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1 Definition of the Optimal Coarse Space

We consider a general second order elliptic model problem

L u= f in Ω (1)

with some given boundary conditions that make the problem well posed. We decom-
pose the domainΩ first into non-overlapping subdomains̃Ω j , j = 1,2, . . . ,J, and
to consider also overlapping domain decomposition methods, we construct over-
lapping subdomainsΩ j from Ω̃ j by simply enlarging them a bit. All domain de-
composition methods provide at iterationn solutionsun

j on the subdomains̃Ω j ,
j = 1,2, . . . ,J (or onΩ j in the case of overlapping methods, but then we just restrict
those to the non-overlapping decompositionΩ̃ j ). We want to study here properties
of the correction that needs to be added to these subdomain solutions in order to ob-
tain the solutionu of (1). This would be the best possible correction a coarse space
can provide, independently of the domain decomposition method used, and it allows
us to define an optimal coarse space, which we then approximate.

Since theun
j are subdomain solutions, they satisfy equation (1) on theircorre-

sponding subdomain,
L un

j = f , in Ω̃ j . (2)

Defining the error
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Kévin Santugini
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en(x) := u(x)−un
j (x), x∈ Ω̃ j ,

we see that the error satisfies the homogeneous problem in each subdomain,

L en = 0 in Ω̃ j . (3)

At the interface between the non-overlapping subdomainsΩ̃ j the error is in general
not continuous, and also the normal derivative of the error is not continuous, since
the subdomain solutionsun

j in general do not have this property1. The best coarse
space, which we call optimal coarse space, must thus containpiecewise harmonic
functions onΩ̃ j to be able to represent the error.

2 Computing the Optimal Coarse Correction

Having identified the optimal coarse space, we need to explain a general method
to determine the optimal coarse correction in it. While two different approaches for
specific cases can be found in [8, 7], we present now a completely general approach:
let us denote the interface between subdomainΩ̃i andΩ̃ j by Γi j , and let the jumps
in the Dirichlet and Neumann traces between subdomain solutions be denoted by

gn
i j (x) := un

i (x)−un
j (x), hn

i j (x) := ∂ni u
n
i (x)+ ∂n j u

n
j (x), x∈ Γi j , (4)

where∂n j denotes the outer normal derivative of subdomainΩ̃ j . Then the error
satisfies the transmission problem

L en = 0 in Ω̃ j ,

en
i (x)−en

j (x) = gn
i j (x) onΓi j ,

∂ni e
n
i (x)+ ∂n j e

n
j (x) = hn

i j (x) onΓi j .

(5)

Its solution lies in the optimal coarse space, and when addedto the iteratesun
i , we

obtain the solution: the domain decomposition method has become a direct solver,
it is nilpotent, independently of the domain decompositionmethod and the problem
we solve: no better coarse correction is possible!

We now give a weak formulation of the transmission problem (5). To simplify
the exposition, we use the case of the Laplacian,L := −∆ . We multiply the par-
tial differential equation from (5) in each subdomainΩ̃ j by a test functionv j and
integrate by parts to obtain

∫

Ω j

∇ej ·∇v j −

∫

Γj

∂ej

∂n j
v j = 0. (6)

1 For certain methods, continuity of the normal derivative ishowever assured, like in the FETI
methods, or continuity of the Dirichlet traces, like in the Neumann-Neumann method or the alter-
nating Schwarz method. This can be used to reduce the size of the optimal coarse space.
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If we denote by ˜eandṽ the functions defined on all ofΩ by the piecewise definition
ẽ|Ω j := ej andṽ|Ω j := v j , then we can combine (6) over all subdomainsΩ̃ j to obtain

∫

Ω
∇ẽ·∇ṽ−∑

Γi j

∫

Γi j

∂ej

∂n j
v j +

∂ei

∂ni
vi = 0. (7)

If we impose now continuity on the test functionsv j , i.e. ṽ to be continuous, then
(7) becomes

∫

Ω
∇ẽ·∇ṽ−∑

Γi j

∫

Γi j

(

∂ej

∂n j
+

∂ei

∂ni

)

ṽ= 0, (8)

and we can use the data of the problem to remove the normal derivatives,
∫

Ω
∇ẽ·∇ṽ−∑

Γi j

∫

Γi j

hi j ṽ= 0. (9)

It is therefore natural to choose a continuous test functionṽ to obtain a variational
formulation of the transmission problem (5), a function in the space

V := {v : v|Ωi =: vi ∈ H1(Ω̃i), vi = v j onΓi j }. (10)

