
On high-order approximation and
stability with conservative properties

Juan Galvis1, Eduardo Abreu2, Ciro Dı́az2, and Marcus Sarkis3

1 Summary

In this paper, we explore a method for the construction of locally conservative
flux fields. The flux values are obtained through the use of a Ritz formulation
in which we augment the resulting linear system of the continuous Galerkin
(CG) formulation in a higher-order approximation space. These methodolo-
gies have been successfully applied to multi-phase flow models with heteroge-
neous permeability coefficients that have high-variation and discontinuities.
The increase in accuracy associated with the high order approximation of
the pressure solutions is inherited by the flux fields and saturation solutions.
Our formulation allows us to use the saddle point problems analysis to study
approximation and stability properties as well as iterative methods design for
the resulting linear system. In particular, here we show that the low-order
finite element problem preconditions well the high-order conservative discrete
system. We present numerical evidence to support our findings.

2 Problem and conservative formulation

Consider the equation,

−div(Λ(x)∇p) = q in Ω ⊂ <2, (1)

p = 0 on ∂Ω, (2)
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where Ω is a two-dimensional domain and Λ is a (smooth enough) positive
definite symmetric matrix function. See [6] for the case of Λ being a multiscale
coefficient with high-contrast. Our main interest is to obtain approximate so-
lutions of the second order problem above1 with: 1) high-order approximation
(e.g., multiple basis per node), 2) local mass conservation properties and 3)
stable-fast solver.

Our motivations come from the fact that in some applications it is
imperative to have some conservative properties represented as conserva-

tions of total flux in control volumes. For instance, if qh represents the approx-
imation to the flux (in our case qh = −Λ∇ph where ph is the approximation
of the pressure), it is required that∫

∂V

qh · n =

∫
V

q for each control volume V.

For Dirichlet boundary condition, V is a control volume that does not cross
∂Ω from a set of control volumes of interest, and here and after n is the
normal vector pointing out the control volume. We say that a discrete method
is conservative if the total flux restriction such as the one written above holds.

We note that FV methods that use higher degree piecewise polynomi-
als have been introduced in the literature; see [3, 4, 5]. We consider a Ritz
formulation and construct a solution procedure that combines a continuous
Galerkin-type formulation that concurrently satisfies mass conservation re-
strictions. We impose finite volume restrictions by using a scalar Lagrange
multiplier for each restriction; see [1, 6].

The variational formulation of problem (1) is to find p ∈ H1
0 (Ω) such that

a(p, v) = F (v) for all v ∈ H1
0 (Ω), (3)

where the bilinear form a is defined by

a(p, v) =

∫
Ω

Λ(x)∇p(x)∇v(x)dx, (4)

the functional F is defined by F (v) =
∫
Ω
q(x)v(x)dx. The Problem (3) is

equivalent to the minimization problem:

p = arg min
v∈H1

0 (Ω)
J (v) where J (v) =

1

2
a(v, v)− F (v). (5)

Let the triangulation τh = {Rk}Nh

k=1 made of elements that are triangles
or squares, where Nh is the number of elements. We also introduce the dual

1 The use of second order formulation makes sense especially for cases where some form of

high regularity holds. Usually in these cases the equality in the second order formulation
is an equality in L2 so that, in principle, there is no need to write the system of first order

equations and weaken the equality by introducing less regular spaces for the pressure as it

is done in mixed formulation with L2 pressure.
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mesh τ∗h = {Vk}
N∗h
k=1 where the elements are called control volumes. In this

paper we assume that each Vk is a subdomain of Ω with polygonal boundary.
Let us introduce the space H := {v ∈ H1

0 (Ω) : Λ∇v ∈ H(div, Ω)}. If q ∈ L2

we have that (3) is equivalent to: Find p ∈ H1
0 such that

p = arg min
v∈W
J (v), (6)

where W =

{
v ∈ H :

∫
∂T

−Λ∇v · n =

∫
T

q for all T ∈ τ∗h
}
.

Problem (6) above can be view as Lagrange multipliers min-max optimiza-
tion problem. See [2] and references therein. Let us denote Mh = RN∗h .

The Lagrange multiplier formulation of problem (6) can be written as:
Find p ∈ H and λ ∈Mh that solves

(p, λ) = arg max
µ∈RN∗

h

min
v∈H,

J (v)− (a(v, µ)− F (µ)). (7)

Here, the total flux bilinear form a : H × Mh → R is defined by

a(v, µ) =

Nh∑
k=1

µk

∫
∂Vk

Λ∇v · n for all v ∈ H and µ ∈Mh. (8)

The functional F : Mh → R is defined by F (µ) =
∑Nh

i=1 µk
∫
Vk
q, for all µ ∈

Mh. The first order conditions of the min-max problem above give the fol-
lowing saddle point problem: Find p ∈ H1

0 (Ω) and λ = 0 ∈Mh that solves:

a(p, v) + a(v, λ) = F (v) for all v ∈ H,
a(p, µ) = F (µ) for all µ ∈Mh.

