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1 Derivation of the Nonlinear ParaExp Algorithm

Time parallelization has a long history, see [1] and references therein. The parallel

speedup obtained is in general not as good as with space parallelization, especially

for hyperbolic problems. A notable exception are waveform relaxation-type meth-

ods [3, 4], which in the hyperbolic case are related to the more recent tent-pitching

approach [6], and the ParaExp algorithm [7, 9] based on Krylov methods, which is

however restricted to linear problems. For an application in a nonlinear context, see

[10], and for a different approach using Krylov information, see [8]. Here we pro-

pose and analyze a variant of the ParaExp algorithm for the nonlinear initial value

problem

u′(t) = Au(t)+B
(
u(t)

)
+ g(t), t ∈ [0,T ], u(0) = u0, (1.1)

with A∈Cm×m, B :Cm →Cm a nonlinear operator, g : [0,T ]→Cm a source function,

and u : [0,T ] → Cm the sought solution. Throughout this note we assume that all

stated initial value problems have unique solutions. For the ParaExp algorithm, the
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time interval [0,T ] is partitioned into N subintervals [Tn−1,Tn] with n= 1, . . . ,N, and

a direct application of this algorithm to the nonlinear problem (1.1) gives

Step 1: Solve for n ≥ 1 in parallel the nonlinear problems with zero initial data

v′n(t) = Avn(t)+B
(
vn(t)

)
+ g(t), t ∈ [Tn−1,Tn],

vn(Tn−1) = 0.

Step 2: Solve for n ≥ 1 in parallel the linear non-homogeneous problems

w′
n(t) = Awn(t), t ∈ [Tn−1,T ],

wn(Tn−1) = vn−1(Tn−1), v0(T0) = u0.

ParaExp then forms the linear combination u(t) = vn(t)+∑
n
j=1 w j(t), t ∈ [Tn−1,Tn),

which still satisfies the initial condition, but not equation (1.1) since u′(t) = Au(t)+
B
(
vn(t)

)
+ g(t), t ∈ [Tn−1,Tn], except when B is not present. One can however

naturally separate the solution into u(t) = v(t) +w(t), with w solving the linear

problem w′(t) = Aw(t), w(t) = u0, and v solving the nonlinear remaining part

v′(t) = Av(t) +B
(
v(t) +w(t)

)
+ g(t), v(0) = 0. To apply this splitting on multi-

ple time intervals [Tn−1,Tn] we need to iterate. Using the initialization v0
n(Tn) = 0

for n = 1, . . . ,N (or some other approximation), we perform for k = 1,2, . . .

Step 1: Solve for n ≥ 1 in parallel the linear problems

(
wk

n

)′
(t) = Awk

n(t), t ∈ [Tn−1,T ],

wk
n(Tn−1) = vk−1

n−1(Tn−1), wk
1(T0) = u0.

(1.2)

Step 2: Solve for n ≥ 1 in parallel the nonlinear problems

(
vk

n

)′
(t) = Avk

n(t)+B
(
vk

n(t)+
n

∑
j=1

wk
j(t)

)
+ g(t), t ∈ [Tn−1,Tn],

vk
n(Tn−1) = 0.

(1.3)

The new approximate solution is then defined by uk(t) = vk
n(t) +∑

n
j=1 wk

j(t), t ∈
[Tn−1,Tn), which now satisfies equation (1.1) on each time interval [Tn−1,Tn), and

uk(0)=u0. The solution of the linear part (1.2) can still be computed efficiently as in

the ParaExp algorithm using Krylov techniques, but (1.3) requires the computation

of ∑
n
j=1 wk

j on [Tn−1,Tn], and thus would need the Krylov approximation of wk
j on

the entire interval [Tn−1,Tn]. To avoid this, we rewrite the algorithm in terms of uk
n

instead of vk
n, where uk

n approximates u: starting with u0
n(Tn) = w0

j(Tn) = 0 for all j

and n, the nonlinear ParaExp algorithm performs for k = 1,2, . . .