Now the jump in the Dirichlet traces of the errors would in general be imposed on
the trial function space,

U := {u : u|Ωi =: ui ∈ H1(Ω̃i), ui −u j = gi j onΓi j }, (11)

so the complete variational formulation for (5) is:

find ẽ∈U , such that
∫

Ω
∇ẽ·∇ṽ−∑

Γi j

∫

Γi j

hi j ṽ= 0 ∀ṽ∈V. (12)

To discretize the variational formulation (12), we have to choose approximations
of the spacesV andU , and both spaces contain interior Dirichlet conditions. Ina
finite element setting, it is natural to enforce the homogeneous Dirichlet conditions
in Vh strongly if the mesh is matching at the interfaces, i.e. we just impose the nodal
values to be the same forVh.

While at the continuous level, the optimal coarse correction lies in an infinite
dimensional space except for 1d problems, see [5, 7], at the discrete level this space
becomes finite dimensional. It is in principle then possibleto use the optimal coarse
space at the discrete level and to obtain a nilpotent method,i.e. a method which
converges after the coarse correction, see for example [9, 8, 11, 10], and also [1]
for conditions under which classical subdomain iterationscan become nilpotent. It
is however not very practical to use these high dimensional optimal coarse spaces,
and we are thus interested in approximations.
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3 Approximations of the Optimal Coarse Space

We have seen that the optimal coarse space contains functions which satisfy the ho-
mogeneous equation in each non-overlapping subdomainΩ̃ j , i.e. they are harmonic
in Ω̃ j . To obtain an approximation of the optimal coarse space, it is therefore suf-
ficient to define an approximation for the functions on the interfacesΓi j , which are
then extended harmonically insidẽΩ j . A natural way to approximate the functions
on the interfaces is to use a Sturm-Liuville eigenvalue problem, and then to select
eigenfunctions which correspond to modes on which the subdomain iteration of the
domain decomposition methods used is not effective. This can be done either for
the entire subdomain, for example choosing eigenfunctionsof the Dirichlet to Neu-
mann operator of the subdomain, see [2], or any other eigenvalue problem along the
entire boundary of the subdomaiñΩ j , or piecewise on each interfaceΓi j , in which
case also basis functions relating cross points need be added [11, 10], see also the
ACMS coarse space [12] and references therein. This can be done solving for exam-
ple lower dimensional counterparts of the original problemalong the interfaceΓi j

with boundary conditions one at one end, and zero at the other, creating something
like hat functions around the crosspoint. Doing this for example for a rectangular
domain decomposed into rectangular subdomains for Laplaces equation, this would
just generate Q1 functions on each subdomain. It is important however to not force
these function to be continuous across subdomains, since they have to solve approx-
imately the transmission problem (5) whose solution is not continuous, except for
specific methods2. So the resulting coarse basis function is not a hat functionwith
one degree of freedom, but it is a discontinuous hat functionwith e.g. four degrees
of freedom if four subdomains meet at that cross point.

Different approaches not based on approximating an optimalcoarse space, but
also using eigenfunctions in the coarse space to improve specific inequalities in the
convergence analysis of domain decomposition methods are GenEO [14], whose
functions are also harmonic in the interior of subdomains, and [3, 4], where volume
eigenfunctions are used which are thus not harmonic within subdomains. For a good
overview, see [13].

4 Concrete Example: the Parallel Schwarz Method

We consider the high contrast diffusion problem∇ · (a(x,y)∇u) = f in Ω = (0,1)2

with two subdomainsΩ1 = (0, 1+δ
2 )× (0,1) andΩ2 = (1−δ

2 ,1)× (0,1). The classi-
cal parallel Schwarz method is converging most slowly for low frequencies along the
interfacex= 1

2, i.e. error components represented in the Laplacian case bysin(kπy),
k = 1,2, . . . ,K for some small integerK, see for example [6]. These are precisely
the eigenfunctions of the eigenvalue problem one obtains when using separation of
variables, which in our high contrast case is

2 see footnote 1
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Fig. 1 An example with long channels, shortened channels, and closed shortened channels

∂y(aΓ φy) = λaΓ φ , (13)

whereaΓ denotes the trace of the high contrast parameter along the interface, in
our simple exampleaΓ (y) := a(1