(9)

3 Discretization and error

Let us consider Ph = Qr(τh)∩H1
0 (Ω). We also interpret Mh as Q0(τ∗h), that

is, the space of piecewise constant functions on the dual mesh τ∗h . See for
instance [6] where we consider GMsFEM spaces instead of piecewise polyno-
mials.

The discrete version of (9) is to find ph ∈ Ph and λ ∈Mh such that

a(ph, vh) + a(vh, λh) = F (vh) for all vh ∈ Ph (10)

a(ph, µh) = F (µh) for all µh ∈Mh. (11)

The equivalent matrix form is,
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A A

T

A O

] [
uh

λh

]
=

[
f

f

]
(12)

where A is the finite element stiffness matrix corresponding to finite element
space Ph = span {ϕj},

A = [ai,j ] where aij =

∫
Ω

Λ∇ϕi · ∇ϕj . (13)

The restriction or finite volume matrix A is given by,

A = [ak,j ] where akj =

∫
∂Vk

Λ∇ϕj · n. (14)

Moreover, f = [fi] with fi =
∫
Ω
q ϕi and f = [fk]

N∗h
k=1 with fk =

∫
Vk
q.

Note that matrix A is related to classical (low order) finite volume matrix.
Matrix A is a rectangular matrix with more columns than rows. Several pre-
vious works on conservative high-order approximation of second order elliptic
problem have been designed by “adding” rows using several constructions.
See [1] for details.

We consider a particular case of a regular mesh made of squares. Our anal-
ysis is valid for high order finite element on regular meshes made of triangles

since a similar analysis holds in this case. Define Γ ∗ =
⋃N∗h
k=1 that is, Γ ∗ is the

interior interface generated by the dual triangulation. For µ ∈Mh define [µ]
on Γ ∗ as the jump across element interfaces such that [µ]|∂Vk∩∂Vk′ = µk−µk′ .
Note that a(v, µ) =

∑N∗h
k=1 µk

∫
∂Vk
∇v · n =

∫
Γ∗
∇v · n [µ] .

In our analysis we use the energy norm in the space that approximates
the pressure and a discrete norm in the space of Lagrange multipliers. De-
note ‖v‖2a =

∫
Ω
Λ∇v · ∇v for all v ∈ H1

0 (Ω). Let us recall the defini-
tion of space H := {v ∈ H1

0 (Ω) : Λ∇v ∈ H(div, Ω)}, and additional set
Ph+ = Span{Ph, H}. We define the norm (that is motivated by the analysis)

‖v‖2Ph
+

= |v|2H1(Ω) + h2
N∗h∑
`=1

‖∆v‖2L2(R`)
for all v ∈ Ph+. (15)

Note that if v ∈ Qr, then ‖v‖2
Ph

+
� |v|2H1(Ω) using an inverse inequality. Also

define the discrete norm for the spaces of Lagrange multipliers as

‖µ‖2Mh =
1

h

∫
Γ∗

[µ]2. (16)

It is possible to verify that ([1])
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1. Augmented norm: ‖v‖a ≤ ‖v‖Ph
+

for all v ∈ Ph+.

2. Continuity: |ā| ∈ R such that |ā(v, µh)| ≤ |ā|‖v‖Ph
+
‖µh‖Mh for all v ∈ Ph+

and µh ∈Mh.

3. Inf-Sup: infµh∈Mh supv∈Ph
+

a(v, µh)

‖v‖a ‖µh‖Mh
≥ α > 0.

We also have established optimal approximation in energy norm (‖p−ph‖a �
h|p|H2(Ω)) and using a duality argument it is possible to write the optimal

L2 approximation ‖p− (ph + λh)‖0 � h2|p|H2(Ω); see [1] for details.

4 The case of highly anisotropic media

One issue with some cases of conservative methods is the lack of coerciveness
under the presence of high-anisotropic coefficients. We can think our formula-
tion as a stabilization for these cases (in the sense that we increase the space
of the solution while keeping fixed the space for the Lagrange multipliers).
Preliminary numerical studies suggest that our formulation is more robust
(with respect to anisotropy) than the classical finite volume formulations.

A nice feature of our formulation is that the symmetric saddle point (12) is
suitable for constructing robust preconditioners; see [2] for variety of solvers
and iteration that can be used. Here we present a simple stationary iteration.
Consider the iteration

Auk+1 = f −ATλk
λk+1 = λk + ωB−1(Auk+1 − f).