Step 1: Solve for n ≥ 1 in parallel the linear problems
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(
wk

n

)′
(t) = Awk

n(t), t ∈ [Tn−1,T ],

wk
n(Tn−1) = uk−1

n−1(Tn−1)−
n−1

∑
j=1

wk−1
j (Tn−1), wk

1(T0) = u0.
(1.4)

Step 2: Solve for n ≥ 1 in parallel the nonlinear problems

(
uk

n

)′
(t) = Auk

n(t)+B
(
uk

n(t)
)
+ g(t), t ∈ [Tn−1,Tn],

uk
n(Tn−1) =

n

∑
j=1

wk
j(Tn−1),

(1.5)

and form the new approximate solution as

uk(t) = uk
n(t), t ∈ [Tn−1,Tn). (1.6)

Remark 1. To avoid the computation of uk
n as the solution of a nonlinear problem,

one could linearize (1.5) by using in the nonlinear term B(uk−1
n ) instead of B(uk

n),
where u0

n = 0 or some other approximation of the solution. However, in what follows

we focus on the fully nonlinear version, since then uk is the solution of the nonlinear

problem (1.1) on each time interval.

2 Analysis of the Nonlinear ParaExp Algorithm

We first show that the nonlinear ParaExp algorithm introduced in the previous sec-

tion converges in a finite number of steps.

Theorem 1. The approximate solution uk obtained at iteration k and defined by

(1.6) coincides with the exact solution u on the time interval [T0,Tk).

Proof. Since wk
1(T0) = u0 for all k = 1,2, . . . , wk

1 =wk−1
1 on the time interval [T0,T ]

for all k = 2,3, . . . . Next, for k = 1 we have u1(t) = u1
1(t) on [T0,T1], and since

u1
1(T0) = w1

1(T0) = u0 we get by the uniqueness of the solution of (1.5) that u1
1

coincides with the exact solution u on the time interval [T0,T1].
We now prove by induction that for all k = 2,3 . . . we have

uk
n = u on [Tn−1,Tn], ∀n ≤ k, wk

n = wk−1
n on [Tn−1,T ], ∀n ≤ k− 1. (2.1)

For k = 2, we only need to prove property (2.1) for u2, since for w2
1 it is ensured by

the fact that wk
1 = wk−1

1 for all k ≥ 2. The initial condition for u2
2 is

u2
2(T1) = w2

1(T1)+w2
2(T1) = w2

1(T1)+u1
1(T1)−w1

1(T1) = u1
1(T1) = u(T1),

where we used the fact that w2
1 = w1

1 and that u1
1 is the exact solution on the time

interval [T0,T1]. Since u2
2 satisfies the same equation as u on the time interval [T1,T2]

and u2
2(T1) = u(T1), u2

2 must coincide with u on [T1,T2]. But we also know that
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u2
1(T0) = w2

1(T0) = u0 and that u2
1 satisfies (1.5), which implies u2

1 = u on [T0,T1],
and hence u2 coincides with the exact solution of (1.1) on the time interval [T0,T2).

We now suppose that (2.1) holds for all iterations up to an arbitrarily fixed index k

and we prove (2.1) for k + 1. To first check that wk+1
n = wk

n on [Tn−1,T ] for all

n = 2,3, . . . ,k, we compute

wk+1
n (Tn−1) = uk

n−1(Tn−1)−
n−1

∑
j=1

wk
j(Tn−1) = u(Tn−1)−

n−1

∑
j=1

wk−1
j (Tn−1)

= uk−1
n−1(Tn−1)−

n−1

∑
j=1

wk−1
j (Tn−1) = wk

n(Tn−1),

where we have used the recurrence hypothesis (2.1). Since wk+1
n and wk

n satisfy the

same equation and have the same initial condition, the result follows. We next prove

that uk+1
n = u on [Tn−1,Tn] for all n ≤ k+1. Since we already know that uk+1

n and u

satisfy the same equation on the time interval [Tn−1,Tn], we only need to check that

the initial condition satisfied by uk+1
n ,

uk+1
n (Tn−1) =

n

∑
j=1

wk+1
j (Tn−1) =

n−1

∑
j=1

wk+1
j (Tn−1)+uk

n−1(Tn−1)−
n−1

∑
j=1

wk
j(Tn−1)

= uk
n−1(Tn−1),

where we used the first result we just proved for wk+1
n and that wk+1

1 = wk
1 for all k.

