

h -space, we
consider a second possibility for the AS preconditioner. We take W as

W := W c
h = {www ∈ H0(curl,Ω) : www|T ∈ N I(T ), T ∈ Th} ⊂ Vc

h ⊂ VDG
h .

As to the relaxation operator, we demonstrate numerically that a non-overlapping
Schwarz smoother is not able to resolve the components in the kernel of curl(W )
and as a consequence an overlapping smoother is necessary. We will show numer-
ically that in the case M (T ) = (Qk(T ))3, the resulting AS preconditioner is not
effective, independently of the choice of the smoother and the amount of domain
overlaps involved in its construction. We suspect that this is connected to the fact
that the DG method using M (T ) = (Qk(T ))3 is not spectrally correct, while W c

h is.
Next result provides the convergence of the Natural Preconditioner.
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Theorem 1. Let B be the auxiliary space preconditioner in (7), with W = Vc
h and

simple Jacobi smoother on VDG
h . Let ∆h and ∆ ′

h denote the set of elements in the
curl-dominated regime and reaction-dominated region, respectively:

∆h := {T ∈ Th : h2
T βT < αT (ν)} , ∆

′
h := {T ∈ Th : h2

T βT ≥ αT (ν)} .

Then, the spectral condition number of the resulting preconditioned system satisfies

κ(BA). max{1,Θ(ν ,β )} ,

with Θ(ν ,β ) := min
{

max
T∈Th

h2
T βT

νT
, max

T,T ′∈Th
∂T∩∂T ′ 6= /0

βT

βT ′
, max

T∈∆h,T ′∈∆ ′
h

∂T∩∂T ′ 6= /0

αT (ν)

αT ′(ν)

}
.

The proof can be found in [Ayuso de Dios et al.(2017), Pagliantini(2016)] as well
as the analysis of the Coarser AS Preconditioner on simplicial meshes. The analysis
of a Coarser AS Preconditioner on hexahedral meshes is still an open problem.

4 Numerical Results

In the following numerical simulations we will restrict to the two dimensional prob-
lem (1) on a square. We set the constant entering in the penalty parameter s f in
(4) to c = 10. The tolerance for the CG and PCG is set to 10−7. In the tables we
always report the number of iterations required for convergence. We refer to the
AS preconditioners by VDG

h −W , or more precisely by the local spaces M (T ) in
the construction of each VDG

h and W . Since the experiments are in 2D we use the
rotated Nédélec elements of the first family N I(T ) = RT 0; the rotated version
of the space S1 := RT 0 + {curl(x2y),curl(xy2),curl(x2),curl(y2)}, and the 2D
full polynomials space Q1(T )2. For the Natural AS Preconditioner a simple Jacobi
smoother is always used. For the Coarser or Economical AS Preconditioner we will
specify the smoother used at each time.

Test Cases with Continuous Coefficients. We consider first the constant coeffi-
cient case β = ν = 1. As shown in Table 1, the natural AS preconditioner is indeed
optimal in all the cases, as predicted by Theorem 1. In contrast, the coarser AS
preconditioner performs optimally for S1 −RT 0 only if an overlapping smoother
is included. However, the coarser AS preconditioner Q1 −RT 0 is not efficacious
regardless the smoother involved in the construction.

To get some insight on the failure of the coarser AS preconditioner for Q1, we
explore the spectral approximation of the considered DG methods to (1) on Ω =
[0,π]2 with ν = 1 and β = 0. The exact eigenvalues are given by n2 +m2 for n and
m positive integers. In Figure 2 is given the lower part of the spectrum using a DG
discretization based on the three possible choices of local spaces M (T ). As it can
be observed in in Figure 2, the DG discretization based on the full polynomial space
(Q1)

2, is not spectrally correct. Therefore, a preconditioner built on an auxiliary
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]Th 16×16 32×32 64×64 128×128 256×256

RT 0 Unpreconditioned 128 204 376 753 1504

(Q1)
2 Unpreconditioned 410 815 1454 2796 4554

S1 Unpreconditioned 543 1083 2031 4056 7316

RT 0-RT 0 Jacobi 9 9 9 9 9

Q1-Q1 Jacobi 22 21 20 19 19

Q1-RT 0: Jacobi
∣∣ overlapping 259

∣∣ 61 471
∣∣ 113 844

∣∣ 202 1622
∣∣ 337 2936

∣∣ 618

S1-RT 0: Jacobi
∣∣ overlapping 88

∣∣ 18 72
∣∣ 19 49

∣∣ 20 34
∣∣ 20 36

∣∣ 19

Table 1: Number of iterations for test case with constant coefficients.

space where the H0(curl,Ω)-conforming discretization is spectrally correct (e.g.
Nédélec elements of the first family) is not effective.
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Fig. 2: Lower part of the spectrum for different DG discretizations: rotated Nédélec elements of
the first family RT 0 (left), rotated S1 (center), and the full polynomial space (Q1)

2 (right).

Test Case with Discontinuous Coefficients. We consider now the more challenging
case of β and ν both discontinuous following a checkerboard distribution according
to the partition Ω1 := [0,0.5]2 ∪ [0.5,1]2 ⊂ Ω = [0,1]2. We define

ν(x) =

102 if x ∈ Ω1 ,

1 otherwise ,
and β (x) =

10−3 if x ∈ Ω1 ,

10 otherwise .

In Table 2 we report the iteration counts of the different preconditioners and in Fig-
ure 3 are given graphically the estimated condition numbers of the preconditioned
systems. As it can be observed in Figure 3 and Table 2, the natural AS precondi-
tioner performs optimally in the presence of discontinuous coefficients, as predicted
by Theorem 1. The coarser AS preconditioner S1-RT 0 is also efficacious in this
case, when using an overlapping relaxation. As regards the (Q1)

2 DG discretization,
the coarser AS preconditioner is totally ineffective.
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]Th 16×16 32×32 64×64 128×128 256×256

RT 0-RT 0 Jacobi 11 10 10 10 10

Q1-Q1 Jacobi 23 22 21 21 20

S1-RT 0: overlapping 24 24 24 25 24

Q1-RT 0: overlapping 69 129 248 425 −

Table 2: Number of iterations for test case with discontinuous coefficients.
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Fig. 3: Test case with discontinuous co-
efficients. Condition number vs. number
of elements: S1 DG discretization with
ASM based on rotated RT 0 elements
with overlapping additive Schwarz smoother
(black); DG discretization with rotated
RT 0 discontinuous elements and rotated
RT 0 as auxiliary space with pointwise Ja-
cobi smoother (blue); discontinuous bilin-
ear Lagrangian elements with H(curl,Ω)-
conforming full polynomial auxiliary space
and Jacobi smoother (orange).
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