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1 Definition of the Optimal Coarse Space

We consider a general second order elliptic model problem
Zu=1f inQ Q)

with some given boundary conditions that make the problethpesed. We decom-
pose the domai@ first into non-overlapping subdomaiﬁzﬁ, j=12,....J, and
to consider also overlapping domain decomposition methadsconstruct over-
lapping subdomain®; from f)j by simply enlarging them a bit. All domain de-
composition methods provide at iteraticnnsolutionsu’j1 on the subdomaing;,
j=1,2,...,3 (oronQj in the case of overlapping methods, but then we just restrict
those to the non-overlapping decompositidy). We want to study here properties
of the correction that needs to be added to these subdomniatioss in order to ob-
tain the solutioru of (1). This would be the best possible correction a coaraeesp
can provide, independently of the domain decompositiomotetised, and it allows
us to define an optimal coarse space, which we then approximat

Since theu? are subdomain solutions, they satisfy equation (1) on ttwire-
sponding subdomain,

2l =1, inQ. 2)

Defining the error
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€'(x) ;== u(x) —uj(x), xe Q,

we see that the error satisfies the homogeneous problemhirseadomain,
Z2e"'=0 inQ;. (3)

At the interface between the non-overlapping subdoméijnthe error is in general
not continuous, and also the normal derivative of the esorot continuous, since
the subdomain solutioru%‘ in general do not have this propettyrhe best coarse
space, which we call optimal coarse space, must thus copitdewise harmonic
functions onQ; to be able to represent the error.

2 Computing the Optimal Coarse Correction

Having identified the optimal coarse space, we need to explajeneral method
to determine the optimal coarse correction in it. While tviffedent approaches for
specific cases can be found in [8, 7], we present now a conypttaeral approach:
let us denote the interface between subdon!fluandQJ by lij, and let the jumps
in the Dirichlet and Neumann traces between subdomainisnkibe denoted by

g} (0 = ul(x) —uf(x), h}(x) := I ul(x) +on, U (%), xe T, (4)

Where(?nj denotes the outer normal derivative of subdoméijn Then the error
satisfies the transmission problem

2" =0 in Q;,
g'(x) —€f(x) =gl (x) onfi, (5)
On€'(X) + 0n;€](x) = hjj(x) ~ onfjj.

Its solution lies in the optimal coarse space, and when atiéte iterates!”, we
obtain the solution: the domain decomposition method haerbe a direct solver,
it is nilpotent, independently of the domain decomposititethod and the problem
we solve: no better coarse correction is possible!

We now give a weak formulation of the transmission problejn 6 simplify
the exposition, we use the case of the Laplacigh,= —A. We multiply the par-
tial differential equation from (5) in each subdoma}p by a test functiorv; and
integrate by parts to obtain

Je;
De-~Dv-—/ %y —o. 6
/Qj e TN (6)

1 For certain methods, continuity of the normal derivativdisvever assured, like in the FETI
methods, or continuity of the Dirichlet traces, like in thetdnann-Neumann method or the alter-
nating Schwarz method. This can be used to reduce the sihe optimal coarse space.
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If we denote byeandvithe functions defined on all @ by the piecewise definition
€ o, 1= €j andv]g, :=vj, then we can combine (6) over all subdomaisto obtain

/De My Z/, gﬁj Iv 0. 7)

If we impose now continuity on the test functions i.e. v'to be continuous, then

(7) becomes
oe; .
| oe-co- Z/J (an, an.)"_o’ ®)

and we can use the data of the problem to remove the normaatiees,

/Qmé-mv—z/r_ hij 7= 0. ©)
ij oy

It is therefore natural to choose a continuous test fundiitmobtain a variational
formulation of the transmission problem (5), a functionhie space

Vi={vivlg =V € Hi (&), v =vjonfj}. (10)

Now the jump in the Dirichlet traces of the errors would in geat be imposed on
the trial function space,

U:={u:ulg = u € Hi(Q), ui—uj=gjonrj}, (11)

so the complete variational formulation for (5) is:

findéeU,suchthat/ 06 09— / hji=0 WieV. (12)
JQ — JTij

To discretize the variational formulation (12), we have mase approximations
of the space¥ andU, and both spaces contain interior Dirichlet conditionsaln
finite element setting, it is natural to enforce the homogesirichlet conditions
in V;, strongly if the mesh is matching at the interfaces, i.e. vge¢ijmpose the nodal
values to be the same fg,.