Now, using the recurrence hypothesis (2.1), we know that uk
n−1 coincides with the

exact solution of (1.1) on [Tn−2,Tn−1], which implies that uk+1
n (Tn−1) = u(Tn−1). �

We now show that the nonlinear ParaExp algorithm can be interpreted in the

context of the Parareal algorithm if written as a multiple shooting method (see [5,

2]). We will need the following result.

Lemma 1. Let (uk
n)k,n be the sequence defined by the nonlinear ParaExp algorithm

(1.4)–(1.6). Defining ũ
0
n(Tn) = 0 and C0

n(Tn) = 0 for all n ≥ 0, let
(
Ck

n

)
k,n

for all

k ≥ 1 and n ≥ 1 be the solutions of the linear problems

(
Ck

n

)′
(t) = ACk

n(t), t ∈ [Tn−1,Tn],

Ck
n(Tn−1) = Ck

n−1(Tn−1)+ ũ
k−1
n−1(Tn−1)−Ck−1

n−1(Tn−1), Ck
1(T0) = u0,

and let
(
ũ

k
n

)
k,n

be the solutions of the nonlinear problems

(
ũ

k
n

)′
(t) = Aũ

k
n(t)+B

(
ũ

k
n(t)

)
+ g(t), t ∈ [Tn−1,Tn],

ũ
k
n(Tn−1) = Ck

n(Tn−1).

Then uk
n = ũ

k
n on [Tn−1,Tn] for all n ≥ 0 and k ≥ 1.

Proof. At step k = 1 and for all n ≥ 1, C1
n is the solution of the linear problem
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(C1
n)

′(t) = AC1
n(t), t ∈ [Tn−1,Tn],

C1
n(Tn−1) = C1

n−1(Tn−1), C1
1(T0) = u0.

Hence C1
n is the restriction of the solution of u′ = Au, u(0) = u0 on [T0,T ] to the

time interval [Tn−1,Tn]. Taking into account the definition (1.4) of w1
n, we notice that

w1
n = 0 for n > 1 and w1

1 is the solution of the linear problem u′ = Au, u(0) = u0 on

[T0,T ]. Thus, C1
n(t) = ∑

n
j=1 w1

j(t) on [Tn−1,Tn], and ũ
1
n satisfies for n ≥ 1

(
ũ

1
n

)′
(t) = Aũ

1
n(t)+B

(
ũ

1
n(t)

)
+ g(t), t ∈ [Tn−1,Tn],

u1
n(Tn−1) = C1

n(Tn−1) =
n

∑
j=1

w1
j(Tn−1).

Comparing this with (1.5) and using the uniqueness of the solution for the nonlinear

problem, we deduce that u1
n(t) = ũ

1
n(t) on [Tn−1,Tn] for all n ≥ 1.

Assuming now that for all n ≥ 1 and a given k we have Ck
n(t) = ∑

n
j=1 wk

j(t),

uk
n(t) = ũ

k
n(t) on [Tn−1,Tn],we need to show that this also holds for k+ 1. To do so,

we prove by recurrence with respect to n that Ck+1
n (t) = ∑

n
j=1 wk+1

j (t) on [Tn−1,Tn].