2,y). So already in the case of Laplaces equation,
it would be good to enrich a classicalQ1 coarse space aligned with the decom-
position with harmonically extended eigenfunctions sin(kπy), k = 1,2, . . . ,K into
the subdomains. We now illustrate why this is even more important in the case of
high contrast channels, thea(x,y) of which are shown in Figure 1. We show in Fig-
ure 2 the performance of a classical parallel Schwarz methodwith two subdomains
for increasing overlap sizes. We see that for the case of the long channels increas-
ing the overlap improves the performance of the classical Schwarz methods as for
the Laplacian3, and nothing special happens between overlap 41h and overlap 43h.
This is however completely different for the shortened channel case, independently
if they are closed or not, were increasing the overlap does not help at all, until sud-
denly changing from overlap 41h and overlap 43h, the method becomes fast. This
can be easily understood by the maximum principle, and is illustrated in Figure 3
which shows the errors in the subdomains. We clearly see thatdue to the fast dif-
fusion the error propagates rapidly from the interface intothe subdomains, and the
maximum principle indicates slow convergence, as long as the overlap does not con-
tain the shortened channels. As soon as the overlap containsthe shortened channels,
convergence becomes rapid. This is very different for the long channels, as illus-

iteration
5 10 15 20
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10 0

Overlap h
Overlap 11h
Overlap 21h
Overlap 41h
Overlap 43h

iteration
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Fig. 2 Convergence behavior of a classical parallel Schwarz method for high contrast long and
shortened channels

3 the same happens if inclusions are only contained within thesubdomains, outside the overlap
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Fig. 3 Error for the first four iterations in the shortened channel case: Top overlap 41h, and bottom
overlap 43h, and slightly more overlap suddenly leads to much more rapidconvergence.

trated in Figure 4. Here the channels touch the outer boundary of the domain, and
the maximum principle indicates rapid convergence.

The case of shortened channels is precisely the situation where the convergence
mechanism of the underlying domain decomposition method has problems, and if
one can not afford a large enough overlap, a well chosen coarse space can help. It
suffices to add harmonically extended low frequency modes ofthe cheap, lower di-
mensional interface eigenvalues problem to the coarse space, leading to the so called
Spectrally Harmonically Enriched Multiscale coarse space(SHEM), see [11, 10].
Figure 5 shows that the eigenfunctions of the cheap interface eigenvalue problem
are almost identical to the eigenfunctions obtained from the expensive DtN eigen-
value problem on the shortened channels from [2, 12], and still very similar to the
ones of the DtN eigenvalue problem on the shortened closed channels, except for
the first one. We show in Figure 6 on the left the eigenvalues ofthe cheap interface
eigenvalue problem, compared to the eigenvalues of the expensive DtN-operator
on the shortened channels and the shortened closed channels. They all indicate via
the smallest eigenvalues that there are five channels, and five coarse functions are
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Fig. 4 Error for the first four iterations in the shortened channel case: Top overlap 41h, and bottom
overlap 43h, and slightly more overlap leads to slightly more rapid converge.
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Fig. 5 Eigenfunctions of the different eigenvalue problems compared

needed for good convergence, see Figure 6 on the right. The DtN-eigenvalue prob-
lem for the shortened closed channels also indicates that there is only one eigenvalue
going to zero when the contrast becomes large. To obtain goodconvergence, it is
however also in the closed shortened channel case necessaryto include five enrich-
ment functions in the coarse space, see Figure 7. It thus suffices as in SHEM to use
the inexpensive interface eigenvalue problem to constructan effective approxima-
tion of the optimal coarse space, see [10] for simulations inthe more general case
of many subdomains and contrast functions.
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iteration
10 20 30 40

10 -5

10 0

1 Coarse
2 Coarse
3 Coarse
4 Coarse
5 Coarse
6 Coarse
7 Coarse
8 Coarse

iteration
10 20 30 40

10 -5

10 0

1 Coarse
2 Coarse
3 Coarse
4 Coarse
5 Coarse
6 Coarse
7 Coarse
8 Coarse

Fig. 7 Shortened closed channels. Left: coarse space based on the interface eigenvalue problem.
Right: coarse space based on the DtN eigenvalue problem for the shortened closed channels.

2. Victorita Dolean, Frédéric Nataf, Robert Scheichl, and Nicole Spillane. Analysis of a two-
level Schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps.Comput.
Methods Appl. Math., 12(4):391–414, 2012.

3. Juan Galvis and Yalchin Efendiev. Domain decomposition preconditioners for multiscale
flows in high-contrast media.Multiscale Model. Simul., 8(4):1461–1483, 2010.

4. Juan Galvis and Yalchin Efendiev. Domain decomposition preconditioners for multiscale
flows in high contrast media: reduced dimension coarse spaces. Multiscale Model. Simul.,
8(5):1621–1644, 2010.
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