While at the continuous level, the optimal coarse correclies in an infinite
dimensional space except for 1d problems, see [5, 7], atiticeade level this space
becomes finite dimensional. Itis in principle then possiblase the optimal coarse
space at the discrete level and to obtain a nilpotent metteda method which
converges after the coarse correction, see for example [P1,8L0], and also [1]
for conditions under which classical subdomain iteratioms become nilpotent. It
is however not very practical to use these high dimensiopgial coarse spaces,
and we are thus interested in approximations.
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3 Approximations of the Optimal Coarse Space

We have seen that the optimal coarse space contains fusetinioh satisfy the ho-
mogeneous equation in each non-overlapping subdofhﬁihe. they are harmonic
in f),—. To obtain an approximation of the optimal coarse spacs,tiiérefore suf-
ficient to define an approximation for the functions on theiféices’;, which are
then extended harmonically insidg. A natural way to approximate the functions
on the interfaces is to use a Sturm-Liuville eigenvalue fmat) and then to select
eigenfunctions which correspond to modes on which the swiadtoiteration of the
domain decomposition methods used is not effective. Thisbeadone either for
the entire subdomain, for example choosing eigenfunctibtise Dirichlet to Neu-
mann operator of the subdomain, see [2], or any other eigig@paoblem along the
entire boundary of the subdomaidy, or piecewise on each interfa€g, in which
case also basis functions relating cross points need bealddltle10], see also the
ACMS coarse space [12] and references therein. This canresdving for exam-
ple lower dimensional counterparts of the original probkong the interfacé;;
with boundary conditions one at one end, and zero at the,attesating something
like hat functions around the crosspoint. Doing this forrapée for a rectangular
domain decomposed into rectangular subdomains for Lapkeaeation, this would
just generate Q1 functions on each subdomain. It is impbhiawever to not force
these function to be continuous across subdomains, siagdtive to solve approx-
imately the transmission problem (5) whose solution is moitinuous, except for
specific methods So the resulting coarse basis function is not a hat funatidm
one degree of freedom, but it is a discontinuous hat functiitim e.g. four degrees
of freedom if four subdomains meet at that cross point.

Different approaches not based on approximating an optimaise space, but
also using eigenfunctions in the coarse space to improwafgp@equalities in the
convergence analysis of domain decomposition methods ani=G [14], whose
functions are also harmonic in the interior of subdomaing,[8, 4], where volume
eigenfunctions are used which are thus not harmonic withtidlemains. For a good
overview, see [13].

4 Concrete Example: the Parallel Schwarz Method

We consider the high contrast diffusion problém(a(x,y)0Ju) = f in Q = (0,1)?
with two subdomain®; = (0,152) x (0,1) andQ, = (1,2,1) x (0,1). The classi-
cal parallel Schwarz method is converging most slowly farfiequencies along the
interfacex = % i.e. error components represented in the Laplacian casifkyty),
k=1,2,...,K for some small intege, see for example [6]. These are precisely
the eigenfunctions of the eigenvalue problem one obtaireswusing separation of
variables, which in our high contrast case is