(17)

Here ω is a relaxation parameter and B a preconditioner to be defined. This
iteration corresponds to a preconditioned Richardson iteration applied to
the Schur complement problem (to solve for the Lagrange multiplier lambda
equation). We have, by combining the two equations above,

λk+1 = λk + ωB−1 (g − Sλk)

where g = AA−1f − f and S is the Schur complement S = AA−1A
T

. Note
that the size of S is the number of interior vertices if the control volumes
are constructed by joining the centers of the elements of the primal mesh. In
the case of isotropic coefficients and square elements, we can take B = Mh

defined in (16); see [2]. In order to take into account the anisotropy, below in
the numerical tests we consider B defined by

B = [bij ] where bij =

∫
D

Λ∇ϕi∇ϕj with ϕi, ϕj ∈ Q1 ∩H1
0 (Ω).
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5 Numerical experiments

We consider the Dirichlet problem (1). Let Ω = (0, 1)× (0, 1). We consider a
regular mesh made of 4L squares. The dual mesh is constructed by joining the
centers of the elements of the primal mesh. We perform a series of numerical
experiments to compare properties of FEM solutions with the solution of our
high order FV formulation (to which we refer from now on as FV solution).
We select the exact solution p(x, y) = sin(πx) sin(πy)(−x+3y) and f = −∆u.

On Table 1 we compare our Q1 FV method with the classical Q1 finite
element method. We compute L2 and H1 errors. We observe optimal con-
vergence of both strategies however the FV is conservative. On Table 2 we
consider Q2 elements and optimal higher convergence rates are confirmed.

L FEM, L2 Error FV. L2 Error FEM, H1 Error FV.H1 Error

1 1.5538× 10−1 1.5103× 10−1 1.1297× 100 1.1338× 100

2 3.6342× 10−2 3.1881× 10−2 5.3226× 10−1 5.3416× 10−1

3 8.9720× 10−3 7.5.276× 10−3 2.6374× 10−1 2.6403× 10−1

4 2.2548× 10−3 1.9348× 10−3 1.3163× 10−1 1.3172× 10−1

5 5.5513× 10−4 4.6095× 10−4 6.5833× 10−2 6.5840× 10−2

6 1.3875× 10−4 1.1513× 10−4 3.2948× 10−2 3.2924× 10−2

7 3.4685× 10−5 2.8776× 10−5 1.6418× 10−2 1.6489× 10−2

Table 1 Table of FEM and FV L2 and H1 errors using Q1 elements.

L FEM L2 Error FV. L2 Error FEM H1 Error FV.H1 Error

1 1.4061× 10−2 2.4548× 10−2 1.9302× 10−1 2.2436× 10−1

2 2.1217× 10−3 4.9023× 10−3 5.4862× 10−2 7.2895× 10−2

3 2.6860× 10−4 6.4789× 10−4 1.4072× 10−2 1.8847× 10−2

4 3.3875× 10−5 8.1756× 10−5 3.5418× 10−3 4.7552× 10−3

5 4.2437× 10−6 1.0242× 10−5 8.3539× 10−4 1.2667× 10−3

6 5.3075× 10−7 1.2810× 10−6 2.2016× 10−4 2.9616× 10−4

7 6.6353× 10−8 1.6015× 10−7 5.5043× 10−5 7.4046× 10−5

Table 2 Table of FEM and FV L2 and H1 errors using Q2 elements.

We now move to symmetric anisotropic coefficients Λ. We now show in Ta-
bles 3-8 the smallest and the largest eigenvalues of λmax(B−1S)/λmin(B−1S)
for different values of Λ, h = 2L and for Q1,Q2 and Q3 elements. The Λ has
eigenvalues 1 and η and associate eigenvector η = (cos(Θ), sin(Θ))t. From
these results we see that the smallest eigenvalue is very stable, therefore, the
discrete inf-sup is satisfied. This is a strong result since finite volume dis-
cretizations sometimes lack in coerciveness for highly anisotropic media. The
proposed preconditioner performs well however has a mildly dependence with
respect to the different configuration of anisotropy direction and anisotropy
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ratio. This is somehow expected since the continuity given in (15) is with
respect to the Vh-norm rather than a-norm, and further studies are on the
way to eliminate this dependence. Recall that the application of the precon-
ditioner requires the solution of a low-order (Q1) classical symmetric finite
element problem. In practice, these solve can be replaced by a robust method
for low-order finite element method and inexact Uzawa or Conjugated Gra-
dient. Recall also that we obtain conservative solutions.