For n= 1, we have that Ck+1
1 (T0) = u0 =wk+1

1 (T0) and, since Ck+1
1 and wk+1

1 satisfy

the same equation and the same initial condition, we conclude that Ck+1
1 = wk+1

1 on

[T0,T1]. Next, we suppose that Ck+1
n (t) = ∑

n
j=1 wk+1

j (t) on [Tn−1,Tn] and prove that

Ck+1
n+1(t) = ∑

n+1
j=1 wk+1

j (t) on [Tn,Tn+1]. By checking the initial condition of Ck+1
n+1

at Tn and using the recurrence hypothesis, we find

Ck+1
n+1(Tn)=Ck+1

n (Tn)+uk
n(Tn)−

n

∑
j=1

wk
j(Tn)=Ck+1

n (Tn)+wk+1
n+1(Tn)=

n+1

∑
j=1

wk+1
j (Tn).

Since Ck+1
n+1 and ∑

n+1
j=1 wk+1

j solve the same linear problem on [Tn,Tn+1] and satisfy

the same initial condition at Tn, we obtain Ck+1
n+1 = ∑

n+1
j=1 wk+1

j on [Tn,Tn+1]. Further,

for n ≥ 1 we have

(
ũ

k+1
n

)′
(t) = Aũ

k+1
n (t)+B

(
ũ

k+1
n (t)

)
+ g(t), t ∈ [Tn−1,Tn],

ũ
k+1
n (Tn−1) = Ck+1

n (Tn−1) =
n

∑
j=1

wk+1
j (Tn−1).

Thus, ũ
k+1
n and uk+1

n solve the same equation with identical initial condition on

[Tn−1,Tn] and hence ũ
k+1
n = uk+1

n on [Tn−1,Tn]. �

The following theorem is essentially a reformulation of Lemma 1 in the usual

notation of the parareal algorithm in terms of a coarse and a fine integrator [11].

Theorem 2. Let the coarse propagator G(Tn,Tn−1,U) solve the linear problem

u′(t) = Au(t) on [Tn−1,Tn], u(Tn−1) = U,
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and let the fine propagator F(Tn,Tn−1,U) solve the nonlinear problem

u′(t) = Au(t)+B
(
u(t)

)
+ g(t) on [Tn−1,Tn], u(Tn−1) = U.

Then the solution uk computed by the nonlinear ParaExp algorithm (1.4)–(1.6) coin-

cides at each time point Tn with the solution Uk
n computed by the parareal algorithm

Uk
n = F(Tn,Tn−1,U

k−1
n−1)+G(Tn,Tn−1,U

k
n−1)−G(Tn,Tn−1,U

k−1
n−1). (2.2)

Proof. Using the definition of uk in (1.6) and the notation of Lemma 1, we have

uk(Tn) = uk
n+1(Tn) = Ck

n+1(Tn) = Ck
n(Tn)+uk−1

n (Tn)−Ck−1
n (Tn)

= G
(
Tn,Tn−1,C

k
n(Tn−1)

)
−G

(
Tn,Tn−1,C

k−1
n (Tn−1)

)
+ ũ

k−1
n (Tn)

= G
(
Tn,Tn−1,C

k
n(Tn−1)

)
−G

(
Tn,Tn−1,C

k−1
n (Tn−1)

)
+F

(
Tn,Tn−1,C

k−1
n (Tn−1)

)
.

Thus uk(Tn) = Uk
n with Uk

n = Ck
n+1(Tn). �

Theorem 2 shows that the nonlinear ParaExp algorithm is mathematically equiva-

lent to the parareal algorithm (2.2) where the coarse integrator G is an exponential

integrator for w′ = Aw. There is however an important computational difference:

due to the linearity of G we can write

G(Tn,Tn−1,U
k+1
n−1)

= G
(
Tn,Tn−1,F(Tn−1,Tn−2,U

k
n−2)−G(Tn−1,Tn−2,U

k
n−2)+G(Tn−1,Tn−2,U

k+1
n−2)

)

= G
(
Tn,Tn−1,F(Tn−1,Tn−2,U

k
n−2)−G(Tn−1,Tn−2,U

k
n−2)