2 see footnote 1
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Fig. 1 An example with long channels, shortened channels, anédlsisortened channels

u\\\muluuumumuu S
0

d(ar@) =Aare, (13)

wherear denotes the trace of the high contrast parameter along tedane, in
our simple exampler (y) := a(%,y). So already in the case of Laplaces equation,
it would be good to enrich a classic@l coarse space aligned with the decom-
position with harmonically extended eigenfunctionskity), k = 1,2, ... K into
the subdomains. We now illustrate why this is even more ingmrin the case of
high contrast channels, tla¢x,y) of which are shown in Figure 1. We show in Fig-
ure 2 the performance of a classical parallel Schwarz matictwo subdomains
for increasing overlap sizes. We see that for the case ofbting ¢hannels increas-
ing the overlap improves the performance of the classichlvdcz methods as for
the Laplaciaf, and nothing special happens between overldpadil overlap 48.
This is however completely different for the shortened cledicase, independently
if they are closed or not, were increasing the overlap doekelp at all, until sud-
denly changing from overlap #land overlap 48, the method becomes fast. This
can be easily understood by the maximum principle, andustithted in Figure 3
which shows the errors in the subdomains. We clearly sedltiato the fast dif-
fusion the error propagates rapidly from the interface theosubdomains, and the
maximum principle indicates slow convergence, as longasverlap does not con-
tain the shortened channels. As soon as the overlap cotit@isbortened channels,
convergence becomes rapid. This is very different for timg lohannels, as illus-

10° e e e o 10°
107 I 107 N
——Overlap h —=—Overlap h ..
——Overlap 11h ——Overlap 11h AN
Overlap 21h Overlap 21h ) -
——Overlap 41h ——Overlap 41h h
—+—Overlap 43h —+—Overlap 43h
1072 1072
10 15 20 5 10 15 20
iteration iteration

Fig. 2 Convergence behavior of a classical parallel Schwarz ndefitnohigh contrast long and
shortened channels

3 the same happens if inclusions are only contained withistibelomains, outside the overlap
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Fig. 3 Error for the first four iterations in the shortened chanmelec Top overlap 41 and bottom
overlap 43, and slightly more overlap suddenly leads to much more repivergence.

trated in Figure 4. Here the channels touch the outer boyrafahe domain, and
the maximum principle indicates rapid convergence.

The case of shortened channels is precisely the situati@nesthe convergence
mechanism of the underlying domain decomposition methadpnablems, and if
one can not afford a large enough overlap, a well chosen esa@ce can help. It
suffices to add harmonically extended low frequency modéseotheap, lower di-
mensional interface eigenvalues problem to the coarseslealing to the so called
Spectrally Harmonically Enriched Multiscale coarse sp@idEM), see [11, 10].
Figure 5 shows that the eigenfunctions of the cheap interéégenvalue problem
are almost identical to the eigenfunctions obtained froengkpensive DtN eigen-
value problem on the shortened channels from [2, 12], alidssty similar to the
ones of the DtN eigenvalue problem on the shortened closadngts, except for
the first one. We show in Figure 6 on the left the eigenvalugésetheap interface
eigenvalue problem, compared to the eigenvalues of thensiue DtN-operator
on the shortened channels and the shortened closed chahineysall indicate via
the smallest eigenvalues that there are five channels, anddarse functions are

1 1
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3 1 1
1 1 1
05 05 05 05
0o oo
1 1
05 05
0 0
_ 1 1
1 1 1
05 05 05 05
0o oo

Fig. 4 Error for the first four iterations in the shortened chanmelec Top overlap 41, and bottom
overlap 43, and slightly more overlap leads to slightly more rapid age.
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Fig. 5 Eigenfunctions of the different eigenvalue problems compa

needed for good convergence, see Figure 6 on the right. Tee@Envalue prob-
lem for the shortened closed channels also indicates tbia thonly one eigenvalue
going to zero when the contrast becomes large. To obtain goodergence, it is
however also in the closed shortened channel case necéssacjude five enrich-
ment functions in the coarse space, see Figure 7. It thusassifiis in SHEM to use
the inexpensive interface eigenvalue problem to consanaffective approxima-
tion of the optimal coarse space, see [10] for simulationthémore general case
of many subdomains and contrast functions.
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