L\η 1 10 100 1000 1 10 100 1000 1 10 100 1000

2
1.76

1.05

1.76

1.05

1.76

1.05

1.76

1.05

1.76

1.05

1.76

1.05

1.81

1.05

1.81

1.05

1.76

1.05

1.80

1.05

1.82

1.05

1.83

1.05

3
2.09

1.01

2.09

1.01

2.09

1.01

2.09

1.01

2.09

1.01

2.11

1.01

2.12

1.01

2.12

1.01

2.09

1.01

2.11

1.01

2.13

1.01

2.14

1.01

4
2.20

1.00

2.20

1.00

2.20

1.00

2.20

1.00

2.20

1.00

2.21

1.00

2.22

1.00

2.22

1.00

2.20

1.00

2.21

1.00

2.22

1.00

2.22

1.00

5
2.24

1.00

2.24

1.00

2.24

1.00

2.24

1.00

2.23

1.00

2.24

1.00

2.24

1.00

2.24

1.00

2.24

1.00

2.24

1.00

2.24

1.00

2.24

1.00

6
2.25

1.00

2.25

1.00

2.25

1.00

2.25

1.00

2.25

1.00

2.25

1.00

2.25

1.00

2.25

1.00

2.25

1.00

2.25

1.00

2.25

1.00

2.25

1.00

Table 3 Maximum and minimum eigenvalue λmax
λmin

for Θ = 1(left), Θ = π
6

(center),

Θ = π
4

(right) and Ph = Q1. The Λ has eigenvalues 1 and η and the eigenvector associated

to η is (cos(Θ), sin(Θ))t.

L\η 1 10 100 1000 1 10 100 1000 1 10 100 1000

2
1.79

1.05

1.80

1.05

1.81

1.06

1.81

1.06

1.79

1.05

2.13

1.09

2.47

1.11

2.53

1.11

1.79

1.05

2.32

1.10

2.98

1.12

3.12

1.12

3
2.10

1.01

2.10

1.01

2.11

1.01

2.11

1.01

2.10

1.01

2.50

1.02

2.99

1.03

3.18

1.03

2.10

1.01

2.77

1.02

4.03

1.03

4, 43

1.03

4
2.21

1.00

2.21

1.00

2.21

1.00

2.21

1.00

2.21

1.00

2.61

1.01

3.27

1.01

3.92

1.01

2.21

1.00

2.91

1.01

4.40

1.01

5.24

1.01

5
2.24

1.00

2.24

1.00

2.24

1.00

2.24

1.00

2.24

1.00

2.64

1.00

3.43

1.00

4.90

1.00

2.24

1.00

2.95

1.00

4.52

1.00

6.43

1.00

6
2.25

1.00

2.25

1.00

2.25

1.00

2.25

1.00

2.25

1.00

2.65

1.00

3.48

1.00

5.86

1.00

2.25

1.00

2.95

1.00

4.57

1.00

7.60

1.00

Table 4 Maximum and minimum eigenvalue λmax
λmin

for Θ = 1 (left), Θ = π
6

(center),

Θ = π
4

(right) and Ph = Q2. The Λ has eigenvalues 1 and η and the eigenvector associated

to η is (cos(Θ), sin(Θ))t.

6 Conclusions

In this paper we use a Ritz formulation with constraints to obtain locally
conservative fluxes in the approximation of the Darcy equation. With this
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L\η 1 10 100 1000 1 10 100 1000 1 10 100 1000

2
4.52

2.43

4.54

2.43

4.57

2.43

4.58

2.43

4.52

2.29

4.72

2.29

6.92

2.29

7.21

2.29

4.52

2.44

4.80

2.28

5.01

2.24

5.05

2.23

3
5.32

2.29

5.35

2.29

5.40

2.29

5.41

2.29

5.33

2.29

5.47

1.95

6.92

1.89

7.21

1.90

5.32

2.29

5.67

1.92

7.37

1.86

7.68

1.64

4
5.59

2.26

5.62

2.26

5.68

2.26

5.69

2.26

5.60

2.26

5.89

1.81

10.8

1.74

12.2

1.74

5.59

2.26

6.48

1.78

12.2

1.72

13.7

1.72

5
5.67

2.25

6.70

2.25

5.75

2.25

5.77

2.25

5.67

2.25

6.19

1.75

16.9

1.68

22.2

1.67

5.67

2.25

7.09

1.73

20.2

1.67

26.3

1.66

6
5.69

2.25

5.72

2.25

5.77

2.25

5.79

2.25

5.68

2.25

5.68

1.72

24.7

1.65

41.4

1.65

5.68

2.25

7.46

1.70

30.8

1.65

50.7

1.64

Table 5 Maximum and minimum eigenvalue λmax
λmin

for Θ = 1 (left), Θ = π
6

(center),

Θ = π
4

(right) and Ph = Q3.

formulation we obtain solution that have high-order approximation and still
yield locally conservative fluxes with no post-processing. We show that the
resulting linear system can be solve using a stationary iteration where the
application of the preconditioner uses an approximation of a low-order finite
element problem. We present numerical evidence to support our findings.
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