)
+G(Tn,Tn−2,U

k+1
n−2),

which corresponds to the coarse propagation of a jump over [Tn−1,Tn] plus the coarse

propagation of Uk+1
n−2 over a longer time interval [Tn−2,Tn]. Repeating a similar cal-

culation for G(Tn,Tn−2,U
k+1
n−2), we derive

G(Tn,Tn−2,U
k+1
n−2) = G

(
Tn,Tn−2,F(Tn−2,Tn−3,U

k
n−3)−G(Tn−2,Tn−3,U

k
n−3)

)

+G(Tn,Tn−3,U
k+1
n−3),

which again corresponds to the coarse propagation of a jump (over two intervals)

plus a coarse propagation of Uk+1
n−3 (over three intervals). This recursion can be re-

peated, and it will terminate as Uk+1
n−n = U0 is known, leading to an alternative, more

compact formulation of the nonlinear ParaExp algorithm:

initialize U0
n = G(Tn,T0,U0) for n = 0,1, . . . ,N,

Uk+1
n = G(Tn,T0,U0)+

n

∑
j=1

G
(
Tn,Tj,F(Tj,Tj−1,U

k
j−1)−G(Tj,Tj−1,U

k
j−1)

)
.

Here the coarse integrator is applied in parallel, which is different from parareal.

The price to pay is that the coarse integrations now span multiple overlapping time
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intervals [Tj,Tn]. As in the original ParaExp algorithm, these linear homogeneous

problems can be solved very efficiently using Krylov methods.

3 Numerical Illustration

We now investigate the nonlinear ParaExp algorithm numerically. We solve the non-

linear wave equation utt = uxx +αu2 on the time-space domain [0,4]× [−1,1] with

homogeneous Dirichlet boundary conditions and u(0,x) = e−100x2
, u′(0,x) = 0,

where the parameter α ≥ 0 controls the nonlinear character of the problem. The

problem is discretized in space using finite differences with m = 200 equispaced

interior grid points on [−1,1]. This gives rise to the ODE

[
u

v

]′
=

[
O I

L O

][
u

v

]
+

[
0

αu2

]
,

where L = tridiag(1,−2,1)/h2, h = 2/(m+ 1), and the operation u2 has to be un-

derstood component-wise. We partition the time interval [0,4] into n = 20 slices of

equal length and use as fine integrator MATLAB’s ode15s routine with a relative

error tolerance of 10−6. For the linear coarse integration we use MATLAB’s expm.

Table 1 lists, for varying α ∈ {0,2,4,6,8.2}, the number of iterations required

by our nonlinear ParaExp algorithm to achieve an error of order ≈ 1e− 6 over all

time slices. Figure 1 shows, again for varying α , the reference solutions u(t,x) on

the left, and on the right the error of the ParaExp solution at each time point t j after

k = 1,2, . . . iterations. Here a number of k = 0 iterations corresponds to the error of

the ParaExp initialization with the coarse integrator.

The parameter α = 0 gives rise to a linear problem. Note that for this case the

error of the initialization is of order ≈ 10−6, and not of order machine precision as

one would expect from the exponential integration using expm. This is because our

reference solution has been computed via ode15s and is of lower accuracy.

For increasing values of α the nonlinear character of the wave equation becomes

more pronounced and typically more ParaExp iterations are required. It depends on

the efficiency of the coarse propagator (in this case expm) if any speed-up would

be obtained in a parallel implementation. For large-scale problems the use of (ratio-

nal) Krylov techniques as in [7] is recommended. The nonlinear ParaExp method

becomes inefficient for highly nonlinear problems, with 14 iterations required for

α = 8.2. This is expected and we note that for α ≈ 9 the solution u(t,x) even ap-

pears to have a singularity in the time-space domain of interest.
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Fig. 1 Exact solutions (left) and convergence (right) of the nonlinear ParaExp algorithm applied

to a nonlinear wave equation with varying parameter α ∈ {0,2,4,6,8.2} (top to bottom).
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parameter α 0 2 4 6 8.2

# iterations 1 5 7 7 14

Table 1 Number of iterations required by the nonlinear ParaExp algorithm to solve a nonlinear

wave equation to fixed accuracy uniformly over a time interval. The parameter α controls the

nonlinearity of the problem.
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